| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_x86.h" |
| |
| #include "art_method.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "intrinsics.h" |
| #include "intrinsics_x86.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "thread.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| #include "utils/x86/assembler_x86.h" |
| #include "utils/x86/managed_register_x86.h" |
| |
| namespace art { |
| |
| template<class MirrorType> |
| class GcRoot; |
| |
| namespace x86 { |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr Register kMethodRegisterArgument = EAX; |
| static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI }; |
| |
| static constexpr int kC2ConditionMask = 0x400; |
| |
| static constexpr int kFakeReturnRegister = Register(8); |
| |
| // NOLINT on __ macro to suppress wrong warning/fix from clang-tidy. |
| #define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, x).Int32Value() |
| |
| class NullCheckSlowPathX86 : public SlowPathCode { |
| public: |
| explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86); |
| }; |
| |
| class DivZeroCheckSlowPathX86 : public SlowPathCode { |
| public: |
| explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86); |
| }; |
| |
| class DivRemMinusOneSlowPathX86 : public SlowPathCode { |
| public: |
| DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div) |
| : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| __ Bind(GetEntryLabel()); |
| if (is_div_) { |
| __ negl(reg_); |
| } else { |
| __ movl(reg_, Immediate(0)); |
| } |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; } |
| |
| private: |
| Register reg_; |
| bool is_div_; |
| DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86); |
| }; |
| |
| class BoundsCheckSlowPathX86 : public SlowPathCode { |
| public: |
| explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| |
| // Are we using an array length from memory? |
| HInstruction* array_length = instruction_->InputAt(1); |
| Location length_loc = locations->InAt(1); |
| InvokeRuntimeCallingConvention calling_convention; |
| if (array_length->IsArrayLength() && array_length->IsEmittedAtUseSite()) { |
| // Load the array length into our temporary. |
| uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength()); |
| Location array_loc = array_length->GetLocations()->InAt(0); |
| Address array_len(array_loc.AsRegister<Register>(), len_offset); |
| length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(1)); |
| // Check for conflicts with index. |
| if (length_loc.Equals(locations->InAt(0))) { |
| // We know we aren't using parameter 2. |
| length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(2)); |
| } |
| __ movl(length_loc.AsRegister<Register>(), array_len); |
| } |
| x86_codegen->EmitParallelMoves( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimInt, |
| length_loc, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt); |
| uint32_t entry_point_offset = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? QUICK_ENTRY_POINT(pThrowStringBounds) |
| : QUICK_ENTRY_POINT(pThrowArrayBounds); |
| x86_codegen->InvokeRuntime(entry_point_offset, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86); |
| }; |
| |
| class SuspendCheckSlowPathX86 : public SlowPathCode { |
| public: |
| SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCode(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| if (successor_ == nullptr) { |
| __ jmp(GetReturnLabel()); |
| } else { |
| __ jmp(x86_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; } |
| |
| private: |
| HBasicBlock* const successor_; |
| Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86); |
| }; |
| |
| class LoadStringSlowPathX86 : public SlowPathCode { |
| public: |
| explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex(); |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index)); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86); |
| }; |
| |
| class LoadClassSlowPathX86 : public SlowPathCode { |
| public: |
| LoadClassSlowPathX86(HLoadClass* cls, |
| HInstruction* at, |
| uint32_t dex_pc, |
| bool do_clinit) |
| : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = at_->GetLocations(); |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex())); |
| x86_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage) |
| : QUICK_ENTRY_POINT(pInitializeType), |
| at_, dex_pc_, this); |
| if (do_clinit_) { |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); |
| } else { |
| CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); |
| } |
| |
| // Move the class to the desired location. |
| Location out = locations->Out(); |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| x86_codegen->Move32(out, Location::RegisterLocation(EAX)); |
| } |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| // The instruction where this slow path is happening. |
| // (Might be the load class or an initialization check). |
| HInstruction* const at_; |
| |
| // The dex PC of `at_`. |
| const uint32_t dex_pc_; |
| |
| // Whether to initialize the class. |
| const bool do_clinit_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86); |
| }; |
| |
| class TypeCheckSlowPathX86 : public SlowPathCode { |
| public: |
| TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal) |
| : SlowPathCode(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) |
| : locations->Out(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| |
| if (!is_fatal_) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| x86_codegen->EmitParallelMoves( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| object_class, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot); |
| |
| if (instruction_->IsInstanceOf()) { |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickInstanceofNonTrivial, size_t, const mirror::Class*, const mirror::Class*>(); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| if (instruction_->IsInstanceOf()) { |
| x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ jmp(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; } |
| bool IsFatal() const OVERRIDE { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86); |
| }; |
| |
| class DeoptimizationSlowPathX86 : public SlowPathCode { |
| public: |
| explicit DeoptimizationSlowPathX86(HDeoptimize* instruction) |
| : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, void>(); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86); |
| }; |
| |
| class ArraySetSlowPathX86 : public SlowPathCode { |
| public: |
| explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimNot, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86); |
| }; |
| |
| // Slow path marking an object during a read barrier. |
| class ReadBarrierMarkSlowPathX86 : public SlowPathCode { |
| public: |
| ReadBarrierMarkSlowPathX86(HInstruction* instruction, Location obj) |
| : SlowPathCode(instruction), obj_(obj) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg = obj_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg)); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified()) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| DCHECK_NE(reg, ESP); |
| DCHECK(0 <= reg && reg < kNumberOfCpuRegisters) << reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in EAX): |
| // |
| // EAX <- obj |
| // EAX <- ReadBarrierMark(EAX) |
| // obj <- EAX |
| // |
| // we just use rX (the register holding `obj`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86PointerSize>(reg); |
| // This runtime call does not require a stack map. |
| x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| __ jmp(GetExitLabel()); |
| } |
| |
| private: |
| const Location obj_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode { |
| public: |
| ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCode(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ movl(out, Address(out, offset)); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified()) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| Register index_reg = index_.AsRegister<Register>(); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); |
| if (codegen->IsCoreCalleeSaveRegister(index_reg)) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to art::x86::X86Assembler::shll and |
| // art::x86::X86Assembler::AddImmediate below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ movl(free_reg, index_reg); |
| index_reg = free_reg; |
| index = Location::RegisterLocation(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ shll(index_reg, Immediate(TIMES_4)); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ AddImmediate(index_reg, Immediate(offset_)); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegisterPair()); |
| // UnsafeGet's offset location is a register pair, the low |
| // part contains the correct offset. |
| index = index_.ToLow(); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove(ref_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimInt, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_)); |
| } |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; } |
| |
| private: |
| Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(ref_.AsRegister<Register>()); |
| size_t obj = static_cast<int>(obj_.AsRegister<Register>()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return static_cast<Register>(i); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on x86 |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free caller-save register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathX86 : public SlowPathCode { |
| public: |
| ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root) |
| : SlowPathCode(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86); |
| }; |
| |
| #undef __ |
| // NOLINT on __ macro to suppress wrong warning/fix from clang-tidy. |
| #define __ down_cast<X86Assembler*>(GetAssembler())-> /* NOLINT */ |
| |
| inline Condition X86Condition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| case kCondLT: return kLess; |
| case kCondLE: return kLessEqual; |
| case kCondGT: return kGreater; |
| case kCondGE: return kGreaterEqual; |
| case kCondB: return kBelow; |
| case kCondBE: return kBelowEqual; |
| case kCondA: return kAbove; |
| case kCondAE: return kAboveEqual; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| // Maps signed condition to unsigned condition and FP condition to x86 name. |
| inline Condition X86UnsignedOrFPCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| // Signed to unsigned, and FP to x86 name. |
| case kCondLT: return kBelow; |
| case kCondLE: return kBelowEqual; |
| case kCondGT: return kAbove; |
| case kCondGE: return kAboveEqual; |
| // Unsigned remain unchanged. |
| case kCondB: return kBelow; |
| case kCondBE: return kBelowEqual; |
| case kCondA: return kAbove; |
| case kCondAE: return kAboveEqual; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << Register(reg); |
| } |
| |
| void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << XmmRegister(reg); |
| } |
| |
| size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id)); |
| return kX86WordSize; |
| } |
| |
| size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index)); |
| return kX86WordSize; |
| } |
| |
| size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ movsd(Address(ESP, stack_index), XmmRegister(reg_id)); |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ movsd(XmmRegister(reg_id), Address(ESP, stack_index)); |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| InvokeRuntime(GetThreadOffset<kX86PointerSize>(entrypoint).Int32Value(), |
| instruction, |
| dex_pc, |
| slow_path); |
| } |
| |
| void CodeGeneratorX86::InvokeRuntime(int32_t entry_point_offset, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(instruction, slow_path); |
| __ fs()->call(Address::Absolute(entry_point_offset)); |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| |
| void CodeGeneratorX86::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| __ fs()->call(Address::Absolute(entry_point_offset)); |
| } |
| |
| CodeGeneratorX86::CodeGeneratorX86(HGraph* graph, |
| const X86InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfCpuRegisters, |
| kNumberOfXmmRegisters, |
| kNumberOfRegisterPairs, |
| ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), |
| arraysize(kCoreCalleeSaves)) |
| | (1 << kFakeReturnRegister), |
| 0, |
| compiler_options, |
| stats), |
| block_labels_(nullptr), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetArena(), this), |
| assembler_(graph->GetArena()), |
| isa_features_(isa_features), |
| method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| simple_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| constant_area_start_(-1), |
| fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| method_address_offset_(-1) { |
| // Use a fake return address register to mimic Quick. |
| AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); |
| } |
| |
| void CodeGeneratorX86::SetupBlockedRegisters() const { |
| // Don't allocate the dalvik style register pair passing. |
| blocked_register_pairs_[ECX_EDX] = true; |
| |
| // Stack register is always reserved. |
| blocked_core_registers_[ESP] = true; |
| |
| UpdateBlockedPairRegisters(); |
| } |
| |
| void CodeGeneratorX86::UpdateBlockedPairRegisters() const { |
| for (int i = 0; i < kNumberOfRegisterPairs; i++) { |
| X86ManagedRegister current = |
| X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i)); |
| if (blocked_core_registers_[current.AsRegisterPairLow()] |
| || blocked_core_registers_[current.AsRegisterPairHigh()]) { |
| blocked_register_pairs_[i] = true; |
| } |
| } |
| } |
| |
| InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| static dwarf::Reg DWARFReg(Register reg) { |
| return dwarf::Reg::X86Core(static_cast<int>(reg)); |
| } |
| |
| void CodeGeneratorX86::GenerateFrameEntry() { |
| __ cfi().SetCurrentCFAOffset(kX86WordSize); // return address |
| __ Bind(&frame_entry_label_); |
| bool skip_overflow_check = |
| IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| |
| if (!skip_overflow_check) { |
| __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86)))); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (HasEmptyFrame()) { |
| return; |
| } |
| |
| for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ pushl(reg); |
| __ cfi().AdjustCFAOffset(kX86WordSize); |
| __ cfi().RelOffset(DWARFReg(reg), 0); |
| } |
| } |
| |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ subl(ESP, Immediate(adjust)); |
| __ cfi().AdjustCFAOffset(adjust); |
| __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument); |
| } |
| |
| void CodeGeneratorX86::GenerateFrameExit() { |
| __ cfi().RememberState(); |
| if (!HasEmptyFrame()) { |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ addl(ESP, Immediate(adjust)); |
| __ cfi().AdjustCFAOffset(-adjust); |
| |
| for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ popl(reg); |
| __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize)); |
| __ cfi().Restore(DWARFReg(reg)); |
| } |
| } |
| } |
| __ ret(); |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorX86::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| return Location::RegisterLocation(EAX); |
| |
| case Primitive::kPrimLong: |
| return Location::RegisterPairLocation(EAX, EDX); |
| |
| case Primitive::kPrimVoid: |
| return Location::NoLocation(); |
| |
| case Primitive::kPrimDouble: |
| case Primitive::kPrimFloat: |
| return Location::FpuRegisterLocation(XMM0); |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const { |
| return Location::RegisterLocation(kMethodRegisterArgument); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| uint32_t index = gp_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfRegisters()) { |
| return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t index = gp_index_; |
| gp_index_ += 2; |
| stack_index_ += 2; |
| if (index + 1 < calling_convention.GetNumberOfRegisters()) { |
| X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair( |
| calling_convention.GetRegisterPairAt(index)); |
| return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh()); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t index = float_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case Primitive::kPrimDouble: { |
| uint32_t index = float_index_++; |
| stack_index_ += 2; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| break; |
| } |
| return Location::NoLocation(); |
| } |
| |
| void CodeGeneratorX86::Move32(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegister()) { |
| if (source.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsRegister()) { |
| __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| if (source.IsRegister()) { |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| int32_t value = GetInt32ValueOf(constant); |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ pushl(Address(ESP, source.GetStackIndex())); |
| __ popl(Address(ESP, destination.GetStackIndex())); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86::Move64(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegisterPair()) { |
| if (source.IsRegisterPair()) { |
| EmitParallelMoves( |
| Location::RegisterLocation(source.AsRegisterPairHigh<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()), |
| Primitive::kPrimInt, |
| Location::RegisterLocation(source.AsRegisterPairLow<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairLow<Register>()), |
| Primitive::kPrimInt); |
| } else if (source.IsFpuRegister()) { |
| XmmRegister src_reg = source.AsFpuRegister<XmmRegister>(); |
| __ movd(destination.AsRegisterPairLow<Register>(), src_reg); |
| __ psrlq(src_reg, Immediate(32)); |
| __ movd(destination.AsRegisterPairHigh<Register>(), src_reg); |
| } else { |
| // No conflict possible, so just do the moves. |
| DCHECK(source.IsDoubleStackSlot()); |
| __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); |
| __ movl(destination.AsRegisterPairHigh<Register>(), |
