blob: 7e5e745eef346048f9e1cdd8e9a941943cbb3e87 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fault_handler.h"
#include <string.h>
#include <sys/mman.h>
#include <sys/ucontext.h>
#include <atomic>
#include "art_method-inl.h"
#include "base/logging.h" // For VLOG
#include "base/membarrier.h"
#include "base/safe_copy.h"
#include "base/stl_util.h"
#include "dex/dex_file_types.h"
#include "gc/heap.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "mirror/class.h"
#include "mirror/object_reference.h"
#include "oat_file.h"
#include "oat_quick_method_header.h"
#include "sigchain.h"
#include "thread-current-inl.h"
#include "verify_object-inl.h"
namespace art {
// Static fault manger object accessed by signal handler.
FaultManager fault_manager;
// This needs to be NO_INLINE since some debuggers do not read the inline-info to set a breakpoint
// if it isn't.
extern "C" NO_INLINE __attribute__((visibility("default"))) void art_sigsegv_fault() {
// Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
}
// Signal handler called on SIGSEGV.
static bool art_sigsegv_handler(int sig, siginfo_t* info, void* context) {
return fault_manager.HandleSigsegvFault(sig, info, context);
}
// Signal handler called on SIGBUS.
static bool art_sigbus_handler(int sig, siginfo_t* info, void* context) {
return fault_manager.HandleSigbusFault(sig, info, context);
}
FaultManager::FaultManager()
: generated_code_ranges_lock_("FaultHandler generated code ranges lock",
LockLevel::kGenericBottomLock),
initialized_(false) {}
FaultManager::~FaultManager() {
}
static const char* SignalCodeName(int sig, int code) {
if (sig == SIGSEGV) {
switch (code) {
case SEGV_MAPERR: return "SEGV_MAPERR";
case SEGV_ACCERR: return "SEGV_ACCERR";
case 8: return "SEGV_MTEAERR";
case 9: return "SEGV_MTESERR";
default: return "SEGV_UNKNOWN";
}
} else if (sig == SIGBUS) {
switch (code) {
case BUS_ADRALN: return "BUS_ADRALN";
case BUS_ADRERR: return "BUS_ADRERR";
case BUS_OBJERR: return "BUS_OBJERR";
default: return "BUS_UNKNOWN";
}
} else {
return "UNKNOWN";
}
}
static std::ostream& PrintSignalInfo(std::ostream& os, siginfo_t* info) {
os << " si_signo: " << info->si_signo << " (" << strsignal(info->si_signo) << ")\n"
<< " si_code: " << info->si_code
<< " (" << SignalCodeName(info->si_signo, info->si_code) << ")";
if (info->si_signo == SIGSEGV || info->si_signo == SIGBUS) {
os << "\n" << " si_addr: " << info->si_addr;
}
return os;
}
static bool InstallSigbusHandler() {
return gUseUserfaultfd &&
Runtime::Current()->GetHeap()->MarkCompactCollector()->IsUsingSigbusFeature();
}
void FaultManager::Init(bool use_sig_chain) {
CHECK(!initialized_);
if (use_sig_chain) {
sigset_t mask;
sigfillset(&mask);
sigdelset(&mask, SIGABRT);
sigdelset(&mask, SIGBUS);
sigdelset(&mask, SIGFPE);
sigdelset(&mask, SIGILL);
sigdelset(&mask, SIGSEGV);
SigchainAction sa = {
.sc_sigaction = art_sigsegv_handler,
.sc_mask = mask,
.sc_flags = 0UL,
};
AddSpecialSignalHandlerFn(SIGSEGV, &sa);
if (InstallSigbusHandler()) {
sa.sc_sigaction = art_sigbus_handler;
AddSpecialSignalHandlerFn(SIGBUS, &sa);
}
// Notify the kernel that we intend to use a specific `membarrier()` command.
int result = art::membarrier(MembarrierCommand::kRegisterPrivateExpedited);
if (result != 0) {
LOG(WARNING) << "FaultHandler: MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED failed: "
<< errno << " " << strerror(errno);
}
{
MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
for (size_t i = 0; i != kNumLocalGeneratedCodeRanges; ++i) {
GeneratedCodeRange* next = (i + 1u != kNumLocalGeneratedCodeRanges)
? &generated_code_ranges_storage_[i + 1u]
: nullptr;
generated_code_ranges_storage_[i].next.store(next, std::memory_order_relaxed);
generated_code_ranges_storage_[i].start = nullptr;
generated_code_ranges_storage_[i].size = 0u;
}
free_generated_code_ranges_ = generated_code_ranges_storage_;
}
initialized_ = true;
} else if (InstallSigbusHandler()) {
struct sigaction act;
std::memset(&act, '\0', sizeof(act));
act.sa_flags = SA_SIGINFO | SA_RESTART;
act.sa_sigaction = [](int sig, siginfo_t* info, void* context) {
if (!art_sigbus_handler(sig, info, context)) {
std::ostringstream oss;
PrintSignalInfo(oss, info);
LOG(FATAL) << "Couldn't handle SIGBUS fault:"
<< "\n"
<< oss.str();
}
};
if (sigaction(SIGBUS, &act, nullptr)) {
LOG(FATAL) << "Fault handler for SIGBUS couldn't be setup: " << strerror(errno);
}
}
}
void FaultManager::Release() {
if (initialized_) {
RemoveSpecialSignalHandlerFn(SIGSEGV, art_sigsegv_handler);
if (InstallSigbusHandler()) {
RemoveSpecialSignalHandlerFn(SIGBUS, art_sigbus_handler);
}
initialized_ = false;
}
}
void FaultManager::Shutdown() {
if (initialized_) {
Release();
// Free all handlers.
STLDeleteElements(&generated_code_handlers_);
STLDeleteElements(&other_handlers_);
// Delete remaining code ranges if any (such as nterp code or oat code from
// oat files that have not been unloaded, including boot image oat files).
MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
GeneratedCodeRange* range = generated_code_ranges_.load(std::memory_order_acquire);
generated_code_ranges_.store(nullptr, std::memory_order_release);
while (range != nullptr) {
GeneratedCodeRange* next_range = range->next.load(std::memory_order_relaxed);
std::less<GeneratedCodeRange*> less;
if (!less(range, generated_code_ranges_storage_) &&
less(range, generated_code_ranges_storage_ + kNumLocalGeneratedCodeRanges)) {
// Nothing to do - not adding `range` to the `free_generated_code_ranges_` anymore.
} else {
// Range is not in the `generated_code_ranges_storage_`.
delete range;
}
range = next_range;
}
}
}
bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* context) {
if (other_handlers_.empty()) {
return false;
}
Thread* self = Thread::Current();
DCHECK(self != nullptr);
DCHECK(Runtime::Current() != nullptr);
DCHECK(Runtime::Current()->IsStarted());
for (const auto& handler : other_handlers_) {
if (handler->Action(sig, info, context)) {
return true;
}
}
return false;
}
bool FaultManager::HandleSigbusFault(int sig, siginfo_t* info, [[maybe_unused]] void* context) {
DCHECK_EQ(sig, SIGBUS);
if (VLOG_IS_ON(signals)) {
PrintSignalInfo(VLOG_STREAM(signals) << "Handling SIGBUS fault:\n", info);
}
#ifdef TEST_NESTED_SIGNAL
// Simulate a crash in a handler.
raise(SIGBUS);
#endif
return Runtime::Current()->GetHeap()->MarkCompactCollector()->SigbusHandler(info);
}
bool FaultManager::HandleSigsegvFault(int sig, siginfo_t* info, void* context) {
if (VLOG_IS_ON(signals)) {
PrintSignalInfo(VLOG_STREAM(signals) << "Handling SIGSEGV fault:\n", info);
}
#ifdef TEST_NESTED_SIGNAL
// Simulate a crash in a handler.
raise(SIGSEGV);
#endif
if (IsInGeneratedCode(info, context)) {
VLOG(signals) << "in generated code, looking for handler";
for (const auto& handler : generated_code_handlers_) {
VLOG(signals) << "invoking Action on handler " << handler;
if (handler->Action(sig, info, context)) {
// We have handled a signal so it's time to return from the
// signal handler to the appropriate place.
