blob: 824319b29995b3b427ea6c311b76854926aea52f [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compiler_driver.h"
#include <unistd.h>
#ifndef __APPLE__
#include <malloc.h> // For mallinfo
#endif
#include <string_view>
#include <vector>
#include "android-base/logging.h"
#include "android-base/strings.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/arena_allocator.h"
#include "base/array_ref.h"
#include "base/bit_vector.h"
#include "base/enums.h"
#include "base/hash_set.h"
#include "base/logging.h" // For VLOG
#include "base/stl_util.h"
#include "base/string_view_cpp20.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/timing_logger.h"
#include "class_linker-inl.h"
#include "compiled_method-inl.h"
#include "compiler.h"
#include "compiler_callbacks.h"
#include "compiler_driver-inl.h"
#include "dex/class_accessor-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_annotations.h"
#include "dex/dex_instruction-inl.h"
#include "dex/verification_results.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/space/image_space.h"
#include "gc/space/space.h"
#include "handle_scope-inl.h"
#include "intrinsics_enum.h"
#include "intrinsics_list.h"
#include "jni/jni_internal.h"
#include "linker/linker_patch.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/throwable.h"
#include "oat/aot_class_linker.h"
#include "object_lock.h"
#include "profile/profile_compilation_info.h"
#include "runtime.h"
#include "runtime_intrinsics.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "thread_list.h"
#include "thread_pool.h"
#include "trampolines/trampoline_compiler.h"
#include "transaction.h"
#include "utils/atomic_dex_ref_map-inl.h"
#include "utils/swap_space.h"
#include "vdex_file.h"
#include "verifier/class_verifier.h"
#include "verifier/verifier_deps.h"
#include "verifier/verifier_enums.h"
#include "well_known_classes-inl.h"
namespace art {
static constexpr bool kTimeCompileMethod = !kIsDebugBuild;
// Print additional info during profile guided compilation.
static constexpr bool kDebugProfileGuidedCompilation = false;
// Max encoded fields allowed for initializing app image. Hardcode the number for now
// because 5000 should be large enough.
static constexpr uint32_t kMaxEncodedFields = 5000;
static double Percentage(size_t x, size_t y) {
return 100.0 * (static_cast<double>(x)) / (static_cast<double>(x + y));
}
static void DumpStat(size_t x, size_t y, const char* str) {
if (x == 0 && y == 0) {
return;
}
LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases";
}
class CompilerDriver::AOTCompilationStats {
public:
AOTCompilationStats()
: stats_lock_("AOT compilation statistics lock") {}
void Dump() {
DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved");
DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_,
"static fields resolved");
DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_,
"static fields local to a class");
DumpStat(safe_casts_, not_safe_casts_, "check-casts removed based on type information");
// Note, the code below subtracts the stat value so that when added to the stat value we have
// 100% of samples. TODO: clean this up.
DumpStat(type_based_devirtualization_,
resolved_methods_[kVirtual] + unresolved_methods_[kVirtual] +
resolved_methods_[kInterface] + unresolved_methods_[kInterface] -
type_based_devirtualization_,
"virtual/interface calls made direct based on type information");
const size_t total = std::accumulate(
class_status_count_,
class_status_count_ + static_cast<size_t>(ClassStatus::kLast) + 1,
0u);
for (size_t i = 0; i <= static_cast<size_t>(ClassStatus::kLast); ++i) {
std::ostringstream oss;
oss << "classes with status " << static_cast<ClassStatus>(i);
DumpStat(class_status_count_[i], total - class_status_count_[i], oss.str().c_str());
}
for (size_t i = 0; i <= kMaxInvokeType; i++) {
std::ostringstream oss;
oss << static_cast<InvokeType>(i) << " methods were AOT resolved";
DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str());
if (virtual_made_direct_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " methods made direct";
DumpStat(virtual_made_direct_[i],
resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i],
oss2.str().c_str());
}
if (direct_calls_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls are direct into boot";
DumpStat(direct_calls_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i],
oss2.str().c_str());
}
if (direct_methods_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls have methods in boot";
DumpStat(direct_methods_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i],
oss2.str().c_str());
}
}
}
// Allow lossy statistics in non-debug builds.
#ifndef NDEBUG
#define STATS_LOCK() MutexLock mu(Thread::Current(), stats_lock_)
#else
#define STATS_LOCK()
#endif
void ResolvedInstanceField() REQUIRES(!stats_lock_) {
STATS_LOCK();
resolved_instance_fields_++;
}
void UnresolvedInstanceField() REQUIRES(!stats_lock_) {
STATS_LOCK();
unresolved_instance_fields_++;
}
void ResolvedLocalStaticField() REQUIRES(!stats_lock_) {
STATS_LOCK();
resolved_local_static_fields_++;
}
void ResolvedStaticField() REQUIRES(!stats_lock_) {
STATS_LOCK();
resolved_static_fields_++;
}
void UnresolvedStaticField() REQUIRES(!stats_lock_) {
STATS_LOCK();
unresolved_static_fields_++;
}
// Indicate that type information from the verifier led to devirtualization.
void PreciseTypeDevirtualization() REQUIRES(!stats_lock_) {
STATS_LOCK();
type_based_devirtualization_++;
}
// A check-cast could be eliminated due to verifier type analysis.
void SafeCast() REQUIRES(!stats_lock_) {
STATS_LOCK();
safe_casts_++;
}
// A check-cast couldn't be eliminated due to verifier type analysis.
void NotASafeCast() REQUIRES(!stats_lock_) {
STATS_LOCK();
not_safe_casts_++;
}
// Register a class status.
void AddClassStatus(ClassStatus status) REQUIRES(!stats_lock_) {
STATS_LOCK();
++class_status_count_[static_cast<size_t>(status)];
}
private:
Mutex stats_lock_;
size_t resolved_instance_fields_ = 0u;
size_t unresolved_instance_fields_ = 0u;
size_t resolved_local_static_fields_ = 0u;
size_t resolved_static_fields_ = 0u;
size_t unresolved_static_fields_ = 0u;
// Type based devirtualization for invoke interface and virtual.
size_t type_based_devirtualization_ = 0u;
size_t resolved_methods_[kMaxInvokeType + 1] = {};
size_t unresolved_methods_[kMaxInvokeType + 1] = {};
size_t virtual_made_direct_[kMaxInvokeType + 1] = {};
size_t direct_calls_to_boot_[kMaxInvokeType + 1] = {};
size_t direct_methods_to_boot_[kMaxInvokeType + 1] = {};
size_t safe_casts_ = 0u;
size_t not_safe_casts_ = 0u;
size_t class_status_count_[static_cast<size_t>(ClassStatus::kLast) + 1] = {};
DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats);
};
CompilerDriver::CompilerDriver(
const CompilerOptions* compiler_options,
const VerificationResults* verification_results,
Compiler::Kind compiler_kind,
size_t thread_count,
int swap_fd)
: compiler_options_(compiler_options),
verification_results_(verification_results),
compiler_(),
compiler_kind_(compiler_kind),
number_of_soft_verifier_failures_(0),
had_hard_verifier_failure_(false),
parallel_thread_count_(thread_count),
stats_(new AOTCompilationStats),
compiled_method_storage_(swap_fd),
max_arena_alloc_(0) {
DCHECK(compiler_options_ != nullptr);
compiled_method_storage_.SetDedupeEnabled(compiler_options_->DeduplicateCode());
compiler_.reset(Compiler::Create(*compiler_options, &compiled_method_storage_, compiler_kind));
}
CompilerDriver::~CompilerDriver() {
compiled_methods_.Visit(
[this]([[maybe_unused]] const DexFileReference& ref, CompiledMethod* method) {
if (method != nullptr) {
CompiledMethod::ReleaseSwapAllocatedCompiledMethod(GetCompiledMethodStorage(), method);
}
});
}
#define CREATE_TRAMPOLINE(type, abi, offset) \
if (Is64BitInstructionSet(GetCompilerOptions().GetInstructionSet())) { \
return CreateTrampoline64(GetCompilerOptions().GetInstructionSet(), \
abi, \
type ## _ENTRYPOINT_OFFSET(PointerSize::k64, offset)); \
} else { \
return CreateTrampoline32(GetCompilerOptions().GetInstructionSet(), \
abi, \
type ## _ENTRYPOINT_OFFSET(PointerSize::k32, offset)); \
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateJniDlsymLookupTrampoline() const {
CREATE_TRAMPOLINE(JNI, kJniAbi, pDlsymLookup)
}
std::unique_ptr<const std::vector<uint8_t>>
CompilerDriver::CreateJniDlsymLookupCriticalTrampoline() const {
// @CriticalNative calls do not have the `JNIEnv*` parameter, so this trampoline uses the
// architecture-dependent access to `Thread*` using the managed code ABI, i.e. `kQuickAbi`.