| Address(ESP, source.GetHighStackIndex(kX86WordSize))); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsDoubleStackSlot()) { |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else if (source.IsRegisterPair()) { |
| size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt); |
| // Create stack space for 2 elements. |
| __ subl(ESP, Immediate(2 * elem_size)); |
| __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>()); |
| __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>()); |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| // And remove the temporary stack space we allocated. |
| __ addl(ESP, Immediate(2 * elem_size)); |
| } else { |
| LOG(FATAL) << "Unimplemented"; |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| if (source.IsRegisterPair()) { |
| // No conflict possible, so just do the moves. |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>()); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), |
| source.AsRegisterPairHigh<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| int64_t value; |
| if (constant->IsLongConstant()) { |
| value = constant->AsLongConstant()->GetValue(); |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); |
| } |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value))); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value))); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()) << source; |
| EmitParallelMoves( |
| Location::StackSlot(source.GetStackIndex()), |
| Location::StackSlot(destination.GetStackIndex()), |
| Primitive::kPrimInt, |
| Location::StackSlot(source.GetHighStackIndex(kX86WordSize)), |
| Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)), |
| Primitive::kPrimInt); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ movl(location.AsRegister<Register>(), Immediate(value)); |
| } |
| |
| void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { |
| HParallelMove move(GetGraph()->GetArena()); |
| if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) { |
| move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr); |
| move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr); |
| } else { |
| move.AddMove(src, dst, dst_type, nullptr); |
| } |
| GetMoveResolver()->EmitNativeCode(&move); |
| } |
| |
| void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else if (location.IsRegisterPair()) { |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| DCHECK(!successor->IsExitBlock()); |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| |
| HLoopInformation* info = block->GetLoopInformation(); |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { |
| __ jmp(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond, |
| LabelType* true_label, |
| LabelType* false_label) { |
| if (cond->IsFPConditionTrueIfNaN()) { |
| __ j(kUnordered, true_label); |
| } else if (cond->IsFPConditionFalseIfNaN()) { |
| __ j(kUnordered, false_label); |
| } |
| __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label); |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond, |
| LabelType* true_label, |
| LabelType* false_label) { |
| LocationSummary* locations = cond->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| IfCondition if_cond = cond->GetCondition(); |
| |
| Register left_high = left.AsRegisterPairHigh<Register>(); |
| Register left_low = left.AsRegisterPairLow<Register>(); |
| IfCondition true_high_cond = if_cond; |
| IfCondition false_high_cond = cond->GetOppositeCondition(); |
| Condition final_condition = X86UnsignedOrFPCondition(if_cond); // unsigned on lower part |
| |
| // Set the conditions for the test, remembering that == needs to be |
| // decided using the low words. |
| switch (if_cond) { |
| case kCondEQ: |
| case kCondNE: |
| // Nothing to do. |
| break; |
| case kCondLT: |
| false_high_cond = kCondGT; |
| break; |
| case kCondLE: |
| true_high_cond = kCondLT; |
| break; |
| case kCondGT: |
| false_high_cond = kCondLT; |
| break; |
| case kCondGE: |
| true_high_cond = kCondGT; |
| break; |
| case kCondB: |
| false_high_cond = kCondA; |
| break; |
| case kCondBE: |
| true_high_cond = kCondB; |
| break; |
| case kCondA: |
| false_high_cond = kCondB; |
| break; |
| case kCondAE: |
| true_high_cond = kCondA; |
| break; |
| } |
| |
| if (right.IsConstant()) { |
| int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t val_high = High32Bits(value); |
| int32_t val_low = Low32Bits(value); |
| |
| codegen_->Compare32BitValue(left_high, val_high); |
| if (if_cond == kCondNE) { |
| __ j(X86Condition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86Condition(false_high_cond), false_label); |
| } else { |
| __ j(X86Condition(true_high_cond), true_label); |
| __ j(X86Condition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| codegen_->Compare32BitValue(left_low, val_low); |
| } else if (right.IsRegisterPair()) { |
| Register right_high = right.AsRegisterPairHigh<Register>(); |
| Register right_low = right.AsRegisterPairLow<Register>(); |
| |
| __ cmpl(left_high, right_high); |
| if (if_cond == kCondNE) { |
| __ j(X86Condition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86Condition(false_high_cond), false_label); |
| } else { |
| __ j(X86Condition(true_high_cond), true_label); |
| __ j(X86Condition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| __ cmpl(left_low, right_low); |
| } else { |
| DCHECK(right.IsDoubleStackSlot()); |
| __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); |
| if (if_cond == kCondNE) { |
| __ j(X86Condition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86Condition(false_high_cond), false_label); |
| } else { |
| __ j(X86Condition(true_high_cond), true_label); |
| __ j(X86Condition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| __ cmpl(left_low, Address(ESP, right.GetStackIndex())); |
| } |
| // The last comparison might be unsigned. |
| __ j(final_condition, true_label); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs, |
| Location rhs, |
| HInstruction* insn, |
| bool is_double) { |
| HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable(); |
| if (is_double) { |
| if (rhs.IsFpuRegister()) { |
| __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); |
| } else if (const_area != nullptr) { |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(rhs.IsDoubleStackSlot()); |
| __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); |
| } |
| } else { |
| if (rhs.IsFpuRegister()) { |
| __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); |
| } else if (const_area != nullptr) { |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(rhs.IsStackSlot()); |
| __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); |
| } |
| } |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition, |
| LabelType* true_target_in, |
| LabelType* false_target_in) { |
| // Generated branching requires both targets to be explicit. If either of the |
| // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. |
| LabelType fallthrough_target; |
| LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; |
| LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; |
| |
| LocationSummary* locations = condition->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| switch (type) { |
| case Primitive::kPrimLong: |
| GenerateLongComparesAndJumps(condition, true_target, false_target); |
| break; |
| case Primitive::kPrimFloat: |
| GenerateFPCompare(left, right, condition, false); |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| case Primitive::kPrimDouble: |
| GenerateFPCompare(left, right, condition, true); |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected compare type " << type; |
| } |
| |
| if (false_target != &fallthrough_target) { |
| __ jmp(false_target); |
| } |
| |
| if (fallthrough_target.IsLinked()) { |
| __ Bind(&fallthrough_target); |
| } |
| } |
| |
| static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) { |
| // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS |
| // are set only strictly before `branch`. We can't use the eflags on long/FP |
| // conditions if they are materialized due to the complex branching. |
| return cond->IsCondition() && |
| cond->GetNext() == branch && |
| cond->InputAt(0)->GetType() != Primitive::kPrimLong && |
| !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType()); |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| LabelType* true_target, |
| LabelType* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ jmp(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ jmp(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| if (AreEflagsSetFrom(cond, instruction)) { |
| if (true_target == nullptr) { |
| __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target); |
| } else { |
| __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target); |
| } |
| } else { |
| // Materialized condition, compare against 0. |
| Location lhs = instruction->GetLocations()->InAt(condition_input_index); |
| if (lhs.IsRegister()) { |
| __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>()); |
| } else { |
| __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0)); |
| } |
| if (true_target == nullptr) { |
| __ j(kEqual, false_target); |
| } else { |
| __ j(kNotEqual, true_target); |
| } |
| } |
| } else { |
| // Condition has not been materialized, use its inputs as the comparison and |
| // its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| // If this is a long or FP comparison that has been folded into |
| // the HCondition, generate the comparison directly. |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { |
| GenerateCompareTestAndBranch(condition, true_target, false_target); |
| return; |
| } |
| |
| Location lhs = condition->GetLocations()->InAt(0); |
| Location rhs = condition->GetLocations()->InAt(1); |
| // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition). |
| if (rhs.IsRegister()) { |
| __ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>()); |
| } else if (rhs.IsConstant()) { |
| int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); |
| codegen_->Compare32BitValue(lhs.AsRegister<Register>(), constant); |
| } else { |
| __ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex())); |
| } |
| if (true_target == nullptr) { |
| __ j(X86Condition(condition->GetOppositeCondition()), false_target); |
| } else { |
| __ j(X86Condition(condition->GetCondition()), true_target); |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ jmp(false_target); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize); |
| GenerateTestAndBranch<Label>(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| static bool SelectCanUseCMOV(HSelect* select) { |
| // There are no conditional move instructions for XMMs. |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| return false; |
| } |
| |
| // A FP condition doesn't generate the single CC that we need. |
| // In 32 bit mode, a long condition doesn't generate a single CC either. |
| HInstruction* condition = select->GetCondition(); |
| if (condition->IsCondition()) { |
| Primitive::Type compare_type = condition->InputAt(0)->GetType(); |
| if (compare_type == Primitive::kPrimLong || |
| Primitive::IsFloatingPointType(compare_type)) { |
| return false; |
| } |
| } |
| |
| // We can generate a CMOV for this Select. |
| return true; |
| } |
| |
| void LocationsBuilderX86::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (SelectCanUseCMOV(select)) { |
| if (select->InputAt(1)->IsConstant()) { |
| // Cmov can't handle a constant value. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| } |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) { |
| Register lhs_reg = lhs.AsRegister<Register>(); |
| if (rhs.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); |
| codegen_->Compare32BitValue(lhs_reg, value); |
| } else if (rhs.IsStackSlot()) { |
| __ cmpl(lhs_reg, Address(ESP, rhs.GetStackIndex())); |
| } else { |
| __ cmpl(lhs_reg, rhs.AsRegister<Register>()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) { |
| LocationSummary* locations = select->GetLocations(); |
| DCHECK(locations->InAt(0).Equals(locations->Out())); |
| if (SelectCanUseCMOV(select)) { |
| // If both the condition and the source types are integer, we can generate |
| // a CMOV to implement Select. |
| |
| HInstruction* select_condition = select->GetCondition(); |
| Condition cond = kNotEqual; |
| |
| // Figure out how to test the 'condition'. |
| if (select_condition->IsCondition()) { |
| HCondition* condition = select_condition->AsCondition(); |
| if (!condition->IsEmittedAtUseSite()) { |
| // This was a previously materialized condition. |
| // Can we use the existing condition code? |
| if (AreEflagsSetFrom(condition, select)) { |
| // Materialization was the previous instruction. Condition codes are right. |
| cond = X86Condition(condition->GetCondition()); |
| } else { |
| // No, we have to recreate the condition code. |
| Register cond_reg = locations->InAt(2).AsRegister<Register>(); |
| __ testl(cond_reg, cond_reg); |
| } |
| } else { |
| // We can't handle FP or long here. |
| DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong); |
| DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType())); |
| LocationSummary* cond_locations = condition->GetLocations(); |
| GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1)); |
| cond = X86Condition(condition->GetCondition()); |
| } |
| } else { |
| // Must be a boolean condition, which needs to be compared to 0. |
| Register cond_reg = locations->InAt(2).AsRegister<Register>(); |
| __ testl(cond_reg, cond_reg); |
| } |
| |
| // If the condition is true, overwrite the output, which already contains false. |
| Location false_loc = locations->InAt(0); |
| Location true_loc = locations->InAt(1); |
| if (select->GetType() == Primitive::kPrimLong) { |
| // 64 bit conditional move. |
| Register false_high = false_loc.AsRegisterPairHigh<Register>(); |
| Register false_low = false_loc.AsRegisterPairLow<Register>(); |
| if (true_loc.IsRegisterPair()) { |
| __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>()); |
| __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>()); |
| } else { |
| __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize))); |
| __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex())); |
| } |
| } else { |
| // 32 bit conditional move. |
| Register false_reg = false_loc.AsRegister<Register>(); |
| if (true_loc.IsRegister()) { |
| __ cmovl(cond, false_reg, true_loc.AsRegister<Register>()); |
| } else { |
| __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex())); |
| } |
| } |
| } else { |
| NearLabel false_target; |
| GenerateTestAndBranch<NearLabel>( |
| select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target); |
| codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); |
| __ Bind(&false_target); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetArena()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorX86::GenerateNop() { |
| __ nop(); |
| } |
| |
| void LocationsBuilderX86::HandleCondition(HCondition* cond) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); |
| // Handle the long/FP comparisons made in instruction simplification. |
| switch (cond->InputAt(0)->GetType()) { |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (cond->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(cond->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (cond->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| default: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (!cond->IsEmittedAtUseSite()) { |
| // We need a byte register. |
| locations->SetOut(Location::RegisterLocation(ECX)); |
| } |
| break; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) { |
| if (cond->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = cond->GetLocations(); |
| Location lhs = locations->InAt(0); |
| Location rhs = locations->InAt(1); |
| Register reg = locations->Out().AsRegister<Register>(); |
| NearLabel true_label, false_label; |
| |
| switch (cond->InputAt(0)->GetType()) { |
| default: { |
| // Integer case. |
| |
| // Clear output register: setb only sets the low byte. |
| __ xorl(reg, reg); |
| GenerateIntCompare(lhs, rhs); |
| __ setb(X86Condition(cond->GetCondition()), reg); |
| return; |
| } |
| case Primitive::kPrimLong: |
| GenerateLongComparesAndJumps(cond, &true_label, &false_label); |
| break; |
| case Primitive::kPrimFloat: |
| GenerateFPCompare(lhs, rhs, cond, false); |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| case Primitive::kPrimDouble: |
| GenerateFPCompare(lhs, rhs, cond, true); |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| } |
| |
| // Convert the jumps into the result. |
| NearLabel done_label; |
| |
| // False case: result = 0. |
| __ Bind(&false_label); |
| __ xorl(reg, reg); |
| __ jmp(&done_label); |
| |
| // True case: result = 1. |
| __ Bind(&true_label); |
| __ movl(reg, Immediate(1)); |
| __ Bind(&done_label); |
| } |
| |
| void LocationsBuilderX86::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderX86::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); |
| switch (ret->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| break; |
| |
| case Primitive::kPrimLong: |
| locations->SetInAt( |
| 0, Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt( |
| 0, Location::FpuRegisterLocation(XMM0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) { |
| if (kIsDebugBuild) { |
| switch (ret->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX); |
| break; |
| |
| case Primitive::kPrimLong: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); |
| } |
| } |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderX86 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); |
| } |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| |
| // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. |
| if (invoke->HasPcRelativeDexCache()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); |
| } |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorX86 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderX86 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorX86 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // This call to HandleInvoke allocates a temporary (core) register |
