blob: 3592cfe4a26b0c2453fed2313a097d70b6afb9a5 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "disassembler_riscv64.h"
#include "android-base/logging.h"
#include "android-base/stringprintf.h"
#include "base/bit_utils.h"
#include "base/casts.h"
using android::base::StringPrintf;
namespace art {
namespace riscv64 {
class DisassemblerRiscv64::Printer {
public:
Printer(DisassemblerRiscv64* disassembler, std::ostream& os)
: disassembler_(disassembler), os_(os) {}
void Dump32(const uint8_t* insn);
void Dump16(const uint8_t* insn);
void Dump2Byte(const uint8_t* data);
void DumpByte(const uint8_t* data);
private:
// This enumeration should mirror the declarations in runtime/arch/riscv64/registers_riscv64.h.
// We do not include that file to avoid a dependency on libart.
enum {
Zero = 0,
RA = 1,
FP = 8,
TR = 9,
};
static const char* XRegName(uint32_t regno);
static const char* FRegName(uint32_t regno);
static const char* RoundingModeName(uint32_t rm);
static int32_t Decode32Imm12(uint32_t insn32) {
uint32_t sign = (insn32 >> 31);
uint32_t imm12 = (insn32 >> 20);
return static_cast<int32_t>(imm12) - static_cast<int32_t>(sign << 12); // Sign-extend.
}
static int32_t Decode32StoreOffset(uint32_t insn32) {
uint32_t bit11 = insn32 >> 31;
uint32_t bits5_11 = insn32 >> 25;
uint32_t bits0_4 = (insn32 >> 7) & 0x1fu;
uint32_t imm = (bits5_11 << 5) + bits0_4;
return static_cast<int32_t>(imm) - static_cast<int32_t>(bit11 << 12); // Sign-extend.
}
static uint32_t GetRd(uint32_t insn32) { return (insn32 >> 7) & 0x1fu; }
static uint32_t GetRs1(uint32_t insn32) { return (insn32 >> 15) & 0x1fu; }
static uint32_t GetRs2(uint32_t insn32) { return (insn32 >> 20) & 0x1fu; }
static uint32_t GetRs3(uint32_t insn32) { return insn32 >> 27; }
static uint32_t GetRoundingMode(uint32_t insn32) { return (insn32 >> 12) & 7u; }
void PrintBranchOffset(int32_t offset);
void PrintLoadStoreAddress(uint32_t rs1, int32_t offset);
void Print32Lui(uint32_t insn32);
void Print32Auipc(const uint8_t* insn, uint32_t insn32);
void Print32Jal(const uint8_t* insn, uint32_t insn32);
void Print32Jalr(const uint8_t* insn, uint32_t insn32);
void Print32BCond(const uint8_t* insn, uint32_t insn32);
void Print32Load(uint32_t insn32);
void Print32Store(uint32_t insn32);
void Print32FLoad(uint32_t insn32);
void Print32FStore(uint32_t insn32);
void Print32BinOpImm(uint32_t insn32);
void Print32BinOp(uint32_t insn32);
void Print32Atomic(uint32_t insn32);
void Print32FpOp(uint32_t insn32);
void Print32FpFma(uint32_t insn32);
void Print32Zicsr(uint32_t insn32);
void Print32Fence(uint32_t insn32);
DisassemblerRiscv64* const disassembler_;
std::ostream& os_;
};
const char* DisassemblerRiscv64::Printer::XRegName(uint32_t regno) {
static const char* const kXRegisterNames[] = {
"zero",
"ra",
"sp",
"gp",
"tp",
"t0",
"t1",
"t2",
"fp", // s0/fp
"tr", // s1/tr - ART thread register
"a0",
"a1",
"a2",
"a3",
"a4",
"a5",
"a6",
"a7",
"s2",
"s3",
"s4",
"s5",
"s6",
"s7",
"s8",
"s9",
"s10",
"s11",
"t3",
"t4",
"t5",
"t6",
};
static_assert(std::size(kXRegisterNames) == 32);
DCHECK_LT(regno, 32u);
return kXRegisterNames[regno];
}
const char* DisassemblerRiscv64::Printer::FRegName(uint32_t regno) {
static const char* const kFRegisterNames[] = {
"ft0",
"ft1",
"ft2",
"ft3",
"ft4",
"ft5",
"ft6",
"ft7",
"fs0",
"fs1",
"fa0",
"fa1",
"fa2",
"fa3",
"fa4",
"fa5",
"fa6",
"fa7",
"fs2",
"fs3",
"fs4",
"fs5",
"fs6",
"fs7",
"fs8",
"fs9",
"fs10",
"fs11",
"ft8",
"ft9",
"ft10",
"ft11",
};
static_assert(std::size(kFRegisterNames) == 32);
DCHECK_LT(regno, 32u);
return kFRegisterNames[regno];
}
const char* DisassemblerRiscv64::Printer::RoundingModeName(uint32_t rm) {
// Note: We do not print the rounding mode for DYN.
