| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "large_object_space.h" |
| |
| #include <sys/mman.h> |
| |
| #include <memory> |
| |
| #include <android-base/logging.h> |
| |
| #include "base/macros.h" |
| #include "base/memory_tool.h" |
| #include "base/mutex-inl.h" |
| #include "base/os.h" |
| #include "base/stl_util.h" |
| #include "gc/accounting/heap_bitmap-inl.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/heap.h" |
| #include "mirror/object-readbarrier-inl.h" |
| #include "oat/image.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "space-inl.h" |
| #include "thread-current-inl.h" |
| |
| namespace art HIDDEN { |
| namespace gc { |
| namespace space { |
| |
| class MemoryToolLargeObjectMapSpace final : public LargeObjectMapSpace { |
| public: |
| explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) { |
| } |
| |
| ~MemoryToolLargeObjectMapSpace() override { |
| // Historical note: We were deleting large objects to keep Valgrind happy if there were |
| // any large objects such as Dex cache arrays which aren't freed since they are held live |
| // by the class linker. |
| } |
| |
| mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, |
| size_t* usable_size, size_t* bytes_tl_bulk_allocated) |
| override { |
| mirror::Object* obj = |
| LargeObjectMapSpace::Alloc(self, num_bytes + MemoryToolRedZoneBytes() * 2, bytes_allocated, |
| usable_size, bytes_tl_bulk_allocated); |
| mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>( |
| reinterpret_cast<uintptr_t>(obj) + MemoryToolRedZoneBytes()); |
| MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), MemoryToolRedZoneBytes()); |
| MEMORY_TOOL_MAKE_NOACCESS( |
| reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes, |
| MemoryToolRedZoneBytes()); |
| if (usable_size != nullptr) { |
| *usable_size = num_bytes; // Since we have redzones, shrink the usable size. |
| } |
| return object_without_rdz; |
| } |
| |
| size_t AllocationSize(mirror::Object* obj, size_t* usable_size) override { |
| return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size); |
| } |
| |
| bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const override { |
| return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj)); |
| } |
| |
| size_t Free(Thread* self, mirror::Object* obj) override { |
| mirror::Object* object_with_rdz = ObjectWithRedzone(obj); |
| MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr)); |
| return LargeObjectMapSpace::Free(self, object_with_rdz); |
| } |
| |
| bool Contains(const mirror::Object* obj) const override { |
| return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj)); |
| } |
| |
| private: |
| static size_t MemoryToolRedZoneBytes() { |
| return gPageSize; |
| } |
| |
| static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) { |
| return reinterpret_cast<const mirror::Object*>( |
| reinterpret_cast<uintptr_t>(obj) - MemoryToolRedZoneBytes()); |
| } |
| |
| static mirror::Object* ObjectWithRedzone(mirror::Object* obj) { |
| return reinterpret_cast<mirror::Object*>( |
| reinterpret_cast<uintptr_t>(obj) - MemoryToolRedZoneBytes()); |
| } |
| }; |
| |
| void LargeObjectSpace::SwapBitmaps() { |
| std::swap(live_bitmap_, mark_bitmap_); |
| // Preserve names to get more descriptive diagnostics. |
| std::string temp_name = live_bitmap_.GetName(); |
| live_bitmap_.SetName(mark_bitmap_.GetName()); |
| mark_bitmap_.SetName(temp_name); |
| } |
| |
| LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end, |
| const char* lock_name) |
| : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect), |
| lock_(lock_name, kAllocSpaceLock), |
| num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0), |
| total_objects_allocated_(0), begin_(begin), end_(end) { |
| } |
| |
| |
| void LargeObjectSpace::CopyLiveToMarked() { |
| mark_bitmap_.CopyFrom(&live_bitmap_); |
| } |
| |
| LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name) |
| : LargeObjectSpace(name, nullptr, nullptr, "large object map space lock") {} |
| |
| LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) { |
| if (Runtime::Current()->IsRunningOnMemoryTool()) { |
| return new MemoryToolLargeObjectMapSpace(name); |
| } else { |
| return new LargeObjectMapSpace(name); |
| } |
| } |
| |
| mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes, |