| // which is also used to transfer the hidden argument from FP to |
| // core register. |
| HandleInvoke(invoke); |
| // Add the hidden argument. |
| invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| Location receiver = locations->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| |
| // Set the hidden argument. This is safe to do this here, as XMM7 |
| // won't be modified thereafter, before the `call` instruction. |
| DCHECK_EQ(XMM7, hidden_reg); |
| __ movl(temp, Immediate(invoke->GetDexMethodIndex())); |
| __ movd(hidden_reg, temp); |
| |
| if (receiver.IsStackSlot()) { |
| __ movl(temp, Address(ESP, receiver.GetStackIndex())); |
| // /* HeapReference<Class> */ temp = temp->klass_ |
| __ movl(temp, Address(temp, class_offset)); |
| } else { |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetAddressOfIMT() |
| __ movl(temp, |
| Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value())); |
| // temp = temp->GetImtEntryAt(method_offset); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kX86PointerSize)); |
| __ movl(temp, Address(temp, method_offset)); |
| // call temp->GetEntryPoint(); |
| __ call(Address(temp, |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value())); |
| |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| DCHECK(in.IsRegister()); |
| DCHECK(in.Equals(out)); |
| __ negl(out.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: |
| DCHECK(in.IsRegisterPair()); |
| DCHECK(in.Equals(out)); |
| __ negl(out.AsRegisterPairLow<Register>()); |
| // Negation is similar to subtraction from zero. The least |
| // significant byte triggers a borrow when it is different from |
| // zero; to take it into account, add 1 to the most significant |
| // byte if the carry flag (CF) is set to 1 after the first NEGL |
| // operation. |
| __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0)); |
| __ negl(out.AsRegisterPairHigh<Register>()); |
| break; |
| |
| case Primitive::kPrimFloat: { |
| DCHECK(in.Equals(out)); |
| Register constant = locations->GetTemp(0).AsRegister<Register>(); |
| XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| // Implement float negation with an exclusive or with value |
| // 0x80000000 (mask for bit 31, representing the sign of a |
| // single-precision floating-point number). |
| __ movl(constant, Immediate(INT32_C(0x80000000))); |
| __ movd(mask, constant); |
| __ xorps(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| DCHECK(in.Equals(out)); |
| XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| // Implement double negation with an exclusive or with value |
| // 0x8000000000000000 (mask for bit 63, representing the sign of |
| // a double-precision floating-point number). |
| __ LoadLongConstant(mask, INT64_C(0x8000000000000000)); |
| __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| DCHECK(Primitive::IsFloatingPointType(neg->GetType())); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| DCHECK(locations->InAt(0).Equals(out)); |
| |
| Register constant_area = locations->InAt(1).AsRegister<Register>(); |
| XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| if (neg->GetType() == Primitive::kPrimFloat) { |
| __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), constant_area)); |
| __ xorps(out.AsFpuRegister<XmmRegister>(), mask); |
| } else { |
| __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), constant_area)); |
| __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) { |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| |
| // The float-to-long and double-to-long type conversions rely on a |
| // call to the runtime. |
| LocationSummary::CallKind call_kind = |
| ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) |
| && result_type == Primitive::kPrimLong) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); |
| |
| // The Java language does not allow treating boolean as an integral type but |
| // our bit representation makes it safe. |
| |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: { |
| // Type conversion from long to byte is a result of code transformations. |
| HInstruction* input = conversion->InputAt(0); |
| Location input_location = input->IsConstant() |
| ? Location::ConstantLocation(input->AsConstant()) |
| : Location::RegisterPairLocation(EAX, EDX); |
| locations->SetInAt(0, input_location); |
| // Make the output overlap to please the register allocator. This greatly simplifies |
| // the validation of the linear scan implementation |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0))); |
| // Make the output overlap to please the register allocator. This greatly simplifies |
| // the validation of the linear scan implementation |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `float-to-long' or 'double-to-long' instruction. |
| InvokeRuntimeCallingConvention calling_convention; |
| XmmRegister parameter = calling_convention.GetFpuRegisterAt(0); |
| locations->SetInAt(0, Location::FpuRegisterLocation(parameter)); |
| |
| // The runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to char is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-float' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::Any()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-double' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::Any()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to byte is a result of code transformations. |
| if (in.IsRegisterPair()) { |
| __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>()); |
| } else { |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); |
| } |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| if (in.IsRegister()) { |
| __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>()); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| if (in.IsRegisterPair()) { |
| __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); |
| } |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| if (in.IsRegister()) { |
| __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>()); |
| } else if (in.IsStackSlot()) { |
| __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| if (in.IsRegisterPair()) { |
| __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.IsConstant()); |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value))); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-int' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| Register output = out.AsRegister<Register>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // temp = int-to-float(output) |
| __ cvtsi2ss(temp, output); |
| // if input >= temp goto done |
| __ comiss(input, temp); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = float-to-int-truncate(input) |
| __ cvttss2si(output, input); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-int' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| Register output = out.AsRegister<Register>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // temp = int-to-double(output) |
| __ cvtsi2sd(temp, output); |
| // if input >= temp goto done |
| __ comisd(input, temp); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = double-to-int-truncate(input) |
| __ cvttsd2si(output, input); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX); |
| DCHECK_EQ(in.AsRegister<Register>(), EAX); |
| __ cdq(); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-long' instruction. |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l), |
| conversion, |
| conversion->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickF2l, int64_t, float>(); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-long' instruction. |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l), |
| conversion, |
| conversion->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickD2l, int64_t, double>(); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| if (in.IsRegisterPair()) { |
| __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); |
| } |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `Process a Dex `int-to-char'' instruction. |
| if (in.IsRegister()) { |
| __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>()); |
| } else if (in.IsStackSlot()) { |
| __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-float' instruction. |
| size_t adjustment = 0; |
| |
| // Create stack space for the call to |
| // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) { |
| adjustment = Primitive::ComponentSize(Primitive::kPrimLong); |
| __ subl(ESP, Immediate(adjustment)); |
| } |
| |
| // Load the value to the FP stack, using temporaries if needed. |
| PushOntoFPStack(in, 0, adjustment, false, true); |
| |
| if (out.IsStackSlot()) { |
| __ fstps(Address(ESP, out.GetStackIndex() + adjustment)); |
| } else { |
| __ fstps(Address(ESP, 0)); |
| Location stack_temp = Location::StackSlot(0); |
| codegen_->Move32(out, stack_temp); |
| } |
| |
| // Remove the temporary stack space we allocated. |
| if (adjustment != 0) { |
| __ addl(ESP, Immediate(adjustment)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-double' instruction. |
| size_t adjustment = 0; |
| |
| // Create stack space for the call to |
| // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) { |
| adjustment = Primitive::ComponentSize(Primitive::kPrimLong); |
| __ subl(ESP, Immediate(adjustment)); |
| } |
| |
| // Load the value to the FP stack, using temporaries if needed. |
| PushOntoFPStack(in, 0, adjustment, false, true); |
| |
| if (out.IsDoubleStackSlot()) { |
| __ fstpl(Address(ESP, out.GetStackIndex() + adjustment)); |
| } else { |
| __ fstpl(Address(ESP, 0)); |
| Location stack_temp = Location::DoubleStackSlot(0); |
| codegen_->Move64(out, stack_temp); |
| } |
| |
| // Remove the temporary stack space we allocated. |
| if (adjustment != 0) { |
| __ addl(ESP, Immediate(adjustment)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderX86::VisitAdd(HAdd* add) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(add->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (add->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| break; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) { |
| LocationSummary* locations = add->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), first.AsRegister<Register>()); |
| } else { |
| __ leal(out.AsRegister<Register>(), Address( |
| first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0)); |
| } |
| } else if (second.IsConstant()) { |
| int32_t value = second.GetConstant()->AsIntConstant()->GetValue(); |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), Immediate(value)); |
| } else { |
| __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value)); |
| } |
| } else { |
| DCHECK(first.Equals(locations->Out())); |
| __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (second.IsRegisterPair()) { |
| __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (second.IsDoubleStackSlot()) { |
| __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ adcl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); |
| __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ addss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ addsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitSub(HSub* sub) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(sub->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (sub->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSub(HSub* sub) { |
| LocationSummary* locations = sub->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| __ subl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (second.IsConstant()) { |
| __ subl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (second.IsRegisterPair()) { |
| __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (second.IsDoubleStackSlot()) { |
| __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ subss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ subsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (mul->InputAt(1)->IsIntConstant()) { |
| // Can use 3 operand multiply. |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| break; |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Needed for imul on 32bits with 64bits output. |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(mul->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (mul->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMul(HMul* mul) { |
| LocationSummary* locations = mul->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| // The constant may have ended up in a register, so test explicitly to avoid |
| // problems where the output may not be the same as the first operand. |
| if (mul->InputAt(1)->IsIntConstant()) { |
| Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue()); |
| __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm); |
| } else if (second.IsRegister()) { |
| DCHECK(first.Equals(out)); |
| __ imull(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| DCHECK(first.Equals(out)); |
| __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| |
| case Primitive::kPrimLong: { |
| Register in1_hi = first.AsRegisterPairHigh<Register>(); |
| Register in1_lo = first.AsRegisterPairLow<Register>(); |
| Register eax = locations->GetTemp(0).AsRegister<Register>(); |
| Register edx = locations->GetTemp(1).AsRegister<Register>(); |
| |
| DCHECK_EQ(EAX, eax); |
| DCHECK_EQ(EDX, edx); |
| |
| // input: in1 - 64 bits, in2 - 64 bits. |
| // output: in1 |
| // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo |
| // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] |
| // parts: in1.lo = (in1.lo * in2.lo)[31:0] |
| if (second.IsConstant()) { |
| DCHECK(second.GetConstant()->IsLongConstant()); |
| |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| |
| __ movl(eax, high); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, low); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in2_lo to eax to prepare for double precision |
| __ movl(eax, low); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in1_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } else if (second.IsRegisterPair()) { |
| Register in2_hi = second.AsRegisterPairHigh<Register>(); |
| Register in2_lo = second.AsRegisterPairLow<Register>(); |
| |
| __ movl(eax, in2_hi); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, in2_lo); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in1_lo to eax to prepare for double precision |
| __ movl(eax, in1_lo); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in2_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()) << second; |
| Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize)); |
| Address in2_lo(ESP, second.GetStackIndex()); |
| |
| __ movl(eax, in2_hi); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, in2_lo); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in1_lo to eax to prepare for double precision |
| __ movl(eax, in1_lo); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in2_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } |
| |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| DCHECK(first.Equals(locations->Out())); |
| if (second.IsFpuRegister()) { |
| __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ mulss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| DCHECK(first.Equals(locations->Out())); |
| if (second.IsFpuRegister()) { |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::PushOntoFPStack(Location source, |
| uint32_t temp_offset, |
| uint32_t stack_adjustment, |
| bool is_fp, |
| bool is_wide) { |
| if (source.IsStackSlot()) { |
| DCHECK(!is_wide); |
| if (is_fp) { |
| __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } else { |
| __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| DCHECK(is_wide); |
| if (is_fp) { |
| __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } else { |
| __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } |
| } else { |
| // Write the value to the temporary location on the stack and load to FP stack. |
| if (!is_wide) { |
| Location stack_temp = Location::StackSlot(temp_offset); |
| codegen_->Move32(stack_temp, source); |
| if (is_fp) { |
| __ flds(Address(ESP, temp_offset)); |
| } else { |
| __ filds(Address(ESP, temp_offset)); |
| } |
| } else { |
| Location stack_temp = Location::DoubleStackSlot(temp_offset); |
| codegen_->Move64(stack_temp, source); |
| if (is_fp) { |
| __ fldl(Address(ESP, temp_offset)); |
| } else { |
| __ fildl(Address(ESP, temp_offset)); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) { |
| Primitive::Type type = rem->GetResultType(); |
| bool is_float = type == Primitive::kPrimFloat; |
| size_t elem_size = Primitive::ComponentSize(type); |
| LocationSummary* locations = rem->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| // Create stack space for 2 elements. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| __ subl(ESP, Immediate(2 * elem_size)); |
| |
| // Load the values to the FP stack in reverse order, using temporaries if needed. |
| const bool is_wide = !is_float; |
| PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide); |
| PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide); |
| |
| // Loop doing FPREM until we stabilize. |
| NearLabel retry; |
| __ Bind(&retry); |
| __ fprem(); |
| |
| // Move FP status to AX. |
| __ fstsw(); |
| |
| // And see if the argument reduction is complete. This is signaled by the |
| // C2 FPU flag bit set to 0. |
| __ andl(EAX, Immediate(kC2ConditionMask)); |
| __ j(kNotEqual, &retry); |
| |
| // We have settled on the final value. Retrieve it into an XMM register. |
| // Store FP top of stack to real stack. |
| if (is_float) { |
| __ fsts(Address(ESP, 0)); |
| } else { |
| __ fstl(Address(ESP, 0)); |
| } |
| |
| // Pop the 2 items from the FP stack. |
| __ fucompp(); |
| |
| // Load the value from the stack into an XMM register. |
| DCHECK(out.IsFpuRegister()) << out; |
| if (is_float) { |
| __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } else { |
