| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_LIBARTBASE_BASE_STL_UTIL_H_ |
| #define ART_LIBARTBASE_BASE_STL_UTIL_H_ |
| |
| #include <algorithm> |
| #include <iterator> |
| #include <set> |
| #include <sstream> |
| |
| #include <android-base/logging.h> |
| |
| #include "base/iteration_range.h" |
| |
| namespace art { |
| |
| // STLDeleteContainerPointers() |
| // For a range within a container of pointers, calls delete |
| // (non-array version) on these pointers. |
| // NOTE: for these three functions, we could just implement a DeleteObject |
| // functor and then call for_each() on the range and functor, but this |
| // requires us to pull in all of algorithm.h, which seems expensive. |
| // For hash_[multi]set, it is important that this deletes behind the iterator |
| // because the hash_set may call the hash function on the iterator when it is |
| // advanced, which could result in the hash function trying to deference a |
| // stale pointer. |
| template <class ForwardIterator> |
| void STLDeleteContainerPointers(ForwardIterator begin, |
| ForwardIterator end) { |
| while (begin != end) { |
| ForwardIterator temp = begin; |
| ++begin; |
| delete *temp; |
| } |
| } |
| |
| // STLDeleteElements() deletes all the elements in an STL container and clears |
| // the container. This function is suitable for use with a vector, set, |
| // hash_set, or any other STL container which defines sensible begin(), end(), |
| // and clear() methods. |
| // |
| // If container is null, this function is a no-op. |
| // |
| // As an alternative to calling STLDeleteElements() directly, consider |
| // using a container of std::unique_ptr, which ensures that your container's |
| // elements are deleted when the container goes out of scope. |
| template <class T> |
| void STLDeleteElements(T *container) { |
| if (container != nullptr) { |
| STLDeleteContainerPointers(container->begin(), container->end()); |
| container->clear(); |
| } |
| } |
| |
| // Given an STL container consisting of (key, value) pairs, STLDeleteValues |
| // deletes all the "value" components and clears the container. Does nothing |
| // in the case it's given a null pointer. |
| template <class T> |
| void STLDeleteValues(T *v) { |
| if (v != nullptr) { |
| for (typename T::iterator i = v->begin(); i != v->end(); ++i) { |
| delete i->second; |
| } |
| v->clear(); |
| } |
| } |
| |
| // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. |
| struct FreeDelete { |
| // NOTE: Deleting a const object is valid but free() takes a non-const pointer. |
| void operator()(const void* ptr) const { |
| free(const_cast<void*>(ptr)); |
| } |
| }; |
| |
| // Alias for std::unique_ptr<> that uses the C function free() to delete objects. |
| template <typename T> |
| using UniqueCPtr = std::unique_ptr<T, FreeDelete>; |
| |
| // Find index of the first element with the specified value known to be in the container. |
| template <typename Container, typename T> |
| size_t IndexOfElement(const Container& container, const T& value) { |
| auto it = std::find(container.begin(), container.end(), value); |
| DCHECK(it != container.end()); // Must exist. |
| return std::distance(container.begin(), it); |
| } |
| |
| // Remove the first element with the specified value known to be in the container. |
| template <typename Container, typename T> |
| void RemoveElement(Container& container, const T& value) { |
| auto it = std::find(container.begin(), container.end(), value); |
| DCHECK(it != container.end()); // Must exist. |
| container.erase(it); |
| } |
| |
| // Replace the first element with the specified old_value known to be in the container. |
| template <typename Container, typename T> |
| void ReplaceElement(Container& container, const T& old_value, const T& new_value) { |
| auto it = std::find(container.begin(), container.end(), old_value); |
| DCHECK(it != container.end()); // Must exist. |
| *it = new_value; |
| } |
| |
| // Search for an element with the specified value and return true if it was found, false otherwise. |
| template <typename Container, typename T> |
| bool ContainsElement(const Container& container, const T& value, size_t start_pos = 0u) { |
| DCHECK_LE(start_pos, container.size()); |
| auto start = container.begin(); |
| std::advance(start, start_pos); |
| auto it = std::find(start, container.end(), value); |
| return it != container.end(); |
| } |
| |
| template <typename T> |