| size_t* bytes_allocated, size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated) { |
| DCHECK_LE(gPageSize, ObjectAlignment()) |
| << "MapAnonymousAligned() should be used if the large-object alignment is larger than the " |
| "runtime page size"; |
| std::string error_msg; |
| MemMap mem_map = MemMap::MapAnonymous("large object space allocation", |
| num_bytes, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/true, |
| &error_msg); |
| if (UNLIKELY(!mem_map.IsValid())) { |
| LOG(WARNING) << "Large object allocation failed: " << error_msg; |
| return nullptr; |
| } |
| mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map.Begin()); |
| const size_t allocation_size = mem_map.BaseSize(); |
| MutexLock mu(self, lock_); |
| large_objects_.Put(obj, LargeObject {std::move(mem_map), false /* not zygote */}); |
| DCHECK(bytes_allocated != nullptr); |
| |
| if (begin_ == nullptr || begin_ > reinterpret_cast<uint8_t*>(obj)) { |
| begin_ = reinterpret_cast<uint8_t*>(obj); |
| } |
| end_ = std::max(end_, reinterpret_cast<uint8_t*>(obj) + allocation_size); |
| |
| *bytes_allocated = allocation_size; |
| if (usable_size != nullptr) { |
| *usable_size = allocation_size; |
| } |
| DCHECK(bytes_tl_bulk_allocated != nullptr); |
| *bytes_tl_bulk_allocated = allocation_size; |
| num_bytes_allocated_ += allocation_size; |
| total_bytes_allocated_ += allocation_size; |
| ++num_objects_allocated_; |
| ++total_objects_allocated_; |
| return obj; |
| } |
| |
| bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const { |
| MutexLock mu(self, lock_); |
| auto it = large_objects_.find(obj); |
| CHECK(it != large_objects_.end()); |
| return it->second.is_zygote; |
| } |
| |
| void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self, bool set_mark_bit) { |
| MutexLock mu(self, lock_); |
| for (auto& pair : large_objects_) { |
| pair.second.is_zygote = true; |
| if (set_mark_bit) { |
| bool success = pair.first->AtomicSetMarkBit(0, 1); |
| CHECK(success); |
| } |
| } |
| } |
| |
| size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) { |
| MutexLock mu(self, lock_); |
| auto it = large_objects_.find(ptr); |
| if (UNLIKELY(it == large_objects_.end())) { |
| ScopedObjectAccess soa(self); |
| Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(FATAL_WITHOUT_ABORT)); |
| LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live"; |
| } |
| const size_t map_size = it->second.mem_map.BaseSize(); |
| DCHECK_GE(num_bytes_allocated_, map_size); |
| size_t allocation_size = map_size; |
| num_bytes_allocated_ -= allocation_size; |
| --num_objects_allocated_; |
| large_objects_.erase(it); |
| return allocation_size; |
| } |
| |
| size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) { |
| MutexLock mu(Thread::Current(), lock_); |
| auto it = large_objects_.find(obj); |
| CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live"; |
| size_t alloc_size = it->second.mem_map.BaseSize(); |
| if (usable_size != nullptr) { |
| *usable_size = alloc_size; |
| } |
| return alloc_size; |
| } |
| |
| size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) { |
| size_t total = 0; |
| for (size_t i = 0; i < num_ptrs; ++i) { |
| if (kDebugSpaces) { |
| CHECK(Contains(ptrs[i])); |
| } |
| total += Free(self, ptrs[i]); |
| } |
| return total; |
| } |
| |
| void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { |
| MutexLock mu(Thread::Current(), lock_); |
| for (auto& pair : large_objects_) { |
| MemMap* mem_map = &pair.second.mem_map; |
| callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg); |
| callback(nullptr, nullptr, 0, arg); |
| } |
| } |
| |
| void LargeObjectMapSpace::ForEachMemMap(std::function<void(const MemMap&)> func) const { |
| MutexLock mu(Thread::Current(), lock_); |
| for (auto& pair : large_objects_) { |
| func(pair.second.mem_map); |
| } |
| } |
| |
| bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const { |
| Thread* self = Thread::Current(); |
| if (lock_.IsExclusiveHeld(self)) { |
| // We hold lock_ so do the check. |
| return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end(); |
| } else { |
| MutexLock mu(self, lock_); |
| return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end(); |
| } |
| } |
| |
| // Keeps track of allocation sizes + whether or not the previous allocation is free. |
| // Used to coalesce free blocks and find the best fit block for an allocation for best fit object |