| __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } |
| |
| // And remove the temporary stack space we allocated. |
| __ addl(ESP, Immediate(2 * elem_size)); |
| } |
| |
| |
| void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| DCHECK(locations->InAt(1).IsConstant()); |
| DCHECK(locations->InAt(1).GetConstant()->IsIntConstant()); |
| |
| Register out_register = locations->Out().AsRegister<Register>(); |
| Register input_register = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ xorl(out_register, out_register); |
| } else { |
| __ movl(out_register, input_register); |
| if (imm == -1) { |
| __ negl(out_register); |
| } |
| } |
| } |
| |
| |
| void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| Register out_register = locations->Out().AsRegister<Register>(); |
| Register input_register = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| DCHECK(IsPowerOfTwo(AbsOrMin(imm))); |
| uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); |
| |
| Register num = locations->GetTemp(0).AsRegister<Register>(); |
| |
| __ leal(num, Address(input_register, abs_imm - 1)); |
| __ testl(input_register, input_register); |
| __ cmovl(kGreaterEqual, num, input_register); |
| int shift = CTZ(imm); |
| __ sarl(num, Immediate(shift)); |
| |
| if (imm < 0) { |
| __ negl(num); |
| } |
| |
| __ movl(out_register, num); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| |
| Register eax = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Register num; |
| Register edx; |
| |
| if (instruction->IsDiv()) { |
| edx = locations->GetTemp(0).AsRegister<Register>(); |
| num = locations->GetTemp(1).AsRegister<Register>(); |
| } else { |
| edx = locations->Out().AsRegister<Register>(); |
| num = locations->GetTemp(0).AsRegister<Register>(); |
| } |
| |
| DCHECK_EQ(EAX, eax); |
| DCHECK_EQ(EDX, edx); |
| if (instruction->IsDiv()) { |
| DCHECK_EQ(EAX, out); |
| } else { |
| DCHECK_EQ(EDX, out); |
| } |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); |
| |
| // Save the numerator. |
| __ movl(num, eax); |
| |
| // EAX = magic |
| __ movl(eax, Immediate(magic)); |
| |
| // EDX:EAX = magic * numerator |
| __ imull(num); |
| |
| if (imm > 0 && magic < 0) { |
| // EDX += num |
| __ addl(edx, num); |
| } else if (imm < 0 && magic > 0) { |
| __ subl(edx, num); |
| } |
| |
| // Shift if needed. |
| if (shift != 0) { |
| __ sarl(edx, Immediate(shift)); |
| } |
| |
| // EDX += 1 if EDX < 0 |
| __ movl(eax, edx); |
| __ shrl(edx, Immediate(31)); |
| __ addl(edx, eax); |
| |
| if (instruction->IsRem()) { |
| __ movl(eax, num); |
| __ imull(edx, Immediate(imm)); |
| __ subl(eax, edx); |
| __ movl(edx, eax); |
| } else { |
| __ movl(eax, edx); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| bool is_div = instruction->IsDiv(); |
| |
| switch (instruction->GetResultType()) { |
| case Primitive::kPrimInt: { |
| DCHECK_EQ(EAX, first.AsRegister<Register>()); |
| DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>()); |
| |
| if (second.IsConstant()) { |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| |
| if (imm == 0) { |
| // Do not generate anything for 0. DivZeroCheck would forbid any generated code. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) { |
| DivByPowerOfTwo(instruction->AsDiv()); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86( |
| instruction, out.AsRegister<Register>(), is_div); |
| codegen_->AddSlowPath(slow_path); |
| |
| Register second_reg = second.AsRegister<Register>(); |
| // 0x80000000/-1 triggers an arithmetic exception! |
| // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so |
| // it's safe to just use negl instead of more complex comparisons. |
| |
| __ cmpl(second_reg, Immediate(-1)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // edx:eax <- sign-extended of eax |
| __ cdq(); |
| // eax = quotient, edx = remainder |
| __ idivl(second_reg); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>()); |
| |
| if (is_div) { |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); |
| } else { |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitDiv(HDiv* div) { |
| LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Intel uses edx:eax as the dividend. |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| // We need to save the numerator while we tweak eax and edx. As we are using imul in a way |
| // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as |
| // output and request another temp. |
| if (div->InputAt(1)->IsIntConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // Runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(div->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (div->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) { |
| LocationSummary* locations = div->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(div); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ divss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ divsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| |
| LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RegisterLocation(EDX)); |
| // We need to save the numerator while we tweak eax and edx. As we are using imul in a way |
| // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as |
| // output and request another temp. |
| if (rem->InputAt(1)->IsIntConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // Runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| } |
| case Primitive::kPrimDouble: |
| case Primitive::kPrimFloat: { |
| locations->SetInAt(0, Location::Any()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(rem); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| GenerateRemFP(rem); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| switch (instruction->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::Any()); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| if (!instruction->IsConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); |
| } |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location value = locations->InAt(0); |
| |
| switch (instruction->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: { |
| if (value.IsRegister()) { |
| __ testl(value.AsRegister<Register>(), value.AsRegister<Register>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else if (value.IsStackSlot()) { |
| __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (value.IsRegisterPair()) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegisterPairLow<Register>()); |
| __ orl(temp, value.AsRegisterPairHigh<Register>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType(); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| // Can't have Location::Any() and output SameAsFirstInput() |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // The shift count needs to be in CL or a constant. |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected op type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = op->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: { |
| DCHECK(first.IsRegister()); |
| Register first_reg = first.AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(ECX, second_reg); |
| if (op->IsShl()) { |
| __ shll(first_reg, second_reg); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, second_reg); |
| } else { |
| __ shrl(first_reg, second_reg); |
| } |
| } else { |
| int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance; |
| if (shift == 0) { |
| return; |
| } |
| Immediate imm(shift); |
| if (op->IsShl()) { |
| __ shll(first_reg, imm); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, imm); |
| } else { |
| __ shrl(first_reg, imm); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(ECX, second_reg); |
| if (op->IsShl()) { |
| GenerateShlLong(first, second_reg); |
| } else if (op->IsShr()) { |
| GenerateShrLong(first, second_reg); |
| } else { |
| GenerateUShrLong(first, second_reg); |
| } |
| } else { |
| // Shift by a constant. |
| int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; |
| // Nothing to do if the shift is 0, as the input is already the output. |
| if (shift != 0) { |
| if (op->IsShl()) { |
| GenerateShlLong(first, shift); |
| } else if (op->IsShr()) { |
| GenerateShrLong(first, shift); |
| } else { |
| GenerateUShrLong(first, shift); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected op type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 1) { |
| // This is just an addition. |
| __ addl(low, low); |
| __ adcl(high, high); |
| } else if (shift == 32) { |
| // Shift by 32 is easy. High gets low, and low gets 0. |
| codegen_->EmitParallelMoves( |
| loc.ToLow(), |
| loc.ToHigh(), |
| Primitive::kPrimInt, |
| Location::ConstantLocation(GetGraph()->GetIntConstant(0)), |
| loc.ToLow(), |
| Primitive::kPrimInt); |
| } else if (shift > 32) { |
| // Low part becomes 0. High part is low part << (shift-32). |
| __ movl(high, low); |
| __ shll(high, Immediate(shift - 32)); |
| __ xorl(low, low); |
| } else { |
| // Between 1 and 31. |
| __ shld(high, low, Immediate(shift)); |
| __ shll(low, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter); |
| __ shll(loc.AsRegisterPairLow<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>()); |
| __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0)); |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 32) { |
| // Need to copy the sign. |
| DCHECK_NE(low, high); |
| __ movl(low, high); |
| __ sarl(high, Immediate(31)); |
| } else if (shift > 32) { |
| DCHECK_NE(low, high); |
| // High part becomes sign. Low part is shifted by shift - 32. |
| __ movl(low, high); |
| __ sarl(high, Immediate(31)); |
| __ sarl(low, Immediate(shift - 32)); |
| } else { |
| // Between 1 and 31. |
| __ shrd(low, high, Immediate(shift)); |
| __ sarl(high, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); |
| __ sarl(loc.AsRegisterPairHigh<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); |
| __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31)); |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 32) { |
| // Shift by 32 is easy. Low gets high, and high gets 0. |
| codegen_->EmitParallelMoves( |
| loc.ToHigh(), |
| loc.ToLow(), |
| Primitive::kPrimInt, |
| Location::ConstantLocation(GetGraph()->GetIntConstant(0)), |
| loc.ToHigh(), |
| Primitive::kPrimInt); |
| } else if (shift > 32) { |
| // Low part is high >> (shift - 32). High part becomes 0. |
| __ movl(low, high); |
| __ shrl(low, Immediate(shift - 32)); |
| __ xorl(high, high); |
| } else { |
| // Between 1 and 31. |
| __ shrd(low, high, Immediate(shift)); |
| __ shrl(high, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); |
| __ shrl(loc.AsRegisterPairHigh<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); |
| __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0)); |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86::VisitRor(HRor* ror) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); |
| |
| switch (ror->GetResultType()) { |
| case Primitive::kPrimLong: |
| // Add the temporary needed. |
| locations->AddTemp(Location::RequiresRegister()); |
| FALLTHROUGH_INTENDED; |
| case Primitive::kPrimInt: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // The shift count needs to be in CL (unless it is a constant). |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitRor(HRor* ror) { |
| LocationSummary* locations = ror->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| if (ror->GetResultType() == Primitive::kPrimInt) { |
| Register first_reg = first.AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| __ rorl(first_reg, second_reg); |
| } else { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); |
| __ rorl(first_reg, imm); |
| } |
| return; |
| } |
| |
| DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong); |
| Register first_reg_lo = first.AsRegisterPairLow<Register>(); |
| Register first_reg_hi = first.AsRegisterPairHigh<Register>(); |
| Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(second_reg, ECX); |
| __ movl(temp_reg, first_reg_hi); |
| __ shrd(first_reg_hi, first_reg_lo, second_reg); |
| __ shrd(first_reg_lo, temp_reg, second_reg); |
| __ movl(temp_reg, first_reg_hi); |
| __ testl(second_reg, Immediate(32)); |
| __ cmovl(kNotEqual, first_reg_hi, first_reg_lo); |
| __ cmovl(kNotEqual, first_reg_lo, temp_reg); |
| } else { |
| int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; |
| if (shift_amt == 0) { |
| // Already fine. |
| return; |
| } |
| if (shift_amt == 32) { |
| // Just swap. |
| __ movl(temp_reg, first_reg_lo); |
| __ movl(first_reg_lo, first_reg_hi); |
| __ movl(first_reg_hi, temp_reg); |
| return; |
| } |
| |
| Immediate imm(shift_amt); |
| // Save the constents of the low value. |
| __ movl(temp_reg, first_reg_lo); |
| |
| // Shift right into low, feeding bits from high. |
| __ shrd(first_reg_lo, first_reg_hi, imm); |
| |
| // Shift right into high, feeding bits from the original low. |
| __ shrd(first_reg_hi, temp_reg, imm); |
| |
| // Swap if needed. |
| if (shift_amt > 32) { |
| __ movl(temp_reg, first_reg_lo); |
| __ movl(first_reg_lo, first_reg_hi); |
| __ movl(first_reg_hi, temp_reg); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderX86::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderX86::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| if (instruction->IsStringAlloc()) { |
| locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); |
| } else { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| if (instruction->IsStringAlloc()) { |
| // String is allocated through StringFactory. Call NewEmptyString entry point. |
| Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>(); |
| MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize); |
| __ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString))); |
| __ call(Address(temp, code_offset.Int32Value())); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } else { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) { |
| InvokeRuntimeCallingConvention calling_convention; |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex())); |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kX86PointerSize).SizeValue(); |
| __ movl(locations->Out().AsRegister<Register>(), |
| Address(locations->InAt(0).AsRegister<Register>(), method_offset)); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kX86PointerSize)); |
| __ movl(locations->Out().AsRegister<Register>(), |
| Address(locations->InAt(0).AsRegister<Register>(), |
| mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value())); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ movl(locations->Out().AsRegister<Register>(), |
| Address(locations->Out().AsRegister<Register>(), method_offset)); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitNot(HNot* not_) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNot(HNot* not_) { |
| LocationSummary* locations = not_->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| DCHECK(in.Equals(out)); |
| switch (not_->GetResultType()) { |
| case Primitive::kPrimInt: |
| __ notl(out.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: |
| __ notl(out.AsRegisterPairLow<Register>()); |
| __ notl(out.AsRegisterPairHigh<Register>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = bool_not->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| DCHECK(in.Equals(out)); |
| __ xorl(out.AsRegister<Register>(), Immediate(1)); |
| } |
| |
| void LocationsBuilderX86::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); |
| switch (compare->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (compare->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(compare->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (compare->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = compare->GetLocations(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| NearLabel less, greater, done; |
| Condition less_cond = kLess; |
| |
| switch (compare->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| GenerateIntCompare(left, right); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| Register left_low = left.AsRegisterPairLow<Register>(); |
| Register left_high = left.AsRegisterPairHigh<Register>(); |
| int32_t val_low = 0; |
| int32_t val_high = 0; |
| bool right_is_const = false; |
| |
| if (right.IsConstant()) { |
| DCHECK(right.GetConstant()->IsLongConstant()); |
| right_is_const = true; |
| int64_t val = right.GetConstant()->AsLongConstant()->GetValue(); |
| val_low = Low32Bits(val); |
| val_high = High32Bits(val); |
| } |
| |
| if (right.IsRegisterPair()) { |
| __ cmpl(left_high, right.AsRegisterPairHigh<Register>()); |
| } else if (right.IsDoubleStackSlot()) { |
| __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(right_is_const) << right; |
| codegen_->Compare32BitValue(left_high, val_high); |
| } |
| __ j(kLess, &less); // Signed compare. |
| __ j(kGreater, &greater); // Signed compare. |
| if (right.IsRegisterPair()) { |
| __ cmpl(left_low, right.AsRegisterPairLow<Register>()); |
| } else if (right.IsDoubleStackSlot()) { |
| __ cmpl(left_low, Address(ESP, right.GetStackIndex())); |
| } else { |
| DCHECK(right_is_const) << right; |
| codegen_->Compare32BitValue(left_low, val_low); |
| } |
| less_cond = kBelow; // for CF (unsigned). |
| break; |
| } |
| case Primitive::kPrimFloat: { |
| GenerateFPCompare(left, right, compare, false); |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| less_cond = kBelow; // for CF (floats). |
| break; |
| } |
| case Primitive::kPrimDouble: { |
| GenerateFPCompare(left, right, compare, true); |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| less_cond = kBelow; // for CF (floats). |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| |
| __ movl(out, Immediate(0)); |
| __ j(kEqual, &done); |
| __ j(less_cond, &less); |
| |
| __ Bind(&greater); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| |
| __ Bind(&less); |
| __ movl(out, Immediate(-1)); |
| |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) { |
| /* |
| * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. |
| * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. |
