blob: 3b59ffd758fe8d14e0b8c48b3757610ce32aec8a [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_SPACE_IMAGE_SPACE_H_
#define ART_RUNTIME_GC_SPACE_IMAGE_SPACE_H_
#include "android-base/unique_fd.h"
#include "base/array_ref.h"
#include "gc/accounting/space_bitmap.h"
#include "oat/image.h"
#include "runtime.h"
#include "space.h"
namespace art HIDDEN {
class DexFile;
enum class InstructionSet;
class OatFile;
class OatHeader;
namespace gc {
namespace space {
// An image space is a space backed with a memory mapped image.
class ImageSpace : public MemMapSpace {
public:
SpaceType GetType() const override {
return kSpaceTypeImageSpace;
}
// The separator for boot image location components.
static constexpr char kComponentSeparator = ':';
// The separator for profile filename.
static constexpr char kProfileSeparator = '!';
// Load boot image spaces for specified boot class path, image location, instruction set, etc.
//
// On successful return, the loaded spaces are added to boot_image_spaces (which must be
// empty on entry) and `extra_reservation` is set to the requested reservation located
// after the end of the last loaded oat file.
//
// IMAGE LOCATION
//
// The "image location" is a colon-separated list that specifies one or more
// components by name and may also specify search paths for extensions
// corresponding to the remaining boot class path (BCP) extensions.
//
// The primary boot image can be specified as one of
// <path>/<base-name>
// <base-name>
// and the path of the first BCP component is used for the second form.
// The specification may be followed by one or more profile specifications, where each profile
// specification is one of
// !<profile-path>/<profile-name>
// !<profile-name>
// and the profiles will be used to compile the primary boot image when loading the boot image if
// the on-disk version is not acceptable (either not present or fails validation, presumably
// because it's out of date). The primary boot image is compiled with no dependency.
//
// Named extension specifications must correspond to an expansion of the
// <base-name> with a BCP component (for example boot.art with the BCP
// component name <jar-path>/framework.jar expands to boot-framework.art).
// They can be similarly specified as one of
// <ext-path>/<ext-name>
// <ext-name>
// and must be listed in the order of their corresponding BCP components.
// Similarly, the specification may be followed by one or more profile specifications, where each
// profile specification is one of
// !<profile-path>/<profile-name>
// !<profile-name>
// and the profiles will be used to compile the extension when loading the boot image if the
// on-disk version is not acceptable (either not present or fails validation, presumably because
// it's out of date). The primary boot image (i.e., the first element in "image location") is the
// dependency that each extension is compiled against.
//
// Search paths for remaining extensions can be specified after named
// components as one of
// <search-path>/*
// *
// where the second form means that the path of a particular BCP component
// should be used to search for that component's boot image extension.
//
// The actual filename shall be derived from the specified locations using
// `GetSystemImageFilename()`.
//
// Example image locations:
// /system/framework/boot.art
// - only primary boot image with full path.
// /data/misc/apexdata/com.android.art/dalvik-cache/boot.art!/apex/com.android.art/etc/boot-image.prof!/system/etc/boot-image.prof
// - only primary boot image with full path; if the primary boot image is not found or
// broken, compile it in memory using two specified profile files at the exact paths.
// boot.art:boot-framework.art
// - primary and one extension, use BCP component paths.
// /apex/com.android.art/boot.art:*
// - primary with exact location, search for the rest based on BCP
// component paths.
// boot.art:/system/framework/*
// - primary based on BCP component path, search for extensions in
// /system/framework.
// /apex/com.android.art/boot.art:/system/framework/*:*
// - primary with exact location, search for extensions first in
// /system/framework, then in the corresponding BCP component path.
// /apex/com.android.art/boot.art:*:/system/framework/*
// - primary with exact location, search for extensions first in the
// corresponding BCP component path and then in /system/framework.
// /apex/com.android.art/boot.art:*:boot-framework.jar
// - invalid, named components may not follow search paths.
// boot.art:boot-framework.jar!/system/framework/framework.prof
// - primary and one extension, use BCP component paths; if extension
// is not found or broken compile it in memory using the specified
// profile file from the exact path.
// boot.art:boot-framework.jar:conscrypt.jar!conscrypt.prof
// - primary and two extensions, use BCP component paths; only the
// second extension has a profile file and can be compiled in memory
// when it is not found or broken, using the specified profile file
// in the BCP component path and it is compiled against the primary
// and first extension and only if the first extension is OK.