static const char* const kRoundingModeNames[] = {
".rne", ".rtz", ".rdn", ".rup", ".rmm", ".<reserved-rm>", ".<reserved-rm>", /*DYN*/ ""
};
static_assert(std::size(kRoundingModeNames) == 8);
DCHECK_LT(rm, 8u);
return kRoundingModeNames[rm];
}
void DisassemblerRiscv64::Printer::PrintBranchOffset(int32_t offset) {
os_ << (offset >= 0 ? "+" : "") << offset;
}
void DisassemblerRiscv64::Printer::PrintLoadStoreAddress(uint32_t rs1, int32_t offset) {
if (offset != 0) {
os_ << StringPrintf("%d", offset);
}
os_ << "(" << XRegName(rs1) << ")";
if (rs1 == TR && offset >= 0) {
// Add entrypoint name.
os_ << " ; ";
disassembler_->GetDisassemblerOptions()->thread_offset_name_function_(
os_, dchecked_integral_cast<uint32_t>(offset));
}
}
void DisassemblerRiscv64::Printer::Print32Lui(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x37u);
// TODO(riscv64): Should we also print the actual sign-extend value?
os_ << StringPrintf("lui %s, %u", XRegName(GetRd(insn32)), insn32 >> 12);
}
void DisassemblerRiscv64::Printer::Print32Auipc([[maybe_unused]] const uint8_t* insn,
uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x17u);
// TODO(riscv64): Should we also print the calculated address?
os_ << StringPrintf("auipc %s, %u", XRegName(GetRd(insn32)), insn32 >> 12);
}
void DisassemblerRiscv64::Printer::Print32Jal(const uint8_t* insn, uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x6fu);
// Print an alias if available.
uint32_t rd = GetRd(insn32);
os_ << (rd == Zero ? "j " : "jal ");
if (rd != Zero && rd != RA) {
os_ << XRegName(rd) << ", ";
}
uint32_t bit20 = (insn32 >> 31);
uint32_t bits1_10 = (insn32 >> 21) & 0x3ffu;
uint32_t bit11 = (insn32 >> 20) & 1u;
uint32_t bits12_19 = (insn32 >> 12) & 0xffu;
uint32_t imm = (bits1_10 << 1) + (bit11 << 11) + (bits12_19 << 12) + (bit20 << 20);
int32_t offset = static_cast<int32_t>(imm) - static_cast<int32_t>(bit20 << 21); // Sign-extend.
PrintBranchOffset(offset);
os_ << " ; " << disassembler_->FormatInstructionPointer(insn + offset);
// TODO(riscv64): When we implement shared thunks to reduce AOT slow-path code size,
// check if this JAL lands at an entrypoint load from TR and, if so, print its name.
}
void DisassemblerRiscv64::Printer::Print32Jalr([[maybe_unused]] const uint8_t* insn,
uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x67u);
DCHECK_EQ((insn32 >> 12) & 7u, 0u);
uint32_t rd = GetRd(insn32);
uint32_t rs1 = GetRs1(insn32);
int32_t imm12 = Decode32Imm12(insn32);
// Print shorter macro instruction notation if available.
if (rd == Zero && rs1 == RA && imm12 == 0) {
os_ << "ret";
} else if (rd == Zero && imm12 == 0) {
os_ << "jr " << XRegName(rs1);
} else if (rd == RA && imm12 == 0) {
os_ << "jalr " << XRegName(rs1);
} else {
// TODO(riscv64): Should we also print the calculated address if the preceding
// instruction is AUIPC? (We would need to record the previous instruction.)
os_ << "jalr " << XRegName(rd) << ", ";
// Use the same format as llvm-objdump: "rs1" if `imm12` is zero, otherwise "imm12(rs1)".
if (imm12 == 0) {
os_ << XRegName(rs1);
} else {
os_ << imm12 << "(" << XRegName(rs1) << ")";
}
}
}
void DisassemblerRiscv64::Printer::Print32BCond(const uint8_t* insn, uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x63u);
static const char* const kOpcodes[] = {
"beq", "bne", nullptr, nullptr, "blt", "bge", "bltu", "bgeu"
};
uint32_t funct3 = (insn32 >> 12) & 7u;
const char* opcode = kOpcodes[funct3];
if (opcode == nullptr) {
os_ << "<unknown32>";
return;
}
// Print shorter macro instruction notation if available.
