| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "mark_sweep.h" |
| |
| #include <functional> |
| #include <numeric> |
| #include <climits> |
| #include <vector> |
| |
| #include "base/bounded_fifo.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/mutex-inl.h" |
| #include "base/timing_logger.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap.h" |
| #include "gc/accounting/mod_union_table.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/heap.h" |
| #include "gc/space/image_space.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/space-inl.h" |
| #include "indirect_reference_table.h" |
| #include "intern_table.h" |
| #include "jni_internal.h" |
| #include "monitor.h" |
| #include "mark_sweep-inl.h" |
| #include "mirror/art_field.h" |
| #include "mirror/art_field-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array.h" |
| #include "mirror/object_array-inl.h" |
| #include "runtime.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| #include "verifier/method_verifier.h" |
| |
| using ::art::mirror::ArtField; |
| using ::art::mirror::Class; |
| using ::art::mirror::Object; |
| using ::art::mirror::ObjectArray; |
| |
| namespace art { |
| namespace gc { |
| namespace collector { |
| |
| // Performance options. |
| constexpr bool kUseRecursiveMark = false; |
| constexpr bool kUseMarkStackPrefetch = true; |
| constexpr size_t kSweepArrayChunkFreeSize = 1024; |
| constexpr bool kPreCleanCards = true; |
| |
| // Parallelism options. |
| constexpr bool kParallelCardScan = true; |
| constexpr bool kParallelRecursiveMark = true; |
| // Don't attempt to parallelize mark stack processing unless the mark stack is at least n |
| // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not |
| // having this can add overhead in ProcessReferences since we may end up doing many calls of |
| // ProcessMarkStack with very small mark stacks. |
| constexpr size_t kMinimumParallelMarkStackSize = 128; |
| constexpr bool kParallelProcessMarkStack = true; |
| |
| // Profiling and information flags. |
| constexpr bool kCountClassesMarked = false; |
| constexpr bool kProfileLargeObjects = false; |
| constexpr bool kMeasureOverhead = false; |
| constexpr bool kCountTasks = false; |
| constexpr bool kCountJavaLangRefs = false; |
| |
| // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. |
| constexpr bool kCheckLocks = kDebugLocking; |
| |
| void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) { |
| // Bind live to mark bitmap if necessary. |
| if (space->GetLiveBitmap() != space->GetMarkBitmap()) { |
| CHECK(space->IsContinuousMemMapAllocSpace()); |
| space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap(); |
| } |
| |
| // Add the space to the immune region. |
| // TODO: Use space limits instead of current end_ since the end_ can be changed by dlmalloc |
| // callbacks. |
| if (immune_begin_ == NULL) { |
| DCHECK(immune_end_ == NULL); |
| SetImmuneRange(reinterpret_cast<Object*>(space->Begin()), |
| reinterpret_cast<Object*>(space->End())); |
| } else { |
| const space::ContinuousSpace* prev_space = nullptr; |
| // Find out if the previous space is immune. |
| for (const space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) { |
| if (cur_space == space) { |
| break; |
| } |
| prev_space = cur_space; |
| } |
| // If previous space was immune, then extend the immune region. Relies on continuous spaces |
| // being sorted by Heap::AddContinuousSpace. |
| if (prev_space != nullptr && IsImmuneSpace(prev_space)) { |
| immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_); |
| immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_); |
| } |
| } |
| } |
| |
| bool MarkSweep::IsImmuneSpace(const space::ContinuousSpace* space) const { |
| return |
| immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) && |
| immune_end_ >= reinterpret_cast<Object*>(space->End()); |
| } |
| |
| void MarkSweep::BindBitmaps() { |
| timings_.StartSplit("BindBitmaps"); |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| // Mark all of the spaces we never collect as immune. |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { |
| ImmuneSpace(space); |
| } |
| } |
| timings_.EndSplit(); |
| } |
| |
| MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) |
| : GarbageCollector(heap, |
| name_prefix + |
| (is_concurrent ? "concurrent mark sweep": "mark sweep")), |
| current_mark_bitmap_(NULL), |
| mark_stack_(NULL), |
| immune_begin_(NULL), |
| immune_end_(NULL), |
| live_stack_freeze_size_(0), |
| gc_barrier_(new Barrier(0)), |
| large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock), |
| mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), |
| is_concurrent_(is_concurrent) { |
| } |
| |
| void MarkSweep::InitializePhase() { |
| timings_.Reset(); |
| TimingLogger::ScopedSplit split("InitializePhase", &timings_); |
| mark_stack_ = heap_->mark_stack_.get(); |
| DCHECK(mark_stack_ != nullptr); |
| SetImmuneRange(nullptr, nullptr); |
| class_count_ = 0; |
| array_count_ = 0; |
| other_count_ = 0; |
| large_object_test_ = 0; |
| large_object_mark_ = 0; |
| classes_marked_ = 0; |
| overhead_time_ = 0; |
| work_chunks_created_ = 0; |
| work_chunks_deleted_ = 0; |
| reference_count_ = 0; |
| |
| FindDefaultMarkBitmap(); |
| |
| // Do any pre GC verification. |
| timings_.NewSplit("PreGcVerification"); |
| heap_->PreGcVerification(this); |
| } |
| |
| void MarkSweep::ProcessReferences(Thread* self) { |
| TimingLogger::ScopedSplit split("ProcessReferences", &timings_); |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback, |
| &MarkObjectCallback, &ProcessMarkStackPausedCallback, this); |
| } |
| |
| bool MarkSweep::HandleDirtyObjectsPhase() { |
| TimingLogger::ScopedSplit split("(Paused)HandleDirtyObjectsPhase", &timings_); |
| Thread* self = Thread::Current(); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| |
| // Re-mark root set. |