| // allocation. Each allocation has an AllocationInfo which contains the size of the previous free |
| // block preceding it. Implemented in such a way that we can also find the iterator for any |
| // allocation info pointer. |
| class AllocationInfo { |
| public: |
| AllocationInfo() : prev_free_(0), alloc_size_(0) { |
| } |
| // Return the number of blocks, of the large-object alignment in size each, that the allocation |
| // info covers. |
| size_t AlignSize() const { |
| return alloc_size_ & kFlagsMask; |
| } |
| // Returns the allocation size in bytes. |
| size_t ByteSize() const { |
| return AlignSize() * LargeObjectSpace::ObjectAlignment(); |
| } |
| // Updates the allocation size and whether or not it is free. |
| void SetByteSize(size_t size, bool free) { |
| DCHECK_EQ(size & ~kFlagsMask, 0u); |
| DCHECK_ALIGNED_PARAM(size, LargeObjectSpace::ObjectAlignment()); |
| alloc_size_ = (size / LargeObjectSpace::ObjectAlignment()) | (free ? kFlagFree : 0u); |
| } |
| // Returns true if the block is free. |
| bool IsFree() const { |
| return (alloc_size_ & kFlagFree) != 0; |
| } |
| // Return true if the large object is a zygote object. |
| bool IsZygoteObject() const { |
| return (alloc_size_ & kFlagZygote) != 0; |
| } |
| // Change the object to be a zygote object. |
| void SetZygoteObject() { |
| alloc_size_ |= kFlagZygote; |
| } |
| // Return true if this is a zygote large object. |
| // Finds and returns the next non free allocation info after ourself. |
| AllocationInfo* GetNextInfo() { |
| return this + AlignSize(); |
| } |
| const AllocationInfo* GetNextInfo() const { |
| return this + AlignSize(); |
| } |
| // Returns the previous free allocation info by using the prev_free_ member to figure out |
| // where it is. This is only used for coalescing so we only need to be able to do it if the |
| // previous allocation info is free. |
| AllocationInfo* GetPrevFreeInfo() { |
| DCHECK_NE(prev_free_, 0U); |
| return this - prev_free_; |
| } |
| // Returns the address of the object associated with this allocation info. |
| mirror::Object* GetObjectAddress() { |
| return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this)); |
| } |
| // Return how many units, the large-object alignment value in size, |
| // there are before the free block. |
| size_t GetPrevFree() const { |
| return prev_free_; |
| } |
| // Returns how many free bytes there are before the block. |
| size_t GetPrevFreeBytes() const { |
| return GetPrevFree() * LargeObjectSpace::ObjectAlignment(); |
| } |
| // Update the size of the free block prior to the allocation. |
| void SetPrevFreeBytes(size_t bytes) { |
| DCHECK_ALIGNED_PARAM(bytes, LargeObjectSpace::ObjectAlignment()); |
| prev_free_ = bytes / LargeObjectSpace::ObjectAlignment(); |
| } |
| |
| private: |
| static constexpr uint32_t kFlagFree = 0x80000000; // If block is free. |
| static constexpr uint32_t kFlagZygote = 0x40000000; // If the large object is a zygote object. |
| static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote); // Combined flags for masking. |
| // Contains the size of the previous free block with the large-object alignment value as the |
| // unit. If 0 then the allocation before us is not free. |
| // These variables are undefined in the middle of allocations / free blocks. |
| uint32_t prev_free_; |
| // Allocation size of this object in the large-object alignment value as the unit. |
| uint32_t alloc_size_; |
| }; |
| |
| size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const { |
| DCHECK_GE(info, allocation_info_); |
| DCHECK_LE(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_.End())); |
| return info - allocation_info_; |
| } |
| |
| AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) { |
| return &allocation_info_[GetSlotIndexForAddress(address)]; |
| } |
| |
| const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const { |
| return &allocation_info_[GetSlotIndexForAddress(address)]; |
| } |
| |
| inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a, |
| const AllocationInfo* b) const { |
| if (a->GetPrevFree() < b->GetPrevFree()) return true; |
| if (a->GetPrevFree() > b->GetPrevFree()) return false; |
| if (a->AlignSize() < b->AlignSize()) return true; |
| if (a->AlignSize() > b->AlignSize()) return false; |