// boot.art:boot-framework.jar!framework.prof:conscrypt.jar!conscrypt.prof
// - primary and two extensions, use BCP component paths; if any
// extension is not found or broken compile it in memory using
// the specified profile file in the BCP component path, each
// extension is compiled only against the primary boot image.
static bool LoadBootImage(const std::vector<std::string>& boot_class_path,
const std::vector<std::string>& boot_class_path_locations,
ArrayRef<File> boot_class_path_files,
ArrayRef<File> boot_class_path_image_files,
ArrayRef<File> boot_class_path_vdex_files,
ArrayRef<File> boot_class_path_oat_files,
const std::vector<std::string>& image_locations,
const InstructionSet image_isa,
bool relocate,
bool executable,
size_t extra_reservation_size,
bool allow_in_memory_compilation,
const std::string& apex_versions,
/*out*/ std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
/*out*/ MemMap* extra_reservation)
REQUIRES_SHARED(Locks::mutator_lock_);
// Try to open an existing app image space for an oat file,
// using the boot image spaces from the current Runtime.
EXPORT static std::unique_ptr<ImageSpace> CreateFromAppImage(const char* image,
const OatFile* oat_file,
std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_);
// Try to open an existing app image space for an the oat file and given boot image spaces.
static std::unique_ptr<ImageSpace> CreateFromAppImage(
const char* image,
const OatFile* oat_file,
ArrayRef<ImageSpace* const> boot_image_spaces,
std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
// Checks whether we have a primary boot image on the disk.
static bool IsBootClassPathOnDisk(InstructionSet image_isa);
// Give access to the OatFile.
EXPORT const OatFile* GetOatFile() const;
// Releases the OatFile from the ImageSpace so it can be transfer to
// the caller, presumably the OatFileManager.
std::unique_ptr<const OatFile> ReleaseOatFile();
void VerifyImageAllocations()
REQUIRES_SHARED(Locks::mutator_lock_);
const ImageHeader& GetImageHeader() const {
return *reinterpret_cast<ImageHeader*>(Begin());
}
// Actual filename where image was loaded from.
// For example: /system/framework/arm64/boot.art
const std::string GetImageFilename() const {
return GetName();
}
// Symbolic location for image.
// For example: /system/framework/boot.art
const std::string GetImageLocation() const {
return image_location_;
}
const std::vector<std::string>& GetProfileFiles() const { return profile_files_; }
accounting::ContinuousSpaceBitmap* GetLiveBitmap() override {
return &live_bitmap_;
}
accounting::ContinuousSpaceBitmap* GetMarkBitmap() override {
// ImageSpaces have the same bitmap for both live and marked. This helps reduce the number of
// special cases to test against.
return &live_bitmap_;
}
// Compute the number of components in the image (contributing jar files).
size_t GetComponentCount() const {
return GetImageHeader().GetComponentCount();
}
void Dump(std::ostream& os) const override;
// Sweeping image spaces is a NOP.
void Sweep(bool /* swap_bitmaps */, size_t* /* freed_objects */, size_t* /* freed_bytes */) {
}
bool CanMoveObjects() const override {
return false;
}
// Returns the filename of the image corresponding to
// requested image_location, or the filename where a new image
// should be written if one doesn't exist. Looks for a generated
// image in the specified location.
//
// Returns true if an image was found, false otherwise.
static bool FindImageFilename(const char* image_location,
InstructionSet image_isa,
std::string* system_location,
bool* has_system);
// The leading character in an image checksum part of boot class path checksums.
static constexpr char kImageChecksumPrefix = 'i';
// The leading character in a dex file checksum part of boot class path checksums.
static constexpr char kDexFileChecksumPrefix = 'd';
// Returns the checksums for the boot image, extensions and extra boot class path dex files,
// based on the image spaces and boot class path dex files loaded in memory.
// The `image_spaces` must correspond to the head of the `boot_class_path`.
EXPORT static std::string GetBootClassPathChecksums(
ArrayRef<ImageSpace* const> image_spaces, ArrayRef<const DexFile* const> boot_class_path);
// Returns the total number of components (jar files) associated with the image spaces.
static size_t GetNumberOfComponents(ArrayRef<gc::space::ImageSpace* const> image_spaces);
// Returns whether the oat checksums and boot class path description are valid
// for the given boot image spaces and boot class path. Used for boot image extensions.
static bool VerifyBootClassPathChecksums(
std::string_view oat_checksums,
std::string_view oat_boot_class_path,
ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,
ArrayRef<const std::string> boot_class_path_locations,
ArrayRef<const std::string> boot_class_path,
/*out*/std::string* error_msg);
// Expand a single image location to multi-image locations based on the dex locations.