CREATE_TRAMPOLINE(JNI, kQuickAbi, pDlsymLookupCritical)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickGenericJniTrampoline()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickGenericJniTrampoline)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickImtConflictTrampoline()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickImtConflictTrampoline)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickResolutionTrampoline()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickResolutionTrampoline)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickToInterpreterBridge()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateNterpTrampoline()
const {
// We use QuickToInterpreterBridge to not waste one word in the Thread object.
// The Nterp trampoline gets replaced with the nterp entrypoint when loading
// an image.
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge)
}
#undef CREATE_TRAMPOLINE
void CompilerDriver::CompileAll(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
DCHECK(!Runtime::Current()->IsStarted());
CheckThreadPools();
// Compile:
// 1) Compile all classes and methods enabled for compilation. May fall back to dex-to-dex
// compilation.
if (GetCompilerOptions().IsAnyCompilationEnabled()) {
Compile(class_loader, dex_files, timings);
}
if (GetCompilerOptions().GetDumpStats()) {
stats_->Dump();
}
}
// Does the runtime for the InstructionSet provide an implementation returned by
// GetQuickGenericJniStub allowing down calls that aren't compiled using a JNI compiler?
static bool InstructionSetHasGenericJniStub(InstructionSet isa) {
switch (isa) {
case InstructionSet::kArm:
case InstructionSet::kArm64:
case InstructionSet::kThumb2:
case InstructionSet::kX86:
case InstructionSet::kX86_64: return true;
default: return false;
}
}
template <typename CompileFn>
static void CompileMethodHarness(
Thread* self,
CompilerDriver* driver,
const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache,
CompileFn compile_fn) {
DCHECK(driver != nullptr);
CompiledMethod* compiled_method;
uint64_t start_ns = kTimeCompileMethod ? NanoTime() : 0;
MethodReference method_ref(&dex_file, method_idx);
compiled_method = compile_fn(self,
driver,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
dex_cache);
if (kTimeCompileMethod) {
uint64_t duration_ns = NanoTime() - start_ns;
if (duration_ns > MsToNs(driver->GetCompiler()->GetMaximumCompilationTimeBeforeWarning())) {
LOG(WARNING) << "Compilation of " << dex_file.PrettyMethod(method_idx)
<< " took " << PrettyDuration(duration_ns);
}
}
if (compiled_method != nullptr) {
driver->AddCompiledMethod(method_ref, compiled_method);
}
if (self->IsExceptionPending()) {
ScopedObjectAccess soa(self);
LOG(FATAL) << "Unexpected exception compiling: " << dex_file.PrettyMethod(method_idx) << "\n"
<< self->GetException()->Dump();
}
}
// Checks whether profile guided compilation is enabled and if the method should be compiled
// according to the profile file.
static bool ShouldCompileBasedOnProfile(const CompilerOptions& compiler_options,
ProfileCompilationInfo::ProfileIndexType profile_index,
MethodReference method_ref) {
if (profile_index == ProfileCompilationInfo::MaxProfileIndex()) {
// No profile for this dex file. Check if we're actually compiling based on a profile.
if (!CompilerFilter::DependsOnProfile(compiler_options.GetCompilerFilter())) {
return true;
}
// Profile-based compilation without profile for this dex file. Do not compile the method.
DCHECK(compiler_options.GetProfileCompilationInfo() == nullptr ||
compiler_options.GetProfileCompilationInfo()->FindDexFile(*method_ref.dex_file) ==
ProfileCompilationInfo::MaxProfileIndex());
return false;
} else {
DCHECK(CompilerFilter::DependsOnProfile(compiler_options.GetCompilerFilter()));
const ProfileCompilationInfo* profile_compilation_info =
compiler_options.GetProfileCompilationInfo();
DCHECK(profile_compilation_info != nullptr);
// Compile only hot methods, it is the profile saver's job to decide
// what startup methods to mark as hot.
bool result = profile_compilation_info->IsHotMethod(profile_index, method_ref.index);
if (kDebugProfileGuidedCompilation) {
LOG(INFO) << "[ProfileGuidedCompilation] "
<< (result ? "Compiled" : "Skipped") << " method:" << method_ref.PrettyMethod(true);
}
return result;
}
}
static void CompileMethodQuick(
Thread* self,
CompilerDriver* driver,
const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache,
ProfileCompilationInfo::ProfileIndexType profile_index) {
auto quick_fn = [profile_index]([[maybe_unused]] Thread* self,
CompilerDriver* driver,
const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) {
DCHECK(driver != nullptr);
const VerificationResults* results = driver->GetVerificationResults();
DCHECK(results != nullptr);
MethodReference method_ref(&dex_file, method_idx);
CompiledMethod* compiled_method = nullptr;
if (results->IsUncompilableMethod(method_ref)) {
return compiled_method;
}
if ((access_flags & kAccNative) != 0) {
// Are we extracting only and have support for generic JNI down calls?
const CompilerOptions& compiler_options = driver->GetCompilerOptions();
if (!compiler_options.IsJniCompilationEnabled() &&
InstructionSetHasGenericJniStub(compiler_options.GetInstructionSet())) {
// Leaving this empty will trigger the generic JNI version
} else {
// Query any JNI optimization annotations such as @FastNative or @CriticalNative.
access_flags |= annotations::GetNativeMethodAnnotationAccessFlags(
dex_file, dex_file.GetClassDef(class_def_idx), method_idx);
compiled_method = driver->GetCompiler()->JniCompile(
access_flags, method_idx, dex_file, dex_cache);
CHECK(compiled_method != nullptr);
}
} else if ((access_flags & kAccAbstract) != 0) {
// Abstract methods don't have code.
} else if (annotations::MethodIsNeverCompile(dex_file,
dex_file.GetClassDef(class_def_idx),
method_idx)) {
// Method is annotated with @NeverCompile and should not be compiled.