| return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b); |
| } |
| |
| FreeListSpace* FreeListSpace::Create(const std::string& name, size_t size) { |
| CHECK_ALIGNED_PARAM(size, ObjectAlignment()); |
| DCHECK_LE(gPageSize, ObjectAlignment()) |
| << "MapAnonymousAligned() should be used if the large-object alignment is larger than the " |
| "runtime page size"; |
| std::string error_msg; |
| MemMap mem_map = MemMap::MapAnonymous(name.c_str(), |
| size, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/true, |
| &error_msg); |
| CHECK(mem_map.IsValid()) << "Failed to allocate large object space mem map: " << error_msg; |
| return new FreeListSpace(name, std::move(mem_map), mem_map.Begin(), mem_map.End()); |
| } |
| |
| FreeListSpace::FreeListSpace(const std::string& name, |
| MemMap&& mem_map, |
| uint8_t* begin, |
| uint8_t* end) |
| : LargeObjectSpace(name, begin, end, "free list space lock"), |
| mem_map_(std::move(mem_map)) { |
| const size_t space_capacity = end - begin; |
| free_end_ = space_capacity; |
| CHECK_ALIGNED_PARAM(space_capacity, ObjectAlignment()); |
| const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / ObjectAlignment()); |
| std::string error_msg; |
| allocation_info_map_ = |
| MemMap::MapAnonymous("large object free list space allocation info map", |
| alloc_info_size, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ false, |
| &error_msg); |
| CHECK(allocation_info_map_.IsValid()) << "Failed to allocate allocation info map" << error_msg; |
| allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_.Begin()); |
| } |
| |
| void FreeListSpace::ClampGrowthLimit(size_t new_capacity) { |
| MutexLock mu(Thread::Current(), lock_); |
| new_capacity = RoundUp(new_capacity, ObjectAlignment()); |
| CHECK_LE(new_capacity, Size()); |
| size_t diff = Size() - new_capacity; |
| // If we don't have enough free-bytes at the end to clamp, then do the best |
| // that we can. |
| if (diff > free_end_) { |
| new_capacity = Size() - free_end_; |
| diff = free_end_; |
| } |
| |
| size_t alloc_info_size = sizeof(AllocationInfo) * (new_capacity / ObjectAlignment()); |
| allocation_info_map_.SetSize(alloc_info_size); |
| mem_map_.SetSize(new_capacity); |
| // We don't need to change anything in 'free_blocks_' as the free block at |
| // the end of the space isn't in there. |
| free_end_ -= diff; |
| end_ -= diff; |
| } |
| |
| FreeListSpace::~FreeListSpace() {} |
| |
| void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { |
| MutexLock mu(Thread::Current(), lock_); |
| const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; |
| AllocationInfo* cur_info = &allocation_info_[0]; |
| const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start); |
| while (cur_info < end_info) { |
| if (!cur_info->IsFree()) { |
| size_t alloc_size = cur_info->ByteSize(); |
| uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info)); |
| uint8_t* byte_end = byte_start + alloc_size; |
| callback(byte_start, byte_end, alloc_size, arg); |
| callback(nullptr, nullptr, 0, arg); |
| } |
| cur_info = cur_info->GetNextInfo(); |
| } |
| CHECK_EQ(cur_info, end_info); |
| } |
| |
| void FreeListSpace::ForEachMemMap(std::function<void(const MemMap&)> func) const { |
| MutexLock mu(Thread::Current(), lock_); |
| func(allocation_info_map_); |
| func(mem_map_); |
| } |
| |
| void FreeListSpace::RemoveFreePrev(AllocationInfo* info) { |
| CHECK_GT(info->GetPrevFree(), 0U); |
| auto it = free_blocks_.lower_bound(info); |
| CHECK(it != free_blocks_.end()); |
| CHECK_EQ(*it, info); |
| free_blocks_.erase(it); |
| } |
| |
| size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) { |
| DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " " |
| << reinterpret_cast<void*>(End()); |
| DCHECK_ALIGNED_PARAM(obj, ObjectAlignment()); |
| AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); |
| DCHECK(!info->IsFree()); |
| const size_t allocation_size = info->ByteSize(); |
| DCHECK_GT(allocation_size, 0U); |
| DCHECK_ALIGNED_PARAM(allocation_size, ObjectAlignment()); |
| |
| // madvise the pages without lock |
| madvise(obj, allocation_size, MADV_DONTNEED); |
| if (kIsDebugBuild) { |
| // Can't disallow reads since we use them to find next chunks during coalescing. |
| CheckedCall(mprotect, __FUNCTION__, obj, allocation_size, PROT_READ); |
| } |
| |
| MutexLock mu(self, lock_); |
