| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // |
| // Test on loop optimizations, in particular around common induction. |
| // |
| public class Main { |
| |
| static int sResult; |
| |
| // |
| // Various sequence variables used in bound checks. |
| // |
| |
| /// CHECK-START: int Main.linear(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linear(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linear(int[] x) { |
| int result = 0; |
| for (int i = 0; i < x.length; i++) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearDown(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearDown(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearDown(int[] x) { |
| int result = 0; |
| for (int i = x.length - 1; i >= 0; i--) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearObscure(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearObscure(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearObscure(int[] x) { |
| int result = 0; |
| for (int i = x.length - 1; i >= 0; i--) { |
| int k = i + 5; |
| result += x[k - 5]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearVeryObscure(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearVeryObscure(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearVeryObscure(int[] x) { |
| int result = 0; |
| for (int i = 0; i < x.length; i++) { |
| int k = (-i) + (i << 5) + i - (32 * i) + 5 + (int) i; |
| result += x[k - 5]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.hiddenStride(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.hiddenStride(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| static int hiddenStride(int[] a) { |
| int result = 0; |
| for (int i = 1; i <= 1; i++) { |
| // Obscured unit stride. |
| for (int j = 0; j < a.length; j += i) { |
| result += a[j]; |
| } |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearWhile(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWhile(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearWhile(int[] x) { |
| int i = 0; |
| int result = 0; |
| while (i < x.length) { |
| result += x[i++]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearThreeWayPhi(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearThreeWayPhi(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearThreeWayPhi(int[] x) { |
| int result = 0; |
| for (int i = 0; i < x.length; ) { |
| if (x[i] == 5) { |
| i++; |
| continue; |
| } |
| result += x[i++]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearFourWayPhi(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearFourWayPhi(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearFourWayPhi(int[] x) { |
| int result = 0; |
| for (int i = 0; i < x.length; ) { |
| if (x[i] == 5) { |
| i++; |
| continue; |
| } else if (x[i] == 6) { |
| i++; |
| result += 7; |
| continue; |
| } |
| result += x[i++]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.wrapAroundThenLinear(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.wrapAroundThenLinear(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int wrapAroundThenLinear(int[] x) { |
| // Loop with wrap around (length - 1, 0, 1, 2, ..). |
| int w = x.length - 1; |
| int result = 0; |
| for (int i = 0; i < x.length; i++) { |
| result += x[w]; |
| w = i; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.wrapAroundThenLinearThreeWayPhi(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.wrapAroundThenLinearThreeWayPhi(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int wrapAroundThenLinearThreeWayPhi(int[] x) { |
| // Loop with wrap around (length - 1, 0, 1, 2, ..). |
| int w = x.length - 1; |
| int result = 0; |
| for (int i = 0; i < x.length; ) { |
| if (x[w] == 1) { |
| w = i++; |
| continue; |
| } |
| result += x[w]; |
| w = i++; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int[] Main.linearWithParameter(int) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int[] Main.linearWithParameter(int) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int[] linearWithParameter(int n) { |
| int[] x = new int[n]; |
| for (int i = 0; i < n; i++) { |
| x[i] = i; |
| } |
| return x; |
| } |
| |
| /// CHECK-START: int[] Main.linearCopy(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int[] Main.linearCopy(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int[] linearCopy(int x[]) { |
| int n = x.length; |
| int y[] = new int[n]; |
| for (int i = 0; i < n; i++) { |
| y[i] = x[i]; |
| } |
| return y; |
| } |
| |
| /// CHECK-START: int Main.linearByTwo(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearByTwo(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearByTwo(int x[]) { |
| int n = x.length / 2; |
| int result = 0; |
| for (int i = 0; i < n; i++) { |
| int ii = i << 1; |
| result += x[ii]; |
| result += x[ii + 1]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearByTwoSkip1(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearByTwoSkip1(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearByTwoSkip1(int x[]) { |
| int result = 0; |
| for (int i = 0; i < x.length / 2; i++) { |
| result += x[2 * i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearByTwoSkip2(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearByTwoSkip2(int[]) BCE (after) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearByTwoSkip2(int[]) BCE (after) |
| /// CHECK-NOT: Deoptimize |
| private static int linearByTwoSkip2(int x[]) { |
| int result = 0; |
| // This case is not optimized. |
| for (int i = 0; i < x.length; i+=2) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearWithCompoundStride() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWithCompoundStride() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearWithCompoundStride() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; |
| int result = 0; |
| for (int i = 0; i <= 12; ) { |
| i++; |
| result += x[i]; |
| i++; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearWithLargePositiveStride() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWithLargePositiveStride() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearWithLargePositiveStride() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| int result = 0; |
| int k = 0; |
| // Range analysis has no problem with a trip-count defined by a |
| // reasonably large positive stride far away from upper bound. |
| for (int i = 1; i <= 10 * 10000000 + 1; i += 10000000) { |
| result += x[k++]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearWithVeryLargePositiveStride() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWithVeryLargePositiveStride() BCE (after) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWithVeryLargePositiveStride() BCE (after) |
| /// CHECK-NOT: Deoptimize |
| private static int linearWithVeryLargePositiveStride() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| int result = 0; |
| int k = 0; |
| // Range analysis conservatively bails due to potential of wrap-around |
| // arithmetic while computing the trip-count for this very large stride. |
| for (int i = 1; i < Integer.MAX_VALUE; i += 195225786) { |
| result += x[k++]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearWithLargeNegativeStride() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWithLargeNegativeStride() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearWithLargeNegativeStride() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| int result = 0; |
| int k = 0; |
| // Range analysis has no problem with a trip-count defined by a |
| // reasonably large negative stride far away from lower bound. |
| for (int i = -1; i >= -10 * 10000000 - 1; i -= 10000000) { |
| result += x[k++]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearWithVeryLargeNegativeStride() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWithVeryLargeNegativeStride() BCE (after) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearWithVeryLargeNegativeStride() BCE (after) |
| /// CHECK-NOT: Deoptimize |
| private static int linearWithVeryLargeNegativeStride() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
| int result = 0; |
| int k = 0; |
| // Range analysis conservatively bails due to potential of wrap-around |
| // arithmetic while computing the trip-count for this very large stride. |
| for (int i = -2; i > Integer.MIN_VALUE; i -= 195225786) { |
| result += x[k++]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearForNEUp() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearForNEUp() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearForNEUp() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| for (int i = 0; i != 10; i++) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearForNEDown() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearForNEDown() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearForNEDown() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| for (int i = 9; i != -1; i--) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearForNEArrayLengthUp(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearForNEArrayLengthUp(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearForNEArrayLengthUp(int[] x) { |
| int result = 0; |
| for (int i = 0; i != x.length; i++) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearForNEArrayLengthDown(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearForNEArrayLengthDown(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearForNEArrayLengthDown(int[] x) { |
| int result = 0; |
| for (int i = x.length - 1; i != -1; i--) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearDoWhileUp() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearDoWhileUp() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearDoWhileUp() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| int i = 0; |
| do { |
| result += x[i++]; |
| } while (i < 10); |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearDoWhileDown() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearDoWhileDown() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearDoWhileDown() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| int i = 9; |
| do { |
| result += x[i--]; |
| } while (0 <= i); |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearLong() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearLong() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearLong() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| // Induction on constant interval is done in higher precision than necessary, |
| // but truncated at the use as subscript. |
| for (long i = 0; i < 10; i++) { |
| result += x[(int)i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearLongAlt(int[]) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearLongAlt(int[]) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearLongAlt(int[] x) { |
| int result = 0; |
| // Induction on array length is done in higher precision than necessary, |
| // but truncated at the use as subscript. |
| for (long i = 0; i < x.length; i++) { |
| result += x[(int)i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearShort() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearShort() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearShort() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| // Induction is done in short precision, but fits. |
| for (short i = 0; i < 10; i++) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearChar() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearChar() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearChar() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| // Induction is done in char precision, but fits. |
| for (char i = 0; i < 10; i++) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.linearByte() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.linearByte() BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int linearByte() { |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| int result = 0; |
| // Induction is done in byte precision, but fits. |
| for (byte i = 0; i < 10; i++) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: int Main.invariantFromPreLoop(int[], int) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int Main.invariantFromPreLoop(int[], int) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static int invariantFromPreLoop(int[] x, int y) { |
| int result = 0; |
| // Strange pre-loop that sets upper bound. |
| int hi; |
| while (true) { |
| y = y % 3; |
| hi = x.length; |
| if (y != 123) break; |
| } |
| for (int i = 0; i < hi; i++) { |
| result += x[i]; |
| } |
| return result; |
| } |
| |
| /// CHECK-START: void Main.linearTriangularOnTwoArrayLengths(int) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: void Main.linearTriangularOnTwoArrayLengths(int) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static void linearTriangularOnTwoArrayLengths(int n) { |
| int[] a = new int[n]; |
| for (int i = 0; i < a.length; i++) { |
| int[] b = new int[i]; |
| for (int j = 0; j < b.length; j++) { |
| // Need to know j < b.length < a.length for static bce. |
| a[j] += 1; |
| // Need to know just j < b.length for static bce. |
| b[j] += 1; |
| } |
| verifyTriangular(a, b, i, n); |
| } |
| } |
| |
| /// CHECK-START: void Main.linearTriangularOnOneArrayLength(int) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: void Main.linearTriangularOnOneArrayLength(int) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static void linearTriangularOnOneArrayLength(int n) { |
| int[] a = new int[n]; |
| for (int i = 0; i < a.length; i++) { |
| int[] b = new int[i]; |
| for (int j = 0; j < i; j++) { |
| // Need to know j < i < a.length for static bce. |
| a[j] += 1; |
| // Need to know just j < i for static bce. |
| b[j] += 1; |
| } |
| verifyTriangular(a, b, i, n); |
| } |
| } |
| |
| /// CHECK-START: void Main.linearTriangularOnParameter(int) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: void Main.linearTriangularOnParameter(int) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static void linearTriangularOnParameter(int n) { |
| int[] a = new int[n]; |
| for (int i = 0; i < n; i++) { |
| int[] b = new int[i]; |
| for (int j = 0; j < i; j++) { |
| // Need to know j < i < n for static bce. |
| a[j] += 1; |
| // Need to know just j < i for static bce. |
| b[j] += 1; |
| } |
| verifyTriangular(a, b, i, n); |
| } |
| } |
| |
| /// CHECK-START: void Main.linearTriangularStrictLower(int) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: void Main.linearTriangularStrictLower(int) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static void linearTriangularStrictLower(int n) { |
| int[] a = new int[n]; |
| for (int i = 0; i < n; i++) { |
| for (int j = 0; j < i; j++) { |
| a[j] += 1; |
| } |
| for (int j = i - 1; j >= 0; j--) { |
| a[j] += 1; |
| } |
| for (int j = i; j < n; j++) { |
| a[j] += 1; |
| } |
| for (int j = n - 1; j >= i; j--) { |
| a[j] += 1; |
| } |
| } |
| verifyTriangular(a); |
| } |
| |
| /// CHECK-START: void Main.linearTriangularStrictUpper(int) BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: void Main.linearTriangularStrictUpper(int) BCE (after) |
| /// CHECK-NOT: BoundsCheck |
| /// CHECK-NOT: Deoptimize |
| private static void linearTriangularStrictUpper(int n) { |
| int[] a = new int[n]; |
| for (int i = 0; i < n; i++) { |
| for (int j = 0; j <= i; j++) { |
| a[j] += 1; |
| } |
| for (int j = i; j >= 0; j--) { |
| a[j] += 1; |
| } |
| for (int j = i + 1; j < n; j++) { |
| a[j] += 1; |
| } |
| for (int j = n - 1; j >= i + 1; j--) { |
| a[j] += 1; |
| } |
| } |
| verifyTriangular(a); |
| } |
| |
| // Verifier for triangular loops. |
| private static void verifyTriangular(int[] a, int[] b, int m, int n) { |
| expectEquals(n, a.length); |
| for (int i = 0, k = m; i < n; i++) { |
| expectEquals(a[i], k); |
| if (k > 0) k--; |
| } |
| expectEquals(m, b.length); |
| for (int i = 0; i < m; i++) { |
| expectEquals(b[i], 1); |
| } |
| } |
| |
| // Verifier for triangular loops. |
| private static void verifyTriangular(int[] a) { |
| int n = a.length; |
| for (int i = 0; i < n; i++) { |
| expectEquals(a[i], n + n); |
| } |
| } |
| |
| /// CHECK-START: int[] Main.linearTriangularOOB() BCE (before) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int[] Main.linearTriangularOOB() BCE (after) |
| /// CHECK-DAG: BoundsCheck |
| // |
| /// CHECK-START: int[] Main.linearTriangularOOB() BCE (after) |
| /// CHECK-NOT: Deoptimize |
| private static int[] linearTriangularOOB() { |
| int[] a = new int[200]; |
| try { |
| for (int i = 0; i < 200; i++) { |
| // Lower bound must be recognized as lower precision induction with arithmetic |
| // wrap-around to -128 when i exceeds 127. |
| for (int j = (byte) i; j < 200; j++) { |
| a[j] += 1; |
| } |
| } |
| } catch (ArrayIndexOutOfBoundsException e) { |
| return a; |
| } |
| return null; // failure if this is reached |
| } |
| |
| // |
| // Verifier. |
| // |
| |
| public static void main(String[] args) { |
| int[] empty = { }; |
| int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| |
| // Linear and wrap-around. |
| expectEquals(0, linear(empty)); |
| expectEquals(55, linear(x)); |
| expectEquals(0, linearDown(empty)); |
| expectEquals(55, linearDown(x)); |
| expectEquals(0, linearObscure(empty)); |
| expectEquals(55, linearObscure(x)); |
| expectEquals(0, linearVeryObscure(empty)); |
| expectEquals(55, linearVeryObscure(x)); |
| expectEquals(0, hiddenStride(empty)); |
| expectEquals(55, hiddenStride(x)); |
| expectEquals(0, linearWhile(empty)); |
| expectEquals(55, linearWhile(x)); |
| expectEquals(0, linearThreeWayPhi(empty)); |
| expectEquals(50, linearThreeWayPhi(x)); |
| expectEquals(0, linearFourWayPhi(empty)); |
| expectEquals(51, linearFourWayPhi(x)); |
| expectEquals(0, wrapAroundThenLinear(empty)); |
| expectEquals(55, wrapAroundThenLinear(x)); |
| expectEquals(0, wrapAroundThenLinearThreeWayPhi(empty)); |
| expectEquals(54, wrapAroundThenLinearThreeWayPhi(x)); |
| |
| // Linear with parameter. |
| sResult = 0; |
| try { |
| linearWithParameter(-1); |
| } catch (NegativeArraySizeException e) { |
| sResult = 1; |
| } |
| expectEquals(1, sResult); |
| for (int n = 0; n < 32; n++) { |
| int[] r = linearWithParameter(n); |
| expectEquals(n, r.length); |
| for (int i = 0; i < n; i++) { |
| expectEquals(i, r[i]); |
| } |
| } |
| |
| // Linear copy. |
| expectEquals(0, linearCopy(empty).length); |
| { |
| int[] r = linearCopy(x); |
| expectEquals(x.length, r.length); |
| for (int i = 0; i < x.length; i++) { |
| expectEquals(x[i], r[i]); |
| } |
| } |
| |
| // Linear with non-unit strides. |
| expectEquals(55, linearByTwo(x)); |
| expectEquals(25, linearByTwoSkip1(x)); |
| expectEquals(25, linearByTwoSkip2(x)); |
| expectEquals(56, linearWithCompoundStride()); |
| expectEquals(66, linearWithLargePositiveStride()); |
| expectEquals(66, linearWithVeryLargePositiveStride()); |
| expectEquals(66, linearWithLargeNegativeStride()); |
| expectEquals(66, linearWithVeryLargeNegativeStride()); |
| |
| // Special forms. |
| expectEquals(55, linearForNEUp()); |
| expectEquals(55, linearForNEDown()); |
| expectEquals(55, linearForNEArrayLengthUp(x)); |
| expectEquals(55, linearForNEArrayLengthDown(x)); |
| expectEquals(55, linearDoWhileUp()); |
| expectEquals(55, linearDoWhileDown()); |
| expectEquals(55, linearLong()); |
| expectEquals(55, linearLongAlt(x)); |
| expectEquals(55, linearShort()); |
| expectEquals(55, linearChar()); |
| expectEquals(55, linearByte()); |
| expectEquals(55, invariantFromPreLoop(x, 1)); |
| linearTriangularOnTwoArrayLengths(10); |
| linearTriangularOnOneArrayLength(10); |
| linearTriangularOnParameter(10); |
| linearTriangularStrictLower(10); |
| linearTriangularStrictUpper(10); |
| { |
| int[] t = linearTriangularOOB(); |
| for (int i = 0; i < 200; i++) { |
| expectEquals(i <= 127 ? i + 1 : 128, t[i]); |
| } |
| } |
| |
| System.out.println("passed"); |
| } |
| |
| private static void expectEquals(int expected, int result) { |
| if (expected != result) { |
| throw new Error("Expected: " + expected + ", found: " + result); |
| } |
| } |
| } |