| bool ContainsElement(const std::set<T>& container, const T& value) { |
| return container.count(value) != 0u; |
| } |
| |
| // 32-bit FNV-1a hash function suitable for std::unordered_map. |
| // It can be used with any container which works with range-based for loop. |
| // See http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function |
| template <typename Vector> |
| struct FNVHash { |
| size_t operator()(const Vector& vector) const { |
| uint32_t hash = 2166136261u; |
| for (const auto& value : vector) { |
| hash = (hash ^ value) * 16777619u; |
| } |
| return hash; |
| } |
| }; |
| |
| // Returns a copy of the passed vector that doesn't memory-own its entries. |
| template <typename T> |
| static inline std::vector<T*> MakeNonOwningPointerVector(const std::vector<std::unique_ptr<T>>& src) { |
| std::vector<T*> result; |
| result.reserve(src.size()); |
| for (const std::unique_ptr<T>& t : src) { |
| result.push_back(t.get()); |
| } |
| return result; |
| } |
| |
| template <typename IterLeft, typename IterRight> |
| class ZipLeftIter { |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = std::pair<typename IterLeft::value_type, typename IterRight::value_type>; |
| using difference_type = ptrdiff_t; |
| using pointer = void; |
| using reference = void; |
| |
| ZipLeftIter(IterLeft left, IterRight right) : left_iter_(left), right_iter_(right) {} |
| ZipLeftIter<IterLeft, IterRight>& operator++() { |
| ++left_iter_; |
| ++right_iter_; |
| return *this; |
| } |
| ZipLeftIter<IterLeft, IterRight> operator++(int) { |
| ZipLeftIter<IterLeft, IterRight> ret(left_iter_, right_iter_); |
| ++(*this); |
| return ret; |
| } |
| bool operator==(const ZipLeftIter<IterLeft, IterRight>& other) const { |
| return left_iter_ == other.left_iter_; |
| } |
| bool operator!=(const ZipLeftIter<IterLeft, IterRight>& other) const { |
| return !(*this == other); |
| } |
| std::pair<typename IterLeft::value_type, typename IterRight::value_type> operator*() const { |
| return std::make_pair(*left_iter_, *right_iter_); |
| } |
| |
| private: |
| IterLeft left_iter_; |
| IterRight right_iter_; |
| }; |
| |
| class CountIter { |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = size_t; |
| using difference_type = size_t; |
| using pointer = void; |
| using reference = void; |
| |
| CountIter() : count_(0) {} |
| explicit CountIter(size_t count) : count_(count) {} |
| CountIter& operator++() { |
| ++count_; |
| return *this; |
| } |
| CountIter operator++(int) { |
| size_t ret = count_; |
| ++count_; |
| return CountIter(ret); |
| } |
| bool operator==(const CountIter& other) const { |
| return count_ == other.count_; |
| } |
| bool operator!=(const CountIter& other) const { |
| return !(*this == other); |
| } |
| size_t operator*() const { |
| return count_; |
| } |
| |
| private: |
| size_t count_; |
| }; |
| |
| // Make an iteration range that returns a pair of the element and the index of the element. |
| template <typename Iter> |
| static inline IterationRange<ZipLeftIter<Iter, CountIter>> ZipCount(IterationRange<Iter> iter) { |
| return IterationRange(ZipLeftIter(iter.begin(), CountIter(0)), |
| ZipLeftIter(iter.end(), CountIter(-1))); |
| } |
| |
| // Make an iteration range that returns a pair of the outputs of two iterators. Stops when the first |
| // (left) one is exhausted. The left iterator must be at least as long as the right one. |
| template <typename IterLeft, typename IterRight> |
| static inline IterationRange<ZipLeftIter<IterLeft, IterRight>> ZipLeft( |
| IterationRange<IterLeft> iter_left, IterationRange<IterRight> iter_right) { |
| return IterationRange(ZipLeftIter(iter_left.begin(), iter_right.begin()), |
| ZipLeftIter(iter_left.end(), iter_right.end())); |
| } |
| |
| static inline IterationRange<CountIter> Range(size_t start, size_t end) { |
| return IterationRange(CountIter(start), CountIter(end)); |
| } |
| |
| static inline IterationRange<CountIter> Range(size_t end) { |
| return Range(0, end); |
| } |
| |
| template <typename RealIter, typename Filter> |
| struct FilterIterator { |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = typename std::iterator_traits<RealIter>::value_type; |
| using difference_type = ptrdiff_t; |
| using pointer = typename std::iterator_traits<RealIter>::pointer; |
| using reference = typename std::iterator_traits<RealIter>::reference; |
| |
| FilterIterator(RealIter rl, |
| Filter cond, |
| std::optional<RealIter> end = std::nullopt) |