uint32_t rs1 = GetRs1(insn32);
uint32_t rs2 = GetRs2(insn32);
if (rs2 == Zero) {
os_ << opcode << "z " << XRegName(rs1);
} else if (rs1 == Zero && (funct3 == 4u || funct3 == 5u)) {
// blt zero, rs2, offset ... bgtz rs2, offset
// bge zero, rs2, offset ... blez rs2, offset
os_ << (funct3 == 4u ? "bgtz " : "blez ") << XRegName(rs2);
} else {
os_ << opcode << " " << XRegName(rs1) << ", " << XRegName(rs2);
}
os_ << ", ";
uint32_t bit12 = insn32 >> 31;
uint32_t bits5_10 = (insn32 >> 25) & 0x3fu;
uint32_t bits1_4 = (insn32 >> 8) & 0xfu;
uint32_t bit11 = (insn32 >> 7) & 1u;
uint32_t imm = (bit12 << 12) + (bit11 << 11) + (bits5_10 << 5) + (bits1_4 << 1);
int32_t offset = static_cast<int32_t>(imm) - static_cast<int32_t>(bit12 << 13); // Sign-extend.
PrintBranchOffset(offset);
os_ << " ; " << disassembler_->FormatInstructionPointer(insn + offset);
}
void DisassemblerRiscv64::Printer::Print32Load(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x03u);
static const char* const kOpcodes[] = {
"lb", "lh", "lw", "ld", "lbu", "lhu", "lwu", nullptr
};
uint32_t funct3 = (insn32 >> 12) & 7u;
const char* opcode = kOpcodes[funct3];
if (opcode == nullptr) {
os_ << "<unknown32>";
return;
}
os_ << opcode << " " << XRegName(GetRd(insn32)) << ", ";
PrintLoadStoreAddress(GetRs1(insn32), Decode32Imm12(insn32));
// TODO(riscv64): If previous instruction is AUIPC for current `rs1` and we load
// from the range specified by assembler options, print the loaded literal.
}
void DisassemblerRiscv64::Printer::Print32Store(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x23u);
static const char* const kOpcodes[] = {
"sb", "sh", "sw", "sd", nullptr, nullptr, nullptr, nullptr
};
uint32_t funct3 = (insn32 >> 12) & 7u;
const char* opcode = kOpcodes[funct3];
if (opcode == nullptr) {
os_ << "<unknown32>";
return;
}
os_ << opcode << " " << XRegName(GetRs2(insn32)) << ", ";
PrintLoadStoreAddress(GetRs1(insn32), Decode32StoreOffset(insn32));
}
void DisassemblerRiscv64::Printer::Print32FLoad(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x07u);
static const char* const kOpcodes[] = {
nullptr, nullptr, "flw", "fld", nullptr, nullptr, nullptr, nullptr
};
uint32_t funct3 = (insn32 >> 12) & 7u;
const char* opcode = kOpcodes[funct3];
if (opcode == nullptr) {
os_ << "<unknown32>";
return;
}
os_ << opcode << " " << FRegName(GetRd(insn32)) << ", ";
PrintLoadStoreAddress(GetRs1(insn32), Decode32Imm12(insn32));
// TODO(riscv64): If previous instruction is AUIPC for current `rs1` and we load
// from the range specified by assembler options, print the loaded literal.
}
void DisassemblerRiscv64::Printer::Print32FStore(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x27u);
static const char* const kOpcodes[] = {
nullptr, nullptr, "fsw", "fsd", nullptr, nullptr, nullptr, nullptr
};
uint32_t funct3 = (insn32 >> 12) & 7u;
const char* opcode = kOpcodes[funct3];
if (opcode == nullptr) {
os_ << "<unknown32>";
return;
}
os_ << opcode << " " << FRegName(GetRs2(insn32)) << ", ";
PrintLoadStoreAddress(GetRs1(insn32), Decode32StoreOffset(insn32));
}
void DisassemblerRiscv64::Printer::Print32BinOpImm(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x77u, 0x13u); // Note: Bit 0x8 selects narrow binop.
bool narrow = (insn32 & 0x8u) != 0u;
uint32_t funct3 = (insn32 >> 12) & 7u;
uint32_t rd = GetRd(insn32);
uint32_t rs1 = GetRs1(insn32);
int32_t imm = Decode32Imm12(insn32);
// Print shorter macro instruction notation if available.
if (funct3 == /*ADDI*/ 0u && imm == 0u) {
if (narrow) {
os_ << "sextw " << XRegName(rd) << ", " << XRegName(rs1);
} else if (rd == Zero && rs1 == Zero) {
os_ << "nop"; // Only canonical nop. Non-Zero `rd == rs1` nops are printed as "mv".
