| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <android-base/properties.h> |
| |
| #include <vector> |
| |
| #include "android-base/stringprintf.h" |
| #include "art_method-inl.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/mutex.h" |
| #include "base/quasi_atomic.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "class_linker.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_types.h" |
| #include "dex/dex_instruction-inl.h" |
| #include "entrypoints/entrypoint_utils-inl.h" |
| #include "gc/verification-inl.h" |
| #include "lock_word-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object-inl.h" |
| #include "monitor-inl.h" |
| #include "object_callbacks.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stack.h" |
| #include "thread.h" |
| #include "thread_list.h" |
| #include "verifier/method_verifier.h" |
| #include "well_known_classes.h" |
| |
| static_assert(ART_USE_FUTEXES); |
| |
| namespace art HIDDEN { |
| |
| using android::base::StringPrintf; |
| |
| static constexpr uint64_t kDebugThresholdFudgeFactor = kIsDebugBuild ? 10 : 1; |
| static constexpr uint64_t kLongWaitMs = 100 * kDebugThresholdFudgeFactor; |
| |
| /* |
| * Every Object has a monitor associated with it, but not every Object is actually locked. Even |
| * the ones that are locked do not need a full-fledged monitor until a) there is actual contention |
| * or b) wait() is called on the Object, or (c) we need to lock an object that also has an |
| * identity hashcode. |
| * |
| * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s |
| * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us, |
| * though, because we have a full 32 bits to work with. |
| * |
| * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition |
| * from the "thin" state to the "fat" state and this transition is referred to as inflation. We |
| * deflate locks from time to time as part of heap trimming. |
| * |
| * The lock value itself is stored in mirror::Object::monitor_ and the representation is described |
| * in the LockWord value type. |
| * |
| * Monitors provide: |
| * - mutually exclusive access to resources |
| * - a way for multiple threads to wait for notification |
| * |
| * In effect, they fill the role of both mutexes and condition variables. |
| * |
| * Only one thread can own the monitor at any time. There may be several threads waiting on it |
| * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified |
| * at any given time. |
| */ |
| |
| uint32_t Monitor::lock_profiling_threshold_ = 0; |
| uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0; |
| |
| void Monitor::Init(uint32_t lock_profiling_threshold, |
| uint32_t stack_dump_lock_profiling_threshold) { |
| // It isn't great to always include the debug build fudge factor for command- |
| // line driven arguments, but it's easier to adjust here than in the build. |
| lock_profiling_threshold_ = |
| lock_profiling_threshold * kDebugThresholdFudgeFactor; |
| stack_dump_lock_profiling_threshold_ = |
| stack_dump_lock_profiling_threshold * kDebugThresholdFudgeFactor; |
| } |
| |
| Monitor::Monitor(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code) |
| : monitor_lock_("a monitor lock", kMonitorLock), |
| num_waiters_(0), |
| owner_(owner), |
| lock_count_(0), |
| obj_(GcRoot<mirror::Object>(obj)), |
| wait_set_(nullptr), |
| wake_set_(nullptr), |
| hash_code_(hash_code), |
| lock_owner_(nullptr), |
| lock_owner_method_(nullptr), |
| lock_owner_dex_pc_(0), |
| lock_owner_sum_(0), |
| lock_owner_request_(nullptr), |
| monitor_id_(MonitorPool::ComputeMonitorId(this, self)) { |
| #ifdef __LP64__ |
| DCHECK(false) << "Should not be reached in 64b"; |
| next_free_ = nullptr; |
| #endif |
| // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race |
| // with the owner unlocking the thin-lock. |
| CHECK(owner == nullptr || owner == self || owner->IsSuspended()); |
| // The identity hash code is set for the life time of the monitor. |
| |
| bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled(); |
| if (monitor_timeout_enabled) { |
| MaybeEnableTimeout(); |
| } |
| } |
| |
| Monitor::Monitor(Thread* self, |
| Thread* owner, |
| ObjPtr<mirror::Object> obj, |
| int32_t hash_code, |
| MonitorId id) |
| : monitor_lock_("a monitor lock", kMonitorLock), |
| num_waiters_(0), |
| owner_(owner), |
| lock_count_(0), |
| obj_(GcRoot<mirror::Object>(obj)), |
| wait_set_(nullptr), |
| wake_set_(nullptr), |
| hash_code_(hash_code), |
| lock_owner_(nullptr), |
| lock_owner_method_(nullptr), |
| lock_owner_dex_pc_(0), |
| lock_owner_sum_(0), |
| lock_owner_request_(nullptr), |
| monitor_id_(id) { |
| #ifdef __LP64__ |
| next_free_ = nullptr; |
| #endif |
| // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race |
| // with the owner unlocking the thin-lock. |
| CHECK(owner == nullptr || owner == self || owner->IsSuspended()); |
| // The identity hash code is set for the life time of the monitor. |
| |
| bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled(); |
| if (monitor_timeout_enabled) { |
| MaybeEnableTimeout(); |
| } |
| } |
| |
| int32_t Monitor::GetHashCode() { |
| int32_t hc = hash_code_.load(std::memory_order_relaxed); |
| if (!HasHashCode()) { |
| // Use a strong CAS to prevent spurious failures since these can make the boot image |
| // non-deterministic. |
| hash_code_.CompareAndSetStrongRelaxed(0, mirror::Object::GenerateIdentityHashCode()); |
| hc = hash_code_.load(std::memory_order_relaxed); |
| } |
| DCHECK(HasHashCode()); |
| return hc; |
| } |
| |
| void Monitor::SetLockingMethod(Thread* owner) { |
| DCHECK(owner == Thread::Current() || owner->IsSuspended()); |
| // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on |
| // abort. |
| ArtMethod* lock_owner_method; |
| uint32_t lock_owner_dex_pc; |
| lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc, false); |
| if (lock_owner_method != nullptr && UNLIKELY(lock_owner_method->IsProxyMethod())) { |
| // Grab another frame. Proxy methods are not helpful for lock profiling. This should be rare |
| // enough that it's OK to walk the stack twice. |
| struct NextMethodVisitor final : public StackVisitor { |
| explicit NextMethodVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) |
| : StackVisitor(thread, |
| nullptr, |
| StackVisitor::StackWalkKind::kIncludeInlinedFrames, |
| false), |
| count_(0), |
| method_(nullptr), |
| dex_pc_(0) {} |
| bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| // Continue if this is a runtime method. |
| return true; |
| } |
| count_++; |
| if (count_ == 2u) { |
| method_ = m; |
| dex_pc_ = GetDexPc(false); |
| return false; |
| } |
| return true; |
| } |
| size_t count_; |
| ArtMethod* method_; |
| uint32_t dex_pc_; |
| }; |
| NextMethodVisitor nmv(owner_.load(std::memory_order_relaxed)); |
| nmv.WalkStack(); |
| lock_owner_method = nmv.method_; |
| lock_owner_dex_pc = nmv.dex_pc_; |
| } |
| SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner); |
| DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod()); |
| } |
| |
| void Monitor::SetLockingMethodNoProxy(Thread *owner) { |
| DCHECK(owner == Thread::Current()); |
| uint32_t lock_owner_dex_pc; |
| ArtMethod* lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc); |
| // We don't expect a proxy method here. |
| DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod()); |
| SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner); |
| } |
| |
| bool Monitor::Install(Thread* self) NO_THREAD_SAFETY_ANALYSIS { |
| // This may or may not result in acquiring monitor_lock_. Its behavior is much more complicated |
| // than what clang thread safety analysis understands. |
| // Monitor is not yet public. |
| Thread* owner = owner_.load(std::memory_order_relaxed); |
| CHECK(owner == nullptr || owner == self || owner->IsSuspended()); |
| // Propagate the lock state. |
| LockWord lw(GetObject()->GetLockWord(false)); |