} else {
const CompilerOptions& compiler_options = driver->GetCompilerOptions();
// Don't compile class initializers unless kEverything.
bool compile = (compiler_options.GetCompilerFilter() == CompilerFilter::kEverything) ||
((access_flags & kAccConstructor) == 0) || ((access_flags & kAccStatic) == 0);
// Check if we should compile based on the profile.
compile = compile && ShouldCompileBasedOnProfile(compiler_options, profile_index, method_ref);
if (compile) {
// NOTE: if compiler declines to compile this method, it will return null.
compiled_method = driver->GetCompiler()->Compile(code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
dex_cache);
ProfileMethodsCheck check_type = compiler_options.CheckProfiledMethodsCompiled();
if (UNLIKELY(check_type != ProfileMethodsCheck::kNone)) {
DCHECK(ShouldCompileBasedOnProfile(compiler_options, profile_index, method_ref));
bool violation = (compiled_method == nullptr);
if (violation) {
std::ostringstream oss;
oss << "Failed to compile "
<< method_ref.dex_file->PrettyMethod(method_ref.index)
<< "[" << method_ref.dex_file->GetLocation() << "]"
<< " as expected by profile";
switch (check_type) {
case ProfileMethodsCheck::kNone:
break;
case ProfileMethodsCheck::kLog:
LOG(ERROR) << oss.str();
break;
case ProfileMethodsCheck::kAbort:
LOG(FATAL_WITHOUT_ABORT) << oss.str();
_exit(1);
}
}
}
}
}
return compiled_method;
};
CompileMethodHarness(self,
driver,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
dex_cache,
quick_fn);
}
void CompilerDriver::Resolve(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
// Resolution allocates classes and needs to run single-threaded to be deterministic.
bool force_determinism = GetCompilerOptions().IsForceDeterminism();
ThreadPool* resolve_thread_pool = force_determinism
? single_thread_pool_.get()
: parallel_thread_pool_.get();
size_t resolve_thread_count = force_determinism ? 1U : parallel_thread_count_;
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != nullptr);
ResolveDexFile(class_loader,
*dex_file,
dex_files,
resolve_thread_pool,
resolve_thread_count,
timings);
}
}
void CompilerDriver::ResolveConstStrings(const std::vector<const DexFile*>& dex_files,
bool only_startup_strings,
TimingLogger* timings) {
const ProfileCompilationInfo* profile_compilation_info =
GetCompilerOptions().GetProfileCompilationInfo();
if (only_startup_strings && profile_compilation_info == nullptr) {
// If there is no profile, don't resolve any strings. Resolving all of the strings in the image
// will cause a bloated app image and slow down startup.
return;
}
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::DexCache> dex_cache(hs.NewHandle<mirror::DexCache>(nullptr));
size_t num_instructions = 0u;
for (const DexFile* dex_file : dex_files) {
dex_cache.Assign(class_linker->FindDexCache(soa.Self(), *dex_file));
TimingLogger::ScopedTiming t("Resolve const-string Strings", timings);
ProfileCompilationInfo::ProfileIndexType profile_index =
ProfileCompilationInfo::MaxProfileIndex();
if (profile_compilation_info != nullptr) {
profile_index = profile_compilation_info->FindDexFile(*dex_file);
if (profile_index == ProfileCompilationInfo::MaxProfileIndex()) {
// We have a `ProfileCompilationInfo` but no data for this dex file.
// The code below would not find any method to process.
continue;
}
}
// TODO: Implement a profile-based filter for the boot image. See b/76145463.
for (ClassAccessor accessor : dex_file->GetClasses()) {
// Skip methods that failed to verify since they may contain invalid Dex code.
if (GetClassStatus(ClassReference(dex_file, accessor.GetClassDefIndex())) <
ClassStatus::kRetryVerificationAtRuntime) {
continue;
}
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
if (profile_compilation_info != nullptr) {
DCHECK_NE(profile_index, ProfileCompilationInfo::MaxProfileIndex());
// There can be at most one class initializer in a class, so we shall not
// call `ProfileCompilationInfo::ContainsClass()` more than once per class.
constexpr uint32_t kMask = kAccConstructor | kAccStatic;
const bool is_startup_clinit =
(method.GetAccessFlags() & kMask) == kMask &&
profile_compilation_info->ContainsClass(profile_index, accessor.GetClassIdx());
if (!is_startup_clinit) {
uint32_t method_index = method.GetIndex();
bool process_method = only_startup_strings
? profile_compilation_info->IsStartupMethod(profile_index, method_index)
: profile_compilation_info->IsMethodInProfile(profile_index, method_index);
if (!process_method) {
continue;
}
}
}
// Resolve const-strings in the code. Done to have deterministic allocation behavior. Right
// now this is single-threaded for simplicity.
// TODO: Collect the relevant string indices in parallel, then allocate them sequentially
// in a stable order.
for (const DexInstructionPcPair& inst : method.GetInstructions()) {
switch (inst->Opcode()) {
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO: {
dex::StringIndex string_index((inst->Opcode() == Instruction::CONST_STRING)
? inst->VRegB_21c()
: inst->VRegB_31c());
ObjPtr<mirror::String> string = class_linker->ResolveString(string_index, dex_cache);
CHECK(string != nullptr) << "Could not allocate a string when forcing determinism";
++num_instructions;
break;
}
default:
break;
}
}
}
}
}
VLOG(compiler) << "Resolved " << num_instructions << " const string instructions";
}
// Initialize type check bit strings for check-cast and instance-of in the code. Done to have
// deterministic allocation behavior. Right now this is single-threaded for simplicity.
// TODO: Collect the relevant type indices in parallel, then process them sequentially in a
// stable order.
static void InitializeTypeCheckBitstrings(CompilerDriver* driver,
ClassLinker* class_linker,
Handle<mirror::DexCache> dex_cache,
const DexFile& dex_file,
const ClassAccessor::Method& method)
REQUIRES_SHARED(Locks::mutator_lock_) {
for (const DexInstructionPcPair& inst : method.GetInstructions()) {
switch (inst->Opcode()) {
case Instruction::CHECK_CAST:
case Instruction::INSTANCE_OF: {
dex::TypeIndex type_index(
(inst->Opcode() == Instruction::CHECK_CAST) ? inst->VRegB_21c() : inst->VRegC_22c());
const char* descriptor = dex_file.StringByTypeIdx(type_index);
// We currently do not use the bitstring type check for array or final (including
// primitive) classes. We may reconsider this in future if it's deemed to be beneficial.
// And we cannot use it for classes outside the boot image as we do not know the runtime
// value of their bitstring when compiling (it may not even get assigned at runtime).
if (descriptor[0] == 'L' && driver->GetCompilerOptions().IsImageClass(descriptor)) {
ObjPtr<mirror::Class> klass =
class_linker->LookupResolvedType(type_index,
dex_cache.Get(),
/* class_loader= */ nullptr);
CHECK(klass != nullptr) << descriptor << " should have been previously resolved.";
// Now assign the bitstring if the class is not final. Keep this in sync with sharpening.
if (!klass->IsFinal()) {
MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
SubtypeCheck<ObjPtr<mirror::Class>>::EnsureAssigned(klass);
}
}
break;
}
default:
break;
}
}
}
static void InitializeTypeCheckBitstrings(CompilerDriver* driver,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::DexCache> dex_cache(hs.NewHandle<mirror::DexCache>(nullptr));
for (const DexFile* dex_file : dex_files) {
dex_cache.Assign(class_linker->FindDexCache(soa.Self(), *dex_file));
TimingLogger::ScopedTiming t("Initialize type check bitstrings", timings);
for (ClassAccessor accessor : dex_file->GetClasses()) {
// Direct and virtual methods.