} else {
os_ << "mv " << XRegName(rd) << ", " << XRegName(rs1);
}
} else if (!narrow && funct3 == /*XORI*/ 4u && imm == -1) {
os_ << "not " << XRegName(rd) << ", " << XRegName(rs1);
} else if (!narrow && funct3 == /*ANDI*/ 7u && imm == 0xff) {
os_ << "zextb " << XRegName(rd) << ", " << XRegName(rs1);
} else if (!narrow && funct3 == /*SLTIU*/ 3u && imm == 1) {
os_ << "seqz " << XRegName(rd) << ", " << XRegName(rs1);
} else if ((insn32 & 0xfc00707fu) == 0x0800101bu) {
os_ << "slli.uw " << XRegName(rd) << ", " << XRegName(rs1) << ", " << (imm & 0x3fu);
} else if ((imm ^ 0x600u) < 3u && funct3 == 1u) {
static const char* const kBitOpcodes[] = { "clz", "ctz", "cpop" };
os_ << kBitOpcodes[imm ^ 0x600u] << (narrow ? "w " : " ")
<< XRegName(rd) << ", " << XRegName(rs1);
} else if ((imm ^ 0x600u) < (narrow ? 32 : 64) && funct3 == 5u) {
os_ << "rori" << (narrow ? "w " : " ")
<< XRegName(rd) << ", " << XRegName(rs1) << ", " << (imm ^ 0x600u);
} else if (imm == 0x287u && !narrow && funct3 == 5u) {
os_ << "orc.b " << XRegName(rd) << ", " << XRegName(rs1);
} else if (imm == 0x6b8u && !narrow && funct3 == 5u) {
os_ << "rev8 " << XRegName(rd) << ", " << XRegName(rs1);
} else {
bool bad_high_bits = false;
if (funct3 == /*SLLI*/ 1u || funct3 == /*SRLI/SRAI*/ 5u) {
imm &= (narrow ? 0x1fu : 0x3fu);
uint32_t high_bits = insn32 & (narrow ? 0xfe000000u : 0xfc000000u);
if (high_bits == 0x40000000u && funct3 == /*SRAI*/ 5u) {
os_ << "srai";
} else {
os_ << ((funct3 == /*SRLI*/ 5u) ? "srli" : "slli");
bad_high_bits = (high_bits != 0u);
}
} else if (!narrow || funct3 == /*ADDI*/ 0u) {
static const char* const kOpcodes[] = {
"addi", nullptr, "slti", "sltiu", "xori", nullptr, "ori", "andi"
};
DCHECK(kOpcodes[funct3] != nullptr);
os_ << kOpcodes[funct3];
} else {
os_ << "<unknown32>"; // There is no SLTIW/SLTIUW/XORIW/ORIW/ANDIW.
return;
}
os_ << (narrow ? "w " : " ") << XRegName(rd) << ", " << XRegName(rs1) << ", " << imm;
if (bad_high_bits) {
os_ << " (invalid high bits)";
}
}
}
void DisassemblerRiscv64::Printer::Print32BinOp(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x77u, 0x33u); // Note: Bit 0x8 selects narrow binop.
bool narrow = (insn32 & 0x8u) != 0u;
uint32_t funct3 = (insn32 >> 12) & 7u;
uint32_t rd = GetRd(insn32);
uint32_t rs1 = GetRs1(insn32);
uint32_t rs2 = GetRs2(insn32);
uint32_t high_bits = insn32 & 0xfe000000u;
// Print shorter macro instruction notation if available.