| ReMarkRoots(); |
| |
| // Scan dirty objects, this is only required if we are not doing concurrent GC. |
| RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); |
| } |
| |
| ProcessReferences(self); |
| |
| // Only need to do this if we have the card mark verification on, and only during concurrent GC. |
| if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_|| |
| GetHeap()->verify_post_gc_heap_) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // This second sweep makes sure that we don't have any objects in the live stack which point to |
| // freed objects. These cause problems since their references may be previously freed objects. |
| SweepArray(GetHeap()->allocation_stack_.get(), false); |
| // Since SweepArray() above resets the (active) allocation |
| // stack. Need to revoke the thread-local allocation stacks that |
| // point into it. |
| RevokeAllThreadLocalAllocationStacks(self); |
| } |
| |
| timings_.StartSplit("PreSweepingGcVerification"); |
| heap_->PreSweepingGcVerification(this); |
| timings_.EndSplit(); |
| |
| // Ensure that nobody inserted items in the live stack after we swapped the stacks. |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); |
| |
| // Disallow new system weaks to prevent a race which occurs when someone adds a new system |
| // weak before we sweep them. Since this new system weak may not be marked, the GC may |
| // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong |
| // reference to a string that is about to be swept. |
| Runtime::Current()->DisallowNewSystemWeaks(); |
| return true; |
| } |
| |
| bool MarkSweep::IsConcurrent() const { |
| return is_concurrent_; |
| } |
| |
| void MarkSweep::PreCleanCards() { |
| // Don't do this for non concurrent GCs since they don't have any dirty cards. |
| if (kPreCleanCards && IsConcurrent()) { |
| Thread* self = Thread::Current(); |
| CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); |
| // Process dirty cards and add dirty cards to mod union tables, also ages cards. |
| heap_->ProcessCards(timings_); |
| // Required so that we see aged cards before we start scanning the cards. |
| MarkThreadRoots(self); |
| // TODO: Only mark the dirty roots. |
| MarkNonThreadRoots(); |
| MarkConcurrentRoots(); |
| // Process the newly aged cards. |
| RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); |
| // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live |
| // in the next GC. |
| } |
| } |
| |
| void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { |
| if (kUseThreadLocalAllocationStack) { |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| heap_->RevokeAllThreadLocalAllocationStacks(self); |
| } |
| } |
| |
| void MarkSweep::MarkingPhase() { |
| TimingLogger::ScopedSplit split("MarkingPhase", &timings_); |
| Thread* self = Thread::Current(); |
| |
| BindBitmaps(); |
| FindDefaultMarkBitmap(); |
| |
| // Process dirty cards and add dirty cards to mod union tables. |
| heap_->ProcessCards(timings_); |
| |
| // Need to do this before the checkpoint since we don't want any threads to add references to |
| // the live stack during the recursive mark. |
| timings_.NewSplit("SwapStacks"); |
| heap_->SwapStacks(self); |
| |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| if (Locks::mutator_lock_->IsExclusiveHeld(self)) { |
| // If we exclusively hold the mutator lock, all threads must be suspended. |
| MarkRoots(); |
| RevokeAllThreadLocalAllocationStacks(self); |
| } else { |
| MarkThreadRoots(self); |
| // At this point the live stack should no longer have any mutators which push into it. |
| MarkNonThreadRoots(); |
| } |
| live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); |
| MarkConcurrentRoots(); |
| UpdateAndMarkModUnion(); |
| MarkReachableObjects(); |
| // Pre-clean dirtied cards to reduce pauses. |
| PreCleanCards(); |
| } |
| |
| void MarkSweep::UpdateAndMarkModUnion() { |
| for (const auto& space : heap_->GetContinuousSpaces()) { |
| if (IsImmuneSpace(space)) { |
| const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : |
| "UpdateAndMarkImageModUnionTable"; |
| TimingLogger::ScopedSplit split(name, &timings_); |
| accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); |
| CHECK(mod_union_table != nullptr); |
| mod_union_table->UpdateAndMarkReferences(MarkObjectCallback, this); |
| } |
| } |
| } |
| |
| void MarkSweep::MarkThreadRoots(Thread* self) { |
| MarkRootsCheckpoint(self); |
| } |
| |
| void MarkSweep::MarkReachableObjects() { |
| // Mark everything allocated since the last as GC live so that we can sweep concurrently, |
| // knowing that new allocations won't be marked as live. |
| timings_.StartSplit("MarkStackAsLive"); |
| accounting::ObjectStack* live_stack = heap_->GetLiveStack(); |
| heap_->MarkAllocStackAsLive(live_stack); |
| live_stack->Reset(); |
| timings_.EndSplit(); |
| // Recursively mark all the non-image bits set in the mark bitmap. |
| RecursiveMark(); |
| } |
| |
| void MarkSweep::ReclaimPhase() { |
| TimingLogger::ScopedSplit split("ReclaimPhase", &timings_); |
| Thread* self = Thread::Current(); |
| |
| if (!IsConcurrent()) { |
| ProcessReferences(self); |
| } |
| |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| SweepSystemWeaks(); |
| } |
| |
| if (IsConcurrent()) { |
| Runtime::Current()->AllowNewSystemWeaks(); |
| |
| TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_); |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get(); |
| if (!kPreCleanCards) { |
| // The allocation stack contains things allocated since the start of the GC. These may have |
| // been marked during this GC meaning they won't be eligible for reclaiming in the next |
| // sticky GC. Unmark these objects so that they are eligible for reclaiming in the next |
| // sticky GC. |
| // There is a race here which is safely handled. Another thread such as the hprof could |
| // have flushed the alloc stack after we resumed the threads. This is safe however, since |
| // reseting the allocation stack zeros it out with madvise. This means that we will either |
| // read NULLs or attempt to unmark a newly allocated object which will not be marked in the |
| // first place. |
| // We can't do this if we pre-clean cards since we will unmark objects which are no longer on |
| // a dirty card since we aged cards during the pre-cleaning process. |
| mirror::Object** end = allocation_stack->End(); |
| for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) { |
| const Object* obj = *it; |
| if (obj != nullptr) { |
| UnMarkObjectNonNull(obj); |
| } |
| } |
| } |
| } |
| |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| |
| // Reclaim unmarked objects. |
| Sweep(false); |
| |
| // Swap the live and mark bitmaps for each space which we modified space. This is an |
| // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound |
| // bitmaps. |
| timings_.StartSplit("SwapBitmaps"); |
| SwapBitmaps(); |
| timings_.EndSplit(); |
| |
| // Unbind the live and mark bitmaps. |
| TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_); |
| GetHeap()->UnBindBitmaps(); |
| } |
| } |
| |
| void MarkSweep::SetImmuneRange(Object* begin, Object* end) { |
| immune_begin_ = begin; |
| immune_end_ = end; |
| } |
| |
| void MarkSweep::FindDefaultMarkBitmap() { |
| TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_); |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| accounting::SpaceBitmap* bitmap = space->GetMarkBitmap(); |
| if (bitmap != nullptr && |
| space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { |
| current_mark_bitmap_ = bitmap; |
| CHECK(current_mark_bitmap_ != NULL); |
| return; |
| } |
| } |
| GetHeap()->DumpSpaces(); |
| LOG(FATAL) << "Could not find a default mark bitmap"; |
| } |
| |
| void MarkSweep::ExpandMarkStack() { |
| ResizeMarkStack(mark_stack_->Capacity() * 2); |
| } |
| |
| void MarkSweep::ResizeMarkStack(size_t new_size) { |
| // Rare case, no need to have Thread::Current be a parameter. |
| if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { |
| // Someone else acquired the lock and expanded the mark stack before us. |
| return; |
| } |
| std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End()); |
| CHECK_LE(mark_stack_->Size(), new_size); |
| mark_stack_->Resize(new_size); |
| for (const auto& obj : temp) { |
| mark_stack_->PushBack(obj); |
| } |
| } |
| |
| inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) { |
| DCHECK(obj != NULL); |
| if (MarkObjectParallel(obj)) { |
| MutexLock mu(Thread::Current(), mark_stack_lock_); |
| if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { |
| ExpandMarkStack(); |
| } |
| // The object must be pushed on to the mark stack. |
| mark_stack_->PushBack(const_cast<Object*>(obj)); |
| } |
| } |
| |
| mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) { |
| MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); |
| mark_sweep->MarkObject(obj); |
| return obj; |
| } |
| |
| inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) { |
| DCHECK(!IsImmune(obj)); |
| // Try to take advantage of locality of references within a space, failing this find the space |
| // the hard way. |
| accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; |
| if (UNLIKELY(!object_bitmap->HasAddress(obj))) { |
| accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); |
| if (LIKELY(new_bitmap != NULL)) { |
| object_bitmap = new_bitmap; |
| } else { |
| MarkLargeObject(obj, false); |
| return; |
| } |
| } |
| |
| DCHECK(object_bitmap->HasAddress(obj)); |
| object_bitmap->Clear(obj); |
| } |
| |
| inline void MarkSweep::MarkObjectNonNull(const Object* obj) { |
| DCHECK(obj != NULL); |
| |
| if (IsImmune(obj)) { |
| DCHECK(IsMarked(obj)); |
| return; |
| } |
| |
| // Try to take advantage of locality of references within a space, failing this find the space |
| // the hard way. |
| accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; |
| if (UNLIKELY(!object_bitmap->HasAddress(obj))) { |
| accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); |
| if (LIKELY(new_bitmap != NULL)) { |
| object_bitmap = new_bitmap; |
| } else { |
| MarkLargeObject(obj, true); |
| return; |
| } |
| } |
| |
| // This object was not previously marked. |
| if (!object_bitmap->Test(obj)) { |
| object_bitmap->Set(obj); |
| if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { |
| // Lock is not needed but is here anyways to please annotalysis. |
| MutexLock mu(Thread::Current(), mark_stack_lock_); |
| ExpandMarkStack(); |
| } |
| // The object must be pushed on to the mark stack. |
| mark_stack_->PushBack(const_cast<Object*>(obj)); |
| } |
| } |
| |
| // Rare case, probably not worth inlining since it will increase instruction cache miss rate. |
| bool MarkSweep::MarkLargeObject(const Object* obj, bool set) { |
| // TODO: support >1 discontinuous space. |
| space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); |
| accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects(); |
| if (kProfileLargeObjects) { |
| ++large_object_test_; |
| } |
| if (UNLIKELY(!large_objects->Test(obj))) { |
| if (!large_object_space->Contains(obj)) { |
| LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; |
| LOG(ERROR) << "Attempting see if it's a bad root"; |
| VerifyRoots(); |
| LOG(FATAL) << "Can't mark bad root"; |
| } |
| if (kProfileLargeObjects) { |
| ++large_object_mark_; |
| } |
| if (set) { |
| large_objects->Set(obj); |
| } else { |
| large_objects->Clear(obj); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| inline bool MarkSweep::MarkObjectParallel(const Object* obj) { |
| DCHECK(obj != NULL); |
| |
| if (IsImmune(obj)) { |
| DCHECK(IsMarked(obj)); |
| return false; |
| } |
| |
| // Try to take advantage of locality of references within a space, failing this find the space |
| // the hard way. |
| accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; |
| if (UNLIKELY(!object_bitmap->HasAddress(obj))) { |
| accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); |
| if (new_bitmap != NULL) { |
| object_bitmap = new_bitmap; |
| } else { |
| // TODO: Remove the Thread::Current here? |
| // TODO: Convert this to some kind of atomic marking? |
| MutexLock mu(Thread::Current(), large_object_lock_); |
| return MarkLargeObject(obj, true); |
| } |
| } |
| |
| // Return true if the object was not previously marked. |
| return !object_bitmap->AtomicTestAndSet(obj); |
| } |
| |
| // Used to mark objects when recursing. Recursion is done by moving |
| // the finger across the bitmaps in address order and marking child |
| // objects. Any newly-marked objects whose addresses are lower than |
| // the finger won't be visited by the bitmap scan, so those objects |
| // need to be added to the mark stack. |
| inline void MarkSweep::MarkObject(const Object* obj) { |
| if (obj != NULL) { |
| MarkObjectNonNull(obj); |
| } |
| } |
| |
| void MarkSweep::MarkRoot(const Object* obj) { |
| if (obj != NULL) { |
| MarkObjectNonNull(obj); |
| } |
| } |
| |
| void MarkSweep::MarkRootParallelCallback(mirror::Object** root, void* arg, uint32_t /*thread_id*/, |
| RootType /*root_type*/) { |
| reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root); |
| } |
| |
| void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/, |
| RootType /*root_type*/) { |
| reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root); |
| } |
| |
| void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg, |
| const StackVisitor* visitor) { |
| reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor); |
| } |
| |
| void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) { |
| // See if the root is on any space bitmap. |
| if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) { |
| space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); |
| if (!large_object_space->Contains(root)) { |
| LOG(ERROR) << "Found invalid root: " << root; |
| if (visitor != NULL) { |
| LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg; |
| } |
| } |
| } |
| } |
| |
| void MarkSweep::VerifyRoots() { |
| Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this); |
| } |
| |
| // Marks all objects in the root set. |
| void MarkSweep::MarkRoots() { |
| timings_.StartSplit("MarkRoots"); |
| Runtime::Current()->VisitNonConcurrentRoots(MarkRootCallback, this); |
| timings_.EndSplit(); |
| } |
| |
| void MarkSweep::MarkNonThreadRoots() { |
| timings_.StartSplit("MarkNonThreadRoots"); |
| Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this); |
| timings_.EndSplit(); |
| } |
| |
| void MarkSweep::MarkConcurrentRoots() { |
| timings_.StartSplit("MarkConcurrentRoots"); |
| // Visit all runtime roots and clear dirty flags. |
| Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, false, true); |
| timings_.EndSplit(); |
| } |
| |
| class ScanObjectVisitor { |
| public: |
| explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE |
| : mark_sweep_(mark_sweep) {} |
| |
| // TODO: Fixme when anotatalysis works with visitors. |
| void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS { |
| if (kCheckLocks) { |
| Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); |
| Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); |
| } |
| mark_sweep_->ScanObject(obj); |
| } |
| |
| private: |
| MarkSweep* const mark_sweep_; |
| }; |
| |
| template <bool kUseFinger = false> |
| class MarkStackTask : public Task { |
| public: |
| MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, |
| const Object** mark_stack) |
| : mark_sweep_(mark_sweep), |
| thread_pool_(thread_pool), |
| mark_stack_pos_(mark_stack_size) { |
| // We may have to copy part of an existing mark stack when another mark stack overflows. |
| if (mark_stack_size != 0) { |
| DCHECK(mark_stack != NULL); |
| // TODO: Check performance? |
| std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); |
| } |
| if (kCountTasks) { |
| ++mark_sweep_->work_chunks_created_; |
| } |
| } |
| |
| static const size_t kMaxSize = 1 * KB; |
| |
| protected: |
| class ScanObjectParallelVisitor { |
| public: |
| explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE |
| : chunk_task_(chunk_task) {} |
| |
| void operator()(Object* obj) const { |
| MarkSweep* mark_sweep = chunk_task_->mark_sweep_; |
| mark_sweep->ScanObjectVisit(obj, |
| [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */, |
| bool /* is_static */) ALWAYS_INLINE_LAMBDA { |
| if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) { |
| if (kUseFinger) { |
| android_memory_barrier(); |
| if (reinterpret_cast<uintptr_t>(ref) >= |
| static_cast<uintptr_t>(mark_sweep->atomic_finger_)) { |
| return; |
| } |
| } |
| chunk_task_->MarkStackPush(ref); |
| } |
| }); |
| } |
| |
| private: |
| MarkStackTask<kUseFinger>* const chunk_task_; |
| }; |
| |
| virtual ~MarkStackTask() { |
| // Make sure that we have cleared our mark stack. |
| DCHECK_EQ(mark_stack_pos_, 0U); |
| if (kCountTasks) { |
| ++mark_sweep_->work_chunks_deleted_; |
| } |
| } |
| |
| MarkSweep* const mark_sweep_; |
| ThreadPool* const thread_pool_; |
| // Thread local mark stack for this task. |
| const Object* mark_stack_[kMaxSize]; |
| // Mark stack position. |
| size_t mark_stack_pos_; |
| |
| void MarkStackPush(const Object* obj) ALWAYS_INLINE { |
| if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { |
| // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. |
| mark_stack_pos_ /= 2; |
| auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, |
| mark_stack_ + mark_stack_pos_); |
| thread_pool_->AddTask(Thread::Current(), task); |
| } |
| DCHECK(obj != nullptr); |
| DCHECK(mark_stack_pos_ < kMaxSize); |
| mark_stack_[mark_stack_pos_++] = obj; |
| } |
| |
| virtual void Finalize() { |
| delete this; |
| } |
| |
| // Scans all of the objects |
| virtual void Run(Thread* self) { |
| ScanObjectParallelVisitor visitor(this); |
| // TODO: Tune this. |
| static const size_t kFifoSize = 4; |
| BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo; |
| for (;;) { |
| const Object* obj = nullptr; |
| if (kUseMarkStackPrefetch) { |
| while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { |
| const Object* obj = mark_stack_[--mark_stack_pos_]; |
| DCHECK(obj != nullptr); |
| __builtin_prefetch(obj); |
| prefetch_fifo.push_back(obj); |
| } |
| if (UNLIKELY(prefetch_fifo.empty())) { |
| break; |
| } |
| obj = prefetch_fifo.front(); |
| prefetch_fifo.pop_front(); |
| } else { |
| if (UNLIKELY(mark_stack_pos_ == 0)) { |
| break; |
| } |
| obj = mark_stack_[--mark_stack_pos_]; |
| } |
| DCHECK(obj != nullptr); |
| visitor(const_cast<mirror::Object*>(obj)); |
| } |
| } |
| }; |
| |
| class CardScanTask : public MarkStackTask<false> { |
| public: |
| CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap, |
| byte* begin, byte* end, byte minimum_age, size_t mark_stack_size, |
| const Object** mark_stack_obj) |
| : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), |
| bitmap_(bitmap), |
| begin_(begin), |
| end_(end), |
| minimum_age_(minimum_age) { |
| } |
| |
| protected: |
| accounting::SpaceBitmap* const bitmap_; |
| byte* const begin_; |
| byte* const end_; |
| const byte minimum_age_; |
| |
| virtual void Finalize() { |
| delete this; |
| } |
| |
| virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { |
| ScanObjectParallelVisitor visitor(this); |
| accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); |
| size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_); |
| VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " |
| << reinterpret_cast<void*>(end_) << " = " << cards_scanned; |
| // Finish by emptying our local mark stack. |
| MarkStackTask::Run(self); |
| } |
| }; |
| |
| size_t MarkSweep::GetThreadCount(bool paused) const { |
| if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { |
| return 0; |
| } |
| if (paused) { |
| return heap_->GetParallelGCThreadCount() + 1; |
| } else { |
| return heap_->GetConcGCThreadCount() + 1; |
| } |
| } |
| |
| void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) { |
| accounting::CardTable* card_table = GetHeap()->GetCardTable(); |
| ThreadPool* thread_pool = GetHeap()->GetThreadPool(); |
| size_t thread_count = GetThreadCount(paused); |
| // The parallel version with only one thread is faster for card scanning, TODO: fix. |
| if (kParallelCardScan && thread_count > 0) { |
| Thread* self = Thread::Current(); |
| // Can't have a different split for each space since multiple spaces can have their cards being |
| // scanned at the same time. |
| timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects"); |
| // Try to take some of the mark stack since we can pass this off to the worker tasks. |
| const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin()); |
| const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End()); |
| const size_t mark_stack_size = mark_stack_end - mark_stack_begin; |
| // Estimated number of work tasks we will create. |
| const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; |
| DCHECK_NE(mark_stack_tasks, 0U); |
| const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, |
| mark_stack_size / mark_stack_tasks + 1); |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| if (space->GetMarkBitmap() == nullptr) { |
| continue; |
| } |
| byte* card_begin = space->Begin(); |
| byte* card_end = space->End(); |
| // Align up the end address. For example, the image space's end |
| // may not be card-size-aligned. |
| card_end = AlignUp(card_end, accounting::CardTable::kCardSize); |
| DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin)); |
| DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end)); |
| // Calculate how many bytes of heap we will scan, |
| const size_t address_range = card_end - card_begin; |
| // Calculate how much address range each task gets. |
| const size_t card_delta = RoundUp(address_range / thread_count + 1, |
| accounting::CardTable::kCardSize); |
| // Create the worker tasks for this space. |
| while (card_begin != card_end) { |
| // Add a range of cards. |
| size_t addr_remaining = card_end - card_begin; |
| size_t card_increment = std::min(card_delta, addr_remaining); |
| // Take from the back of the mark stack. |
| size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; |
| size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); |
| mark_stack_end -= mark_stack_increment; |
| mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); |
| DCHECK_EQ(mark_stack_end, mark_stack_->End()); |
| // Add the new task to the thread pool. |
| auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, |
| card_begin + card_increment, minimum_age, |
| mark_stack_increment, mark_stack_end); |
| thread_pool->AddTask(self, task); |
| card_begin += card_increment; |
| } |
| } |
| |
| // Note: the card scan below may dirty new cards (and scan them) |
| // as a side effect when a Reference object is encountered and |
| // queued during the marking. See b/11465268. |
| thread_pool->SetMaxActiveWorkers(thread_count - 1); |
| thread_pool->StartWorkers(self); |
| thread_pool->Wait(self, true, true); |
| thread_pool->StopWorkers(self); |
| timings_.EndSplit(); |
| } else { |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| if (space->GetMarkBitmap() != nullptr) { |
| // Image spaces are handled properly since live == marked for them. |
| switch (space->GetGcRetentionPolicy()) { |
| case space::kGcRetentionPolicyNeverCollect: |
| timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" : |
| "ScanGrayImageSpaceObjects"); |
| break; |
| case space::kGcRetentionPolicyFullCollect: |
| timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" : |
| "ScanGrayZygoteSpaceObjects"); |
| break; |
| case space::kGcRetentionPolicyAlwaysCollect: |
| timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" : |
| "ScanGrayAllocSpaceObjects"); |
| break; |
| } |
| ScanObjectVisitor visitor(this); |
| card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age); |
| timings_.EndSplit(); |
| } |
| } |
| } |
| } |
| |
| class RecursiveMarkTask : public MarkStackTask<false> { |
| public: |
| RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, |
| accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) |
| : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), |
| bitmap_(bitmap), |
| begin_(begin), |
| end_(end) { |
| } |
| |
| protected: |
| accounting::SpaceBitmap* const bitmap_; |
| const uintptr_t begin_; |
| const uintptr_t end_; |
| |
| virtual void Finalize() { |
| delete this; |
| } |
| |
| // Scans all of the objects |
| virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { |
| ScanObjectParallelVisitor visitor(this); |
| bitmap_->VisitMarkedRange(begin_, end_, visitor); |
| // Finish by emptying our local mark stack. |
| MarkStackTask::Run(self); |
| } |
| }; |
| |
| // Populates the mark stack based on the set of marked objects and |
| // recursively marks until the mark stack is emptied. |
| void MarkSweep::RecursiveMark() { |
| TimingLogger::ScopedSplit split("RecursiveMark", &timings_); |
| // RecursiveMark will build the lists of known instances of the Reference classes. See |
| // DelayReferenceReferent for details. |
| if (kUseRecursiveMark) { |
| const bool partial = GetGcType() == kGcTypePartial; |
| ScanObjectVisitor scan_visitor(this); |
| auto* self = Thread::Current(); |
| ThreadPool* thread_pool = heap_->GetThreadPool(); |
| size_t thread_count = GetThreadCount(false); |
| const bool parallel = kParallelRecursiveMark && thread_count > 1; |
| mark_stack_->Reset(); |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || |
| (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { |
| current_mark_bitmap_ = space->GetMarkBitmap(); |
| if (current_mark_bitmap_ == nullptr) { |
| continue; |
| } |
| if (parallel) { |
| // We will use the mark stack the future. |
| // CHECK(mark_stack_->IsEmpty()); |
| // This function does not handle heap end increasing, so we must use the space end. |
| uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); |
| uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); |
| atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF); |
| |
| // Create a few worker tasks. |
| const size_t n = thread_count * 2; |
| while (begin != end) { |
| uintptr_t start = begin; |
| uintptr_t delta = (end - begin) / n; |
| delta = RoundUp(delta, KB); |
| if (delta < 16 * KB) delta = end - begin; |
| begin += delta; |
| auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start, |
| begin); |
| thread_pool->AddTask(self, task); |
| } |
| thread_pool->SetMaxActiveWorkers(thread_count - 1); |
| thread_pool->StartWorkers(self); |
| thread_pool->Wait(self, true, true); |
| thread_pool->StopWorkers(self); |
| } else { |
| // This function does not handle heap end increasing, so we must use the space end. |
| uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); |
| uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); |
| current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor); |
| } |
| } |
| } |
| } |
| ProcessMarkStack(false); |
| } |
| |
| mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) { |
| if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) { |
| return object; |
| } |
| return nullptr; |
| } |
| |
| void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) { |
| ScanGrayObjects(paused, minimum_age); |
| ProcessMarkStack(paused); |
| } |
| |
| void MarkSweep::ReMarkRoots() { |
| timings_.StartSplit("(Paused)ReMarkRoots"); |
| Runtime::Current()->VisitRoots(MarkRootCallback, this, true, true); |
| timings_.EndSplit(); |
| } |
| |
| void MarkSweep::SweepSystemWeaks() { |
| Runtime* runtime = Runtime::Current(); |
| timings_.StartSplit("SweepSystemWeaks"); |
| runtime->SweepSystemWeaks(IsMarkedCallback, this); |
| timings_.EndSplit(); |
| } |
| |
| mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) { |
| reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); |
| // We don't actually want to sweep the object, so lets return "marked" |
| return obj; |
| } |
| |
| void MarkSweep::VerifyIsLive(const Object* obj) { |
| Heap* heap = GetHeap(); |
| if (!heap->GetLiveBitmap()->Test(obj)) { |
| space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); |
| if (!large_object_space->GetLiveObjects()->Test(obj)) { |
| if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) == |
| heap->allocation_stack_->End()) { |
| // Object not found! |
| heap->DumpSpaces(); |
| LOG(FATAL) << "Found dead object " << obj; |
| } |
| } |
| } |
| } |
| |
| void MarkSweep::VerifySystemWeaks() { |
| // Verify system weaks, uses a special object visitor which returns the input object. |
| Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this); |
| } |
| |
| class CheckpointMarkThreadRoots : public Closure { |
| public: |
| explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {} |
| |
| virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS { |
| ATRACE_BEGIN("Marking thread roots"); |
| // Note: self is not necessarily equal to thread since thread may be suspended. |
| Thread* self = Thread::Current(); |
| CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) |
| << thread->GetState() << " thread " << thread << " self " << self; |
| thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); |
| ATRACE_END(); |
| if (kUseThreadLocalAllocationStack) { |
| thread->RevokeThreadLocalAllocationStack(); |
| } |
| mark_sweep_->GetBarrier().Pass(self); |
| } |
| |
| private: |
| MarkSweep* mark_sweep_; |
| }; |
| |
| void MarkSweep::MarkRootsCheckpoint(Thread* self) { |
| CheckpointMarkThreadRoots check_point(this); |
| timings_.StartSplit("MarkRootsCheckpoint"); |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| // Request the check point is run on all threads returning a count of the threads that must |
| // run through the barrier including self. |
| size_t barrier_count = thread_list->RunCheckpoint(&check_point); |
| // Release locks then wait for all mutator threads to pass the barrier. |
| // TODO: optimize to not release locks when there are no threads to wait for. |
| Locks::heap_bitmap_lock_->ExclusiveUnlock(self); |
| Locks::mutator_lock_->SharedUnlock(self); |
| ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun); |
| CHECK_EQ(old_state, kWaitingPerformingGc); |
| gc_barrier_->Increment(self, barrier_count); |
| self->SetState(kWaitingPerformingGc); |
| Locks::mutator_lock_->SharedLock(self); |
| Locks::heap_bitmap_lock_->ExclusiveLock(self); |
| timings_.EndSplit(); |
| } |
| |
| void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { |
| timings_.StartSplit("SweepArray"); |
| Thread* self = Thread::Current(); |
| mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize]; |
| size_t chunk_free_pos = 0; |
| size_t freed_bytes = 0; |
| size_t freed_large_object_bytes = 0; |
| size_t freed_objects = 0; |
| size_t freed_large_objects = 0; |
| // How many objects are left in the array, modified after each space is swept. |
| Object** objects = const_cast<Object**>(allocations->Begin()); |
| size_t count = allocations->Size(); |
| // Change the order to ensure that the non-moving space last swept as an optimization. |
| std::vector<space::ContinuousSpace*> sweep_spaces; |
| space::ContinuousSpace* non_moving_space = nullptr; |
| for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { |
| if (space->IsAllocSpace() && !IsImmuneSpace(space) && space->GetLiveBitmap() != nullptr) { |
| if (space == heap_->GetNonMovingSpace()) { |
| non_moving_space = space; |
| } else { |
| sweep_spaces.push_back(space); |
| } |
| } |
| } |
| // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after |
| // the other alloc spaces as an optimization. |
| if (non_moving_space != nullptr) { |
| sweep_spaces.push_back(non_moving_space); |
| } |
| // Start by sweeping the continuous spaces. |
| for (space::ContinuousSpace* space : sweep_spaces) { |
| space::AllocSpace* alloc_space = space->AsAllocSpace(); |
| accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); |
| accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); |
| if (swap_bitmaps) { |
| std::swap(live_bitmap, mark_bitmap); |
| } |
| Object** out = objects; |
| for (size_t i = 0; i < count; ++i) { |
| Object* obj = objects[i]; |
| if (kUseThreadLocalAllocationStack && obj == nullptr) { |
| continue; |
| } |
| if (space->HasAddress(obj)) { |
| // This object is in the space, remove it from the array and add it to the sweep buffer |
| // if needed. |
| if (!mark_bitmap->Test(obj)) { |
| if (chunk_free_pos >= kSweepArrayChunkFreeSize) { |
| timings_.StartSplit("FreeList"); |
| freed_objects += chunk_free_pos; |
| freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); |
| timings_.EndSplit(); |
| chunk_free_pos = 0; |
| } |
| chunk_free_buffer[chunk_free_pos++] = obj; |
| } |
| } else { |
| *(out++) = obj; |
| } |
| } |
| if (chunk_free_pos > 0) { |
| timings_.StartSplit("FreeList"); |
| freed_objects += chunk_free_pos; |
| freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); |
| timings_.EndSplit(); |
| chunk_free_pos = 0; |
| } |
| // All of the references which space contained are no longer in the allocation stack, update |
| // the count. |
| count = out - objects; |
| } |
| // Handle the large object space. |
| space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); |
| accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects(); |
| accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects(); |
| if (swap_bitmaps) { |
| std::swap(large_live_objects, large_mark_objects); |
| } |
| for (size_t i = 0; i < count; ++i) { |
| Object* obj = objects[i]; |
| // Handle large objects. |
| if (kUseThreadLocalAllocationStack && obj == nullptr) { |
| continue; |
| } |
| if (!large_mark_objects->Test(obj)) { |
| ++freed_large_objects; |
| freed_large_object_bytes += large_object_space->Free(self, obj); |
| } |
| } |
| timings_.EndSplit(); |
| |
| timings_.StartSplit("RecordFree"); |
| VLOG(heap) << "Freed " << freed_objects << "/" << count |
| << " objects with size " << PrettySize(freed_bytes); |
| heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes); |
| freed_objects_.FetchAndAdd(freed_objects); |
| freed_large_objects_.FetchAndAdd(freed_large_objects); |
| freed_bytes_.FetchAndAdd(freed_bytes); |
| freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes); |
| timings_.EndSplit(); |
| |
| timings_.StartSplit("ResetStack"); |
| allocations->Reset(); |
| timings_.EndSplit(); |
| } |
| |
| void MarkSweep::Sweep(bool swap_bitmaps) { |
| DCHECK(mark_stack_->IsEmpty()); |
| TimingLogger::ScopedSplit("Sweep", &timings_); |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| if (space->IsContinuousMemMapAllocSpace()) { |
| space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); |
| TimingLogger::ScopedSplit split( |
| alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_); |
| size_t freed_objects = 0; |
| size_t freed_bytes = 0; |
| alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes); |
| heap_->RecordFree(freed_objects, freed_bytes); |
| freed_objects_.FetchAndAdd(freed_objects); |
| freed_bytes_.FetchAndAdd(freed_bytes); |
| } |
| } |
| SweepLargeObjects(swap_bitmaps); |
| } |
| |
| void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { |
| TimingLogger::ScopedSplit("SweepLargeObjects", &timings_); |
| size_t freed_objects = 0; |
| size_t freed_bytes = 0; |
| GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes); |
| freed_large_objects_.FetchAndAdd(freed_objects); |