| * For those cases, all we need to ensure is that there is a scheduling barrier in place. |
| */ |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: { |
| MemoryFence(); |
| break; |
| } |
| case MemBarrierKind::kAnyStore: |
| case MemBarrierKind::kLoadAny: |
| case MemBarrierKind::kStoreStore: { |
| // nop |
| break; |
| } |
| case MemBarrierKind::kNTStoreStore: |
| // Non-Temporal Store/Store needs an explicit fence. |
| MemoryFence(/* non-temporal */ true); |
| break; |
| } |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| MethodReference target_method ATTRIBUTE_UNUSED) { |
| HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info; |
| |
| // We disable pc-relative load when there is an irreducible loop, as the optimization |
| // is incompatible with it. |
| // TODO: Create as many X86ComputeBaseMethodAddress instructions |
| // as needed for methods with irreducible loops. |
| if (GetGraph()->HasIrreducibleLoops() && |
| (dispatch_info.method_load_kind == |
| HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) { |
| dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod; |
| } |
| switch (dispatch_info.code_ptr_location) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: |
| // For direct code, we actually prefer to call via the code pointer from ArtMethod*. |
| // (Though the direct CALL ptr16:32 is available for consideration). |
| return HInvokeStaticOrDirect::DispatchInfo { |
| dispatch_info.method_load_kind, |
| HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, |
| dispatch_info.method_load_data, |
| 0u |
| }; |
| default: |
| return dispatch_info; |
| } |
| } |
| |
| Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, |
| Register temp) { |
| DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); |
| Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| if (!invoke->GetLocations()->Intrinsified()) { |
| return location.AsRegister<Register>(); |
| } |
| // For intrinsics we allow any location, so it may be on the stack. |
| if (!location.IsRegister()) { |
| __ movl(temp, Address(ESP, location.GetStackIndex())); |
| return temp; |
| } |
| // For register locations, check if the register was saved. If so, get it from the stack. |
| // Note: There is a chance that the register was saved but not overwritten, so we could |
| // save one load. However, since this is just an intrinsic slow path we prefer this |
| // simple and more robust approach rather that trying to determine if that's the case. |
| SlowPathCode* slow_path = GetCurrentSlowPath(); |
| if (slow_path != nullptr) { |
| if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { |
| int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); |
| __ movl(temp, Address(ESP, stack_offset)); |
| return temp; |
| } |
| } |
| return location.AsRegister<Register>(); |
| } |
| |
| Location CodeGeneratorX86::GenerateCalleeMethodStaticOrDirectCall(HInvokeStaticOrDirect* invoke, |
| Location temp) { |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: |
| // temp = thread->string_init_entrypoint |
| __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(invoke->GetStringInitOffset())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: |
| __ movl(temp.AsRegister<Register>(), Immediate(/* placeholder */ 0)); |
| method_patches_.emplace_back(invoke->GetTargetMethod()); |
| __ Bind(&method_patches_.back().label); // Bind the label at the end of the "movl" insn. |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { |
| Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, |
| temp.AsRegister<Register>()); |
| __ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset)); |
| // Bind a new fixup label at the end of the "movl" insn. |
| uint32_t offset = invoke->GetDexCacheArrayOffset(); |
| __ Bind(NewPcRelativeDexCacheArrayPatch(*invoke->GetTargetMethod().dex_file, offset)); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { |
| Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| Register method_reg; |
| Register reg = temp.AsRegister<Register>(); |
| if (current_method.IsRegister()) { |
| method_reg = current_method.AsRegister<Register>(); |
| } else { |
| DCHECK(invoke->GetLocations()->Intrinsified()); |
| DCHECK(!current_method.IsValid()); |
| method_reg = reg; |
| __ movl(reg, Address(ESP, kCurrentMethodStackOffset)); |
| } |
| // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; |
| __ movl(reg, Address(method_reg, |
| ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value())); |
| // temp = temp[index_in_cache]; |
| // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. |
| uint32_t index_in_cache = invoke->GetDexMethodIndex(); |
| __ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache))); |
| break; |
| } |
| } |
| return callee_method; |
| } |
| |
| void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { |
| Location callee_method = GenerateCalleeMethodStaticOrDirectCall(invoke, temp); |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ call(GetFrameEntryLabel()); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: { |
| relative_call_patches_.emplace_back(invoke->GetTargetMethod()); |
| Label* label = &relative_call_patches_.back().label; |
| __ call(label); // Bind to the patch label, override at link time. |
| __ Bind(label); // Bind the label at the end of the "call" insn. |
| break; |
| } |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: |
| // Filtered out by GetSupportedInvokeStaticOrDirectDispatch(). |
| LOG(FATAL) << "Unsupported"; |
| UNREACHABLE(); |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // (callee_method + offset_of_quick_compiled_code)() |
| __ call(Address(callee_method.AsRegister<Register>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kX86PointerSize).Int32Value())); |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) { |
| Register temp = temp_in.AsRegister<Register>(); |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kX86PointerSize).Uint32Value(); |
| |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ movl(temp, Address(receiver, class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetMethodAt(method_offset); |
| __ movl(temp, Address(temp, method_offset)); |
| // call temp->GetEntryPoint(); |
| __ call(Address( |
| temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value())); |
| } |
| |
| void CodeGeneratorX86::RecordSimplePatch() { |
| if (GetCompilerOptions().GetIncludePatchInformation()) { |
| simple_patches_.emplace_back(); |
| __ Bind(&simple_patches_.back()); |
| } |
| } |
| |
| void CodeGeneratorX86::RecordStringPatch(HLoadString* load_string) { |
| string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex()); |
| __ Bind(&string_patches_.back().label); |
| } |
| |
| void CodeGeneratorX86::RecordTypePatch(HLoadClass* load_class) { |
| type_patches_.emplace_back(load_class->GetDexFile(), load_class->GetTypeIndex()); |
| __ Bind(&type_patches_.back().label); |
| } |
| |
| Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, |
| uint32_t element_offset) { |
| // Add the patch entry and bind its label at the end of the instruction. |
| pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset); |
| return &pc_relative_dex_cache_patches_.back().label; |
| } |
| |
| void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| method_patches_.size() + |
| relative_call_patches_.size() + |
| pc_relative_dex_cache_patches_.size() + |
| simple_patches_.size() + |
| string_patches_.size() + |
| type_patches_.size(); |
| linker_patches->reserve(size); |
| // The label points to the end of the "movl" insn but the literal offset for method |
| // patch needs to point to the embedded constant which occupies the last 4 bytes. |
| constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u; |
| for (const MethodPatchInfo<Label>& info : method_patches_) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset, |
| info.target_method.dex_file, |
| info.target_method.dex_method_index)); |
| } |
| for (const MethodPatchInfo<Label>& info : relative_call_patches_) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset, |
| info.target_method.dex_file, |
| info.target_method.dex_method_index)); |
| } |
| for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(literal_offset, |
| &info.target_dex_file, |
| GetMethodAddressOffset(), |
| info.element_offset)); |
| } |
| for (const Label& label : simple_patches_) { |
| uint32_t literal_offset = label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset)); |
| } |
| if (GetCompilerOptions().GetCompilePic()) { |
| for (const StringPatchInfo<Label>& info : string_patches_) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::RelativeStringPatch(literal_offset, |
| &info.dex_file, |
| GetMethodAddressOffset(), |
| info.string_index)); |
| } |
| for (const TypePatchInfo<Label>& info : type_patches_) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::RelativeTypePatch(literal_offset, |
| &info.dex_file, |
| GetMethodAddressOffset(), |
| info.type_index)); |
| } |
| } else { |
| for (const StringPatchInfo<Label>& info : string_patches_) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::StringPatch(literal_offset, |
| &info.dex_file, |
| info.string_index)); |
| } |
| for (const TypePatchInfo<Label>& info : type_patches_) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(LinkerPatch::TypePatch(literal_offset, |
| &info.dex_file, |
| info.type_index)); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86::MarkGCCard(Register temp, |
| Register card, |
| Register object, |
| Register value, |
| bool value_can_be_null) { |
| NearLabel is_null; |
| if (value_can_be_null) { |
| __ testl(value, value); |
| __ j(kEqual, &is_null); |
| } |
| __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86PointerSize>().Int32Value())); |
| __ movl(temp, object); |
| __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift)); |
| __ movb(Address(temp, card, TIMES_1, 0), |
| X86ManagedRegister::FromCpuRegister(card).AsByteRegister()); |
| if (value_can_be_null) { |
| __ Bind(&is_null); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| kEmitCompilerReadBarrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps in case of long: we don't want the low move |
| // to overwrite the object's location. Likewise, in the case of |
| // an object field get with read barriers enabled, we do not want |
| // the move to overwrite the object's location, as we need it to emit |
| // the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| (object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ? |
| Location::kOutputOverlap : |
| Location::kNoOutputOverlap); |
| } |
| |
| if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) { |
| // Long values can be loaded atomically into an XMM using movsd. |
| // So we use an XMM register as a temp to achieve atomicity (first |
| // load the temp into the XMM and then copy the XMM into the |
| // output, 32 bits at a time). |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location base_loc = locations->InAt(0); |
| Register base = base_loc.AsRegister<Register>(); |
| Location out = locations->Out(); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: { |
| __ movzxb(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimByte: { |
| __ movsxb(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimShort: { |
| __ movsxw(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimChar: { |
| __ movzxw(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| __ movl(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| |
| case Primitive::kPrimNot: { |
| // /* HeapReference<Object> */ out = *(base + offset) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp_loc = locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, base, offset, temp_loc, /* needs_null_check */ true); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } else { |
| __ movl(out.AsRegister<Register>(), Address(base, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (is_volatile) { |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| __ movsd(temp, Address(base, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movd(out.AsRegisterPairLow<Register>(), temp); |
| __ psrlq(temp, Immediate(32)); |
| __ movd(out.AsRegisterPairHigh<Register>(), temp); |
| } else { |
| DCHECK_NE(base, out.AsRegisterPairLow<Register>()); |
| __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) { |
| // Potential implicit null checks, in the case of reference or |
| // long fields, are handled in the previous switch statement. |
| } else { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (is_volatile) { |
| if (field_type == Primitive::kPrimNot) { |
| // Memory barriers, in the case of references, are also handled |
| // in the previous switch statement. |
| } else { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| bool is_byte_type = (field_type == Primitive::kPrimBoolean) |
| || (field_type == Primitive::kPrimByte); |
| |
| // The register allocator does not support multiple |
| // inputs that die at entry with one in a specific register. |
| if (is_byte_type) { |
| // Ensure the value is in a byte register. |
| locations->SetInAt(1, Location::RegisterLocation(EAX)); |
| } else if (Primitive::IsFloatingPointType(field_type)) { |
| if (is_volatile && field_type == Primitive::kPrimDouble) { |
| // In order to satisfy the semantics of volatile, this must be a single instruction store. |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1))); |
| } |
| } else if (is_volatile && field_type == Primitive::kPrimLong) { |
| // In order to satisfy the semantics of volatile, this must be a single instruction store. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // 64bits value can be atomically written to an address with movsd and an XMM register. |
| // We need two XMM registers because there's no easier way to (bit) copy a register pair |
| // into a single XMM register (we copy each pair part into the XMMs and then interleave them). |
| // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the |
| // isolated cases when we need this it isn't worth adding the extra complexity. |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // May be used for reference poisoning too. |
| // Ensure the card is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register base = locations->InAt(0).AsRegister<Register>(); |
| Location value = locations->InAt(1); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| bool maybe_record_implicit_null_check_done = false; |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| __ movb(Address(base, offset), value.AsRegister<ByteRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| if (value.IsConstant()) { |
| int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movw(Address(base, offset), Immediate(v)); |
| } else { |
| __ movw(Address(base, offset), value.AsRegister<Register>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| if (kPoisonHeapReferences && needs_write_barrier) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as the reference does not |
| // need poisoning. |
| DCHECK_EQ(field_type, Primitive::kPrimNot); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(base, offset), temp); |
| } else if (value.IsConstant()) { |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movl(Address(base, offset), Immediate(v)); |
| } else { |
| DCHECK(value.IsRegister()) << value; |
| __ movl(Address(base, offset), value.AsRegister<Register>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (is_volatile) { |
| XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| __ movd(temp1, value.AsRegisterPairLow<Register>()); |
| __ movd(temp2, value.AsRegisterPairHigh<Register>()); |
| __ punpckldq(temp1, temp2); |
| __ movsd(Address(base, offset), temp1); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } else if (value.IsConstant()) { |
| int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); |
| __ movl(Address(base, offset), Immediate(Low32Bits(v))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v))); |
| } else { |
| __ movl(Address(base, offset), value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>()); |
| } |
| maybe_record_implicit_null_check_done = true; |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (value.IsConstant()) { |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movl(Address(base, offset), Immediate(v)); |
| } else { |
| __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (value.IsConstant()) { |
| int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); |
| __ movl(Address(base, offset), Immediate(Low32Bits(v))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v))); |
| maybe_record_implicit_null_check_done = true; |
| } else { |
| __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| if (!maybe_record_implicit_null_check_done) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (needs_write_barrier) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register card = locations->GetTemp(1).AsRegister<Register>(); |
| codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null); |
| } |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| Location loc = codegen_->IsImplicitNullCheckAllowed(instruction) |
| ? Location::RequiresRegister() |
| : Location::Any(); |
| locations->SetInAt(0, loc); |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ testl(EAX, Address(obj.AsRegister<Register>(), 0)); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction); |
| AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| if (obj.IsRegister()) { |
| __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>()); |
| } else if (obj.IsStackSlot()) { |
| __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0)); |
| } else { |
| DCHECK(obj.IsConstant()) << obj; |
| DCHECK(obj.GetConstant()->IsNullConstant()); |
| __ jmp(slow_path->GetEntryLabel()); |
| return; |
| } |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_array_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in case of long: we don't want the low move |