if (high_bits == 0x40000000u && funct3 == /*SUB*/ 0u && rs1 == Zero) {
os_ << (narrow ? "negw " : "neg ") << XRegName(rd) << ", " << XRegName(rs2);
} else if (!narrow && funct3 == /*SLT*/ 2u && rs2 == Zero) {
os_ << "sltz " << XRegName(rd) << ", " << XRegName(rs1);
} else if (!narrow && funct3 == /*SLT*/ 2u && rs1 == Zero) {
os_ << "sgtz " << XRegName(rd) << ", " << XRegName(rs2);
} else if (!narrow && funct3 == /*SLTU*/ 3u && rs1 == Zero) {
os_ << "snez " << XRegName(rd) << ", " << XRegName(rs2);
} else if (narrow && high_bits == 0x08000000u && funct3 == /*ADD.UW*/ 0u && rs2 == Zero) {
os_ << "zext.w " << XRegName(rd) << ", " << XRegName(rs1);
} else {
bool bad_high_bits = false;
if (high_bits == 0x40000000u && (funct3 == /*SUB*/ 0u || funct3 == /*SRA*/ 5u)) {
os_ << ((funct3 == /*SUB*/ 0u) ? "sub" : "sra");
} else if (high_bits == 0x02000000u &&
(!narrow || (funct3 == /*MUL*/ 0u || funct3 >= /*DIV/DIVU/REM/REMU*/ 4u))) {
static const char* const kOpcodes[] = {
"mul", "mulh", "mulhsu", "mulhu", "div", "divu", "rem", "remu"
};
os_ << kOpcodes[funct3];
} else if (high_bits == 0x08000000u && narrow && funct3 == /*ADD.UW*/ 0u) {
os_ << "add.u"; // "w" is added below.
} else if (high_bits == 0x20000000u && (funct3 & 1u) == 0u && funct3 != 0u) {
static const char* const kZbaOpcodes[] = { nullptr, "sh1add", "sh2add", "sh3add" };
DCHECK(kZbaOpcodes[funct3 >> 1] != nullptr);
os_ << kZbaOpcodes[funct3 >> 1] << (narrow ? ".u" /* "w" is added below. */ : "");
} else if (high_bits == 0x40000000u && !narrow && funct3 >= 4u && funct3 != 5u) {
static const char* const kZbbNegOpcodes[] = { "xnor", nullptr, "orn", "andn" };
DCHECK(kZbbNegOpcodes[funct3 - 4u] != nullptr);
os_ << kZbbNegOpcodes[funct3 - 4u];
} else if (high_bits == 0x0a000000u && !narrow && funct3 >= 4u) {
static const char* const kZbbMinMaxOpcodes[] = { "min", "minu", "max", "maxu" };
DCHECK(kZbbMinMaxOpcodes[funct3 - 4u] != nullptr);
os_ << kZbbMinMaxOpcodes[funct3 - 4u];
} else if (high_bits == 0x60000000u && (funct3 == /*ROL*/ 1u || funct3 == /*ROL*/ 5u)) {
os_ << (funct3 == /*ROL*/ 1u ? "rol" : "ror");
} else if (!narrow || (funct3 == /*ADD*/ 0u || funct3 == /*SLL*/ 1u || funct3 == /*SRL*/ 5u)) {
static const char* const kOpcodes[] = {
"add", "sll", "slt", "sltu", "xor", "srl", "or", "and"
};
os_ << kOpcodes[funct3];
bad_high_bits = (high_bits != 0u);
} else {
DCHECK(narrow);
os_ << "<unknown32>"; // Some of the above instructions do not have a narrow version.
return;
}
os_ << (narrow ? "w " : " ") << XRegName(rd) << ", " << XRegName(rs1) << ", " << XRegName(rs2);
if (bad_high_bits) {
os_ << " (invalid high bits)";
}
}
}
void DisassemblerRiscv64::Printer::Print32Atomic(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x2fu);
uint32_t funct3 = (insn32 >> 12) & 7u;
uint32_t funct5 = (insn32 >> 27);
if ((funct3 != 2u && funct3 != 3u) || // There are only 32-bit and 64-bit LR/SC/AMO*.
(((funct5 & 3u) != 0u) && funct5 >= 4u)) { // Only multiples of 4, or 1-3.
os_ << "<unknown32>";
return;
}
static const char* const kMul4Opcodes[] = {
"amoadd", "amoxor", "amoor", "amoand", "amomin", "amomax", "amominu", "amomaxu"
};
static const char* const kOtherOpcodes[] = {
nullptr, "amoswap", "lr", "sc"
};
const char* opcode = ((funct5 & 3u) == 0u) ? kMul4Opcodes[funct5 >> 2] : kOtherOpcodes[funct5];
DCHECK(opcode != nullptr);
uint32_t rd = GetRd(insn32);
uint32_t rs1 = GetRs1(insn32);
uint32_t rs2 = GetRs2(insn32);
const char* type = (funct3 == 2u) ? ".w" : ".d";
const char* aq = (((insn32 >> 26) & 1u) != 0u) ? ".aq" : "";
const char* rl = (((insn32 >> 25) & 1u) != 0u) ? ".rl" : "";
os_ << opcode << type << aq << rl << " " << XRegName(rd) << ", " << XRegName(rs1);
if (funct5 == /*LR*/ 2u) {
if (rs2 != 0u) {
os_ << " (bad rs2)";
}
} else {
os_ << ", " << XRegName(rs2);
}
}
void DisassemblerRiscv64::Printer::Print32FpOp(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x53u);
uint32_t rd = GetRd(insn32);
uint32_t rs1 = GetRs1(insn32);
uint32_t rs2 = GetRs2(insn32); // Sometimes used to to differentiate opcodes.