| switch (lw.GetState()) { |
| case LockWord::kThinLocked: { |
| DCHECK(owner != nullptr); |
| CHECK_EQ(owner->GetThreadId(), lw.ThinLockOwner()); |
| DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self); |
| lock_count_ = lw.ThinLockCount(); |
| monitor_lock_.ExclusiveLockUncontendedFor(owner); |
| DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), owner->GetTid()) |
| << " my tid = " << SafeGetTid(self); |
| LockWord fat(this, lw.GCState()); |
| // Publish the updated lock word, which may race with other threads. |
| bool success = GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release); |
| if (success) { |
| if (ATraceEnabled()) { |
| SetLockingMethod(owner); |
| } |
| return true; |
| } else { |
| monitor_lock_.ExclusiveUnlockUncontended(); |
| return false; |
| } |
| } |
| case LockWord::kHashCode: { |
| CHECK_EQ(hash_code_.load(std::memory_order_relaxed), static_cast<int32_t>(lw.GetHashCode())); |
| DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self); |
| LockWord fat(this, lw.GCState()); |
| return GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release); |
| } |
| case LockWord::kFatLocked: { |
| // The owner_ is suspended but another thread beat us to install a monitor. |
| return false; |
| } |
| case LockWord::kUnlocked: { |
| LOG(FATAL) << "Inflating unlocked lock word"; |
| UNREACHABLE(); |
| } |
| default: { |
| LOG(FATAL) << "Invalid monitor state " << lw.GetState(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| Monitor::~Monitor() { |
| // Deflated monitors have a null object. |
| } |
| |
| void Monitor::AppendToWaitSet(Thread* thread) { |
| // Not checking that the owner is equal to this thread, since we've released |
| // the monitor by the time this method is called. |
| DCHECK(thread != nullptr); |
| DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext(); |
| if (wait_set_ == nullptr) { |
| wait_set_ = thread; |
| return; |
| } |
| |
| // push_back. |
| Thread* t = wait_set_; |
| while (t->GetWaitNext() != nullptr) { |
| t = t->GetWaitNext(); |
| } |
| t->SetWaitNext(thread); |
| } |
| |
| void Monitor::RemoveFromWaitSet(Thread *thread) { |
| DCHECK(owner_ == Thread::Current()); |
| DCHECK(thread != nullptr); |
| auto remove = [&](Thread*& set){ |
| if (set != nullptr) { |
| if (set == thread) { |
| set = thread->GetWaitNext(); |
| thread->SetWaitNext(nullptr); |
| return true; |
| } |
| Thread* t = set; |
| while (t->GetWaitNext() != nullptr) { |
| if (t->GetWaitNext() == thread) { |
| t->SetWaitNext(thread->GetWaitNext()); |
| thread->SetWaitNext(nullptr); |
| return true; |
| } |
| t = t->GetWaitNext(); |
| } |
| } |
| return false; |
| }; |
| if (remove(wait_set_)) { |
| return; |
| } |
| remove(wake_set_); |
| } |
| |
| void Monitor::SetObject(ObjPtr<mirror::Object> object) { |
| obj_ = GcRoot<mirror::Object>(object); |
| } |
| |
| // This function is inlined and just helps to not have the VLOG and ATRACE check at all the |
| // potential tracing points. |
| void Monitor::AtraceMonitorLock(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) { |
| if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATraceEnabled())) { |
| AtraceMonitorLockImpl(self, obj, is_wait); |
| } |
| } |
| |
| void Monitor::AtraceMonitorLockImpl(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) { |
| // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at |
| // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer |
| // stack walk than if !is_wait. |
| const size_t wanted_frame_number = is_wait ? 1U : 0U; |
| |
| ArtMethod* method = nullptr; |
| uint32_t dex_pc = 0u; |
| |
| size_t current_frame_number = 0u; |
| StackVisitor::WalkStack( |
| // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here. |
| [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = stack_visitor->GetMethod(); |
| if (m == nullptr || m->IsRuntimeMethod()) { |
| // Runtime method, upcall, or resolution issue. Skip. |
| return true; |
| } |
| |
| // Is this the requested frame? |
| if (current_frame_number == wanted_frame_number) { |
| method = m; |
| dex_pc = stack_visitor->GetDexPc(false /* abort_on_error*/); |
| return false; |
| } |
| |
| // Look for more. |
| current_frame_number++; |
| return true; |
| }, |
| self, |
| /* context= */ nullptr, |
| art::StackVisitor::StackWalkKind::kIncludeInlinedFrames); |
| |
| const char* prefix = is_wait ? "Waiting on " : "Locking "; |
| |
| const char* filename; |
| int32_t line_number; |
| TranslateLocation(method, dex_pc, &filename, &line_number); |
| |
| // It would be nice to have a stable "ID" for the object here. However, the only stable thing |
| // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are |
| // times when it is unsafe to make that call (see stack dumping for an explanation). More |
| // importantly, we would have to give up on thin-locking when adding systrace locks, as the |
| // identity hashcode is stored in the lockword normally (so can't be used with thin-locks). |
| // |
| // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids |
| // also do not have to be stable, as the monitor may be deflated. |
| std::string tmp = StringPrintf("%s %d at %s:%d", |
| prefix, |
| (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj.Ptr()))), |
| (filename != nullptr ? filename : "null"), |
| line_number); |
| ATraceBegin(tmp.c_str()); |
| } |
| |
| void Monitor::AtraceMonitorUnlock() { |
| if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) { |
| ATraceEnd(); |
| } |
| } |
| |
| std::string Monitor::PrettyContentionInfo(const std::string& owner_name, |
| pid_t owner_tid, |
| ArtMethod* owners_method, |
| uint32_t owners_dex_pc, |
| size_t num_waiters) { |
| Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); |
| const char* owners_filename; |
| int32_t owners_line_number = 0; |
| if (owners_method != nullptr) { |
| TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number); |
| } |
| std::ostringstream oss; |
| oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")"; |
| if (owners_method != nullptr) { |
| oss << " at " << owners_method->PrettyMethod(); |
| oss << "(" << owners_filename << ":" << owners_line_number << ")"; |
| } |
| oss << " waiters=" << num_waiters; |
| return oss.str(); |
| } |
| |
| bool Monitor::TryLock(Thread* self, bool spin) { |
| Thread *owner = owner_.load(std::memory_order_relaxed); |
| if (owner == self) { |
| lock_count_++; |
| CHECK_NE(lock_count_, 0u); // Abort on overflow. |
| } else { |
| bool success = spin ? monitor_lock_.ExclusiveTryLockWithSpinning(self) |
| : monitor_lock_.ExclusiveTryLock(self); |
| if (!success) { |
| return false; |
| } |
| DCHECK(owner_.load(std::memory_order_relaxed) == nullptr); |
| owner_.store(self, std::memory_order_relaxed); |
| CHECK_EQ(lock_count_, 0u); |
| if (ATraceEnabled()) { |
| SetLockingMethodNoProxy(self); |
| } |
| } |
| DCHECK(monitor_lock_.IsExclusiveHeld(self)); |
| AtraceMonitorLock(self, GetObject(), /* is_wait= */ false); |
| return true; |
| } |
| |
| template <LockReason reason> |
| void Monitor::Lock(Thread* self) { |
| bool called_monitors_callback = false; |
| if (TryLock(self, /*spin=*/ true)) { |
| // TODO: This preserves original behavior. Correct? |
| if (called_monitors_callback) { |
| CHECK(reason == LockReason::kForLock); |
| Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this); |
| } |
| return; |
| } |
| // Contended; not reentrant. We hold no locks, so tread carefully. |
| const bool log_contention = (lock_profiling_threshold_ != 0); |
| uint64_t wait_start_ms = log_contention ? MilliTime() : 0; |
| |
| Thread *orig_owner = nullptr; |
| ArtMethod* owners_method; |
| uint32_t owners_dex_pc; |
| |
| // Do this before releasing the mutator lock so that we don't get deflated. |
| size_t num_waiters = num_waiters_.fetch_add(1, std::memory_order_relaxed); |
| |
| bool started_trace = false; |
| if (ATraceEnabled() && owner_.load(std::memory_order_relaxed) != nullptr) { |