| : real_iter_(rl), cond_(cond), end_(end) { |
| DCHECK(std::make_optional(rl) == end_ || cond_(*real_iter_)); |
| } |
| |
| FilterIterator<RealIter, Filter>& operator++() { |
| DCHECK(std::make_optional(real_iter_) != end_); |
| do { |
| if (std::make_optional(++real_iter_) == end_) { |
| break; |
| } |
| } while (!cond_(*real_iter_)); |
| return *this; |
| } |
| FilterIterator<RealIter, Filter> operator++(int) { |
| FilterIterator<RealIter, Filter> ret(real_iter_, cond_, end_); |
| ++(*this); |
| return ret; |
| } |
| bool operator==(const FilterIterator<RealIter, Filter>& other) const { |
| return real_iter_ == other.real_iter_; |
| } |
| bool operator!=(const FilterIterator<RealIter, Filter>& other) const { |
| return !(*this == other); |
| } |
| typename RealIter::value_type operator*() const { |
| return *real_iter_; |
| } |
| |
| private: |
| RealIter real_iter_; |
| Filter cond_; |
| std::optional<RealIter> end_; |
| }; |
| |
| template <typename BaseRange, typename FilterT> |
| static inline auto Filter(BaseRange&& range, FilterT cond) { |
| auto end = range.end(); |
| auto start = std::find_if(range.begin(), end, cond); |
| return MakeIterationRange(FilterIterator(start, cond, std::make_optional(end)), |
| FilterIterator(end, cond, std::make_optional(end))); |
| } |
| |
| template <typename Val> |
| struct NonNullFilter { |
| public: |
| static_assert(std::is_pointer_v<Val>, "Must be pointer type!"); |
| constexpr bool operator()(Val v) const { |
| return v != nullptr; |
| } |
| }; |
| |
| template <typename InnerIter> |
| using FilterNull = FilterIterator<InnerIter, NonNullFilter<typename InnerIter::value_type>>; |
| |
| template <typename InnerIter> |
| static inline IterationRange<FilterNull<InnerIter>> FilterOutNull(IterationRange<InnerIter> inner) { |
| return Filter(inner, NonNullFilter<typename InnerIter::value_type>()); |
| } |
| |
| template <typename Val> |
| struct SafePrinter { |
| const Val* val_; |
| }; |
| |
| template<typename Val> |
| std::ostream& operator<<(std::ostream& os, const SafePrinter<Val>& v) { |
| if (v.val_ == nullptr) { |
| return os << "NULL"; |
| } else { |
| return os << *v.val_; |
| } |
| } |
| |
| template<typename Val> |
| SafePrinter<Val> SafePrint(const Val* v) { |
| return SafePrinter<Val>{v}; |
| } |
| |
| // Helper struct for iterating a split-string without allocation. |
| struct SplitStringIter { |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = std::string_view; |
| using difference_type = ptrdiff_t; |
| using pointer = void; |
| using reference = void; |
| |
| // Direct iterator constructor. The iteration state is only the current index. |
| // We use that with the split char and the full string to get the current and |
| // next segment. |
| SplitStringIter(size_t index, char split, std::string_view sv) |
| : cur_index_(index), split_on_(split), sv_(sv) {} |
| SplitStringIter(const SplitStringIter&) = default; |
| SplitStringIter(SplitStringIter&&) = default; |
| SplitStringIter& operator=(SplitStringIter&&) = default; |
| SplitStringIter& operator=(const SplitStringIter&) = default; |
| |
| SplitStringIter& operator++() { |
| size_t nxt = sv_.find(split_on_, cur_index_); |
| if (nxt == std::string_view::npos) { |
| cur_index_ = std::string_view::npos; |
| } else { |
| cur_index_ = nxt + 1; |
| } |
| return *this; |
| } |
| |
| SplitStringIter operator++(int) { |
| SplitStringIter ret(cur_index_, split_on_, sv_); |
| ++(*this); |
| return ret; |
| } |
| |
| bool operator==(const SplitStringIter& other) const { |
| return sv_ == other.sv_ && split_on_ == other.split_on_ && cur_index_== other.cur_index_; |
| } |
| |
| bool operator!=(const SplitStringIter& other) const { |
| return !(*this == other); |
| } |
| |
| typename std::string_view operator*() const { |
| return sv_.substr(cur_index_, sv_.substr(cur_index_).find(split_on_)); |
| } |
| |
| private: |
| size_t cur_index_; |
| char split_on_; |
| std::string_view sv_; |
| }; |
| |
| // Create an iteration range over the string 'sv' split at each 'target' occurrence. |
| // Eg: SplitString(":foo::bar") -> ["", "foo", "", "bar"] |
| inline IterationRange<SplitStringIter> SplitString(std::string_view sv, char target) { |
| return MakeIterationRange(SplitStringIter(0, target, sv), |
| SplitStringIter(std::string_view::npos, target, sv)); |
| } |
| |
| } // namespace art |
| |
| #endif // ART_LIBARTBASE_BASE_STL_UTIL_H_ |