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
InitializeTypeCheckBitstrings(driver, class_linker, dex_cache, *dex_file, method);
}
}
}
}
inline void CompilerDriver::CheckThreadPools() {
DCHECK(parallel_thread_pool_ != nullptr);
DCHECK(single_thread_pool_ != nullptr);
}
static void EnsureVerifiedOrVerifyAtRuntime(jobject jclass_loader,
const std::vector<const DexFile*>& dex_files) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
MutableHandle<mirror::Class> cls(hs.NewHandle<mirror::Class>(nullptr));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
for (const DexFile* dex_file : dex_files) {
for (ClassAccessor accessor : dex_file->GetClasses()) {
cls.Assign(class_linker->FindClass(soa.Self(), accessor.GetDescriptor(), class_loader));
if (cls == nullptr) {
soa.Self()->ClearException();
} else if (&cls->GetDexFile() == dex_file) {
DCHECK(cls->IsErroneous() ||
cls->IsVerified() ||
cls->ShouldVerifyAtRuntime() ||
cls->IsVerifiedNeedsAccessChecks())
<< cls->PrettyClass()
<< " " << cls->GetStatus();
}
}
}
}
void CompilerDriver::PrepareDexFilesForOatFile([[maybe_unused]] TimingLogger* timings) {
compiled_classes_.AddDexFiles(GetCompilerOptions().GetDexFilesForOatFile());
}
class CreateConflictTablesVisitor : public ClassVisitor {
public:
explicit CreateConflictTablesVisitor(VariableSizedHandleScope& hs)
: hs_(hs) {}
bool operator()(ObjPtr<mirror::Class> klass) override
REQUIRES_SHARED(Locks::mutator_lock_) {
if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
return true;
}
// Collect handles since there may be thread suspension in future EnsureInitialized.
to_visit_.push_back(hs_.NewHandle(klass));
return true;
}
void FillAllIMTAndConflictTables() REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
for (Handle<mirror::Class> c : to_visit_) {
// Create the conflict tables.
FillIMTAndConflictTables(c.Get());
}
}
private:
void FillIMTAndConflictTables(ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!klass->ShouldHaveImt()) {
return;
}
if (visited_classes_.find(klass.Ptr()) != visited_classes_.end()) {
return;
}
if (klass->HasSuperClass()) {
FillIMTAndConflictTables(klass->GetSuperClass());
}
if (!klass->IsTemp()) {
Runtime::Current()->GetClassLinker()->FillIMTAndConflictTables(klass);
}
visited_classes_.insert(klass.Ptr());
}
VariableSizedHandleScope& hs_;
std::vector<Handle<mirror::Class>> to_visit_;
HashSet<mirror::Class*> visited_classes_;
};
void CompilerDriver::PreCompile(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings,
/*inout*/ HashSet<std::string>* image_classes) {
CheckThreadPools();
VLOG(compiler) << "Before precompile " << GetMemoryUsageString(false);
// Precompile:
// 1) Load image classes.
// 2) Resolve all classes.
// 3) For deterministic boot image, resolve strings for const-string instructions.
// 4) Attempt to verify all classes.
// 5) Attempt to initialize image classes, and trivially initialized classes.
// 6) Update the set of image classes.
// 7) For deterministic boot image, initialize bitstrings for type checking.
LoadImageClasses(timings, image_classes);
VLOG(compiler) << "LoadImageClasses: " << GetMemoryUsageString(false);
if (compiler_options_->IsAnyCompilationEnabled()) {
// Avoid adding the dex files in the case where we aren't going to add compiled methods.
// This reduces RAM usage for this case.
for (const DexFile* dex_file : dex_files) {
// Can be already inserted. This happens for gtests.
if (!compiled_methods_.HaveDexFile(dex_file)) {
compiled_methods_.AddDexFile(dex_file);
}
}
// Resolve eagerly to prepare for compilation.
Resolve(class_loader, dex_files, timings);
VLOG(compiler) << "Resolve: " << GetMemoryUsageString(false);
}
if (compiler_options_->AssumeClassesAreVerified()) {
VLOG(compiler) << "Verify none mode specified, skipping verification.";
SetVerified(class_loader, dex_files, timings);
} else if (compiler_options_->IsVerificationEnabled()) {
Verify(class_loader, dex_files, timings);
VLOG(compiler) << "Verify: " << GetMemoryUsageString(false);
if (GetCompilerOptions().IsForceDeterminism() &&
(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension())) {
// Resolve strings from const-string. Do this now to have a deterministic image.
ResolveConstStrings(dex_files, /*only_startup_strings=*/ false, timings);
VLOG(compiler) << "Resolve const-strings: " << GetMemoryUsageString(false);
} else if (GetCompilerOptions().ResolveStartupConstStrings()) {
ResolveConstStrings(dex_files, /*only_startup_strings=*/ true, timings);
}
if (had_hard_verifier_failure_ && GetCompilerOptions().AbortOnHardVerifierFailure()) {
// Avoid dumping threads. Even if we shut down the thread pools, there will still be three
// instances of this thread's stack.
LOG(FATAL_WITHOUT_ABORT) << "Had a hard failure verifying all classes, and was asked to abort "
<< "in such situations. Please check the log.";
_exit(1);
} else if (number_of_soft_verifier_failures_ > 0 &&
GetCompilerOptions().AbortOnSoftVerifierFailure()) {
LOG(FATAL_WITHOUT_ABORT) << "Had " << number_of_soft_verifier_failures_ << " soft failure(s) "
<< "verifying all classes, and was asked to abort in such situations. "
<< "Please check the log.";
_exit(1);
}
}
if (GetCompilerOptions().IsGeneratingImage()) {
// We can only initialize classes when their verification bit is set.
if (compiler_options_->AssumeClassesAreVerified() ||
compiler_options_->IsVerificationEnabled()) {
if (kIsDebugBuild) {
EnsureVerifiedOrVerifyAtRuntime(class_loader, dex_files);
}
InitializeClasses(class_loader, dex_files, timings);
VLOG(compiler) << "InitializeClasses: " << GetMemoryUsageString(false);
}
{
// Create conflict tables, as the runtime expects boot image classes to
// always have their conflict tables filled.
ScopedObjectAccess soa(Thread::Current());
VariableSizedHandleScope hs(soa.Self());
CreateConflictTablesVisitor visitor(hs);
Runtime::Current()->GetClassLinker()->VisitClassesWithoutClassesLock(&visitor);
visitor.FillAllIMTAndConflictTables();
}
UpdateImageClasses(timings, image_classes);
VLOG(compiler) << "UpdateImageClasses: " << GetMemoryUsageString(false);
if (kBitstringSubtypeCheckEnabled &&
GetCompilerOptions().IsForceDeterminism() && GetCompilerOptions().IsBootImage()) {
// Initialize type check bit string used by check-cast and instanceof.
// Do this now to have a deterministic image.
// Note: This is done after UpdateImageClasses() at it relies on the image
// classes to be final.
InitializeTypeCheckBitstrings(this, dex_files, timings);
}
}
}
class ResolveCatchBlockExceptionsClassVisitor : public ClassVisitor {
public:
ResolveCatchBlockExceptionsClassVisitor() : classes_() {}
bool operator()(ObjPtr<mirror::Class> c) override REQUIRES_SHARED(Locks::mutator_lock_) {
classes_.push_back(c);
return true;
}
void FindExceptionTypesToResolve(std::set<TypeReference>* exceptions_to_resolve)
REQUIRES_SHARED(Locks::mutator_lock_) {
const auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
for (ObjPtr<mirror::Class> klass : classes_) {
for (ArtMethod& method : klass->GetMethods(pointer_size)) {
FindExceptionTypesToResolveForMethod(&method, exceptions_to_resolve);
}
}
}
private:
void FindExceptionTypesToResolveForMethod(
ArtMethod* method,
std::set<TypeReference>* exceptions_to_resolve)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (method->GetCodeItem() == nullptr) {
return; // native or abstract method
}
CodeItemDataAccessor accessor(method->DexInstructionData());
if (accessor.TriesSize() == 0) {
return; // nothing to process
}
const uint8_t* encoded_catch_handler_list = accessor.GetCatchHandlerData();
size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list);
for (size_t i = 0; i < num_encoded_catch_handlers; i++) {
int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list);
bool has_catch_all = false;
if (encoded_catch_handler_size <= 0) {
encoded_catch_handler_size = -encoded_catch_handler_size;
has_catch_all = true;
}
for (int32_t j = 0; j < encoded_catch_handler_size; j++) {
dex::TypeIndex encoded_catch_handler_handlers_type_idx =
dex::TypeIndex(DecodeUnsignedLeb128(&encoded_catch_handler_list));
// Add to set of types to resolve if not already in the dex cache resolved types
if (!method->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) {
exceptions_to_resolve->emplace(method->GetDexFile(),
encoded_catch_handler_handlers_type_idx);
}
// ignore address associated with catch handler
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
if (has_catch_all) {
// ignore catch all address
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
}
}
std::vector<ObjPtr<mirror::Class>> classes_;
};
static inline bool CanIncludeInCurrentImage(ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(klass != nullptr);
gc::Heap* heap = Runtime::Current()->GetHeap();
if (heap->GetBootImageSpaces().empty()) {
return true; // We can include any class when compiling the primary boot image.
}
if (heap->ObjectIsInBootImageSpace(klass)) {
return false; // Already included in the boot image we're compiling against.
}
return AotClassLinker::CanReferenceInBootImageExtension(klass, heap);
}
class RecordImageClassesVisitor : public ClassVisitor {
public:
explicit RecordImageClassesVisitor(HashSet<std::string>* image_classes)
: image_classes_(image_classes) {}
bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
bool resolved = klass->IsResolved();
DCHECK(resolved || klass->IsErroneousUnresolved());
bool can_include_in_image = LIKELY(resolved) && CanIncludeInCurrentImage(klass);
std::string temp;
std::string_view descriptor(klass->GetDescriptor(&temp));
if (can_include_in_image) {
image_classes_->insert(std::string(descriptor)); // Does nothing if already present.
} else {
auto it = image_classes_->find(descriptor);
if (it != image_classes_->end()) {
VLOG(compiler) << "Removing " << (resolved ? "unsuitable" : "unresolved")
<< " class from image classes: " << descriptor;
image_classes_->erase(it);
}
}
return true;
}
private:
HashSet<std::string>* const image_classes_;
};
// Verify that classes which contain intrinsics methods are in the list of image classes.
static void VerifyClassesContainingIntrinsicsAreImageClasses(HashSet<std::string>* image_classes) {
#define CHECK_INTRINSIC_OWNER_CLASS(_, __, ___, ____, _____, ClassName, ______, _______) \
CHECK(image_classes->find(std::string_view(ClassName)) != image_classes->end());
ART_INTRINSICS_LIST(CHECK_INTRINSIC_OWNER_CLASS)
#undef CHECK_INTRINSIC_OWNER_CLASS
}
// We need to put classes required by app class loaders to the boot image,
// otherwise we would not be able to store app class loaders in app images.
static void AddClassLoaderClasses(/* out */ HashSet<std::string>* image_classes) {
ScopedObjectAccess soa(Thread::Current());
// Well known classes have been loaded and shall be added to image classes
// by the `RecordImageClassesVisitor`. However, there are fields with array
// types which we need to add to the image classes explicitly.
ArtField* class_loader_array_fields[] = {
WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders,
// BaseDexClassLoader.sharedLibraryLoadersAfter has the same array type as above.
WellKnownClasses::dalvik_system_DexPathList_dexElements,
};
for (ArtField* field : class_loader_array_fields) {
const char* field_type_descriptor = field->GetTypeDescriptor();
DCHECK_EQ(field_type_descriptor[0], '[');
image_classes->insert(field_type_descriptor);
}
}
static void VerifyClassLoaderClassesAreImageClasses(/* out */ HashSet<std::string>* image_classes) {
ScopedObjectAccess soa(Thread::Current());
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
ObjPtr<mirror::Class> class_loader_classes[] = {
WellKnownClasses::dalvik_system_BaseDexClassLoader.Get(),
WellKnownClasses::dalvik_system_DelegateLastClassLoader.Get(),
WellKnownClasses::dalvik_system_DexClassLoader.Get(),
WellKnownClasses::dalvik_system_DexFile.Get(),
WellKnownClasses::dalvik_system_DexPathList.Get(),
WellKnownClasses::dalvik_system_DexPathList__Element.Get(),
WellKnownClasses::dalvik_system_InMemoryDexClassLoader.Get(),
WellKnownClasses::dalvik_system_PathClassLoader.Get(),
WellKnownClasses::java_lang_BootClassLoader.Get(),
WellKnownClasses::java_lang_ClassLoader.Get(),
};
for (ObjPtr<mirror::Class> klass : class_loader_classes) {
std::string temp;
std::string_view descriptor = klass->GetDescriptor(&temp);
CHECK(image_classes->find(descriptor) != image_classes->end());
}
ArtField* class_loader_fields[] = {
WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList,
WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders,
WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoadersAfter,
WellKnownClasses::dalvik_system_DexFile_cookie,
WellKnownClasses::dalvik_system_DexFile_fileName,
WellKnownClasses::dalvik_system_DexPathList_dexElements,
WellKnownClasses::dalvik_system_DexPathList__Element_dexFile,
WellKnownClasses::java_lang_ClassLoader_parent,
};
for (ArtField* field : class_loader_fields) {
std::string_view field_type_descriptor = field->GetTypeDescriptor();
CHECK(image_classes->find(field_type_descriptor) != image_classes->end());
}
}
// Make a list of descriptors for classes to include in the image
void CompilerDriver::LoadImageClasses(TimingLogger* timings,
/*inout*/ HashSet<std::string>* image_classes) {
CHECK(timings != nullptr);
if (!GetCompilerOptions().IsBootImage() && !GetCompilerOptions().IsBootImageExtension()) {
return;
}
TimingLogger::ScopedTiming t("LoadImageClasses", timings);
if (GetCompilerOptions().IsBootImage()) {
// Image classes of intrinsics are loaded and shall be added
// to image classes by the `RecordImageClassesVisitor`.
// Add classes needed for storing class loaders in app images.
AddClassLoaderClasses(image_classes);
}
// Make a first pass to load all classes explicitly listed in the file
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
CHECK(image_classes != nullptr);
for (auto it = image_classes->begin(), end = image_classes->end(); it != end;) {
const std::string& descriptor(*it);
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindSystemClass(self, descriptor.c_str())));
if (klass == nullptr) {
VLOG(compiler) << "Failed to find class " << descriptor;
it = image_classes->erase(it); // May cause some descriptors to be revisited.
self->ClearException();
} else {
++it;
}
}
// Resolve exception classes referenced by the loaded classes. The catch logic assumes
// exceptions are resolved by the verifier when there is a catch block in an interested method.
// Do this here so that exception classes appear to have been specified image classes.
std::set<TypeReference> unresolved_exception_types;
StackHandleScope<2u> hs(self);
Handle<mirror::Class> java_lang_Throwable(
hs.NewHandle(class_linker->FindSystemClass(self, "Ljava/lang/Throwable;")));
MutableHandle<mirror::DexCache> dex_cache = hs.NewHandle(java_lang_Throwable->GetDexCache());
DCHECK(dex_cache != nullptr);
do {
unresolved_exception_types.clear();
{
// Thread suspension is not allowed while ResolveCatchBlockExceptionsClassVisitor
// is using a std::vector<ObjPtr<mirror::Class>>.
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
ResolveCatchBlockExceptionsClassVisitor visitor;
class_linker->VisitClasses(&visitor);
visitor.FindExceptionTypesToResolve(&unresolved_exception_types);
}
for (auto it = unresolved_exception_types.begin(); it != unresolved_exception_types.end(); ) {
dex::TypeIndex exception_type_idx = it->TypeIndex();
const DexFile* dex_file = it->dex_file;
if (dex_cache->GetDexFile() != dex_file) {
dex_cache.Assign(class_linker->RegisterDexFile(*dex_file, /*class_loader=*/ nullptr));
DCHECK(dex_cache != nullptr);
}
ObjPtr<mirror::Class> klass = class_linker->ResolveType(
exception_type_idx, dex_cache, ScopedNullHandle<mirror::ClassLoader>());
if (klass == nullptr) {
const dex::TypeId& type_id = dex_file->GetTypeId(exception_type_idx);
const char* descriptor = dex_file->GetTypeDescriptor(type_id);
VLOG(compiler) << "Failed to resolve exception class " << descriptor;
self->ClearException();
it = unresolved_exception_types.erase(it);
} else {
DCHECK(java_lang_Throwable->IsAssignableFrom(klass));
++it;
}
}
// Resolving exceptions may load classes that reference more exceptions, iterate until no
// more are found
} while (!unresolved_exception_types.empty());
// We walk the roots looking for classes so that we'll pick up the
// above classes plus any classes them depend on such super
// classes, interfaces, and the required ClassLinker roots.
RecordImageClassesVisitor visitor(image_classes);
class_linker->VisitClasses(&visitor);
if (kIsDebugBuild && GetCompilerOptions().IsBootImage()) {
VerifyClassesContainingIntrinsicsAreImageClasses(image_classes);
VerifyClassLoaderClassesAreImageClasses(image_classes);
}
if (GetCompilerOptions().IsBootImage()) {
CHECK(!image_classes->empty());
}
}
static void MaybeAddToImageClasses(Thread* self,
ObjPtr<mirror::Class> klass,
HashSet<std::string>* image_classes)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_EQ(self, Thread::Current());
DCHECK(klass->IsResolved());
Runtime* runtime = Runtime::Current();
gc::Heap* heap = runtime->GetHeap();
if (heap->ObjectIsInBootImageSpace(klass)) {
// We're compiling a boot image extension and the class is already
// in the boot image we're compiling against.
return;
}
const PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
std::string temp;
while (!klass->IsObjectClass()) {
const char* descriptor = klass->GetDescriptor(&temp);
if (image_classes->find(std::string_view(descriptor)) != image_classes->end()) {
break; // Previously inserted.
}
image_classes->insert(descriptor);
VLOG(compiler) << "Adding " << descriptor << " to image classes";
for (size_t i = 0, num_interfaces = klass->NumDirectInterfaces(); i != num_interfaces; ++i) {
ObjPtr<mirror::Class> interface = klass->GetDirectInterface(i);
DCHECK(interface != nullptr);
MaybeAddToImageClasses(self, interface, image_classes);
}
for (auto& m : klass->GetVirtualMethods(pointer_size)) {
MaybeAddToImageClasses(self, m.GetDeclaringClass(), image_classes);
}
if (klass->IsArrayClass()) {
MaybeAddToImageClasses(self, klass->GetComponentType(), image_classes);
}
klass = klass->GetSuperClass();
}
}
// Keeps all the data for the update together. Also doubles as the reference visitor.
// Note: we can use object pointers because we suspend all threads.
class ClinitImageUpdate {
public:
ClinitImageUpdate(HashSet<std::string>* image_class_descriptors,
Thread* self) REQUIRES_SHARED(Locks::mutator_lock_)
: hs_(self),
image_class_descriptors_(image_class_descriptors),
self_(self) {
CHECK(image_class_descriptors != nullptr);
// Make sure nobody interferes with us.
old_cause_ = self->StartAssertNoThreadSuspension("Boot image closure");
}
~ClinitImageUpdate() {
// Allow others to suspend again.
self_->EndAssertNoThreadSuspension(old_cause_);
}
// Visitor for VisitReferences.
void operator()(ObjPtr<mirror::Object> object,
MemberOffset field_offset,
[[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* ref = object->GetFieldObject<mirror::Object>(field_offset);
if (ref != nullptr) {
VisitClinitClassesObject(ref);
}
}
// java.lang.ref.Reference visitor for VisitReferences.
void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
[[maybe_unused]] ObjPtr<mirror::Reference> ref) const {}
// Ignore class native roots.
void VisitRootIfNonNull(
[[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
void Walk() REQUIRES_SHARED(Locks::mutator_lock_) {
// Find all the already-marked classes.
WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
FindImageClassesVisitor visitor(this);
Runtime::Current()->GetClassLinker()->VisitClasses(&visitor);
// Use the initial classes as roots for a search.
for (Handle<mirror::Class> klass_root : image_classes_) {
VisitClinitClassesObject(klass_root.Get());
}
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
for (Handle<mirror::Class> h_klass : to_insert_) {
MaybeAddToImageClasses(self_, h_klass.Get(), image_class_descriptors_);
}
}
private:
class FindImageClassesVisitor : public ClassVisitor {
public:
explicit FindImageClassesVisitor(ClinitImageUpdate* data)
: data_(data) {}
bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
bool resolved = klass->IsResolved();
DCHECK(resolved || klass->IsErroneousUnresolved());
bool can_include_in_image = LIKELY(resolved) && CanIncludeInCurrentImage(klass);
std::string temp;
std::string_view descriptor(klass->GetDescriptor(&temp));
auto it = data_->image_class_descriptors_->find(descriptor);
if (it != data_->image_class_descriptors_->end()) {
if (can_include_in_image) {
data_->image_classes_.push_back(data_->hs_.NewHandle(klass));
} else {
VLOG(compiler) << "Removing " << (resolved ? "unsuitable" : "unresolved")
<< " class from image classes: " << descriptor;
data_->image_class_descriptors_->erase(it);
}
} else if (can_include_in_image) {
// Check whether the class is initialized and has a clinit or static fields.
// Such classes must be kept too.
if (klass->IsInitialized()) {
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
if (klass->FindClassInitializer(pointer_size) != nullptr ||
klass->NumStaticFields() != 0) {
DCHECK(!Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass->GetDexCache()))
<< klass->PrettyDescriptor();
data_->image_classes_.push_back(data_->hs_.NewHandle(klass));
}
}
}
return true;
}
private:
ClinitImageUpdate* const data_;
};
void VisitClinitClassesObject(mirror::Object* object) const
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(object != nullptr);
if (marked_objects_.find(object) != marked_objects_.end()) {
// Already processed.
return;
}
// Mark it.
marked_objects_.insert(object);
if (object->IsClass()) {
// Add to the TODO list since MaybeAddToImageClasses may cause thread suspension. Thread
// suspensionb is not safe to do in VisitObjects or VisitReferences.
to_insert_.push_back(hs_.NewHandle(object->AsClass()));
} else {
// Else visit the object's class.
VisitClinitClassesObject(object->GetClass());
}
// If it is not a DexCache, visit all references.
if (!object->IsDexCache()) {
object->VisitReferences(*this, *this);
}
}
mutable VariableSizedHandleScope hs_;
mutable std::vector<Handle<mirror::Class>> to_insert_;
mutable HashSet<mirror::Object*> marked_objects_;
HashSet<std::string>* const image_class_descriptors_;
std::vector<Handle<mirror::Class>> image_classes_;
Thread* const self_;
const char* old_cause_;
DISALLOW_COPY_AND_ASSIGN(ClinitImageUpdate);
};
void CompilerDriver::UpdateImageClasses(TimingLogger* timings,
/*inout*/ HashSet<std::string>* image_classes) {
if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
TimingLogger::ScopedTiming t("UpdateImageClasses", timings);
// Suspend all threads.