EXPORT static std::vector<std::string> ExpandMultiImageLocations(
ArrayRef<const std::string> dex_locations,
const std::string& image_location,
bool boot_image_extension = false);
// Returns true if the APEX versions in the OAT header match the given APEX versions.
static bool ValidateApexVersions(const OatHeader& oat_header,
const std::string& apex_versions,
const std::string& file_location,
std::string* error_msg);
// Returns true if the dex checksums in the given oat file match the
// checksums of the original dex files on disk. This is intended to be used
// to validate the boot image oat file, which may contain dex entries from
// multiple different (possibly multidex) dex files on disk. Prefer the
// OatFileAssistant for validating regular app oat files because the
// OatFileAssistant caches dex checksums that are reused to check both the
// oat and odex file.
//
// This function is exposed for testing purposes.
//
// Calling this function requires an active runtime.
static bool ValidateOatFile(const OatFile& oat_file, std::string* error_msg);
// Same as above, but allows to use `dex_filenames` and `dex_fds` to find the dex files instead of
// using the dex filenames in the header of the oat file, and also takes `apex_versions` from the
// input. This overload is useful when the actual dex filenames are different from what's in the
// header (e.g., when we run dex2oat on host), when the runtime can only access files through FDs
// (e.g., when we run dex2oat on target in a restricted SELinux domain), or when there is no
// active runtime.
//
// Calling this function does not require an active runtime.
static bool ValidateOatFile(const OatFile& oat_file,
std::string* error_msg,
ArrayRef<const std::string> dex_filenames,
ArrayRef<File> dex_files,
const std::string& apex_versions);
// Return the end of the image which includes non-heap objects such as ArtMethods and ArtFields.
uint8_t* GetImageEnd() const {
return Begin() + GetImageHeader().GetImageSize();
}
void DumpSections(std::ostream& os) const;
// De-initialize the image-space by undoing the effects in Init().
virtual ~ImageSpace();
void ReleaseMetadata() REQUIRES_SHARED(Locks::mutator_lock_);
static void AppendImageChecksum(uint32_t component_count,
uint32_t checksum,
/*inout*/ std::string* checksums);
static size_t CheckAndCountBCPComponents(std::string_view oat_boot_class_path,
ArrayRef<const std::string> boot_class_path,
/*out*/ std::string* error_msg);
// Helper class to find the primary boot image and boot image extensions
// and determine the boot image layout.
class BootImageLayout {
public:
// Description of a "chunk" of the boot image, i.e. either primary boot image
// or a boot image extension, used in conjunction with the boot class path to
// load boot image components.
struct ImageChunk {
std::string base_location;
std::string base_filename;
std::vector<std::string> profile_files;
size_t start_index;
uint32_t component_count;
uint32_t image_space_count;
uint32_t reservation_size;
uint32_t checksum;
uint32_t boot_image_component_count;
uint32_t boot_image_checksum;
uint32_t boot_image_size;
// The following file descriptors hold the memfd files for extensions compiled
// in memory and described by the above fields. We want to use them to mmap()
// the contents and then close them while treating the ImageChunk description
// as immutable (const), so make these fields explicitly mutable.
mutable android::base::unique_fd art_fd;
mutable android::base::unique_fd vdex_fd;
mutable android::base::unique_fd oat_fd;
};
// Creates an instance.
// `apex_versions` is created from `Runtime::GetApexVersions` and must outlive this instance.
BootImageLayout(ArrayRef<const std::string> image_locations,
ArrayRef<const std::string> boot_class_path,
ArrayRef<const std::string> boot_class_path_locations,
ArrayRef<File> boot_class_path_files,
ArrayRef<File> boot_class_path_image_files,
ArrayRef<File> boot_class_path_vdex_files,
ArrayRef<File> boot_class_path_oat_files,
const std::string* apex_versions)
: image_locations_(image_locations),
boot_class_path_(boot_class_path),
boot_class_path_locations_(boot_class_path_locations),
boot_class_path_files_(boot_class_path_files),
boot_class_path_image_files_(boot_class_path_image_files),
boot_class_path_vdex_files_(boot_class_path_vdex_files),
boot_class_path_oat_files_(boot_class_path_oat_files),
apex_versions_(*apex_versions) {}
std::string GetPrimaryImageLocation();
bool LoadFromSystem(InstructionSet image_isa,
bool allow_in_memory_compilation,
/*out*/ std::string* error_msg);
ArrayRef<const ImageChunk> GetChunks() const { return ArrayRef<const ImageChunk>(chunks_); }
uint32_t GetBaseAddress() const { return base_address_; }
size_t GetNextBcpIndex() const { return next_bcp_index_; }
size_t GetTotalComponentCount() const { return total_component_count_; }
size_t GetTotalReservationSize() const { return total_reservation_size_; }