| // to overwrite the array's location. Likewise, in the case of an |
| // object array get with read barriers enabled, we do not want the |
| // move to overwrite the array's location, as we need it to emit |
| // the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| (instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ? |
| Location::kOutputOverlap : |
| Location::kNoOutputOverlap); |
| } |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier. |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| |
| Primitive::Type type = instruction->GetType(); |
| switch (type) { |
| case Primitive::kPrimBoolean: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movzxb(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); |
| } else { |
| __ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimByte: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movsxb(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); |
| } else { |
| __ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimShort: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movsxw(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); |
| } else { |
| __ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimChar: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movzxw(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); |
| } else { |
| __ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimInt: { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movl(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); |
| } else { |
| __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp = locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call. |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true); |
| } else { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| uint32_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ movl(out, Address(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } else { |
| __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow( |
| instruction, out_loc, out_loc, obj_loc, data_offset, index); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>()); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ movl(out_loc.AsRegisterPairLow<Register>(), Address(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize)); |
| } else { |
| __ movl(out_loc.AsRegisterPairLow<Register>(), |
| Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(out_loc.AsRegisterPairHigh<Register>(), |
| Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); |
| if (index.IsConstant()) { |
| __ movss(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); |
| } else { |
| __ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); |
| if (index.IsConstant()) { |
| __ movsd(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset)); |
| } else { |
| __ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) { |
| // Potential implicit null checks, in the case of reference or |
| // long arrays, are handled in the previous switch statement. |
| } else { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool object_array_set_with_read_barrier = |
| kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot); |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, |
| (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| |
| bool is_byte_type = (value_type == Primitive::kPrimBoolean) |
| || (value_type == Primitive::kPrimByte); |
| // We need the inputs to be different than the output in case of long operation. |
| // In case of a byte operation, the register allocator does not support multiple |
| // inputs that die at entry with one in a specific register. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (is_byte_type) { |
| // Ensure the value is in a byte register. |
| locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2))); |
| } else if (Primitive::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2))); |
| } else { |
| locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); |
| } |
| if (needs_write_barrier) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. |
| // Ensure the card is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location array_loc = locations->InAt(0); |
| Register array = array_loc.AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Location value = locations->InAt(2); |
| Primitive::Type value_type = instruction->GetComponentType(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| |
| switch (value_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); |
| Address address = index.IsConstant() |
| ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + offset) |
| : Address(array, index.AsRegister<Register>(), TIMES_1, offset); |
| if (value.IsRegister()) { |
| __ movb(address, value.AsRegister<ByteRegister>()); |
| } else { |
| __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); |
| Address address = index.IsConstant() |
| ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + offset) |
| : Address(array, index.AsRegister<Register>(), TIMES_2, offset); |
| if (value.IsRegister()) { |
| __ movw(address, value.AsRegister<Register>()); |
| } else { |
| __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| Address address = index.IsConstant() |
| ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) |
| : Address(array, index.AsRegister<Register>(), TIMES_4, offset); |
| |
| if (!value.IsRegister()) { |
| // Just setting null. |
| DCHECK(instruction->InputAt(2)->IsNullConstant()); |
| DCHECK(value.IsConstant()) << value; |
| __ movl(address, Immediate(0)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| DCHECK(!needs_write_barrier); |
| DCHECK(!may_need_runtime_call_for_type_check); |
| break; |
| } |
| |
| DCHECK(needs_write_barrier); |
| Register register_value = value.AsRegister<Register>(); |
| NearLabel done, not_null, do_put; |
| SlowPathCode* slow_path = nullptr; |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| __ testl(register_value, register_value); |
| __ j(kNotEqual, ¬_null); |
| __ movl(address, Immediate(0)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ jmp(&done); |
| __ Bind(¬_null); |
| } |
| |
| if (kEmitCompilerReadBarrier) { |
| // When read barriers are enabled, the type checking |
| // instrumentation requires two read barriers: |
| // |
| // __ movl(temp2, temp); |
| // // /* HeapReference<Class> */ temp = temp->component_type_ |
| // __ movl(temp, Address(temp, component_offset)); |
| // codegen_->GenerateReadBarrierSlow( |
| // instruction, temp_loc, temp_loc, temp2_loc, component_offset); |
| // |
| // // /* HeapReference<Class> */ temp2 = register_value->klass_ |
| // __ movl(temp2, Address(register_value, class_offset)); |
| // codegen_->GenerateReadBarrierSlow( |
| // instruction, temp2_loc, temp2_loc, value, class_offset, temp_loc); |
| // |
| // __ cmpl(temp, temp2); |
| // |
| // However, the second read barrier may trash `temp`, as it |
| // is a temporary register, and as such would not be saved |
| // along with live registers before calling the runtime (nor |
| // restored afterwards). So in this case, we bail out and |
| // delegate the work to the array set slow path. |
| // |
| // TODO: Extend the register allocator to support a new |
| // "(locally) live temp" location so as to avoid always |
| // going into the slow path when read barriers are enabled. |
| __ jmp(slow_path->GetEntryLabel()); |
| } else { |
| // /* HeapReference<Class> */ temp = array->klass_ |
| __ movl(temp, Address(array, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| __ movl(temp, Address(temp, component_offset)); |
| // If heap poisoning is enabled, no need to unpoison `temp` |
| // nor the object reference in `register_value->klass`, as |
| // we are comparing two poisoned references. |
| __ cmpl(temp, Address(register_value, class_offset)); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| __ j(kEqual, &do_put); |
| // If heap poisoning is enabled, the `temp` reference has |
| // not been unpoisoned yet; unpoison it now. |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| __ movl(temp, Address(temp, super_offset)); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp`, as we are comparing against null below. |
| __ testl(temp, temp); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| } |
| } |
| |
| if (kPoisonHeapReferences) { |
| __ movl(temp, register_value); |
| __ PoisonHeapReference(temp); |
| __ movl(address, temp); |
| } else { |
| __ movl(address, register_value); |
| } |
| if (!may_need_runtime_call_for_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| Register card = locations->GetTemp(1).AsRegister<Register>(); |
| codegen_->MarkGCCard( |
| temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull()); |
| __ Bind(&done); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| break; |
| } |
| |
| case Primitive::kPrimInt: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| Address address = index.IsConstant() |
| ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) |
| : Address(array, index.AsRegister<Register>(), TIMES_4, offset); |
| if (value.IsRegister()) { |
| __ movl(address, value.AsRegister<Register>()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movl(address, Immediate(v)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| if (value.IsRegisterPair()) { |
| __ movl(Address(array, offset), value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(array, offset + kX86WordSize), value.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(Address(array, offset), Immediate(Low32Bits(val))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(array, offset + kX86WordSize), Immediate(High32Bits(val))); |
| } |
| } else { |
| if (value.IsRegisterPair()) { |
| __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset), |
| value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize), |
| value.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset), |
| Immediate(Low32Bits(val))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize), |
| Immediate(High32Bits(val))); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); |
| Address address = index.IsConstant() |
| ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) |
| : Address(array, index.AsRegister<Register>(), TIMES_4, offset); |
| if (value.IsFpuRegister()) { |
| __ movss(address, value.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); |
| __ movl(address, Immediate(v)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); |
| Address address = index.IsConstant() |
| ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset) |
| : Address(array, index.AsRegister<Register>(), TIMES_8, offset); |
| if (value.IsFpuRegister()) { |
| __ movsd(address, value.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| Address address_hi = index.IsConstant() ? |
| Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + |
| offset + kX86WordSize) : |
| Address(array, index.AsRegister<Register>(), TIMES_8, offset + kX86WordSize); |
| int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); |
| __ movl(address, Immediate(Low32Bits(v))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(address_hi, Immediate(High32Bits(v))); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| __ movl(out, Address(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| HInstruction* length = instruction->InputAt(1); |
| if (!length->IsEmittedAtUseSite()) { |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| } |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| SlowPathCode* slow_path = |
| new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); |
| if (index_loc.IsConstant()) { |
| // BCE will remove the bounds check if we are guarenteed to pass. |
| int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| if (index < 0 || index >= length) { |
| codegen_->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| } else { |
| // Some optimization after BCE may have generated this, and we should not |
| // generate a bounds check if it is a valid range. |
| } |
| return; |
| } |
| |
| // We have to reverse the jump condition because the length is the constant. |
| Register index_reg = index_loc.AsRegister<Register>(); |
| __ cmpl(index_reg, Immediate(length)); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kAboveEqual, slow_path->GetEntryLabel()); |
| } else { |
| HInstruction* array_length = instruction->InputAt(1); |
| if (array_length->IsEmittedAtUseSite()) { |
| // Address the length field in the array. |
| DCHECK(array_length->IsArrayLength()); |
| uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength()); |
| Location array_loc = array_length->GetLocations()->InAt(0); |
| Address array_len(array_loc.AsRegister<Register>(), len_offset); |
| if (index_loc.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| __ cmpl(array_len, Immediate(value)); |
| } else { |
| __ cmpl(array_len, index_loc.AsRegister<Register>()); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(array_length); |
| } else { |
| Register length = length_loc.AsRegister<Register>(); |
| if (index_loc.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| __ cmpl(length, Immediate(value)); |
| } else { |
| __ cmpl(length, index_loc.AsRegister<Register>()); |
| } |
| } |
| codegen_->AddSlowPath(slow_path); |
| __ j(kBelowEqual, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) { |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) { |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathX86* slow_path = |
| down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| __ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86PointerSize>().Int32Value()), |
| Immediate(0)); |
| if (successor == nullptr) { |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ j(kEqual, codegen_->GetLabelOf(successor)); |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| |
| X86Assembler* ParallelMoveResolverX86::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(temp_reg, Address(ESP, src + stack_offset)); |
| __ movl(Address(ESP, dst + stack_offset), temp_reg); |
| } |
| |
| void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(temp_reg, Address(ESP, src + stack_offset)); |
| __ movl(Address(ESP, dst + stack_offset), temp_reg); |
| __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize)); |
| __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg); |
| } |
| |
| void ParallelMoveResolverX86::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (destination.IsFpuRegister()) { |
| __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); |
| } |
| } else if (source.IsRegisterPair()) { |
| size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt); |
| // Create stack space for 2 elements. |
| __ subl(ESP, Immediate(2 * elem_size)); |
| __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>()); |
| __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>()); |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| // And remove the temporary stack space we allocated. |
| __ addl(ESP, Immediate(2 * elem_size)); |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsRegister()) { |
| __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsRegisterPair()) { |
| XmmRegister src_reg = source.AsFpuRegister<XmmRegister>(); |
| __ movd(destination.AsRegisterPairLow<Register>(), src_reg); |
| __ psrlq(src_reg, Immediate(32)); |
| __ movd(destination.AsRegisterPairHigh<Register>(), src_reg); |
| } else if (destination.IsStackSlot()) { |
| __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } |
| } else if (source.IsStackSlot()) { |
| if (destination.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); |
| } else if (destination.IsFpuRegister()) { |
| __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex()); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| if (destination.IsRegisterPair()) { |
| __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); |
| __ movl(destination.AsRegisterPairHigh<Register>(), |
| Address(ESP, source.GetHighStackIndex(kX86WordSize))); |
| } else if (destination.IsFpuRegister()) { |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex()); |
| } |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| if (constant->IsIntConstant() || constant->IsNullConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(constant); |
| if (destination.IsRegister()) { |
| if (value == 0) { |
| __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>()); |
| } else { |
| __ movl(destination.AsRegister<Register>(), Immediate(value)); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); |
| } |
| } else if (constant->IsFloatConstant()) { |
| float fp_value = constant->AsFloatConstant()->GetValue(); |
| int32_t value = bit_cast<int32_t, float>(fp_value); |
| Immediate imm(value); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| if (value == 0) { |
| // Easy handling of 0.0. |
| __ xorps(dest, dest); |
| } else { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp = static_cast<Register>(ensure_scratch.GetRegister()); |
| __ movl(temp, Immediate(value)); |
| __ movd(dest, temp); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), imm); |
| } |
| } else if (constant->IsLongConstant()) { |
| int64_t value = constant->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| if (destination.IsDoubleStackSlot()) { |
| __ movl(Address(ESP, destination.GetStackIndex()), low); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); |
| } else { |
| __ movl(destination.AsRegisterPairLow<Register>(), low); |
| __ movl(destination.AsRegisterPairHigh<Register>(), high); |
| } |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| double dbl_value = constant->AsDoubleConstant()->GetValue(); |
| int64_t value = bit_cast<int64_t, double>(dbl_value); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| if (value == 0) { |
| // Easy handling of 0.0. |
| __ xorpd(dest, dest); |
| } else { |
| __ pushl(high); |
| __ pushl(low); |
| __ movsd(dest, Address(ESP, 0)); |
| __ addl(ESP, Immediate(8)); |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), low); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); |
| } |