ScopedSuspendAll ssa(__FUNCTION__);
ClinitImageUpdate update(image_classes, Thread::Current());
// Do the marking.
update.Walk();
}
}
void CompilerDriver::ProcessedInstanceField(bool resolved) {
if (!resolved) {
stats_->UnresolvedInstanceField();
} else {
stats_->ResolvedInstanceField();
}
}
void CompilerDriver::ProcessedStaticField(bool resolved, bool local) {
if (!resolved) {
stats_->UnresolvedStaticField();
} else if (local) {
stats_->ResolvedLocalStaticField();
} else {
stats_->ResolvedStaticField();
}
}
ArtField* CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx,
const DexCompilationUnit* mUnit,
bool is_put,
const ScopedObjectAccess& soa) {
// Try to resolve the field and compiling method's class.
ArtField* resolved_field;
ObjPtr<mirror::Class> referrer_class;
Handle<mirror::DexCache> dex_cache(mUnit->GetDexCache());
{
Handle<mirror::ClassLoader> class_loader = mUnit->GetClassLoader();
resolved_field = ResolveField(soa, dex_cache, class_loader, field_idx, /* is_static= */ false);
referrer_class = resolved_field != nullptr
? ResolveCompilingMethodsClass(soa, dex_cache, class_loader, mUnit) : nullptr;
}
bool can_link = false;
if (resolved_field != nullptr && referrer_class != nullptr) {
std::pair<bool, bool> fast_path = IsFastInstanceField(
dex_cache.Get(), referrer_class, resolved_field, field_idx);
can_link = is_put ? fast_path.second : fast_path.first;
}
ProcessedInstanceField(can_link);
return can_link ? resolved_field : nullptr;
}
bool CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
bool is_put, MemberOffset* field_offset,
bool* is_volatile) {
ScopedObjectAccess soa(Thread::Current());
ArtField* resolved_field = ComputeInstanceFieldInfo(field_idx, mUnit, is_put, soa);
if (resolved_field == nullptr) {
// Conservative defaults.
*is_volatile = true;
*field_offset = MemberOffset(static_cast<size_t>(-1));
return false;
} else {
*is_volatile = resolved_field->IsVolatile();
*field_offset = resolved_field->GetOffset();
return true;
}
}
class CompilationVisitor {
public:
virtual ~CompilationVisitor() {}
virtual void Visit(size_t index) = 0;
};
class ParallelCompilationManager {
public:
ParallelCompilationManager(ClassLinker* class_linker,
jobject class_loader,
CompilerDriver* compiler,
const DexFile* dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool)
: index_(0),
class_linker_(class_linker),
class_loader_(class_loader),
compiler_(compiler),
dex_file_(dex_file),
dex_files_(dex_files),
thread_pool_(thread_pool) {}
ClassLinker* GetClassLinker() const {
CHECK(class_linker_ != nullptr);
return class_linker_;
}
jobject GetClassLoader() const {
return class_loader_;
}
CompilerDriver* GetCompiler() const {
CHECK(compiler_ != nullptr);
return compiler_;
}
const DexFile* GetDexFile() const {
CHECK(dex_file_ != nullptr);
return dex_file_;
}
const std::vector<const DexFile*>& GetDexFiles() const {
return dex_files_;
}
void ForAll(size_t begin, size_t end, CompilationVisitor* visitor, size_t work_units)
REQUIRES(!*Locks::mutator_lock_) {
ForAllLambda(begin, end, [visitor](size_t index) { visitor->Visit(index); }, work_units);
}
template <typename Fn>
void ForAllLambda(size_t begin, size_t end, Fn fn, size_t work_units)
REQUIRES(!*Locks::mutator_lock_) {
Thread* self = Thread::Current();
self->AssertNoPendingException();
CHECK_GT(work_units, 0U);
index_.store(begin, std::memory_order_relaxed);
for (size_t i = 0; i < work_units; ++i) {
thread_pool_->AddTask(self, new ForAllClosureLambda<Fn>(this, end, fn));
}
thread_pool_->StartWorkers(self);
// Ensure we're suspended while we're blocked waiting for the other threads to finish (worker
// thread destructor's called below perform join).
CHECK_NE(self->GetState(), ThreadState::kRunnable);
// Wait for all the worker threads to finish.
thread_pool_->Wait(self, true, false);
// And stop the workers accepting jobs.
thread_pool_->StopWorkers(self);
}
size_t NextIndex() {
return index_.fetch_add(1, std::memory_order_seq_cst);
}
private:
template <typename Fn>
class ForAllClosureLambda : public Task {
public:
ForAllClosureLambda(ParallelCompilationManager* manager, size_t end, Fn fn)
: manager_(manager),
end_(end),
fn_(fn) {}
void Run(Thread* self) override {
while (true) {
const size_t index = manager_->NextIndex();
if (UNLIKELY(index >= end_)) {
break;
}
fn_(index);
self->AssertNoPendingException();
}
}
void Finalize() override {
delete this;
}
private:
ParallelCompilationManager* const manager_;
const size_t end_;
Fn fn_;
};
AtomicInteger index_;
ClassLinker* const class_linker_;
const jobject class_loader_;
CompilerDriver* const compiler_;
const DexFile* const dex_file_;
const std::vector<const DexFile*>& dex_files_;
ThreadPool* const thread_pool_;
DISALLOW_COPY_AND_ASSIGN(ParallelCompilationManager);
};
// A fast version of SkipClass above if the class pointer is available
// that avoids the expensive FindInClassPath search.
static bool SkipClass(jobject class_loader, const DexFile& dex_file, ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(klass != nullptr);
const DexFile& original_dex_file = *klass->GetDexCache()->GetDexFile();
if (&dex_file != &original_dex_file) {
if (class_loader == nullptr) {
LOG(WARNING) << "Skipping class " << klass->PrettyDescriptor() << " from "
<< dex_file.GetLocation() << " previously found in "
<< original_dex_file.GetLocation();
}
return true;
}
return false;
}
static void DCheckResolveException(mirror::Throwable* exception)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!kIsDebugBuild) {
return;
}
std::string temp;
const char* descriptor = exception->GetClass()->GetDescriptor(&temp);
const char* expected_exceptions[] = {
"Ljava/lang/ClassFormatError;",
"Ljava/lang/ClassCircularityError;",
"Ljava/lang/IllegalAccessError;",
"Ljava/lang/IncompatibleClassChangeError;",
"Ljava/lang/InstantiationError;",
"Ljava/lang/LinkageError;",
"Ljava/lang/NoClassDefFoundError;",
"Ljava/lang/VerifyError;",
};
bool found = false;
for (size_t i = 0; (found == false) && (i < arraysize(expected_exceptions)); ++i) {
if (strcmp(descriptor, expected_exceptions[i]) == 0) {
found = true;
}
}
if (!found) {
LOG(FATAL) << "Unexpected exception " << exception->Dump();
}
}
template <bool kApp>
class ResolveTypeVisitor : public CompilationVisitor {
public:
explicit ResolveTypeVisitor(const ParallelCompilationManager* manager) : manager_(manager) {
}
void Visit(size_t index) override REQUIRES(!Locks::mutator_lock_) {
const DexFile& dex_file = *manager_->GetDexFile();
// For boot images we resolve all referenced types, such as arrays,
// whereas for applications just those with classdefs.
dex::TypeIndex type_idx = kApp ? dex_file.GetClassDef(index).class_idx_ : dex::TypeIndex(index);
ClassLinker* class_linker = manager_->GetClassLinker();
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<kApp ? 4u : 2u> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(manager_->GetClassLoader())));
// TODO: Fix tests that require `RegisterDexFile()` and use `FindDexCache()` in all cases.
Handle<mirror::DexCache> dex_cache = hs.NewHandle(
kApp ? class_linker->FindDexCache(soa.Self(), dex_file)
: class_linker->RegisterDexFile(dex_file, class_loader.Get()));
DCHECK(dex_cache != nullptr);
// Resolve the class.