uint32_t rm = GetRoundingMode(insn32); // Sometimes used to to differentiate opcodes.
uint32_t funct7 = insn32 >> 25;
const char* type = ((funct7 & 1u) != 0u) ? ".d" : ".s";
if ((funct7 & 2u) != 0u) {
os_ << "<unknown32>"; // Note: This includes the "H" and "Q" extensions.
return;
}
switch (funct7 >> 2) {
case 0u:
case 1u:
case 2u:
case 3u: {
static const char* const kOpcodes[] = { "fadd", "fsub", "fmul", "fdiv" };
os_ << kOpcodes[funct7 >> 2] << type << RoundingModeName(rm) << " "
<< FRegName(rd) << ", " << FRegName(rs1) << ", " << FRegName(rs2);
return;
}
case 4u: { // FSGN*
// Print shorter macro instruction notation if available.
static const char* const kOpcodes[] = { "fsgnj", "fsgnjn", "fsgnjx" };
if (rm < std::size(kOpcodes)) {
if (rs1 == rs2) {
static const char* const kAltOpcodes[] = { "fmv", "fneg", "fabs" };
static_assert(std::size(kOpcodes) == std::size(kAltOpcodes));
os_ << kAltOpcodes[rm] << type << " " << FRegName(rd) << ", " << FRegName(rs1);
} else {
os_ << kOpcodes[rm] << type << " "
<< FRegName(rd) << ", " << FRegName(rs1) << ", " << FRegName(rs2);
}
return;
}
break;
}
case 5u: { // FMIN/FMAX
static const char* const kOpcodes[] = { "fmin", "fmax" };
if (rm < std::size(kOpcodes)) {
os_ << kOpcodes[rm] << type << " "
<< FRegName(rd) << ", " << FRegName(rs1) << ", " << FRegName(rs2);
return;
}
break;
}
case 0x8u: // FCVT between FP numbers.
if ((rs2 ^ 1u) == (funct7 & 1u)) {
os_ << ((rs2 != 0u) ? "fcvt.s.d" : "fcvt.d.s") << RoundingModeName(rm) << " "
<< FRegName(rd) << ", " << FRegName(rs1);
}
break;
case 0xbu:
if (rs2 == 0u) {
os_ << "fsqrt" << type << RoundingModeName(rm) << " "
<< FRegName(rd) << ", " << FRegName(rs1);
return;
}
break;
case 0x14u: { // FLE/FLT/FEQ
static const char* const kOpcodes[] = { "fle", "flt", "feq" };
if (rm < std::size(kOpcodes)) {
os_ << kOpcodes[rm] << type << " "
<< XRegName(rd) << ", " << FRegName(rs1) << ", " << FRegName(rs2);
return;
}
break;
}
case 0x18u: { // FCVT from floating point numbers to integers
static const char* const kIntTypes[] = { "w", "wu", "l", "lu" };
if (rs2 < std::size(kIntTypes)) {
os_ << "fcvt." << kIntTypes[rs2] << type << RoundingModeName(rm) << " "
<< XRegName(rd) << ", " << FRegName(rs1);
return;
}
break;
}
case 0x1au: { // FCVT from integers to floating point numbers
static const char* const kIntTypes[] = { "w", "wu", "l", "lu" };
if (rs2 < std::size(kIntTypes)) {
os_ << "fcvt" << type << "." << kIntTypes[rs2] << RoundingModeName(rm) << " "
<< FRegName(rd) << ", " << XRegName(rs1);
return;
}
break;
}
case 0x1cu: // FMV from FPR to GPR, or FCLASS
if (rs2 == 0u && rm == 0u) {
os_ << (((funct7 & 1u) != 0u) ? "fmv.x.d " : "fmv.x.w ")
<< XRegName(rd) << ", " << FRegName(rs1);
return;
} else if (rs2 == 0u && rm == 1u) {
os_ << "fclass" << type << " " << XRegName(rd) << ", " << FRegName(rs1);
return;
}
break;
case 0x1eu: // FMV from GPR to FPR
if (rs2 == 0u && rm == 0u) {
os_ << (((funct7 & 1u) != 0u) ? "fmv.d.x " : "fmv.w.x ")
<< FRegName(rd) << ", " << XRegName(rs1);
return;
}
break;
default:
break;
}
os_ << "<unknown32>";
}
void DisassemblerRiscv64::Printer::Print32FpFma(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x73u, 0x43u); // Note: Bits 0xc select the FMA opcode.