return true;
}
}
}
// We hit a signal we didn't handle. This might be something for which
// we can give more information about so call all registered handlers to
// see if it is.
if (HandleFaultByOtherHandlers(sig, info, context)) {
return true;
}
// Set a breakpoint in this function to catch unhandled signals.
art_sigsegv_fault();
return false;
}
void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
DCHECK(initialized_);
if (generated_code) {
generated_code_handlers_.push_back(handler);
} else {
other_handlers_.push_back(handler);
}
}
void FaultManager::RemoveHandler(FaultHandler* handler) {
auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
if (it != generated_code_handlers_.end()) {
generated_code_handlers_.erase(it);
return;
}
auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
if (it2 != other_handlers_.end()) {
other_handlers_.erase(it2);
return;
}
LOG(FATAL) << "Attempted to remove non existent handler " << handler;
}
inline FaultManager::GeneratedCodeRange* FaultManager::CreateGeneratedCodeRange(
const void* start, size_t size) {
GeneratedCodeRange* range = free_generated_code_ranges_;
if (range != nullptr) {
std::less<GeneratedCodeRange*> less;
DCHECK(!less(range, generated_code_ranges_storage_));
DCHECK(less(range, generated_code_ranges_storage_ + kNumLocalGeneratedCodeRanges));
range->start = start;
range->size = size;
free_generated_code_ranges_ = range->next.load(std::memory_order_relaxed);
range->next.store(nullptr, std::memory_order_relaxed);
return range;
} else {
return new GeneratedCodeRange{nullptr, start, size};
}
}
inline void FaultManager::FreeGeneratedCodeRange(GeneratedCodeRange* range) {
std::less<GeneratedCodeRange*> less;
if (!less(range, generated_code_ranges_storage_) &&
less(range, generated_code_ranges_storage_ + kNumLocalGeneratedCodeRanges)) {
MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
range->start = nullptr;
range->size = 0u;
range->next.store(free_generated_code_ranges_, std::memory_order_relaxed);
free_generated_code_ranges_ = range;
} else {
// Range is not in the `generated_code_ranges_storage_`.
delete range;
}
}
void FaultManager::AddGeneratedCodeRange(const void* start, size_t size) {
GeneratedCodeRange* new_range = nullptr;
{
MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
new_range = CreateGeneratedCodeRange(start, size);
GeneratedCodeRange* old_head = generated_code_ranges_.load(std::memory_order_relaxed);
new_range->next.store(old_head, std::memory_order_relaxed);
generated_code_ranges_.store(new_range, std::memory_order_release);
}
// The above release operation on `generated_code_ranges_` with an acquire operation
// on the same atomic object in `IsInGeneratedCode()` ensures the correct memory
// visibility for the contents of `*new_range` for any thread that loads the value
// written above (or a value written by a release sequence headed by that write).
//
// However, we also need to ensure that any thread that encounters a segmentation
// fault in the provided range shall actually see the written value. For JIT code
// cache and nterp, the registration happens while the process is single-threaded
// but the synchronization is more complicated for code in oat files.
//
// Threads that load classes register dex files under the `Locks::dex_lock_` and
// the first one to register a dex file with a given oat file shall add the oat
// code range; the memory visibility for these threads is guaranteed by the lock.
// However a thread that did not try to load a class with oat code can execute the
// code if a direct or indirect reference to such class escapes from one of the
// threads that loaded it. Use `membarrier()` for memory visibility in this case.
art::membarrier(MembarrierCommand::kPrivateExpedited);
}
void FaultManager::RemoveGeneratedCodeRange(const void* start, size_t size) {
Thread* self = Thread::Current();
GeneratedCodeRange* range = nullptr;
{
MutexLock lock(self, generated_code_ranges_lock_);
std::atomic<GeneratedCodeRange*>* before = &generated_code_ranges_;
range = before->load(std::memory_order_relaxed);
while (range != nullptr && range->start != start) {
before = &range->next;
range = before->load(std::memory_order_relaxed);
}
if (range != nullptr) {
GeneratedCodeRange* next = range->next.load(std::memory_order_relaxed);
if (before == &generated_code_ranges_) {
// Relaxed store directly to `generated_code_ranges_` would not satisfy
// conditions for a release sequence, so we need to use store-release.
before->store(next, std::memory_order_release);
} else {
// In the middle of the list, we can use a relaxed store as we're not
// publishing any newly written memory to potential reader threads.