| // Acquiring thread_list_lock_ ensures that owner doesn't disappear while |
| // we're looking at it. |
| Locks::thread_list_lock_->ExclusiveLock(self); |
| orig_owner = owner_.load(std::memory_order_relaxed); |
| if (orig_owner != nullptr) { // Did the owner_ give the lock up? |
| const uint32_t orig_owner_thread_id = orig_owner->GetTid(); |
| GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner); |
| std::ostringstream oss; |
| std::string name; |
| orig_owner->GetThreadName(name); |
| oss << PrettyContentionInfo(name, |
| orig_owner_thread_id, |
| owners_method, |
| owners_dex_pc, |
| num_waiters); |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| // Add info for contending thread. |
| uint32_t pc; |
| ArtMethod* m = self->GetCurrentMethod(&pc); |
| const char* filename; |
| int32_t line_number; |
| TranslateLocation(m, pc, &filename, &line_number); |
| oss << " blocking from " |
| << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null") |
| << ":" << line_number << ")"; |
| ATraceBegin(oss.str().c_str()); |
| started_trace = true; |
| } else { |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| } |
| } |
| if (log_contention) { |
| // Request the current holder to set lock_owner_info. |
| // Do this even if tracing is enabled, so we semi-consistently get the information |
| // corresponding to MonitorExit. |
| // TODO: Consider optionally obtaining a stack trace here via a checkpoint. That would allow |
| // us to see what the other thread is doing while we're waiting. |
| orig_owner = owner_.load(std::memory_order_relaxed); |
| lock_owner_request_.store(orig_owner, std::memory_order_relaxed); |
| } |
| // Call the contended locking cb once and only once. Also only call it if we are locking for |
| // the first time, not during a Wait wakeup. |
| if (reason == LockReason::kForLock && !called_monitors_callback) { |
| called_monitors_callback = true; |
| Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocking(this); |
| } |
| self->SetMonitorEnterObject(GetObject().Ptr()); |
| { |
| // Change to blocked and give up mutator_lock_. |
| ScopedThreadSuspension tsc(self, ThreadState::kBlocked); |
| |
| // Acquire monitor_lock_ without mutator_lock_, expecting to block this time. |
| // We already tried spinning above. The shutdown procedure currently assumes we stop |
| // touching monitors shortly after we suspend, so don't spin again here. |
| monitor_lock_.ExclusiveLock(self); |
| |
| if (log_contention && orig_owner != nullptr) { |
| // Woken from contention. |
| uint64_t wait_ms = MilliTime() - wait_start_ms; |
| uint32_t sample_percent; |
| if (wait_ms >= lock_profiling_threshold_) { |
| sample_percent = 100; |
| } else { |
| sample_percent = 100 * wait_ms / lock_profiling_threshold_; |
| } |
| if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) { |
| // Do this unconditionally for consistency. It's possible another thread |
| // snuck in in the middle, and tracing was enabled. In that case, we may get its |
| // MonitorEnter information. We can live with that. |
| GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner); |
| |
| // Reacquire mutator_lock_ for logging. |
| ScopedObjectAccess soa(self); |
| |
| const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 && |
| wait_ms > stack_dump_lock_profiling_threshold_; |
| |
| // Acquire thread-list lock to find thread and keep it from dying until we've got all |
| // the info we need. |
| Locks::thread_list_lock_->ExclusiveLock(self); |
| |
| // Is there still a thread at the same address as the original owner? |
| // We tolerate the fact that it may occasionally be the wrong one. |
| if (Runtime::Current()->GetThreadList()->Contains(orig_owner)) { |
| uint32_t original_owner_tid = orig_owner->GetTid(); // System thread id. |
| std::string original_owner_name; |
| orig_owner->GetThreadName(original_owner_name); |
| std::string owner_stack_dump; |
| |
| if (should_dump_stacks) { |
| // Very long contention. Dump stacks. |
| struct CollectStackTrace : public Closure { |
| void Run(art::Thread* thread) override |
| REQUIRES_SHARED(art::Locks::mutator_lock_) { |
| thread->DumpJavaStack(oss); |
| } |
| |
| std::ostringstream oss; |
| }; |
| CollectStackTrace owner_trace; |
| // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its |
| // execution. |
| orig_owner->RequestSynchronousCheckpoint(&owner_trace); |
| owner_stack_dump = owner_trace.oss.str(); |
| } else { |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| } |
| |
| // This is all the data we need. We dropped the thread-list lock, it's OK for the |
| // owner to go away now. |
| |
| if (should_dump_stacks) { |
| // Give the detailed traces for really long contention. |
| // This must be here (and not above) because we cannot hold the thread-list lock |
| // while running the checkpoint. |
| std::ostringstream self_trace_oss; |
| self->DumpJavaStack(self_trace_oss); |
| |
| uint32_t pc; |
| ArtMethod* m = self->GetCurrentMethod(&pc); |
| |
| LOG(WARNING) << "Long " |
| << PrettyContentionInfo(original_owner_name, |
| original_owner_tid, |
| owners_method, |
| owners_dex_pc, |
| num_waiters) |
| << " in " << ArtMethod::PrettyMethod(m) << " for " |
| << PrettyDuration(MsToNs(wait_ms)) << "\n" |
| << "Current owner stack:\n" << owner_stack_dump |
| << "Contender stack:\n" << self_trace_oss.str(); |
| } else if (wait_ms > kLongWaitMs && owners_method != nullptr) { |
| uint32_t pc; |
| ArtMethod* m = self->GetCurrentMethod(&pc); |
| // TODO: We should maybe check that original_owner is still a live thread. |
| LOG(WARNING) << "Long " |
| << PrettyContentionInfo(original_owner_name, |
| original_owner_tid, |
| owners_method, |
| owners_dex_pc, |
| num_waiters) |
| << " in " << ArtMethod::PrettyMethod(m) << " for " |
| << PrettyDuration(MsToNs(wait_ms)); |
| } |
| LogContentionEvent(self, |
| wait_ms, |
| sample_percent, |
| owners_method, |
| owners_dex_pc); |
| } else { |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| } |
| } |
| } |
| } |
| // We've successfully acquired monitor_lock_, released thread_list_lock, and are runnable. |
| |
| // We avoided touching monitor fields while suspended, so set owner_ here. |
| owner_.store(self, std::memory_order_relaxed); |
| DCHECK_EQ(lock_count_, 0u); |
| |
| if (ATraceEnabled()) { |
| SetLockingMethodNoProxy(self); |
| } |
| if (started_trace) { |
| ATraceEnd(); |
| } |
| self->SetMonitorEnterObject(nullptr); |
| num_waiters_.fetch_sub(1, std::memory_order_relaxed); |
| DCHECK(monitor_lock_.IsExclusiveHeld(self)); |
| // We need to pair this with a single contended locking call. NB we match the RI behavior and call |
| // this even if MonitorEnter failed. |
| if (called_monitors_callback) { |
| CHECK(reason == LockReason::kForLock); |
| Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this); |
| } |
| } |
| |
| template void Monitor::Lock<LockReason::kForLock>(Thread* self); |
| template void Monitor::Lock<LockReason::kForWait>(Thread* self); |
| |
| static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) |
| __attribute__((format(printf, 1, 2))); |
| |
| static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| va_list args; |
| va_start(args, fmt); |
| Thread* self = Thread::Current(); |
| self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args); |
| if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) { |
| std::ostringstream ss; |
| self->Dump(ss); |
| LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR) |
| << self->GetException()->Dump() << "\n" << ss.str(); |
| } |
| va_end(args); |
| } |
| |
| static std::string ThreadToString(Thread* thread) { |
| if (thread == nullptr) { |
| return "nullptr"; |
| } |
| std::ostringstream oss; |
| // TODO: alternatively, we could just return the thread's name. |
| oss << *thread; |
| return oss.str(); |
| } |
| |
| void Monitor::FailedUnlock(ObjPtr<mirror::Object> o, |