private:
struct NamedComponentLocation {
std::string base_location;
size_t bcp_index;
std::vector<std::string> profile_filenames;
};
std::string ExpandLocationImpl(const std::string& location,
size_t bcp_index,
bool boot_image_extension) {
std::vector<std::string> expanded = ExpandMultiImageLocations(
ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, 1u),
location,
boot_image_extension);
DCHECK_EQ(expanded.size(), 1u);
return expanded[0];
}
std::string ExpandLocation(const std::string& location, size_t bcp_index) {
if (bcp_index == 0u) {
DCHECK_EQ(location,
ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/false));
return location;
} else {
return ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/true);
}
}
std::string GetBcpComponentPath(size_t bcp_index) {
DCHECK_LE(bcp_index, boot_class_path_.size());
size_t bcp_slash_pos = boot_class_path_[bcp_index].rfind('/');
DCHECK_NE(bcp_slash_pos, std::string::npos);
return boot_class_path_[bcp_index].substr(0u, bcp_slash_pos + 1u);
}
bool VerifyImageLocation(ArrayRef<const std::string> components,
/*out*/ size_t* named_components_count,
/*out*/ std::string* error_msg);
bool MatchNamedComponents(
ArrayRef<const std::string> named_components,
/*out*/ std::vector<NamedComponentLocation>* named_component_locations,
/*out*/ std::string* error_msg);
bool ValidateBootImageChecksum(const char* file_description,
const ImageHeader& header,
/*out*/ std::string* error_msg);
bool ValidateHeader(const ImageHeader& header,
size_t bcp_index,
const char* file_description,
/*out*/ std::string* error_msg);
bool ValidateOatFile(const std::string& base_location,
const std::string& base_filename,
size_t bcp_index,
size_t component_count,
/*out*/ std::string* error_msg);
bool ReadHeader(const std::string& base_location,
const std::string& base_filename,
size_t bcp_index,
/*out*/ std::string* error_msg);
// Compiles a consecutive subsequence of bootclasspath dex files, whose contents are included in
// the profiles specified by `profile_filenames`, starting from `bcp_index`.
bool CompileBootclasspathElements(const std::string& base_location,
const std::string& base_filename,
size_t bcp_index,
const std::vector<std::string>& profile_filenames,
ArrayRef<const std::string> dependencies,
/*out*/ std::string* error_msg);
// Returns true if a least one chuck has been loaded.
template <typename FilenameFn>
bool Load(FilenameFn&& filename_fn,
bool allow_in_memory_compilation,
/*out*/ std::string* error_msg);
ArrayRef<const std::string> image_locations_;
ArrayRef<const std::string> boot_class_path_;
ArrayRef<const std::string> boot_class_path_locations_;
ArrayRef<File> boot_class_path_files_;
ArrayRef<File> boot_class_path_image_files_;
ArrayRef<File> boot_class_path_vdex_files_;
ArrayRef<File> boot_class_path_oat_files_;
std::vector<ImageChunk> chunks_;
uint32_t base_address_ = 0u;
size_t next_bcp_index_ = 0u;
size_t total_component_count_ = 0u;
size_t total_reservation_size_ = 0u;
const std::string& apex_versions_;
};
protected:
// Tries to initialize an ImageSpace from the given image path, returning null on error.
//
// If validate_oat_file is false (for /system), do not verify that image's OatFile is up-to-date
// relative to its DexFile inputs. Otherwise, validate `oat_file` and abandon it if the validation
// fails. If the oat_file is null, it uses the oat file from the image.
static std::unique_ptr<ImageSpace> Init(const char* image_filename,
const char* image_location,
bool validate_oat_file,
const OatFile* oat_file,
std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_);
static Atomic<uint32_t> bitmap_index_;
accounting::ContinuousSpaceBitmap live_bitmap_;
ImageSpace(const std::string& name,
const char* image_location,
const std::vector<std::string>& profile_files,
MemMap&& mem_map,
accounting::ContinuousSpaceBitmap&& live_bitmap,
uint8_t* end);
// The OatFile associated with the image during early startup to
// reserve space contiguous to the image. It is later released to
// the ClassLinker during it's initialization.
std::unique_ptr<OatFile> oat_file_;
// There are times when we need to find the boot image oat file. As
// we release ownership during startup, keep a non-owned reference.
const OatFile* oat_file_non_owned_;
const std::string image_location_;
const std::vector<std::string> profile_files_;
friend class Space;
private:
class BootImageLoader;
template <typename ReferenceVisitor>
class ClassTableVisitor;
class RemapInternedStringsVisitor;
class Loader;
template <typename PatchObjectVisitor>
class PatchArtFieldVisitor;
template <PointerSize kPointerSize, typename PatchObjectVisitor, typename PatchCodeVisitor>
class PatchArtMethodVisitor;
template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
class PatchObjectVisitor;
DISALLOW_COPY_AND_ASSIGN(ImageSpace);
};
} // namespace space
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_SPACE_IMAGE_SPACE_H_