// Whether they see the removed node or not is unimportant as we should
// not execute that code anymore. We're keeping the `next` link of the
// removed node, so that concurrent walk can use it to reach remaining
// retained nodes, if any.
before->store(next, std::memory_order_relaxed);
}
}
}
CHECK(range != nullptr);
DCHECK_EQ(range->start, start);
CHECK_EQ(range->size, size);
Runtime* runtime = Runtime::Current();
CHECK(runtime != nullptr);
if (runtime->IsStarted() && runtime->GetThreadList() != nullptr) {
// Run a checkpoint before deleting the range to ensure that no thread holds a
// pointer to the removed range while walking the list in `IsInGeneratedCode()`.
// That walk is guarded by checking that the thread is `Runnable`, so any walk
// started before the removal shall be done when running the checkpoint and the
// checkpoint also ensures the correct memory visibility of `next` links,
// so the thread shall not see the pointer during future walks.
// This function is currently called in different mutex and thread states.
// Semi-space GC performs the cleanup during its `MarkingPhase()` while holding
// the mutator exclusively, so we do not need a checkpoint. All other GCs perform
// the cleanup in their `ReclaimPhase()` while holding the mutator lock as shared
// and it's safe to release and re-acquire the mutator lock. Despite holding the
// mutator lock as shared, the thread is not always marked as `Runnable`.
// TODO: Clean up state transitions in different GC implementations. b/259440389
if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
// We do not need a checkpoint because no other thread is Runnable.
} else {
DCHECK(Locks::mutator_lock_->IsSharedHeld(self));
// Use explicit state transitions or unlock/lock.
bool runnable = (self->GetState() == ThreadState::kRunnable);
if (runnable) {
self->TransitionFromRunnableToSuspended(ThreadState::kNative);
} else {
Locks::mutator_lock_->SharedUnlock(self);
}
DCHECK(!Locks::mutator_lock_->IsSharedHeld(self));
runtime->GetThreadList()->RunEmptyCheckpoint();
if (runnable) {
self->TransitionFromSuspendedToRunnable();
} else {
Locks::mutator_lock_->SharedLock(self);
}
}
}
FreeGeneratedCodeRange(range);
}
// This function is called within the signal handler. It checks that the thread
// is `Runnable`, the `mutator_lock_` is held (shared) and the fault PC is in one
// of the registered generated code ranges. No annotalysis is done.
bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context) {
// We can only be running Java code in the current thread if it
// is in Runnable state.
VLOG(signals) << "Checking for generated code";
Thread* thread = Thread::Current();
if (thread == nullptr) {
VLOG(signals) << "no current thread";
return false;
}
ThreadState state = thread->GetState();
if (state != ThreadState::kRunnable) {
VLOG(signals) << "not runnable";
return false;
}
// Current thread is runnable.
// Make sure it has the mutator lock.
if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
VLOG(signals) << "no lock";
return false;
}
uintptr_t fault_pc = GetFaultPc(siginfo, context);
if (fault_pc == 0u) {
VLOG(signals) << "no fault PC";
return false;
}
// Walk over the list of registered code ranges.
GeneratedCodeRange* range = generated_code_ranges_.load(std::memory_order_acquire);
while (range != nullptr) {
if (fault_pc - reinterpret_cast<uintptr_t>(range->start) < range->size) {
return true;
}
// We may or may not see ranges that were concurrently removed, depending
// on when the relaxed writes of the `next` links become visible. However,
// even if we're currently at a node that is being removed, we shall visit
// all remaining ranges that are not being removed as the removed nodes
// retain the `next` link at the time of removal (which may lead to other
// removed nodes before reaching remaining retained nodes, if any). Correct
// memory visibility of `start` and `size` fields of the visited ranges is
// ensured by the release and acquire operations on `generated_code_ranges_`.
range = range->next.load(std::memory_order_relaxed);
}
return false;
}
FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
}
//
// Null pointer fault handler
//
NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, true);
}
bool NullPointerHandler::IsValidMethod(ArtMethod* method) {
// At this point we know that the thread is `Runnable` and the PC is in one of
// the registered code ranges. The `method` was read from the top of the stack
// and should really point to an actual `ArtMethod`, unless we're crashing during
// prologue or epilogue, or somehow managed to jump to the compiled code by some
// unexpected path, other than method invoke or exception delivery. We do a few
// quick checks without guarding from another fault.
VLOG(signals) << "potential method: " << method;
static_assert(IsAligned<sizeof(void*)>(ArtMethod::Size(kRuntimePointerSize)));
if (method == nullptr || !IsAligned<sizeof(void*)>(method)) {
VLOG(signals) << ((method == nullptr) ? "null method" : "unaligned method");
return false;
}
// Check that the presumed method actually points to a class. Read barriers
// are not needed (and would be undesirable in a signal handler) when reading
// a chain of constant references to get to a non-movable `Class.class` object.
// Note: Allowing nested faults. Checking that the method is in one of the
// `LinearAlloc` spaces, or that objects we look at are in the `Heap` would be
// slow and require locking a mutex, which is undesirable in a signal handler.
// (Though we could register valid ranges similarly to the generated code ranges.)
mirror::Object* klass =
method->GetDeclaringClassAddressWithoutBarrier()->AsMirrorPtr();
if (klass == nullptr || !IsAligned<kObjectAlignment>(klass)) {
VLOG(signals) << ((klass == nullptr) ? "null class" : "unaligned class");
return false;
}
mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (class_class == nullptr || !IsAligned<kObjectAlignment>(class_class)) {
VLOG(signals) << ((klass == nullptr) ? "null class_class" : "unaligned class_class");
return false;
}
if (class_class != class_class->GetClass<kVerifyNone, kWithoutReadBarrier>()) {
VLOG(signals) << "invalid class_class";
return false;
}
return true;
}
bool NullPointerHandler::IsValidReturnPc(ArtMethod** sp, uintptr_t return_pc) {
// Check if we can associate a dex PC with the return PC, whether from Nterp,
// or with an existing stack map entry for a compiled method.
// Note: Allowing nested faults if `IsValidMethod()` returned a false positive.
// Note: The `ArtMethod::GetOatQuickMethodHeader()` can acquire locks (at least
// `Locks::jit_lock_`) and if the thread already held such a lock, the signal
// handler would deadlock. However, if a thread is holding one of the locks
// below the mutator lock, the PC should be somewhere in ART code and should
// not match any registered generated code range, so such as a deadlock is
// unlikely. If it happens anyway, the worst case is that an internal ART crash
// would be reported as ANR.
ArtMethod* method = *sp;
const OatQuickMethodHeader* method_header = method->GetOatQuickMethodHeader(return_pc);
if (method_header == nullptr) {
VLOG(signals) << "No method header.";
return false;
}
VLOG(signals) << "looking for dex pc for return pc 0x" << std::hex << return_pc
<< " pc offset: 0x" << std::hex
<< (return_pc - reinterpret_cast<uintptr_t>(method_header->GetEntryPoint()));
uint32_t dexpc = method_header->ToDexPc(reinterpret_cast<ArtMethod**>(sp), return_pc, false);
VLOG(signals) << "dexpc: " << dexpc;
return dexpc != dex::kDexNoIndex;
}
//
// Suspension fault handler
//
SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, true);
}
//
// Stack overflow fault handler
//
StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, true);
}
//
// Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
//
JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, false);
}
bool JavaStackTraceHandler::Action([[maybe_unused]] int sig, siginfo_t* siginfo, void* context) {
// Make sure that we are in the generated code, but we may not have a dex pc.
bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context);
if (in_generated_code) {
LOG(ERROR) << "Dumping java stack trace for crash in generated code";
Thread* self = Thread::Current();
uintptr_t sp = FaultManager::GetFaultSp(context);
CHECK_NE(sp, 0u); // Otherwise we should not have reached this handler.
// Inside of generated code, sp[0] is the method, so sp is the frame.
self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
self->DumpJavaStack(LOG_STREAM(ERROR));
}
return false; // Return false since we want to propagate the fault to the main signal handler.
}
} // namespace art