| uint32_t expected_owner_thread_id, |
| uint32_t found_owner_thread_id, |
| Monitor* monitor) { |
| std::string current_owner_string; |
| std::string expected_owner_string; |
| std::string found_owner_string; |
| uint32_t current_owner_thread_id = 0u; |
| { |
| MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); |
| ThreadList* const thread_list = Runtime::Current()->GetThreadList(); |
| Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id); |
| Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id); |
| |
| // Re-read owner now that we hold lock. |
| Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr; |
| if (current_owner != nullptr) { |
| current_owner_thread_id = current_owner->GetThreadId(); |
| } |
| // Get short descriptions of the threads involved. |
| current_owner_string = ThreadToString(current_owner); |
| expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed"; |
| found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed"; |
| } |
| |
| if (current_owner_thread_id == 0u) { |
| if (found_owner_thread_id == 0u) { |
| ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'" |
| " on thread '%s'", |
| mirror::Object::PrettyTypeOf(o).c_str(), |
| expected_owner_string.c_str()); |
| } else { |
| // Race: the original read found an owner but now there is none |
| ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" |
| " (where now the monitor appears unowned) on thread '%s'", |
| found_owner_string.c_str(), |
| mirror::Object::PrettyTypeOf(o).c_str(), |
| expected_owner_string.c_str()); |
| } |
| } else { |
| if (found_owner_thread_id == 0u) { |
| // Race: originally there was no owner, there is now |
| ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" |
| " (originally believed to be unowned) on thread '%s'", |
| current_owner_string.c_str(), |
| mirror::Object::PrettyTypeOf(o).c_str(), |
| expected_owner_string.c_str()); |
| } else { |
| if (found_owner_thread_id != current_owner_thread_id) { |
| // Race: originally found and current owner have changed |
| ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now" |
| " owned by '%s') on object of type '%s' on thread '%s'", |
| found_owner_string.c_str(), |
| current_owner_string.c_str(), |
| mirror::Object::PrettyTypeOf(o).c_str(), |
| expected_owner_string.c_str()); |
| } else { |
| ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" |
| " on thread '%s", |
| current_owner_string.c_str(), |
| mirror::Object::PrettyTypeOf(o).c_str(), |
| expected_owner_string.c_str()); |
| } |
| } |
| } |
| } |
| |
| bool Monitor::Unlock(Thread* self) { |
| DCHECK(self != nullptr); |
| Thread* owner = owner_.load(std::memory_order_relaxed); |
| if (owner == self) { |
| // We own the monitor, so nobody else can be in here. |
| CheckLockOwnerRequest(self); |
| AtraceMonitorUnlock(); |
| if (lock_count_ == 0) { |
| owner_.store(nullptr, std::memory_order_relaxed); |
| SignalWaiterAndReleaseMonitorLock(self); |
| } else { |
| --lock_count_; |
| DCHECK(monitor_lock_.IsExclusiveHeld(self)); |
| DCHECK_EQ(owner_.load(std::memory_order_relaxed), self); |
| // Keep monitor_lock_, but pretend we released it. |
| FakeUnlockMonitorLock(); |
| } |
| return true; |
| } |
| // We don't own this, so we're not allowed to unlock it. |
| // The JNI spec says that we should throw IllegalMonitorStateException in this case. |
| uint32_t owner_thread_id = 0u; |
| { |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| owner = owner_.load(std::memory_order_relaxed); |
| if (owner != nullptr) { |
| owner_thread_id = owner->GetThreadId(); |
| } |
| } |
| FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this); |
| // Pretend to release monitor_lock_, which we should not. |
| FakeUnlockMonitorLock(); |
| return false; |
| } |
| |
| void Monitor::SignalWaiterAndReleaseMonitorLock(Thread* self) { |
| // We want to release the monitor and signal up to one thread that was waiting |
| // but has since been notified. |
| DCHECK_EQ(lock_count_, 0u); |
| DCHECK(monitor_lock_.IsExclusiveHeld(self)); |
| while (wake_set_ != nullptr) { |
| // No risk of waking ourselves here; since monitor_lock_ is not released until we're ready to |
| // return, notify can't move the current thread from wait_set_ to wake_set_ until this |
| // method is done checking wake_set_. |
| Thread* thread = wake_set_; |
| wake_set_ = thread->GetWaitNext(); |
| thread->SetWaitNext(nullptr); |
| DCHECK(owner_.load(std::memory_order_relaxed) == nullptr); |
| |
| // Check to see if the thread is still waiting. |
| { |
| // In the case of wait(), we'll be acquiring another thread's GetWaitMutex with |
| // self's GetWaitMutex held. This does not risk deadlock, because we only acquire this lock |
| // for threads in the wake_set_. A thread can only enter wake_set_ from Notify or NotifyAll, |
| // and those hold monitor_lock_. Thus, the threads whose wait mutexes we acquire here must |
| // have already been released from wait(), since we have not released monitor_lock_ until |
| // after we've chosen our thread to wake, so there is no risk of the following lock ordering |
| // leading to deadlock: |
| // Thread 1 waits |
| // Thread 2 waits |
| // Thread 3 moves threads 1 and 2 from wait_set_ to wake_set_ |
| // Thread 1 enters this block, and attempts to acquire Thread 2's GetWaitMutex to wake it |
| // Thread 2 enters this block, and attempts to acquire Thread 1's GetWaitMutex to wake it |
| // |
| // Since monitor_lock_ is not released until the thread-to-be-woken-up's GetWaitMutex is |
| // acquired, two threads cannot attempt to acquire each other's GetWaitMutex while holding |
| // their own and cause deadlock. |
| MutexLock wait_mu(self, *thread->GetWaitMutex()); |
| if (thread->GetWaitMonitor() != nullptr) { |
| // Release the lock, so that a potentially awakened thread will not |
| // immediately contend on it. The lock ordering here is: |
| // monitor_lock_, self->GetWaitMutex, thread->GetWaitMutex |
| monitor_lock_.Unlock(self); // Releases contenders. |
| thread->GetWaitConditionVariable()->Signal(self); |
| return; |
| } |
| } |
| } |
| monitor_lock_.Unlock(self); |
| DCHECK(!monitor_lock_.IsExclusiveHeld(self)); |
| } |
| |
| void Monitor::Wait(Thread* self, int64_t ms, int32_t ns, |
| bool interruptShouldThrow, ThreadState why) { |
| DCHECK(self != nullptr); |
| DCHECK(why == ThreadState::kTimedWaiting || |
| why == ThreadState::kWaiting || |
| why == ThreadState::kSleeping); |
| |
| // Make sure that we hold the lock. |
| if (owner_.load(std::memory_order_relaxed) != self) { |
| ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); |
| return; |
| } |
| |
| // We need to turn a zero-length timed wait into a regular wait because |
| // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait(). |
| if (why == ThreadState::kTimedWaiting && (ms == 0 && ns == 0)) { |
| why = ThreadState::kWaiting; |
| } |
| |
| // Enforce the timeout range. |
| if (ms < 0 || ns < 0 || ns > 999999) { |
| self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;", |
| "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns); |
| return; |
| } |
| |
| CheckLockOwnerRequest(self); |
| |
| /* |
| * Release our hold - we need to let it go even if we're a few levels |
| * deep in a recursive lock, and we need to restore that later. |
| */ |
| unsigned int prev_lock_count = lock_count_; |
| lock_count_ = 0; |
| |
| AtraceMonitorUnlock(); // For the implict Unlock() just above. This will only end the deepest |
| // nesting, but that is enough for the visualization, and corresponds to |
| // the single Lock() we do afterwards. |
| AtraceMonitorLock(self, GetObject(), /* is_wait= */ true); |
| |
| bool was_interrupted = false; |
| bool timed_out = false; |
| // Update monitor state now; it's not safe once we're "suspended". |
| owner_.store(nullptr, std::memory_order_relaxed); |
| num_waiters_.fetch_add(1, std::memory_order_relaxed); |
| { |