| } |
| } else { |
| LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source; |
| } |
| } |
| |
| void ParallelMoveResolverX86::Exchange(Register reg, int mem) { |
| Register suggested_scratch = reg == EAX ? EBX : EAX; |
| ScratchRegisterScope ensure_scratch( |
| this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset)); |
| __ movl(Address(ESP, mem + stack_offset), reg); |
| __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister())); |
| } |
| |
| void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(temp_reg, Address(ESP, mem + stack_offset)); |
| __ movss(Address(ESP, mem + stack_offset), reg); |
| __ movd(reg, temp_reg); |
| } |
| |
| void ParallelMoveResolverX86::Exchange(int mem1, int mem2) { |
| ScratchRegisterScope ensure_scratch1( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX; |
| ScratchRegisterScope ensure_scratch2( |
| this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0; |
| stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0; |
| __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset)); |
| __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset)); |
| __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister())); |
| __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister())); |
| } |
| |
| void ParallelMoveResolverX86::EmitSwap(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister() && destination.IsRegister()) { |
| // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary. |
| DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>()); |
| __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsRegister() && destination.IsStackSlot()) { |
| Exchange(source.AsRegister<Register>(), destination.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsRegister()) { |
| Exchange(destination.AsRegister<Register>(), source.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsStackSlot()) { |
| Exchange(destination.GetStackIndex(), source.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { |
| // Use XOR Swap algorithm to avoid a temporary. |
| DCHECK_NE(source.reg(), destination.reg()); |
| __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); |
| __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsFpuRegister() && destination.IsStackSlot()) { |
| Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); |
| } else if (destination.IsFpuRegister() && source.IsStackSlot()) { |
| Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { |
| // Take advantage of the 16 bytes in the XMM register. |
| XmmRegister reg = source.AsFpuRegister<XmmRegister>(); |
| Address stack(ESP, destination.GetStackIndex()); |
| // Load the double into the high doubleword. |
| __ movhpd(reg, stack); |
| |
| // Store the low double into the destination. |
| __ movsd(stack, reg); |
| |
| // Move the high double to the low double. |
| __ psrldq(reg, Immediate(8)); |
| } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) { |
| // Take advantage of the 16 bytes in the XMM register. |
| XmmRegister reg = destination.AsFpuRegister<XmmRegister>(); |
| Address stack(ESP, source.GetStackIndex()); |
| // Load the double into the high doubleword. |
| __ movhpd(reg, stack); |
| |
| // Store the low double into the destination. |
| __ movsd(stack, reg); |
| |
| // Move the high double to the low double. |
| __ psrldq(reg, Immediate(8)); |
| } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) { |
| Exchange(destination.GetStackIndex(), source.GetStackIndex()); |
| Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize)); |
| } else { |
| LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination; |
| } |
| } |
| |
| void ParallelMoveResolverX86::SpillScratch(int reg) { |
| __ pushl(static_cast<Register>(reg)); |
| } |
| |
| void ParallelMoveResolverX86::RestoreScratch(int reg) { |
| __ popl(static_cast<Register>(reg)); |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorX86::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| if (kEmitCompilerReadBarrier) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kBootImageLinkTimeAddress: |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageAddress: |
| // TODO: Implement for read barrier. |
| return HLoadClass::LoadKind::kDexCacheViaMethod; |
| default: |
| break; |
| } |
| } |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().GetCompilePic()); |
| FALLTHROUGH_INTENDED; |
| case HLoadClass::LoadKind::kDexCachePcRelative: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT. |
| // We disable pc-relative load when there is an irreducible loop, as the optimization |
| // is incompatible with it. |
| // TODO: Create as many X86ComputeBaseMethodAddress instructions as needed for methods |
| // with irreducible loops. |
| if (GetGraph()->HasIrreducibleLoops()) { |
| return HLoadClass::LoadKind::kDexCacheViaMethod; |
| } |
| break; |
| case HLoadClass::LoadKind::kBootImageAddress: |
| break; |
| case HLoadClass::LoadKind::kDexCacheAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kDexCacheViaMethod: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) { |
| if (cls->NeedsAccessCheck()) { |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGenerator::CreateLoadClassLocationSummary( |
| cls, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Location::RegisterLocation(EAX), |
| /* code_generator_supports_read_barrier */ true); |
| return; |
| } |
| |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || kEmitCompilerReadBarrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass || |
| load_kind == HLoadClass::LoadKind::kDexCacheViaMethod || |
| load_kind == HLoadClass::LoadKind::kBootImageLinkTimePcRelative || |
| load_kind == HLoadClass::LoadKind::kDexCachePcRelative) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) { |
| LocationSummary* locations = cls->GetLocations(); |
| if (cls->NeedsAccessCheck()) { |
| codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex()); |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess), |
| cls, |
| cls->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>(); |
| return; |
| } |
| |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| |
| bool generate_null_check = false; |
| switch (cls->GetLoadKind()) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| Register current_method = locations->InAt(0).AsRegister<Register>(); |
| GenerateGcRootFieldLoad( |
| cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimeAddress: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| __ movl(out, Immediate(/* placeholder */ 0)); |
| codegen_->RecordTypePatch(cls); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset)); |
| codegen_->RecordTypePatch(cls); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageAddress: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| DCHECK_NE(cls->GetAddress(), 0u); |
| uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress()); |
| __ movl(out, Immediate(address)); |
| codegen_->RecordSimplePatch(); |
| break; |
| } |
| case HLoadClass::LoadKind::kDexCacheAddress: { |
| DCHECK_NE(cls->GetAddress(), 0u); |
| uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress()); |
| // /* GcRoot<mirror::Class> */ out = *address |
| GenerateGcRootFieldLoad(cls, out_loc, Address::Absolute(address)); |
| generate_null_check = !cls->IsInDexCache(); |
| break; |
| } |
| case HLoadClass::LoadKind::kDexCachePcRelative: { |
| Register base_reg = locations->InAt(0).AsRegister<Register>(); |
| uint32_t offset = cls->GetDexCacheElementOffset(); |
| Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(cls->GetDexFile(), offset); |
| // /* GcRoot<mirror::Class> */ out = *(base + offset) /* PC-relative */ |
| GenerateGcRootFieldLoad( |
| cls, out_loc, Address(base_reg, CodeGeneratorX86::kDummy32BitOffset), fixup_label); |
| generate_null_check = !cls->IsInDexCache(); |
| break; |
| } |
| case HLoadClass::LoadKind::kDexCacheViaMethod: { |
| // /* GcRoot<mirror::Class>[] */ out = |
| // current_method.ptr_sized_fields_->dex_cache_resolved_types_ |
| Register current_method = locations->InAt(0).AsRegister<Register>(); |
| __ movl(out, Address(current_method, |
| ArtMethod::DexCacheResolvedTypesOffset(kX86PointerSize).Int32Value())); |
| // /* GcRoot<mirror::Class> */ out = out[type_index] |
| GenerateGcRootFieldLoad( |
| cls, out_loc, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()))); |
| generate_null_check = !cls->IsInDexCache(); |
| break; |
| } |
| } |
| |
| if (generate_null_check || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( |
| cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); |
| codegen_->AddSlowPath(slow_path); |
| |
| if (generate_null_check) { |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } |
| |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class to not be null. |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( |
| check->GetLoadClass(), check, check->GetDexPc(), true); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| check->GetLocations()->InAt(0).AsRegister<Register>()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateClassInitializationCheck( |
| SlowPathCode* slow_path, Register class_reg) { |
| __ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()), |
| Immediate(mirror::Class::kStatusInitialized)); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| // No need for memory fence, thanks to the X86 memory model. |
| } |
| |
| HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| if (kEmitCompilerReadBarrier) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageAddress: |
| // TODO: Implement for read barrier. |
| return HLoadString::LoadKind::kDexCacheViaMethod; |
| default: |
| break; |
| } |
| } |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().GetCompilePic()); |
| FALLTHROUGH_INTENDED; |
| case HLoadString::LoadKind::kDexCachePcRelative: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT. |
| // We disable pc-relative load when there is an irreducible loop, as the optimization |
| // is incompatible with it. |
| // TODO: Create as many X86ComputeBaseMethodAddress instructions as needed for methods |
| // with irreducible loops. |
| if (GetGraph()->HasIrreducibleLoops()) { |
| return HLoadString::LoadKind::kDexCacheViaMethod; |
| } |
| break; |
| case HLoadString::LoadKind::kBootImageAddress: |
| break; |
| case HLoadString::LoadKind::kDexCacheAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kDexCacheViaMethod: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderX86::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod || |
| load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative || |
| load_kind == HLoadString::LoadKind::kDexCachePcRelative) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) { |
| LocationSummary* locations = load->GetLocations(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| |
| switch (load->GetLoadKind()) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| __ movl(out, Immediate(/* placeholder */ 0)); |
| codegen_->RecordStringPatch(load); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset)); |
| codegen_->RecordStringPatch(load); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageAddress: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| DCHECK_NE(load->GetAddress(), 0u); |
| uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress()); |
| __ movl(out, Immediate(address)); |
| codegen_->RecordSimplePatch(); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kDexCacheAddress: { |
| DCHECK_NE(load->GetAddress(), 0u); |
| uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress()); |
| // /* GcRoot<mirror::String> */ out = *address |
| GenerateGcRootFieldLoad(load, out_loc, Address::Absolute(address)); |
| break; |
| } |
| case HLoadString::LoadKind::kDexCachePcRelative: { |
| Register base_reg = locations->InAt(0).AsRegister<Register>(); |
| uint32_t offset = load->GetDexCacheElementOffset(); |
| Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(load->GetDexFile(), offset); |
| // /* GcRoot<mirror::String> */ out = *(base + offset) /* PC-relative */ |
| GenerateGcRootFieldLoad( |
| load, out_loc, Address(base_reg, CodeGeneratorX86::kDummy32BitOffset), fixup_label); |
| break; |
| } |
| case HLoadString::LoadKind::kDexCacheViaMethod: { |
| Register current_method = locations->InAt(0).AsRegister<Register>(); |
| |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| GenerateGcRootFieldLoad( |
| load, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); |
| |
| // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_ |
| __ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value())); |
| // /* GcRoot<mirror::String> */ out = out[string_index] |
| GenerateGcRootFieldLoad( |
| load, out_loc, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex()))); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind(); |
| UNREACHABLE(); |
| } |
| |
| if (!load->IsInDexCache()) { |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load); |
| codegen_->AddSlowPath(slow_path); |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| static Address GetExceptionTlsAddress() { |
| return Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>().Int32Value()); |
| } |
| |
| void LocationsBuilderX86::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) { |
| __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress()); |
| } |
| |
| void LocationsBuilderX86::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ fs()->movl(GetExceptionTlsAddress(), Immediate(0)); |
| } |
| |
| void LocationsBuilderX86::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) { |
| return kEmitCompilerReadBarrier && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = |
| kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| // Note that TypeCheckSlowPathX86 uses this "out" register too. |
| locations->SetOut(Location::RequiresRegister()); |
| // When read barriers are enabled, we need a temporary register for |
| // some cases. |
| if (TypeCheckNeedsATemporary(type_check_kind)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ? |
| locations->GetTemp(0) : |
| Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| SlowPathCode* slow_path = nullptr; |
| NearLabel done, zero; |
| |
| // Return 0 if `obj` is null. |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, &zero); |
| } |
| |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc); |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| |
| // Classes must be equal for the instanceof to succeed. |
| __ j(kNotEqual, &zero); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| NearLabel loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); |
| __ testl(out, out); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ j(kEqual, &done); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kNotEqual, &loop); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // Walk over the class hierarchy to find a match. |
| NearLabel loop, success; |
| __ Bind(&loop); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); |
| __ testl(out, out); |
| __ j(kNotEqual, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ jmp(&done); |
| __ Bind(&success); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // Do an exact check. |
| NearLabel exact_check; |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &exact_check); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc); |
| __ testl(out, out); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ j(kEqual, &done); |
| __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, &zero); |
| __ Bind(&exact_check); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| } |
| |
| if (zero.IsLinked()) { |
| __ Bind(&zero); |
| __ xorl(out, out); |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path. |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| // Note that TypeCheckSlowPathX86 uses this "temp" register too. |
| locations->AddTemp(Location::RequiresRegister()); |
| // When read barriers are enabled, we need an additional temporary |
| // register for some cases. |
| if (TypeCheckNeedsATemporary(type_check_kind)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Location temp_loc = locations->GetTemp(0); |
| Register temp = temp_loc.AsRegister<Register>(); |
| Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ? |
| locations->GetTemp(1) : |
| Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| |
| bool is_type_check_slow_path_fatal = |
| (type_check_kind == TypeCheckKind::kExactCheck || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck) && |
| !instruction->CanThrowIntoCatchBlock(); |
| SlowPathCode* type_check_slow_path = |
| new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, |
| is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| NearLabel done; |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, &done); |
| } |
| |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| NearLabel loop, compare_classes; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // to the `compare_classes` label to compare it with the checked |
| // class. |
| __ testl(temp, temp); |
| __ j(kNotEqual, &compare_classes); |
| // Otherwise, jump to the slow path to throw the exception. |
| // |
| // But before, move back the object's class into `temp` before |
| // going into the slow path, as it has been overwritten in the |
| // meantime. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| |
| __ Bind(&compare_classes); |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kNotEqual, &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // Walk over the class hierarchy to find a match. |
| NearLabel loop; |
| __ Bind(&loop); |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &done); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // back at the beginning of the loop. |
| __ testl(temp, temp); |
| __ j(kNotEqual, &loop); |
| // Otherwise, jump to the slow path to throw the exception. |
| // |
| // But before, move back the object's class into `temp` before |
| // going into the slow path, as it has been overwritten in the |