uint32_t funct2 = (insn32 >> 25) & 3u;
if (funct2 >= 2u) {
os_ << "<unknown32>"; // Note: This includes the "H" and "Q" extensions.
return;
}
static const char* const kOpcodes[] = { "fmadd", "fmsub", "fnmsub", "fnmadd" };
os_ << kOpcodes[(insn32 >> 2) & 3u] << ((funct2 != 0u) ? ".d" : ".s")
<< RoundingModeName(GetRoundingMode(insn32)) << " "
<< FRegName(GetRd(insn32)) << ", " << FRegName(GetRs1(insn32)) << ", "
<< FRegName(GetRs2(insn32)) << ", " << FRegName(GetRs3(insn32));
}
void DisassemblerRiscv64::Printer::Print32Zicsr(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x73u);
uint32_t funct3 = (insn32 >> 12) & 7u;
static const char* const kOpcodes[] = {
nullptr, "csrrw", "csrrs", "csrrc", nullptr, "csrrwi", "csrrsi", "csrrci"
};
const char* opcode = kOpcodes[funct3];
if (opcode == nullptr) {
os_ << "<unknown32>";
return;
}
uint32_t rd = GetRd(insn32);
uint32_t rs1_or_uimm = GetRs1(insn32);
uint32_t csr = insn32 >> 20;
// Print shorter macro instruction notation if available.
if (funct3 == /*CSRRW*/ 1u && rd == 0u && rs1_or_uimm == 0u && csr == 0xc00u) {
os_ << "unimp";
return;
} else if (funct3 == /*CSRRS*/ 2u && rs1_or_uimm == 0u) {
if (csr == 0xc00u) {
os_ << "rdcycle " << XRegName(rd);
} else if (csr == 0xc01u) {
os_ << "rdtime " << XRegName(rd);
} else if (csr == 0xc02u) {
os_ << "rdinstret " << XRegName(rd);
} else {
os_ << "csrr " << XRegName(rd) << ", " << csr;
}
return;
}
if (rd == 0u) {
static const char* const kAltOpcodes[] = {
nullptr, "csrw", "csrs", "csrc", nullptr, "csrwi", "csrsi", "csrci"
};
DCHECK(kAltOpcodes[funct3] != nullptr);
os_ << kAltOpcodes[funct3] << " " << csr << ", ";
} else {
os_ << opcode << " " << XRegName(rd) << ", " << csr << ", ";
}
if (funct3 >= /*CSRRWI/CSRRSI/CSRRCI*/ 4u) {
os_ << rs1_or_uimm;
} else {
os_ << XRegName(rs1_or_uimm);
}
}
void DisassemblerRiscv64::Printer::Print32Fence(uint32_t insn32) {
DCHECK_EQ(insn32 & 0x7fu, 0x0fu);
if ((insn32 & 0xf00fffffu) == 0x0000000fu) {
auto print_flags = [&](uint32_t flags) {
if (flags == 0u) {
os_ << "0";
} else {
DCHECK_LT(flags, 0x10u);
static const char kFlagNames[] = "wroi";
for (size_t bit : { 3u, 2u, 1u, 0u }) { // Print in the "iorw" order.