| // Update thread state. If the GC wakes up, it'll ignore us, knowing |
| // that we won't touch any references in this state, and we'll check |
| // our suspend mode before we transition out. |
| ScopedThreadSuspension sts(self, why); |
| |
| // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock. |
| MutexLock mu(self, *self->GetWaitMutex()); |
| |
| /* |
| * Add ourselves to the set of threads waiting on this monitor. |
| * It's important that we are only added to the wait set after |
| * acquiring our GetWaitMutex, so that calls to Notify() that occur after we |
| * have released monitor_lock_ will not move us from wait_set_ to wake_set_ |
| * until we've signalled contenders on this monitor. |
| */ |
| AppendToWaitSet(self); |
| |
| // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is |
| // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it |
| // up. |
| DCHECK(self->GetWaitMonitor() == nullptr); |
| self->SetWaitMonitor(this); |
| |
| // Release the monitor lock. |
| DCHECK(monitor_lock_.IsExclusiveHeld(self)); |
| SignalWaiterAndReleaseMonitorLock(self); |
| |
| // Handle the case where the thread was interrupted before we called wait(). |
| if (self->IsInterrupted()) { |
| was_interrupted = true; |
| } else { |
| // Wait for a notification or a timeout to occur. |
| if (why == ThreadState::kWaiting) { |
| self->GetWaitConditionVariable()->Wait(self); |
| } else { |
| DCHECK(why == ThreadState::kTimedWaiting || why == ThreadState::kSleeping) << why; |
| timed_out = self->GetWaitConditionVariable()->TimedWait(self, ms, ns); |
| } |
| was_interrupted = self->IsInterrupted(); |
| } |
| } |
| |
| { |
| // We reset the thread's wait_monitor_ field after transitioning back to runnable so |
| // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging |
| // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads |
| // are waiting on "null".) |
| MutexLock mu(self, *self->GetWaitMutex()); |
| DCHECK(self->GetWaitMonitor() != nullptr); |
| self->SetWaitMonitor(nullptr); |
| } |
| |
| // Allocate the interrupted exception not holding the monitor lock since it may cause a GC. |
| // If the GC requires acquiring the monitor for enqueuing cleared references, this would |
| // cause a deadlock if the monitor is held. |
| if (was_interrupted && interruptShouldThrow) { |
| /* |
| * We were interrupted while waiting, or somebody interrupted an |
| * un-interruptible thread earlier and we're bailing out immediately. |
| * |
| * The doc sayeth: "The interrupted status of the current thread is |
| * cleared when this exception is thrown." |
| */ |
| self->SetInterrupted(false); |
| self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr); |
| } |
| |
| AtraceMonitorUnlock(); // End Wait(). |
| |
| // We just slept, tell the runtime callbacks about this. |
| Runtime::Current()->GetRuntimeCallbacks()->MonitorWaitFinished(this, timed_out); |
| |
| // Re-acquire the monitor and lock. |
| Lock<LockReason::kForWait>(self); |
| lock_count_ = prev_lock_count; |
| DCHECK(monitor_lock_.IsExclusiveHeld(self)); |
| self->GetWaitMutex()->AssertNotHeld(self); |
| |
| num_waiters_.fetch_sub(1, std::memory_order_relaxed); |
| RemoveFromWaitSet(self); |
| } |
| |
| void Monitor::Notify(Thread* self) { |
| DCHECK(self != nullptr); |
| // Make sure that we hold the lock. |
| if (owner_.load(std::memory_order_relaxed) != self) { |
| ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); |
| return; |
| } |
| // Move one thread from waiters to wake set |
| Thread* to_move = wait_set_; |
| if (to_move != nullptr) { |
| wait_set_ = to_move->GetWaitNext(); |
| to_move->SetWaitNext(wake_set_); |
| wake_set_ = to_move; |
| } |
| } |
| |
| void Monitor::NotifyAll(Thread* self) { |
| DCHECK(self != nullptr); |
| // Make sure that we hold the lock. |
| if (owner_.load(std::memory_order_relaxed) != self) { |
| ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()"); |
| return; |
| } |
| |
| // Move all threads from waiters to wake set |
| Thread* to_move = wait_set_; |
| if (to_move != nullptr) { |
| wait_set_ = nullptr; |
| Thread* move_to = wake_set_; |
| if (move_to == nullptr) { |
| wake_set_ = to_move; |
| return; |
| } |
| while (move_to->GetWaitNext() != nullptr) { |
| move_to = move_to->GetWaitNext(); |
| } |
| move_to->SetWaitNext(to_move); |
| } |
| } |
| |
| bool Monitor::Deflate(Thread* self, ObjPtr<mirror::Object> obj) { |
| DCHECK(obj != nullptr); |
| // Don't need volatile since we only deflate with mutators suspended. |
| LockWord lw(obj->GetLockWord(false)); |
| // If the lock isn't an inflated monitor, then we don't need to deflate anything. |
| if (lw.GetState() == LockWord::kFatLocked) { |
| Monitor* monitor = lw.FatLockMonitor(); |
| DCHECK(monitor != nullptr); |
| // Can't deflate if we have anybody waiting on the CV or trying to acquire the monitor. |
| if (monitor->num_waiters_.load(std::memory_order_relaxed) > 0) { |
| return false; |
| } |
| if (!monitor->monitor_lock_.ExclusiveTryLock</* check= */ false>(self)) { |
| // We cannot deflate a monitor that's currently held. It's unclear whether we should if |
| // we could. |
| return false; |
| } |
| DCHECK_EQ(monitor->lock_count_, 0u); |
| DCHECK_EQ(monitor->owner_.load(std::memory_order_relaxed), static_cast<Thread*>(nullptr)); |
| if (monitor->HasHashCode()) { |
| LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState()); |
| // Assume no concurrent read barrier state changes as mutators are suspended. |
| obj->SetLockWord(new_lw, false); |
| VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode(); |
| } else { |
| // No lock and no hash, just put an empty lock word inside the object. |
| LockWord new_lw = LockWord::FromDefault(lw.GCState()); |
| // Assume no concurrent read barrier state changes as mutators are suspended. |
| obj->SetLockWord(new_lw, false); |
| VLOG(monitor) << "Deflated" << obj << " to empty lock word"; |
| } |
| monitor->monitor_lock_.ExclusiveUnlock(self); |
| DCHECK(!(monitor->monitor_lock_.IsExclusiveHeld(self))); |
| // The monitor is deflated, mark the object as null so that we know to delete it during the |
| // next GC. |
| monitor->obj_ = GcRoot<mirror::Object>(nullptr); |
| } |
| return true; |
| } |
| |
| void Monitor::Inflate(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code) { |
| DCHECK(self != nullptr); |
| DCHECK(obj != nullptr); |
| // Allocate and acquire a new monitor. |
| Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code); |
| DCHECK(m != nullptr); |
| if (m->Install(self)) { |
| if (owner != nullptr) { |
| VLOG(monitor) << "monitor: thread" << owner->GetThreadId() |
| << " created monitor " << m << " for object " << obj; |
| } else { |
| VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code |
| << " created monitor " << m << " for object " << obj; |
| } |
| Runtime::Current()->GetMonitorList()->Add(m); |
| CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked); |
| } else { |
| MonitorPool::ReleaseMonitor(self, m); |
| } |
| } |
| |
| void Monitor::InflateThinLocked(Thread* self, |
| Handle<mirror::Object> obj, |
| LockWord lock_word, |
| uint32_t hash_code, |
| int attempt_of_4) { |
| DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked); |
| uint32_t owner_thread_id = lock_word.ThinLockOwner(); |
| if (owner_thread_id == self->GetThreadId()) { |
| // We own the monitor, we can easily inflate it. |
| Inflate(self, self, obj.Get(), hash_code); |
| } else { |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| // Suspend the owner, inflate. First change to blocked and give up mutator_lock_. |
| self->SetMonitorEnterObject(obj.Get()); |
| Thread* owner; |
| { |
| ScopedThreadSuspension sts(self, ThreadState::kWaitingForLockInflation); |
| owner = thread_list->SuspendThreadByThreadId( |
| owner_thread_id, SuspendReason::kInternal, attempt_of_4); |
| } |
| if (owner != nullptr) { |