| freed_large_object_bytes_.FetchAndAdd(freed_bytes); |
| GetHeap()->RecordFree(freed_objects, freed_bytes); |
| } |
| |
| // Process the "referent" field in a java.lang.ref.Reference. If the |
| // referent has not yet been marked, put it on the appropriate list in |
| // the heap for later processing. |
| void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) { |
| DCHECK(klass != nullptr); |
| DCHECK(klass->IsReferenceClass()); |
| DCHECK(obj != NULL); |
| heap_->DelayReferenceReferent(klass, obj, IsMarkedCallback, this); |
| } |
| |
| class MarkObjectVisitor { |
| public: |
| explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {} |
| |
| // TODO: Fixme when anotatalysis works with visitors. |
| void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */, |
| bool /* is_static */) const ALWAYS_INLINE |
| NO_THREAD_SAFETY_ANALYSIS { |
| if (kCheckLocks) { |
| Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); |
| Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); |
| } |
| mark_sweep_->MarkObject(ref); |
| } |
| |
| private: |
| MarkSweep* const mark_sweep_; |
| }; |
| |
| // Scans an object reference. Determines the type of the reference |
| // and dispatches to a specialized scanning routine. |
| void MarkSweep::ScanObject(Object* obj) { |
| MarkObjectVisitor visitor(this); |
| ScanObjectVisit(obj, visitor); |
| } |
| |
| void MarkSweep::ProcessMarkStackPausedCallback(void* arg) { |
| DCHECK(arg != nullptr); |
| reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true); |
| } |
| |
| void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { |
| Thread* self = Thread::Current(); |
| ThreadPool* thread_pool = GetHeap()->GetThreadPool(); |
| const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, |
| static_cast<size_t>(MarkStackTask<false>::kMaxSize)); |
| CHECK_GT(chunk_size, 0U); |
| // Split the current mark stack up into work tasks. |
| for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) { |
| const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); |
| thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, |
| const_cast<const mirror::Object**>(it))); |
| it += delta; |
| } |
| thread_pool->SetMaxActiveWorkers(thread_count - 1); |
| thread_pool->StartWorkers(self); |
| thread_pool->Wait(self, true, true); |
| thread_pool->StopWorkers(self); |
| mark_stack_->Reset(); |
| CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked"; |
| } |
| |
| // Scan anything that's on the mark stack. |
| void MarkSweep::ProcessMarkStack(bool paused) { |
| timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack"); |
| size_t thread_count = GetThreadCount(paused); |
| if (kParallelProcessMarkStack && thread_count > 1 && |
| mark_stack_->Size() >= kMinimumParallelMarkStackSize) { |
| ProcessMarkStackParallel(thread_count); |
| } else { |
| // TODO: Tune this. |
| static const size_t kFifoSize = 4; |
| BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; |
| for (;;) { |
| Object* obj = NULL; |
| if (kUseMarkStackPrefetch) { |
| while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { |
| Object* obj = mark_stack_->PopBack(); |
| DCHECK(obj != NULL); |
| __builtin_prefetch(obj); |
| prefetch_fifo.push_back(obj); |
| } |
| if (prefetch_fifo.empty()) { |
| break; |
| } |
| obj = prefetch_fifo.front(); |
| prefetch_fifo.pop_front(); |
| } else { |
| if (mark_stack_->IsEmpty()) { |
| break; |
| } |
| obj = mark_stack_->PopBack(); |
| } |
| DCHECK(obj != NULL); |
| ScanObject(obj); |
| } |
| } |
| timings_.EndSplit(); |
| } |
| |
| inline bool MarkSweep::IsMarked(const Object* object) const |
| SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { |
| if (IsImmune(object)) { |
| return true; |
| } |
| DCHECK(current_mark_bitmap_ != NULL); |
| if (current_mark_bitmap_->HasAddress(object)) { |
| return current_mark_bitmap_->Test(object); |
| } |
| return heap_->GetMarkBitmap()->Test(object); |
| } |
| |
| void MarkSweep::FinishPhase() { |
| TimingLogger::ScopedSplit split("FinishPhase", &timings_); |
| // Can't enqueue references if we hold the mutator lock. |
| Heap* heap = GetHeap(); |
| timings_.NewSplit("PostGcVerification"); |
| heap->PostGcVerification(this); |
| |
| timings_.NewSplit("RequestHeapTrim"); |
| heap->RequestHeapTrim(); |
| |
| // Update the cumulative statistics |
| total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects(); |
| total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes(); |
| |
| // Ensure that the mark stack is empty. |
| CHECK(mark_stack_->IsEmpty()); |
| |
| if (kCountScannedTypes) { |
| VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_ |
| << " other=" << other_count_; |
| } |
| |
| if (kCountTasks) { |
| VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_; |
| } |
| |
| if (kMeasureOverhead) { |
| VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_); |
| } |
| |
| if (kProfileLargeObjects) { |
| VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_; |
| } |
| |
| if (kCountClassesMarked) { |
| VLOG(gc) << "Classes marked " << classes_marked_; |
| } |
| |
| if (kCountJavaLangRefs) { |
| VLOG(gc) << "References scanned " << reference_count_; |
| } |
| |
| // Update the cumulative loggers. |
| cumulative_timings_.Start(); |
| cumulative_timings_.AddLogger(timings_); |
| cumulative_timings_.End(); |
| |
| // Clear all of the spaces' mark bitmaps. |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| accounting::SpaceBitmap* bitmap = space->GetMarkBitmap(); |
| if (bitmap != nullptr && |
| space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) { |
| bitmap->Clear(); |
| } |
| } |
| mark_stack_->Reset(); |
| |
| // Reset the marked large objects. |
| space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace(); |
| large_objects->GetMarkObjects()->Clear(); |
| } |
| |
| } // namespace collector |
| } // namespace gc |
| } // namespace art |