| info->SetByteSize(allocation_size, true); // Mark as free. |
| // Look at the next chunk. |
| AllocationInfo* next_info = info->GetNextInfo(); |
| // Calculate the start of the end free block. |
| uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; |
| size_t prev_free_bytes = info->GetPrevFreeBytes(); |
| size_t new_free_size = allocation_size; |
| if (prev_free_bytes != 0) { |
| // Coalesce with previous free chunk. |
| new_free_size += prev_free_bytes; |
| RemoveFreePrev(info); |
| info = info->GetPrevFreeInfo(); |
| // The previous allocation info must not be free since we are supposed to always coalesce. |
| DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free"; |
| } |
| // NOTE: next_info could be pointing right after the allocation_info_map_ |
| // when freeing object in the very end of the space. But that's safe |
| // as we don't dereference it in that case. We only use it to calculate |
| // next_addr using offset within the map. |
| uintptr_t next_addr = GetAddressForAllocationInfo(next_info); |
| if (next_addr >= free_end_start) { |
| // Easy case, the next chunk is the end free region. |
| CHECK_EQ(next_addr, free_end_start); |
| free_end_ += new_free_size; |
| } else { |
| AllocationInfo* new_free_info; |
| if (next_info->IsFree()) { |
| AllocationInfo* next_next_info = next_info->GetNextInfo(); |
| // Next next info can't be free since we always coalesce. |
| DCHECK(!next_next_info->IsFree()); |
| DCHECK_ALIGNED_PARAM(next_next_info->ByteSize(), ObjectAlignment()); |
| new_free_info = next_next_info; |
| new_free_size += next_next_info->GetPrevFreeBytes(); |
| RemoveFreePrev(next_next_info); |
| } else { |
| new_free_info = next_info; |
| } |
| new_free_info->SetPrevFreeBytes(new_free_size); |
| free_blocks_.insert(new_free_info); |
| info->SetByteSize(new_free_size, true); |
| DCHECK_EQ(info->GetNextInfo(), new_free_info); |
| } |
| --num_objects_allocated_; |
| DCHECK_LE(allocation_size, num_bytes_allocated_); |
| num_bytes_allocated_ -= allocation_size; |
| return allocation_size; |
| } |
| |
| size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) { |
| DCHECK(Contains(obj)); |
| AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); |
| DCHECK(!info->IsFree()); |
| size_t alloc_size = info->ByteSize(); |
| if (usable_size != nullptr) { |
| *usable_size = alloc_size; |
| } |
| return alloc_size; |
| } |
| |
| mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, |
| size_t* usable_size, size_t* bytes_tl_bulk_allocated) { |
| MutexLock mu(self, lock_); |
| const size_t allocation_size = RoundUp(num_bytes, ObjectAlignment()); |
| AllocationInfo temp_info; |
| temp_info.SetPrevFreeBytes(allocation_size); |
| temp_info.SetByteSize(0, false); |
| AllocationInfo* new_info; |
| // Find the smallest chunk at least num_bytes in size. |
| auto it = free_blocks_.lower_bound(&temp_info); |
| if (it != free_blocks_.end()) { |
| AllocationInfo* info = *it; |
| free_blocks_.erase(it); |
| // Fit our object in the previous allocation info free space. |
| new_info = info->GetPrevFreeInfo(); |
| // Remove the newly allocated block from the info and update the prev_free_. |
| info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size); |
| if (info->GetPrevFreeBytes() > 0) { |
| AllocationInfo* new_free = info - info->GetPrevFree(); |
| new_free->SetPrevFreeBytes(0); |
| new_free->SetByteSize(info->GetPrevFreeBytes(), true); |
| // If there is remaining space, insert back into the free set. |
| free_blocks_.insert(info); |
| } |
| } else { |
| // Try to steal some memory from the free space at the end of the space. |
| if (LIKELY(free_end_ >= allocation_size)) { |
| // Fit our object at the start of the end free block. |
| new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_); |
| free_end_ -= allocation_size; |
| } else { |
| return nullptr; |
| } |
| } |
| DCHECK(bytes_allocated != nullptr); |
| *bytes_allocated = allocation_size; |
| if (usable_size != nullptr) { |
| *usable_size = allocation_size; |
| } |
| DCHECK(bytes_tl_bulk_allocated != nullptr); |
| *bytes_tl_bulk_allocated = allocation_size; |
| // Need to do these inside of the lock. |
| ++num_objects_allocated_; |
| ++total_objects_allocated_; |
| num_bytes_allocated_ += allocation_size; |
| total_bytes_allocated_ += allocation_size; |
| mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info)); |
| // We always put our object at the start of the free block, there cannot be another free block |
| // before it. |
| if (kIsDebugBuild) { |
| CheckedCall(mprotect, __FUNCTION__, obj, allocation_size, PROT_READ | PROT_WRITE); |
| } |
| new_info->SetPrevFreeBytes(0); |
| new_info->SetByteSize(allocation_size, false); |
| return obj; |
| } |
| |
| void FreeListSpace::Dump(std::ostream& os) const { |
| MutexLock mu(Thread::Current(), lock_); |
| os << GetName() << " -" |
| << " begin: " << reinterpret_cast<void*>(Begin()) |
| << " end: " << reinterpret_cast<void*>(End()) << "\n"; |
| uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; |
| const AllocationInfo* cur_info = |
| GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())); |
| const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start); |
| while (cur_info < end_info) { |
| size_t size = cur_info->ByteSize(); |
| uintptr_t address = GetAddressForAllocationInfo(cur_info); |
| if (cur_info->IsFree()) { |
| os << "Free block at address: " << reinterpret_cast<const void*>(address) |
| << " of length " << size << " bytes\n"; |
| } else { |
| os << "Large object at address: " << reinterpret_cast<const void*>(address) |
| << " of length " << size << " bytes\n"; |
| } |
| cur_info = cur_info->GetNextInfo(); |
| } |
| if (free_end_) { |
| os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start) |
| << " of length " << free_end_ << " bytes\n"; |
| } |
| } |
| |
| bool FreeListSpace::IsZygoteLargeObject([[maybe_unused]] Thread* self, mirror::Object* obj) const { |
| const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); |
| DCHECK(info != nullptr); |
| return info->IsZygoteObject(); |
| } |
| |
| void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self, bool set_mark_bit) { |
| MutexLock mu(self, lock_); |
| uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; |
| for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())), |
| *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info; |
| cur_info = cur_info->GetNextInfo()) { |
| if (!cur_info->IsFree()) { |
| cur_info->SetZygoteObject(); |
| if (set_mark_bit) { |
| ObjPtr<mirror::Object> obj = |
| reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(cur_info)); |
| bool success = obj->AtomicSetMarkBit(0, 1); |
| CHECK(success); |
| } |
| } |
| } |
| } |
| |
| void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) { |
| SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg); |
| space::LargeObjectSpace* space = context->space->AsLargeObjectSpace(); |
| Thread* self = context->self; |
| Locks::heap_bitmap_lock_->AssertExclusiveHeld(self); |
| // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap |
| // the bitmaps as an optimization. |
| if (!context->swap_bitmaps) { |
| accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap(); |
| for (size_t i = 0; i < num_ptrs; ++i) { |
| bitmap->Clear(ptrs[i]); |
| } |
| } |
| context->freed.objects += num_ptrs; |
| context->freed.bytes += space->FreeList(self, num_ptrs, ptrs); |
| } |
| |
| collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) { |
| if (Begin() >= End()) { |
| return collector::ObjectBytePair(0, 0); |
| } |
| accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap(); |
| accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap(); |
| if (swap_bitmaps) { |
| std::swap(live_bitmap, mark_bitmap); |
| } |
| AllocSpace::SweepCallbackContext scc(swap_bitmaps, this); |
| std::pair<uint8_t*, uint8_t*> range = GetBeginEndAtomic(); |
| accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap, |
| reinterpret_cast<uintptr_t>(range.first), |
| reinterpret_cast<uintptr_t>(range.second), |
| SweepCallback, |
| &scc); |
| return scc.freed; |
| } |
| |
| bool LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/, |
| size_t /*failed_alloc_bytes*/) { |
| UNIMPLEMENTED(FATAL); |
| UNREACHABLE(); |
| } |
| |
| std::pair<uint8_t*, uint8_t*> LargeObjectMapSpace::GetBeginEndAtomic() const { |
| MutexLock mu(Thread::Current(), lock_); |
| return std::make_pair(Begin(), End()); |
| } |
| |
| std::pair<uint8_t*, uint8_t*> FreeListSpace::GetBeginEndAtomic() const { |
| MutexLock mu(Thread::Current(), lock_); |
| return std::make_pair(Begin(), End()); |
| } |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |