| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| #include "fault_handler.h" |
| #include <sys/ucontext.h> |
| #include "base/macros.h" |
| #include "globals.h" |
| #include "base/logging.h" |
| #include "base/hex_dump.h" |
| #include "mirror/art_method.h" |
| #include "mirror/art_method-inl.h" |
| #include "thread.h" |
| #include "thread-inl.h" |
| |
| #if defined(__APPLE__) |
| #define ucontext __darwin_ucontext |
| |
| #if defined(__x86_64__) |
| // 64 bit mac build. |
| #define CTX_ESP uc_mcontext->__ss.__rsp |
| #define CTX_EIP uc_mcontext->__ss.__rip |
| #define CTX_EAX uc_mcontext->__ss.__rax |
| #define CTX_METHOD uc_mcontext->__ss.__rdi |
| #define CTX_JMP_BUF uc_mcontext->__ss.__rdi |
| #else |
| // 32 bit mac build. |
| #define CTX_ESP uc_mcontext->__ss.__esp |
| #define CTX_EIP uc_mcontext->__ss.__eip |
| #define CTX_EAX uc_mcontext->__ss.__eax |
| #define CTX_METHOD uc_mcontext->__ss.__eax |
| #define CTX_JMP_BUF uc_mcontext->__ss.__eax |
| #endif |
| |
| #elif defined(__x86_64__) |
| // 64 bit linux build. |
| #define CTX_ESP uc_mcontext.gregs[REG_RSP] |
| #define CTX_EIP uc_mcontext.gregs[REG_RIP] |
| #define CTX_EAX uc_mcontext.gregs[REG_RAX] |
| #define CTX_METHOD uc_mcontext.gregs[REG_RDI] |
| #define CTX_RDI uc_mcontext.gregs[REG_RDI] |
| #define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI] |
| #else |
| // 32 bit linux build. |
| #define CTX_ESP uc_mcontext.gregs[REG_ESP] |
| #define CTX_EIP uc_mcontext.gregs[REG_EIP] |
| #define CTX_EAX uc_mcontext.gregs[REG_EAX] |
| #define CTX_METHOD uc_mcontext.gregs[REG_EAX] |
| #define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX] |
| #endif |
| |
| // |
| // X86 (and X86_64) specific fault handler functions. |
| // |
| |
| namespace art { |
| |
| #if defined(__APPLE__) && defined(__x86_64__) |
| // mac symbols have a prefix of _ on x86_64 |
| extern "C" void _art_quick_throw_null_pointer_exception(); |
| extern "C" void _art_quick_throw_stack_overflow(); |
| extern "C" void _art_quick_test_suspend(); |
| #define EXT_SYM(sym) _ ## sym |
| #else |
| extern "C" void art_quick_throw_null_pointer_exception(); |
| extern "C" void art_quick_throw_stack_overflow(); |
| extern "C" void art_quick_test_suspend(); |
| #define EXT_SYM(sym) sym |
| #endif |
| |
| // Note this is different from the others (no underscore on 64 bit mac) due to |
| // the way the symbol is defined in the .S file. |
| // TODO: fix the symbols for 64 bit mac - there is a double underscore prefix for some |
| // of them. |
| extern "C" void art_nested_signal_return(); |
| |
| // Get the size of an instruction in bytes. |
| // Return 0 if the instruction is not handled. |
| static uint32_t GetInstructionSize(const uint8_t* pc) { |
| #if defined(__x86_64) |
| const bool x86_64 = true; |
| #else |
| const bool x86_64 = false; |
| #endif |
| |
| const uint8_t* startpc = pc; |
| |
| uint8_t opcode = *pc++; |
| uint8_t modrm; |
| bool has_modrm = false; |
| bool two_byte = false; |
| uint32_t displacement_size = 0; |
| uint32_t immediate_size = 0; |
| bool operand_size_prefix = false; |
| |
| // Prefixes. |
| while (true) { |
| bool prefix_present = false; |
| switch (opcode) { |
| // Group 3 |
| case 0x66: |
| operand_size_prefix = true; |
| FALLTHROUGH_INTENDED; |
| |
| // Group 1 |
| case 0xf0: |
| case 0xf2: |
| case 0xf3: |
| |
| // Group 2 |
| case 0x2e: |
| case 0x36: |
| case 0x3e: |
| case 0x26: |
| case 0x64: |
| case 0x65: |
| |
| // Group 4 |
| case 0x67: |
| opcode = *pc++; |
| prefix_present = true; |
| break; |
| } |
| if (!prefix_present) { |
| break; |
| } |
| } |
| |
| if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) { |
| opcode = *pc++; |
| } |
| |
| if (opcode == 0x0f) { |
| // Two byte opcode |
| two_byte = true; |
| opcode = *pc++; |
| } |
| |
| bool unhandled_instruction = false; |
| |
| if (two_byte) { |
| switch (opcode) { |
| case 0x10: // vmovsd/ss |
| case 0x11: // vmovsd/ss |
| case 0xb6: // movzx |
| case 0xb7: |
| case 0xbe: // movsx |
| case 0xbf: |
| modrm = *pc++; |
| has_modrm = true; |
| break; |
| default: |
| unhandled_instruction = true; |
| break; |
| } |
| } else { |
| switch (opcode) { |
| case 0x88: // mov byte |
| case 0x89: // mov |
| case 0x8b: |
| case 0x38: // cmp with memory. |
| case 0x39: |
| case 0x3a: |
| case 0x3b: |
| case 0x3c: |
| case 0x3d: |
| case 0x85: // test. |
| modrm = *pc++; |
| has_modrm = true; |
| break; |
| |
| case 0x80: // group 1, byte immediate. |
| case 0x83: |
| case 0xc6: |
| modrm = *pc++; |
| has_modrm = true; |
| immediate_size = 1; |
| break; |
| |
| case 0x81: // group 1, word immediate. |
| modrm = *pc++; |
| has_modrm = true; |
| immediate_size = operand_size_prefix ? 2 : 4; |
| break; |
| |
| default: |
| unhandled_instruction = true; |
| break; |
| } |
| } |
| |
| if (unhandled_instruction) { |
| VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode); |
| return 0; |
| } |
| |
| if (has_modrm) { |
| uint8_t mod = (modrm >> 6) & 3U /* 0b11 */; |
| |
| // Check for SIB. |
| if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) { |
| ++pc; // SIB |
| } |
| |
| switch (mod) { |
| case 0U /* 0b00 */: break; |
| case 1U /* 0b01 */: displacement_size = 1; break; |
| case 2U /* 0b10 */: displacement_size = 4; break; |
| case 3U /* 0b11 */: |
| break; |
| } |
| } |
| |
| // Skip displacement and immediate. |
| pc += displacement_size + immediate_size; |
| |
| VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc); |
| return pc - startpc; |
| } |
| |
| void FaultManager::HandleNestedSignal(int sig, siginfo_t* info, void* context) { |
| // For the Intel architectures we need to go to an assembly language |
| // stub. This is because the 32 bit call to longjmp is much different |
| // from the 64 bit ABI call and pushing things onto the stack inside this |
| // handler was unwieldy and ugly. The use of the stub means we can keep |
| // this code the same for both 32 and 64 bit. |
| |
| Thread* self = Thread::Current(); |
| CHECK(self != nullptr); // This will cause a SIGABRT if self is nullptr. |
| |
| struct ucontext* uc = reinterpret_cast<struct ucontext*>(context); |
| uc->CTX_JMP_BUF = reinterpret_cast<uintptr_t>(*self->GetNestedSignalState()); |
| uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_nested_signal_return); |
| } |
| |
| void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context, |
| mirror::ArtMethod** out_method, |
| uintptr_t* out_return_pc, uintptr_t* out_sp) { |
| struct ucontext* uc = reinterpret_cast<struct ucontext*>(context); |
| *out_sp = static_cast<uintptr_t>(uc->CTX_ESP); |
| VLOG(signals) << "sp: " << std::hex << *out_sp; |
| if (*out_sp == 0) { |
| return; |
| } |
| |
| // In the case of a stack overflow, the stack is not valid and we can't |
| // get the method from the top of the stack. However it's in EAX(x86)/RDI(x86_64). |
| uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr); |
| uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>( |
| #if defined(__x86_64__) |
| reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86_64)); |
| #else |
| reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86)); |
| #endif |
| if (overflow_addr == fault_addr) { |
| *out_method = reinterpret_cast<mirror::ArtMethod*>(uc->CTX_METHOD); |
| } else { |
| // The method is at the top of the stack. |
| *out_method = (reinterpret_cast<StackReference<mirror::ArtMethod>* >(*out_sp)[0]).AsMirrorPtr(); |
| } |
| |
| uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP); |
| VLOG(signals) << HexDump(pc, 32, true, "PC "); |
| |
| uint32_t instr_size = GetInstructionSize(pc); |
| if (instr_size == 0) { |
| // Unknown instruction, tell caller it's not ours. |
| *out_method = nullptr; |
| return; |
| } |
| *out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size); |
| } |
| |
| bool NullPointerHandler::Action(int sig, siginfo_t* info, void* context) { |
| struct ucontext *uc = reinterpret_cast<struct ucontext*>(context); |
| uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP); |
| uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP); |
| |
| uint32_t instr_size = GetInstructionSize(pc); |
| if (instr_size == 0) { |
| // Unknown instruction, can't really happen. |
| return false; |
| } |
| |
| // We need to arrange for the signal handler to return to the null pointer |
| // exception generator. The return address must be the address of the |
| // next instruction (this instruction + instruction size). The return address |
| // is on the stack at the top address of the current frame. |
| |
| // Push the return address onto the stack. |
| uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + instr_size); |
| uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t)); |
| *next_sp = retaddr; |
| uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp); |
| |
| uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_null_pointer_exception)); |
| VLOG(signals) << "Generating null pointer exception"; |
| return true; |
| } |
| |
| // A suspend check is done using the following instruction sequence: |
| // (x86) |
| // 0xf720f1df: 648B058C000000 mov eax, fs:[0x8c] ; suspend_trigger |
| // .. some intervening instructions. |
| // 0xf720f1e6: 8500 test eax, [eax] |
| // (x86_64) |
| // 0x7f579de45d9e: 65488B0425A8000000 movq rax, gs:[0xa8] ; suspend_trigger |
| // .. some intervening instructions. |
| // 0x7f579de45da7: 8500 test eax, [eax] |
| |
| // The offset from fs is Thread::ThreadSuspendTriggerOffset(). |
| // To check for a suspend check, we examine the instructions that caused |
| // the fault. |
| bool SuspensionHandler::Action(int sig, siginfo_t* info, void* context) { |
| // These are the instructions to check for. The first one is the mov eax, fs:[xxx] |
| // where xxx is the offset of the suspend trigger. |
| #if defined(__x86_64__) |
| uint32_t trigger = Thread::ThreadSuspendTriggerOffset<8>().Int32Value(); |
| #else |
| uint32_t trigger = Thread::ThreadSuspendTriggerOffset<4>().Int32Value(); |
| #endif |
| |
| VLOG(signals) << "Checking for suspension point"; |
| #if defined(__x86_64__) |
| uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff), |
| static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0}; |
| #else |
| uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff), |
| static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0}; |
| #endif |
| uint8_t checkinst2[] = {0x85, 0x00}; |
| |
| struct ucontext *uc = reinterpret_cast<struct ucontext*>(context); |
| uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP); |
| uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP); |
| |
| if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) { |
| // Second instruction is not correct (test eax,[eax]). |
| VLOG(signals) << "Not a suspension point"; |
| return false; |
| } |
| |
| // The first instruction can a little bit up the stream due to load hoisting |
| // in the compiler. |
| uint8_t* limit = pc - 100; // Compiler will hoist to a max of 20 instructions. |
| uint8_t* ptr = pc - sizeof(checkinst1); |
| bool found = false; |
| while (ptr > limit) { |
| if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) { |
| found = true; |
| break; |
| } |
| ptr -= 1; |
| } |
| |
| if (found) { |
| VLOG(signals) << "suspend check match"; |
| |
| // We need to arrange for the signal handler to return to the null pointer |
| // exception generator. The return address must be the address of the |
| // next instruction (this instruction + 2). The return address |
| // is on the stack at the top address of the current frame. |
| |
| // Push the return address onto the stack. |
| uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2); |
| uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t)); |
| *next_sp = retaddr; |
| uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp); |
| |
| uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_test_suspend)); |
| |
| // Now remove the suspend trigger that caused this fault. |
| Thread::Current()->RemoveSuspendTrigger(); |
| VLOG(signals) << "removed suspend trigger invoking test suspend"; |
| return true; |
| } |
| VLOG(signals) << "Not a suspend check match, first instruction mismatch"; |
| return false; |
| } |
| |
| // The stack overflow check is done using the following instruction: |
| // test eax, [esp+ -xxx] |
| // where 'xxx' is the size of the overflow area. |
| // |
| // This is done before any frame is established in the method. The return |
| // address for the previous method is on the stack at ESP. |
| |
| bool StackOverflowHandler::Action(int sig, siginfo_t* info, void* context) { |
| struct ucontext *uc = reinterpret_cast<struct ucontext*>(context); |
| uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP); |
| |
| uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr); |
| VLOG(signals) << "fault_addr: " << std::hex << fault_addr; |
| VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp << |
| ", fault_addr: " << fault_addr; |
| |
| #if defined(__x86_64__) |
| uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86_64); |
| #else |
| uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86); |
| #endif |
| |
| // Check that the fault address is the value expected for a stack overflow. |
| if (fault_addr != overflow_addr) { |
| VLOG(signals) << "Not a stack overflow"; |
| return false; |
| } |
| |
| VLOG(signals) << "Stack overflow found"; |
| |
| // Since the compiler puts the implicit overflow |
| // check before the callee save instructions, the SP is already pointing to |
| // the previous frame. |
| |
| // Now arrange for the signal handler to return to art_quick_throw_stack_overflow. |
| uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_stack_overflow)); |
| |
| return true; |
| } |
| } // namespace art |