if ((flags & (1u << bit)) != 0u) {
os_ << kFlagNames[bit];
}
}
}
};
os_ << "fence.";
print_flags((insn32 >> 24) & 0xfu);
os_ << ".";
print_flags((insn32 >> 20) & 0xfu);
} else if (insn32 == 0x8330000fu) {
os_ << "fence.tso";
} else if (insn32 == 0x0000100fu) {
os_ << "fence.i";
} else {
os_ << "<unknown32>";
}
}
void DisassemblerRiscv64::Printer::Dump32(const uint8_t* insn) {
uint32_t insn32 = static_cast<uint32_t>(insn[0]) +
(static_cast<uint32_t>(insn[1]) << 8) +
(static_cast<uint32_t>(insn[2]) << 16) +
(static_cast<uint32_t>(insn[3]) << 24);
CHECK_EQ(insn32 & 3u, 3u);
os_ << disassembler_->FormatInstructionPointer(insn) << StringPrintf(": %08x\t", insn32);
switch (insn32 & 0x7fu) {
case 0x37u:
Print32Lui(insn32);
break;
case 0x17u:
Print32Auipc(insn, insn32);
break;
case 0x6fu:
Print32Jal(insn, insn32);
break;
case 0x67u:
switch ((insn32 >> 12) & 7u) { // funct3
case 0:
Print32Jalr(insn, insn32);
break;
default:
os_ << "<unknown32>";
break;
}
break;
case 0x63u:
Print32BCond(insn, insn32);
break;
case 0x03u:
Print32Load(insn32);
break;
case 0x23u:
Print32Store(insn32);
break;
case 0x07u:
Print32FLoad(insn32);
break;
case 0x27u:
Print32FStore(insn32);
break;
case 0x13u:
case 0x1bu:
Print32BinOpImm(insn32);
break;
case 0x33u:
case 0x3bu:
Print32BinOp(insn32);
break;
case 0x2fu:
Print32Atomic(insn32);
break;
case 0x53u:
Print32FpOp(insn32);
break;
case 0x43u:
case 0x47u:
case 0x4bu:
case 0x4fu:
Print32FpFma(insn32);
break;
case 0x73u:
if ((insn32 & 0xffefffffu) == 0x00000073u) {
os_ << ((insn32 == 0x00000073u) ? "ecall" : "ebreak");
} else {
Print32Zicsr(insn32);
}
break;
case 0x0fu:
Print32Fence(insn32);
break;
default:
// TODO(riscv64): Disassemble more instructions.
os_ << "<unknown32>";
break;
}
os_ << "\n";
}
void DisassemblerRiscv64::Printer::Dump16(const uint8_t* insn) {
uint32_t insn16 = static_cast<uint32_t>(insn[0]) + (static_cast<uint32_t>(insn[1]) << 8);
CHECK_NE(insn16 & 3u, 3u);
// TODO(riscv64): Disassemble instructions from the "C" extension.
os_ << disassembler_->FormatInstructionPointer(insn)
<< StringPrintf(": %04x \t<unknown16>\n", insn16);
}
void DisassemblerRiscv64::Printer::Dump2Byte(const uint8_t* data) {
uint32_t value = data[0] + (data[1] << 8);
os_ << disassembler_->FormatInstructionPointer(data)
<< StringPrintf(": %04x \t.2byte %u\n", value, value);
}
void DisassemblerRiscv64::Printer::DumpByte(const uint8_t* data) {
uint32_t value = *data;
os_ << disassembler_->FormatInstructionPointer(data)
<< StringPrintf(": %02x \t.byte %u\n", value, value);
}
size_t DisassemblerRiscv64::Dump(std::ostream& os, const uint8_t* begin) {
if (begin < GetDisassemblerOptions()->base_address_ ||
begin >= GetDisassemblerOptions()->end_address_) {
return 0u; // Outside the range.
}
Printer printer(this, os);
if (!IsAligned<2u>(begin) || GetDisassemblerOptions()->end_address_ - begin == 1) {
printer.DumpByte(begin);
return 1u;
}
if ((*begin & 3u) == 3u) {
if (GetDisassemblerOptions()->end_address_ - begin >= 4) {
printer.Dump32(begin);
return 4u;
} else {
printer.Dump2Byte(begin);
return 2u;
}
} else {
printer.Dump16(begin);
return 2u;
}
}
void DisassemblerRiscv64::Dump(std::ostream& os, const uint8_t* begin, const uint8_t* end) {
Printer printer(this, os);
const uint8_t* cur = begin;
if (cur < end && !IsAligned<2u>(cur)) {
// Unaligned, dump as a `.byte` to get to an aligned address.
printer.DumpByte(cur);
cur += 1;
}
if (cur >= end) {
return;
}
while (end - cur >= 4) {
if ((*cur & 3u) == 3u) {
printer.Dump32(cur);
cur += 4;
} else {
printer.Dump16(cur);
cur += 2;
}
}
if (end - cur >= 2) {
if ((*cur & 3u) == 3u) {
// Not enough data for a 32-bit instruction. Dump as `.2byte`.
printer.Dump2Byte(cur);
} else {
printer.Dump16(cur);
}
cur += 2;
}
if (end != cur) {
CHECK_EQ(end - cur, 1);
printer.DumpByte(cur);
}
}
} // namespace riscv64
} // namespace art