| // We succeeded in suspending the thread, check the lock's status didn't change. |
| lock_word = obj->GetLockWord(true); |
| if (lock_word.GetState() == LockWord::kThinLocked && |
| lock_word.ThinLockOwner() == owner_thread_id) { |
| // Go ahead and inflate the lock. |
| Inflate(self, owner, obj.Get(), hash_code); |
| } |
| bool resumed = thread_list->Resume(owner, SuspendReason::kInternal); |
| DCHECK(resumed); |
| } |
| self->SetMonitorEnterObject(nullptr); |
| } |
| } |
| |
| // Fool annotalysis into thinking that the lock on obj is acquired. |
| static ObjPtr<mirror::Object> FakeLock(ObjPtr<mirror::Object> obj) |
| EXCLUSIVE_LOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS { |
| return obj; |
| } |
| |
| // Fool annotalysis into thinking that the lock on obj is release. |
| static ObjPtr<mirror::Object> FakeUnlock(ObjPtr<mirror::Object> obj) |
| UNLOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS { |
| return obj; |
| } |
| |
| ObjPtr<mirror::Object> Monitor::MonitorEnter(Thread* self, |
| ObjPtr<mirror::Object> obj, |
| bool trylock) { |
| DCHECK(self != nullptr); |
| DCHECK(obj != nullptr); |
| self->AssertThreadSuspensionIsAllowable(); |
| obj = FakeLock(obj); |
| uint32_t thread_id = self->GetThreadId(); |
| size_t contention_count = 0; |
| constexpr size_t kExtraSpinIters = 100; |
| int inflation_attempt = 1; |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> h_obj(hs.NewHandle(obj)); |
| while (true) { |
| // We initially read the lockword with ordinary Java/relaxed semantics. When stronger |
| // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load, |
| // we can fix it later, in an infrequently executed case, with a fence. |
| LockWord lock_word = h_obj->GetLockWord(false); |
| switch (lock_word.GetState()) { |
| case LockWord::kUnlocked: { |
| // No ordering required for preceding lockword read, since we retest. |
| LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState())); |
| if (h_obj->CasLockWord(lock_word, thin_locked, CASMode::kWeak, std::memory_order_acquire)) { |
| AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false); |
| return h_obj.Get(); // Success! |
| } |
| continue; // Go again. |
| } |
| case LockWord::kThinLocked: { |
| uint32_t owner_thread_id = lock_word.ThinLockOwner(); |
| if (owner_thread_id == thread_id) { |
| // No ordering required for initial lockword read. |
| // We own the lock, increase the recursion count. |
| uint32_t new_count = lock_word.ThinLockCount() + 1; |
| if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) { |
| LockWord thin_locked(LockWord::FromThinLockId(thread_id, |
| new_count, |
| lock_word.GCState())); |
| // Only this thread pays attention to the count. Thus there is no need for stronger |
| // than relaxed memory ordering. |
| if (!gUseReadBarrier) { |
| h_obj->SetLockWord(thin_locked, /* as_volatile= */ false); |
| AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false); |
| return h_obj.Get(); // Success! |
| } else { |
| // Use CAS to preserve the read barrier state. |
| if (h_obj->CasLockWord(lock_word, |
| thin_locked, |
| CASMode::kWeak, |
| std::memory_order_relaxed)) { |
| AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false); |
| return h_obj.Get(); // Success! |
| } |
| } |
| continue; // Go again. |
| } else { |
| // We'd overflow the recursion count, so inflate the monitor. |
| InflateThinLocked(self, h_obj, lock_word, 0, inflation_attempt++); |
| } |
| } else { |
| if (trylock) { |
| return nullptr; |
| } |
| // Contention. |
| contention_count++; |
| Runtime* runtime = Runtime::Current(); |
| if (contention_count |
| <= kExtraSpinIters + runtime->GetMaxSpinsBeforeThinLockInflation()) { |
| // TODO: Consider switching the thread state to kWaitingForLockInflation when we are |
| // yielding. Use sched_yield instead of NanoSleep since NanoSleep can wait much longer |
| // than the parameter you pass in. This can cause thread suspension to take excessively |
| // long and make long pauses. See b/16307460. |
| if (contention_count > kExtraSpinIters) { |
| sched_yield(); |
| } |
| } else { |
| contention_count = 0; |
| // No ordering required for initial lockword read. Install rereads it anyway. |
| InflateThinLocked(self, h_obj, lock_word, 0, inflation_attempt++); |
| } |
| } |
| continue; // Start from the beginning. |
| } |
| case LockWord::kFatLocked: { |
| // We should have done an acquire read of the lockword initially, to ensure |
| // visibility of the monitor data structure. Use an explicit fence instead. |
| std::atomic_thread_fence(std::memory_order_acquire); |
| Monitor* mon = lock_word.FatLockMonitor(); |
| if (trylock) { |
| return mon->TryLock(self) ? h_obj.Get() : nullptr; |
| } else { |
| mon->Lock(self); |
| DCHECK(mon->monitor_lock_.IsExclusiveHeld(self)); |
| return h_obj.Get(); // Success! |
| } |
| } |
| case LockWord::kHashCode: |
| // Inflate with the existing hashcode. |
| // Again no ordering required for initial lockword read, since we don't rely |
| // on the visibility of any prior computation. |
| Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode()); |
| continue; // Start from the beginning. |
| default: { |
| LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| |
| bool Monitor::MonitorExit(Thread* self, ObjPtr<mirror::Object> obj) { |
| DCHECK(self != nullptr); |
| DCHECK(obj != nullptr); |
| self->AssertThreadSuspensionIsAllowable(); |
| obj = FakeUnlock(obj); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> h_obj(hs.NewHandle(obj)); |
| while (true) { |
| LockWord lock_word = obj->GetLockWord(true); |
| switch (lock_word.GetState()) { |
| case LockWord::kHashCode: |
| // Fall-through. |
| case LockWord::kUnlocked: |
| FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr); |
| return false; // Failure. |
| case LockWord::kThinLocked: { |
| uint32_t thread_id = self->GetThreadId(); |
| uint32_t owner_thread_id = lock_word.ThinLockOwner(); |
| if (owner_thread_id != thread_id) { |
| FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr); |
| return false; // Failure. |
| } else { |
| // We own the lock, decrease the recursion count. |
| LockWord new_lw = LockWord::Default(); |
| if (lock_word.ThinLockCount() != 0) { |
| uint32_t new_count = lock_word.ThinLockCount() - 1; |
| new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState()); |
| } else { |
| new_lw = LockWord::FromDefault(lock_word.GCState()); |
| } |
| if (!gUseReadBarrier) { |
| DCHECK_EQ(new_lw.ReadBarrierState(), 0U); |
| // TODO: This really only needs memory_order_release, but we currently have |
| // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord |
| // with a final argument of true. This slows down x86 and ARMv7, but probably not v8. |
| h_obj->SetLockWord(new_lw, true); |
| AtraceMonitorUnlock(); |
| // Success! |
| return true; |
| } else { |
| // Use CAS to preserve the read barrier state. |
| if (h_obj->CasLockWord(lock_word, new_lw, CASMode::kWeak, std::memory_order_release)) { |
| AtraceMonitorUnlock(); |
| // Success! |
| return true; |
| } |
| } |
| continue; // Go again. |
| } |
| } |
| case LockWord::kFatLocked: { |
| Monitor* mon = lock_word.FatLockMonitor(); |
| return mon->Unlock(self); |
| } |
| default: { |
| LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| |
| void Monitor::Wait(Thread* self, |
| ObjPtr<mirror::Object> obj, |
| int64_t ms, |
| int32_t ns, |
| bool interruptShouldThrow, |
| ThreadState why) { |
| DCHECK(self != nullptr); |
| DCHECK(obj != nullptr); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> h_obj(hs.NewHandle(obj)); |
| |
| Runtime::Current()->GetRuntimeCallbacks()->ObjectWaitStart(h_obj, ms); |
| if (UNLIKELY(self->ObserveAsyncException() || self->IsExceptionPending())) { |
| // See b/65558434 for information on handling of exceptions here. |
| return; |
| } |
| |
| LockWord lock_word = h_obj->GetLockWord(true); |
| while (lock_word.GetState() != LockWord::kFatLocked) { |
| switch (lock_word.GetState()) { |
| case LockWord::kHashCode: |
| // Fall-through. |
| case LockWord::kUnlocked: |
| ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); |
| return; // Failure. |
| case LockWord::kThinLocked: { |
| uint32_t thread_id = self->GetThreadId(); |
| uint32_t owner_thread_id = lock_word.ThinLockOwner(); |
| if (owner_thread_id != thread_id) { |
| ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); |
| return; // Failure. |
| } else { |
| // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so |
| // re-load. |
| Inflate(self, self, h_obj.Get(), 0); |
| lock_word = h_obj->GetLockWord(true); |
| } |
| break; |
| } |
| case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through. |
| default: { |
| LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| Monitor* mon = lock_word.FatLockMonitor(); |
| mon->Wait(self, ms, ns, interruptShouldThrow, why); |
| } |
| |
| void Monitor::DoNotify(Thread* self, ObjPtr<mirror::Object> obj, bool notify_all) { |
| DCHECK(self != nullptr); |
| DCHECK(obj != nullptr); |
| LockWord lock_word = obj->GetLockWord(true); |
| switch (lock_word.GetState()) { |
| case LockWord::kHashCode: |
| // Fall-through. |
| case LockWord::kUnlocked: |
| ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); |
| return; // Failure. |
| case LockWord::kThinLocked: { |
| uint32_t thread_id = self->GetThreadId(); |
| uint32_t owner_thread_id = lock_word.ThinLockOwner(); |
| if (owner_thread_id != thread_id) { |
| ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); |
| return; // Failure. |
| } else { |
| // We own the lock but there's no Monitor and therefore no waiters. |
| return; // Success. |
| } |
| } |
| case LockWord::kFatLocked: { |
| Monitor* mon = lock_word.FatLockMonitor(); |
| if (notify_all) { |
| mon->NotifyAll(self); |
| } else { |
| mon->Notify(self); |
| } |
| return; // Success. |
| } |
| default: { |
| LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| uint32_t Monitor::GetLockOwnerThreadId(ObjPtr<mirror::Object> obj) { |
| DCHECK(obj != nullptr); |
| LockWord lock_word = obj->GetLockWord(true); |
| switch (lock_word.GetState()) { |
| case LockWord::kHashCode: |
| // Fall-through. |
| case LockWord::kUnlocked: |
| return ThreadList::kInvalidThreadId; |
| case LockWord::kThinLocked: |
| return lock_word.ThinLockOwner(); |
| case LockWord::kFatLocked: { |
| Monitor* mon = lock_word.FatLockMonitor(); |
| return mon->GetOwnerThreadId(); |
| } |
| default: { |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| ThreadState Monitor::FetchState(const Thread* thread, |
| /* out */ ObjPtr<mirror::Object>* monitor_object, |
| /* out */ uint32_t* lock_owner_tid) { |
| DCHECK(monitor_object != nullptr); |
| DCHECK(lock_owner_tid != nullptr); |
| |
| *monitor_object = nullptr; |
| *lock_owner_tid = ThreadList::kInvalidThreadId; |
| |
| ThreadState state = thread->GetState(); |
| |
| switch (state) { |
| case ThreadState::kWaiting: |
| case ThreadState::kTimedWaiting: |
| case ThreadState::kSleeping: |
| { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *thread->GetWaitMutex()); |
| Monitor* monitor = thread->GetWaitMonitor(); |
| if (monitor != nullptr) { |
| *monitor_object = monitor->GetObject(); |
| } |
| } |
| break; |
| |
| case ThreadState::kBlocked: |
| case ThreadState::kWaitingForLockInflation: |
| { |
| ObjPtr<mirror::Object> lock_object = thread->GetMonitorEnterObject(); |
| if (lock_object != nullptr) { |
| if (gUseReadBarrier && Thread::Current()->GetIsGcMarking()) { |
| // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack |
| // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in |
| // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward |
| // it here. |
| lock_object = ReadBarrier::Mark(lock_object.Ptr()); |
| } |
| *monitor_object = lock_object; |
| *lock_owner_tid = lock_object->GetLockOwnerThreadId(); |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| return state; |
| } |
| |
| ObjPtr<mirror::Object> Monitor::GetContendedMonitor(Thread* thread) { |
| // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre |
| // definition of contended that includes a monitor a thread is trying to enter... |
| ObjPtr<mirror::Object> result = thread->GetMonitorEnterObject(); |
| if (result == nullptr) { |
| // ...but also a monitor that the thread is waiting on. |
| MutexLock mu(Thread::Current(), *thread->GetWaitMutex()); |
| Monitor* monitor = thread->GetWaitMonitor(); |
| if (monitor != nullptr) { |
| result = monitor->GetObject(); |
| } |
| } |
| return result; |
| } |
| |
| void Monitor::VisitLocks(StackVisitor* stack_visitor, |
| void (*callback)(ObjPtr<mirror::Object>, void*), |
| void* callback_context, |
| bool abort_on_failure) { |
| ArtMethod* m = stack_visitor->GetMethod(); |
| CHECK(m != nullptr); |
| |
| // Native methods are an easy special case. |
| // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too. |
| if (m->IsNative()) { |
| if (m->IsSynchronized()) { |
| DCHECK(!m->IsCriticalNative()); |
| DCHECK(!m->IsFastNative()); |
| ObjPtr<mirror::Object> lock; |
| if (m->IsStatic()) { |
| // Static methods synchronize on the declaring class object. |
| lock = m->GetDeclaringClass(); |
| } else { |
| // Instance methods synchronize on the `this` object. |
| // The `this` reference is stored in the first out vreg in the caller's frame. |
| uint8_t* sp = reinterpret_cast<uint8_t*>(stack_visitor->GetCurrentQuickFrame()); |
| size_t frame_size = stack_visitor->GetCurrentQuickFrameInfo().FrameSizeInBytes(); |
| lock = reinterpret_cast<StackReference<mirror::Object>*>( |
| sp + frame_size + static_cast<size_t>(kRuntimePointerSize))->AsMirrorPtr(); |
| } |
| callback(lock, callback_context); |
| } |
| return; |
| } |
| |
| // Proxy methods should not be synchronized. |
| if (m->IsProxyMethod()) { |
| CHECK(!m->IsSynchronized()); |
| return; |
| } |
| |
| // Is there any reason to believe there's any synchronization in this method? |
| CHECK(m->GetCodeItem() != nullptr) << m->PrettyMethod(); |
| CodeItemDataAccessor accessor(m->DexInstructionData()); |
| if (accessor.TriesSize() == 0) { |
| return; // No "tries" implies no synchronization, so no held locks to report. |
| } |
| |
| // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot |
| // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an |
| // inconsistent stack anyways. |
| uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure); |
| if (!abort_on_failure && dex_pc == dex::kDexNoIndex) { |
| LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod(); |
| return; |
| } |
| |
| // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to |
| // the locks held in this stack frame. |
| std::vector<verifier::MethodVerifier::DexLockInfo> monitor_enter_dex_pcs; |
| verifier::MethodVerifier::FindLocksAtDexPc(m, |
| dex_pc, |
| &monitor_enter_dex_pcs, |
| Runtime::Current()->GetTargetSdkVersion()); |
| for (verifier::MethodVerifier::DexLockInfo& dex_lock_info : monitor_enter_dex_pcs) { |
| // As a debug check, check that dex PC corresponds to a monitor-enter. |
| if (kIsDebugBuild) { |
| const Instruction& monitor_enter_instruction = accessor.InstructionAt(dex_lock_info.dex_pc); |
| CHECK_EQ(monitor_enter_instruction.Opcode(), Instruction::MONITOR_ENTER) |
| << "expected monitor-enter @" << dex_lock_info.dex_pc << "; was " |
| << reinterpret_cast<const void*>(&monitor_enter_instruction); |
| } |
| |
| // Iterate through the set of dex registers, as the compiler may not have held all of them |
| // live. |
| bool success = false; |
| for (uint32_t dex_reg : dex_lock_info.dex_registers) { |
| uint32_t value; |
| |
| // For optimized code we expect the DexRegisterMap to be present - monitor information |
| // not be optimized out. |
| success = stack_visitor->GetVReg(m, dex_reg, kReferenceVReg, &value); |
| if (success) { |
| mirror::Object* mp = reinterpret_cast<mirror::Object*>(value); |