| // meantime. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // Do an exact check. |
| NearLabel check_non_primitive_component_type; |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &done); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc); |
| |
| // If the component type is not null (i.e. the object is indeed |
| // an array), jump to label `check_non_primitive_component_type` |
| // to further check that this component type is not a primitive |
| // type. |
| __ testl(temp, temp); |
| __ j(kNotEqual, &check_non_primitive_component_type); |
| // Otherwise, jump to the slow path to throw the exception. |
| // |
| // But before, move back the object's class into `temp` before |
| // going into the slow path, as it has been overwritten in the |
| // meantime. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| |
| __ Bind(&check_non_primitive_component_type); |
| __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kEqual, &done); |
| // Same comment as above regarding `temp` and the slow path. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| // We always go into the type check slow path for the unresolved |
| // and interface check cases. |
| // |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| __ Bind(&done); |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject) |
| : QUICK_ENTRY_POINT(pUnlockObject), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } |
| |
| void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt |
| || instruction->GetResultType() == Primitive::kPrimLong); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| if (second.IsRegister()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } |
| } else if (second.IsConstant()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } else { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| if (second.IsRegisterPair()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } |
| } else if (second.IsDoubleStackSlot()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ andl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ orl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ xorl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| Register first_low = first.AsRegisterPairLow<Register>(); |
| Register first_high = first.AsRegisterPairHigh<Register>(); |
| if (instruction->IsAnd()) { |
| if (low_value == 0) { |
| __ xorl(first_low, first_low); |
| } else if (low_value != -1) { |
| __ andl(first_low, low); |
| } |
| if (high_value == 0) { |
| __ xorl(first_high, first_high); |
| } else if (high_value != -1) { |
| __ andl(first_high, high); |
| } |
| } else if (instruction->IsOr()) { |
| if (low_value != 0) { |
| __ orl(first_low, low); |
| } |
| if (high_value != 0) { |
| __ orl(first_high, high); |
| } |
| } else { |
| DCHECK(instruction->IsXor()); |
| if (low_value != 0) { |
| __ xorl(first_low, low); |
| } |
| if (high_value != 0) { |
| __ xorl(first_high, high); |
| } |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp) { |
| Register out_reg = out.AsRegister<Register>(); |
| if (kEmitCompilerReadBarrier) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| __ movl(maybe_temp.AsRegister<Register>(), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ movl(out_reg, Address(out_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ movl(out_reg, Address(out_reg, offset)); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp) { |
| Register out_reg = out.AsRegister<Register>(); |
| Register obj_reg = obj.AsRegister<Register>(); |
| if (kEmitCompilerReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ movl(out_reg, Address(obj_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ movl(out_reg, Address(obj_reg, offset)); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(HInstruction* instruction, |
| Location root, |
| const Address& address, |
| Label* fixup_label) { |
| Register root_reg = root.AsRegister<Register>(); |
| if (kEmitCompilerReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used: |
| // |
| // root = *address; |
| // if (Thread::Current()->GetIsGcMarking()) { |
| // root = ReadBarrier::Mark(root) |
| // } |
| |
| // /* GcRoot<mirror::Object> */ root = *address |
| __ movl(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Slow path used to mark the GC root `root`. |
| SlowPathCode* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, root); |
| codegen_->AddSlowPath(slow_path); |
| |
| __ fs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86PointerSize>().Int32Value()), |
| Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = address |
| __ leal(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *address |
| __ movl(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Address src(obj, offset); |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check); |
| } |
| |
| void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t data_offset, |
| Location index, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| Address src = index.IsConstant() ? |
| Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset) : |
| Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset); |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check); |
| } |
| |
| void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| const Address& src, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // In slow path based read barriers, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::gray_ptr_); |
| // if (is_gray) { |
| // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as: |
| // - it implements the load-load fence using a data dependency on |
| // the high-bits of rb_state, which are expected to be all zeroes |
| // (we use CodeGeneratorX86::GenerateMemoryBarrier instead here, |
| // which is a no-op thanks to the x86 memory model); |
| // - it performs additional checks that we do not do here for |
| // performance reasons. |
| |
| Register ref_reg = ref.AsRegister<Register>(); |
| Register temp_reg = temp.AsRegister<Register>(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| __ movl(temp_reg, Address(obj, monitor_offset)); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| // /* uint32_t */ rb_state = lock_word.ReadBarrierState() |
| __ shrl(temp_reg, Immediate(LockWord::kReadBarrierStateShift)); |
| __ andl(temp_reg, Immediate(LockWord::kReadBarrierStateMask)); |
| static_assert( |
| LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_, |
| "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_."); |
| |
| // Load fence to prevent load-load reordering. |
| // Note that this is a no-op, thanks to the x86 memory model. |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| |
| // The actual reference load. |
| // /* HeapReference<Object> */ ref = *src |
| __ movl(ref_reg, src); |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| |
| // Slow path used to mark the object `ref` when it is gray. |
| SlowPathCode* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, ref); |
| AddSlowPath(slow_path); |
| |
| // if (rb_state == ReadBarrier::gray_ptr_) |
| // ref = ReadBarrier::Mark(ref); |
| __ cmpl(temp_reg, Immediate(ReadBarrier::gray_ptr_)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) |
| ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(out.AsRegister<Register>()); |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCode* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg, |
| int32_t lower_bound, |
| uint32_t num_entries, |
| HBasicBlock* switch_block, |
| HBasicBlock* default_block) { |
| // Figure out the correct compare values and jump conditions. |
| // Handle the first compare/branch as a special case because it might |
| // jump to the default case. |
| DCHECK_GT(num_entries, 2u); |
| Condition first_condition; |
| uint32_t index; |
| const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); |
| if (lower_bound != 0) { |
| first_condition = kLess; |
| __ cmpl(value_reg, Immediate(lower_bound)); |
| __ j(first_condition, codegen_->GetLabelOf(default_block)); |
| __ j(kEqual, codegen_->GetLabelOf(successors[0])); |
| |
| index = 1; |
| } else { |
| // Handle all the compare/jumps below. |
| first_condition = kBelow; |
| index = 0; |
| } |
| |
| // Handle the rest of the compare/jumps. |
| for (; index + 1 < num_entries; index += 2) { |
| int32_t compare_to_value = lower_bound + index + 1; |
| __ cmpl(value_reg, Immediate(compare_to_value)); |
| // Jump to successors[index] if value < case_value[index]. |
| __ j(first_condition, codegen_->GetLabelOf(successors[index])); |
| // Jump to successors[index + 1] if value == case_value[index + 1]. |
| __ j(kEqual, codegen_->GetLabelOf(successors[index + 1])); |
| } |
| |
| if (index != num_entries) { |
| // There are an odd number of entries. Handle the last one. |
| DCHECK_EQ(index + 1, num_entries); |
| __ cmpl(value_reg, Immediate(lower_bound + index)); |
| __ j(kEqual, codegen_->GetLabelOf(successors[index])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_block, default_block)) { |
| __ jmp(codegen_->GetLabelOf(default_block)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| Register value_reg = locations->InAt(0).AsRegister<Register>(); |
| |
| GenPackedSwitchWithCompares(value_reg, |
| lower_bound, |
| num_entries, |
| switch_instr->GetBlock(), |
| switch_instr->GetDefaultBlock()); |
| } |
| |
| void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| // Constant area pointer. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // And the temporary we need. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| Register value_reg = locations->InAt(0).AsRegister<Register>(); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| if (num_entries <= kPackedSwitchJumpTableThreshold) { |
| GenPackedSwitchWithCompares(value_reg, |
| lower_bound, |
| num_entries, |
| switch_instr->GetBlock(), |
| default_block); |
| return; |
| } |
| |
| // Optimizing has a jump area. |
| Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); |
| Register constant_area = locations->InAt(1).AsRegister<Register>(); |
| |
| // Remove the bias, if needed. |
| if (lower_bound != 0) { |
| __ leal(temp_reg, Address(value_reg, -lower_bound)); |
| value_reg = temp_reg; |
| } |
| |
| // Is the value in range? |
| DCHECK_GE(num_entries, 1u); |
| __ cmpl(value_reg, Immediate(num_entries - 1)); |
| __ j(kAbove, codegen_->GetLabelOf(default_block)); |
| |
| // We are in the range of the table. |
| // Load (target-constant_area) from the jump table, indexing by the value. |
| __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg)); |
| |
| // Compute the actual target address by adding in constant_area. |
| __ addl(temp_reg, constant_area); |
| |
| // And jump. |
| __ jmp(temp_reg); |
| } |
| |
| void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress( |
| HX86ComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress( |
| HX86ComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = insn->GetLocations(); |
| Register reg = locations->Out().AsRegister<Register>(); |
| |
| // Generate call to next instruction. |
| Label next_instruction; |
| __ call(&next_instruction); |
| __ Bind(&next_instruction); |
| |
| // Remember this offset for later use with constant area. |
| codegen_->SetMethodAddressOffset(GetAssembler()->CodeSize()); |
| |
| // Grab the return address off the stack. |
| __ popl(reg); |
| } |
| |
| void LocationsBuilderX86::VisitX86LoadFromConstantTable( |
| HX86LoadFromConstantTable* insn) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant())); |
| |
| // If we don't need to be materialized, we only need the inputs to be set. |
| if (insn->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| switch (insn->GetType()) { |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimInt: |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) { |
| if (insn->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = insn->GetLocations(); |
| Location out = locations->Out(); |
| Register const_area = locations->InAt(0).AsRegister<Register>(); |
| HConstant *value = insn->GetConstant(); |
| |
| switch (insn->GetType()) { |
| case Primitive::kPrimFloat: |
| __ movss(out.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress(value->AsFloatConstant()->GetValue(), const_area)); |
| break; |
| |
| case Primitive::kPrimDouble: |
| __ movsd(out.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress(value->AsDoubleConstant()->GetValue(), const_area)); |
| break; |
| |
| case Primitive::kPrimInt: |
| __ movl(out.AsRegister<Register>(), |
| codegen_->LiteralInt32Address(value->AsIntConstant()->GetValue(), const_area)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); |
| } |
| } |
| |
| /** |
| * Class to handle late fixup of offsets into constant area. |
| */ |
| class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> { |
| public: |
| RIPFixup(CodeGeneratorX86& codegen, size_t offset) |
| : codegen_(&codegen), offset_into_constant_area_(offset) {} |
| |
| protected: |
| void SetOffset(size_t offset) { offset_into_constant_area_ = offset; } |
| |
| CodeGeneratorX86* codegen_; |
| |
| private: |
| void Process(const MemoryRegion& region, int pos) OVERRIDE { |
| // Patch the correct offset for the instruction. The place to patch is the |
| // last 4 bytes of the instruction. |
| // The value to patch is the distance from the offset in the constant area |
| // from the address computed by the HX86ComputeBaseMethodAddress instruction. |
| int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_; |
| int32_t relative_position = constant_offset - codegen_->GetMethodAddressOffset();; |
| |
| // Patch in the right value. |
| region.StoreUnaligned<int32_t>(pos - 4, relative_position); |
| } |
| |
| // Location in constant area that the fixup refers to. |
| int32_t offset_into_constant_area_; |
| }; |
| |
| /** |
| * Class to handle late fixup of offsets to a jump table that will be created in the |
| * constant area. |
| */ |
| class JumpTableRIPFixup : public RIPFixup { |
| public: |
| JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr) |
| : RIPFixup(codegen, static_cast<size_t>(-1)), switch_instr_(switch_instr) {} |
| |
| void CreateJumpTable() { |
| X86Assembler* assembler = codegen_->GetAssembler(); |
| |
| // Ensure that the reference to the jump table has the correct offset. |
| const int32_t offset_in_constant_table = assembler->ConstantAreaSize(); |
| SetOffset(offset_in_constant_table); |
| |
| // The label values in the jump table are computed relative to the |
| // instruction addressing the constant area. |
| const int32_t relative_offset = codegen_->GetMethodAddressOffset(); |
| |
| // Populate the jump table with the correct values for the jump table. |
| int32_t num_entries = switch_instr_->GetNumEntries(); |
| HBasicBlock* block = switch_instr_->GetBlock(); |
| const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors(); |
| // The value that we want is the target offset - the position of the table. |
| for (int32_t i = 0; i < num_entries; i++) { |
| HBasicBlock* b = successors[i]; |
| Label* l = codegen_->GetLabelOf(b); |
| DCHECK(l->IsBound()); |
| int32_t offset_to_block = l->Position() - relative_offset; |
| assembler->AppendInt32(offset_to_block); |
| } |
| } |
| |
| private: |
| const HX86PackedSwitch* switch_instr_; |
| }; |
| |
| void CodeGeneratorX86::Finalize(CodeAllocator* allocator) { |
| // Generate the constant area if needed. |
| X86Assembler* assembler = GetAssembler(); |
| if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) { |
| // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 |
| // byte values. |
| assembler->Align(4, 0); |
| constant_area_start_ = assembler->CodeSize(); |
| |
| // Populate any jump tables. |
| for (auto jump_table : fixups_to_jump_tables_) { |
| jump_table->CreateJumpTable(); |
| } |
| |
| // And now add the constant area to the generated code. |
| assembler->AddConstantArea(); |
| } |
| |
| // And finish up. |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| Address CodeGeneratorX86::LiteralDoubleAddress(double v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralFloatAddress(float v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralInt32Address(int32_t v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralInt64Address(int64_t v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) { |
| if (value == 0) { |
| __ xorl(dest, dest); |
| } else { |
| __ movl(dest, Immediate(value)); |
| } |
| } |
| |
| void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) { |
| if (value == 0) { |
| __ testl(dest, dest); |
| } else { |
| __ cmpl(dest, Immediate(value)); |
| } |
| } |
| |
| Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr, |
| Register reg, |
| Register value) { |
| // Create a fixup to be used to create and address the jump table. |
| JumpTableRIPFixup* table_fixup = |
| new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr); |
| |
| // We have to populate the jump tables. |
| fixups_to_jump_tables_.push_back(table_fixup); |
| |
| // We want a scaled address, as we are extracting the correct offset from the table. |
| return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup); |
| } |
| |
| // TODO: target as memory. |
| void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) { |
| if (!target.IsValid()) { |
| DCHECK_EQ(type, Primitive::kPrimVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, Primitive::kPrimVoid); |
| |
| Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type); |
| if (target.Equals(return_loc)) { |
| return; |
| } |
| |
| // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged |
| // with the else branch. |
| if (type == Primitive::kPrimLong) { |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr); |
| parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| // Let the parallel move resolver take care of all of this. |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(return_loc, target, type, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| } |
| |
| #undef __ |
| |
| } // namespace x86 |
| } // namespace art |