| // TODO(b/299577730) Remove the extra checks here once the underlying bug is fixed. |
| const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification(); |
| if (v->IsValidObject(mp)) { |
| ObjPtr<mirror::Object> o = mp; |
| callback(o, callback_context); |
| break; |
| } else { |
| LOG(ERROR) << "Encountered bad lock object: " << std::hex << value << std::dec; |
| success = false; |
| } |
| } |
| } |
| if (!success) { |
| LOG(ERROR) << "Failed to find/read reference for monitor-enter at dex pc " |
| << dex_lock_info.dex_pc << " in method " << m->PrettyMethod(); |
| if (kIsDebugBuild) { |
| // Crash only in debug ART builds. |
| LOG(FATAL) << "Had a lock reported for a dex pc " |
| "but was not able to fetch a corresponding object!"; |
| } else { |
| LOG(ERROR) << "Held monitor information in stack trace will be incomplete!"; |
| } |
| } |
| } |
| } |
| |
| bool Monitor::IsValidLockWord(LockWord lock_word) { |
| switch (lock_word.GetState()) { |
| case LockWord::kUnlocked: |
| // Nothing to check. |
| return true; |
| case LockWord::kThinLocked: |
| // Basic consistency check of owner. |
| return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId; |
| case LockWord::kFatLocked: { |
| // Check the monitor appears in the monitor list. |
| Monitor* mon = lock_word.FatLockMonitor(); |
| MonitorList* list = Runtime::Current()->GetMonitorList(); |
| MutexLock mu(Thread::Current(), list->monitor_list_lock_); |
| for (Monitor* list_mon : list->list_) { |
| if (mon == list_mon) { |
| return true; // Found our monitor. |
| } |
| } |
| return false; // Fail - unowned monitor in an object. |
| } |
| case LockWord::kHashCode: |
| return true; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| } |
| |
| bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) { |
| return GetOwner() != nullptr; |
| } |
| |
| void Monitor::TranslateLocation(ArtMethod* method, |
| uint32_t dex_pc, |
| const char** source_file, |
| int32_t* line_number) { |
| // If method is null, location is unknown |
| if (method == nullptr) { |
| *source_file = ""; |
| *line_number = 0; |
| return; |
| } |
| *source_file = method->GetDeclaringClassSourceFile(); |
| if (*source_file == nullptr) { |
| *source_file = ""; |
| } |
| *line_number = method->GetLineNumFromDexPC(dex_pc); |
| } |
| |
| uint32_t Monitor::GetOwnerThreadId() { |
| // Make sure owner is not deallocated during access. |
| MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); |
| Thread* owner = GetOwner(); |
| if (owner != nullptr) { |
| return owner->GetThreadId(); |
| } else { |
| return ThreadList::kInvalidThreadId; |
| } |
| } |
| |
| MonitorList::MonitorList() |
| : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock), |
| monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) { |
| } |
| |
| MonitorList::~MonitorList() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, monitor_list_lock_); |
| // Release all monitors to the pool. |
| // TODO: Is it an invariant that *all* open monitors are in the list? Then we could |
| // clear faster in the pool. |
| MonitorPool::ReleaseMonitors(self, &list_); |
| } |
| |
| void MonitorList::DisallowNewMonitors() { |
| CHECK(!gUseReadBarrier); |
| MutexLock mu(Thread::Current(), monitor_list_lock_); |
| allow_new_monitors_ = false; |
| } |
| |
| void MonitorList::AllowNewMonitors() { |
| CHECK(!gUseReadBarrier); |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, monitor_list_lock_); |
| allow_new_monitors_ = true; |
| monitor_add_condition_.Broadcast(self); |
| } |
| |
| void MonitorList::BroadcastForNewMonitors() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, monitor_list_lock_); |
| monitor_add_condition_.Broadcast(self); |
| } |
| |
| void MonitorList::Add(Monitor* m) { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, monitor_list_lock_); |
| // CMS needs this to block for concurrent reference processing because an object allocated during |
| // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak |
| // ref. But CC (gUseReadBarrier == true) doesn't because of the to-space invariant. |
| while (!gUseReadBarrier && UNLIKELY(!allow_new_monitors_)) { |
| // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the |
| // presence of threads blocking for weak ref access. |
| self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_); |
| monitor_add_condition_.WaitHoldingLocks(self); |
| } |
| list_.push_front(m); |
| } |
| |
| void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, monitor_list_lock_); |
| for (auto it = list_.begin(); it != list_.end(); ) { |
| Monitor* m = *it; |
| // Disable the read barrier in GetObject() as this is called by GC. |
| ObjPtr<mirror::Object> obj = m->GetObject<kWithoutReadBarrier>(); |
| // The object of a monitor can be null if we have deflated it. |
| ObjPtr<mirror::Object> new_obj = obj != nullptr ? visitor->IsMarked(obj.Ptr()) : nullptr; |
| if (new_obj == nullptr) { |
| VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object " |
| << obj; |
| MonitorPool::ReleaseMonitor(self, m); |
| it = list_.erase(it); |
| } else { |
| m->SetObject(new_obj); |
| ++it; |
| } |
| } |
| } |
| |
| size_t MonitorList::Size() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, monitor_list_lock_); |
| return list_.size(); |
| } |
| |
| class MonitorDeflateVisitor : public IsMarkedVisitor { |
| public: |
| MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {} |
| |
| mirror::Object* IsMarked(mirror::Object* object) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (Monitor::Deflate(self_, object)) { |
| DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked); |
| ++deflate_count_; |
| // If we deflated, return null so that the monitor gets removed from the array. |
| return nullptr; |
| } |
| return object; // Monitor was not deflated. |
| } |
| |
| Thread* const self_; |
| size_t deflate_count_; |
| }; |
| |
| size_t MonitorList::DeflateMonitors() { |
| MonitorDeflateVisitor visitor; |
| Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_); |
| SweepMonitorList(&visitor); |
| return visitor.deflate_count_; |
| } |
| |
| MonitorInfo::MonitorInfo(ObjPtr<mirror::Object> obj) : owner_(nullptr), entry_count_(0) { |
| DCHECK(obj != nullptr); |
| LockWord lock_word = obj->GetLockWord(true); |
| switch (lock_word.GetState()) { |
| case LockWord::kUnlocked: |
| // Fall-through. |
| case LockWord::kForwardingAddress: |
| // Fall-through. |
| case LockWord::kHashCode: |
| break; |
| case LockWord::kThinLocked: |
| owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner()); |
| DCHECK(owner_ != nullptr) << "Thin-locked without owner!"; |
| entry_count_ = 1 + lock_word.ThinLockCount(); |
| // Thin locks have no waiters. |
| break; |
| case LockWord::kFatLocked: { |
| Monitor* mon = lock_word.FatLockMonitor(); |
| owner_ = mon->owner_.load(std::memory_order_relaxed); |
| // Here it is okay for the owner to be null since we don't reset the LockWord back to |
| // kUnlocked until we get a GC. In cases where this hasn't happened yet we will have a fat |
| // lock without an owner. |
| // Neither owner_ nor entry_count_ is touched by threads in "suspended" state, so |
| // we must see consistent values. |
| if (owner_ != nullptr) { |
| entry_count_ = 1 + mon->lock_count_; |
| } else { |
| DCHECK_EQ(mon->lock_count_, 0u) << "Monitor is fat-locked without any owner!"; |
| } |
| for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) { |
| waiters_.push_back(waiter); |
| } |
| break; |
| } |
| } |
| } |
| |
| void Monitor::MaybeEnableTimeout() { |
| std::string current_package = Runtime::Current()->GetProcessPackageName(); |
| bool enabled_for_app = android::base::GetBoolProperty("debug.art.monitor.app", false); |
| if (current_package == "android" || enabled_for_app) { |
| monitor_lock_.setEnableMonitorTimeout(); |
| monitor_lock_.setMonitorId(monitor_id_); |
| } |
| } |
| |
| } // namespace art |