ObjPtr<mirror::Class> klass = class_linker->ResolveType(type_idx, dex_cache, class_loader);
if (klass == nullptr) {
mirror::Throwable* exception = soa.Self()->GetException();
DCHECK(exception != nullptr);
VLOG(compiler) << "Exception during type resolution: " << exception->Dump();
if (exception->GetClass() == WellKnownClasses::java_lang_OutOfMemoryError.Get()) {
// There's little point continuing compilation if the heap is exhausted.
// Trying to do so would also introduce non-deterministic compilation results.
LOG(FATAL) << "Out of memory during type resolution for compilation";
}
DCheckResolveException(exception);
soa.Self()->ClearException();
} else {
if (kApp && manager_->GetCompiler()->GetCompilerOptions().IsCheckLinkageConditions()) {
Handle<mirror::Class> hklass = hs.NewHandle(klass);
bool is_fatal = manager_->GetCompiler()->GetCompilerOptions().IsCrashOnLinkageViolation();
Handle<mirror::ClassLoader> defining_class_loader = hs.NewHandle(hklass->GetClassLoader());
if (defining_class_loader.Get() != class_loader.Get()) {
// Redefinition via different ClassLoaders.
// This OptStat stuff is to enable logging from the APK scanner.
if (is_fatal)
LOG(FATAL) << "OptStat#" << hklass->PrettyClassAndClassLoader() << ": 1";
else
LOG(ERROR)
<< "LINKAGE VIOLATION: "
<< hklass->PrettyClassAndClassLoader()
<< " was redefined";
}
// Check that the current class is not a subclass of java.lang.ClassLoader.
if (!hklass->IsInterface() &&
hklass->IsSubClass(class_linker->FindClass(soa.Self(),
"Ljava/lang/ClassLoader;",
defining_class_loader))) {
// Subclassing of java.lang.ClassLoader.
// This OptStat stuff is to enable logging from the APK scanner.
if (is_fatal) {
LOG(FATAL) << "OptStat#" << hklass->PrettyClassAndClassLoader() << ": 1";
} else {
LOG(ERROR)
<< "LINKAGE VIOLATION: "
<< hklass->PrettyClassAndClassLoader()
<< " is a subclass of java.lang.ClassLoader";
}
}
CHECK(hklass->IsResolved()) << hklass->PrettyClass();
}
}
}
private:
const ParallelCompilationManager* const manager_;
};
void CompilerDriver::ResolveDexFile(jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings) {
ScopedTrace trace(__FUNCTION__);
TimingLogger::ScopedTiming t("Resolve Types", timings);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
// TODO: we could resolve strings here, although the string table is largely filled with class
// and method names.
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
thread_pool);
// For boot images we resolve all referenced types, such as arrays,
// whereas for applications just those with classdefs.
if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
ResolveTypeVisitor</*kApp=*/ false> visitor(&context);
context.ForAll(0, dex_file.NumTypeIds(), &visitor, thread_count);
} else {
ResolveTypeVisitor</*kApp=*/ true> visitor(&context);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count);
}
}
void CompilerDriver::SetVerified(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
// This can be run in parallel.
for (const DexFile* dex_file : dex_files) {
CHECK(dex_file != nullptr);
SetVerifiedDexFile(class_loader,
*dex_file,
dex_files,
parallel_thread_pool_.get(),
parallel_thread_count_,
timings);
}
}
static void LoadAndUpdateStatus(const ClassAccessor& accessor,
ClassStatus status,
Handle<mirror::ClassLoader> class_loader,
Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
const char* descriptor = accessor.GetDescriptor();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Handle<mirror::Class> cls(hs.NewHandle<mirror::Class>(
class_linker->FindClass(self, descriptor, class_loader)));
if (cls != nullptr) {
// Check that the class is resolved with the current dex file. We might get
// a boot image class, or a class in a different dex file for multidex, and
// we should not update the status in that case.
if (&cls->GetDexFile() == &accessor.GetDexFile()) {
VLOG(compiler) << "Updating class status of " << std::string(descriptor) << " to " << status;
ObjectLock<mirror::Class> lock(self, cls);
mirror::Class::SetStatus(cls, status, self);
}
} else {
DCHECK(self->IsExceptionPending());
self->ClearException();
}
}
bool CompilerDriver::FastVerify(jobject jclass_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks();
verifier::VerifierDeps* verifier_deps = callbacks->GetVerifierDeps();
// If there exist VerifierDeps that aren't the ones we just created to output, use them to verify.
if (verifier_deps == nullptr || verifier_deps->OutputOnly()) {
return false;
}
TimingLogger::ScopedTiming t("Fast Verify", timings);
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
std::string error_msg;
if (!verifier_deps->ValidateDependencies(
soa.Self(),
class_loader,
dex_files,
&error_msg)) {
// Clear the information we have as we are going to re-verify and we do not
// want to keep that a class is verified.
verifier_deps->ClearData(dex_files);
LOG(WARNING) << "Fast verification failed: " << error_msg;
return false;
}
bool compiler_only_verifies =
!GetCompilerOptions().IsAnyCompilationEnabled() &&
!GetCompilerOptions().IsGeneratingImage();
const bool is_generating_image = GetCompilerOptions().IsGeneratingImage();
// We successfully validated the dependencies, now update class status
// of verified classes. Note that the dependencies also record which classes
// could not be fully verified; we could try again, but that would hurt verification
// time. So instead we assume these classes still need to be verified at
// runtime.
for (const DexFile* dex_file : dex_files) {
// Fetch the list of verified classes.
const std::vector<bool>& verified_classes = verifier_deps->GetVerifiedClasses(*dex_file);
DCHECK_EQ(verified_classes.size(), dex_file->NumClassDefs());
for (ClassAccessor accessor : dex_file->GetClasses()) {
ClassStatus status = verified_classes[accessor.GetClassDefIndex()]
? ClassStatus::kVerifiedNeedsAccessChecks
: ClassStatus::kRetryVerificationAtRuntime;
if (compiler_only_verifies) {
// Just update the compiled_classes_ map. The compiler doesn't need to resolve
// the type.
ClassReference ref(dex_file, accessor.GetClassDefIndex());
const ClassStatus existing = ClassStatus::kNotReady;
// Note: when dex files are compiled inidividually, the class may have
// been verified in a previous stage. This means this insertion can
// fail, but that's OK.
compiled_classes_.Insert(ref, existing, status);
} else {
if (is_generating_image &&
status == ClassStatus::kVerifiedNeedsAccessChecks &&
GetCompilerOptions().IsImageClass(accessor.GetDescriptor())) {
// If the class will be in the image, we can rely on the ArtMethods
// telling that they need access checks.
VLOG(compiler) << "Promoting "
<< std::string(accessor.GetDescriptor())
<< " from needs access checks to verified given it is an image class";
status = ClassStatus::kVerified;
}
// Update the class status, so later compilation stages know they don't need to verify
// the class.
LoadAndUpdateStatus(accessor, status, class_loader, soa.Self());
}
// Vdex marks class as unverified for two reasons only:
// 1. It has a hard failure, or
// 2. One of its method needs lock counting.
//
// The optimizing compiler expects a method to not have a hard failure before
// compiling it, so for simplicity just disable any compilation of methods
// of these classes.
if (status == ClassStatus::kRetryVerificationAtRuntime) {
ClassReference ref(dex_file, accessor.GetClassDefIndex());
callbacks->AddUncompilableClass(ref);
}
}
}
return true;
}
void CompilerDriver::Verify(jobject jclass_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
if (FastVerify(jclass_loader, dex_files, timings)) {
return;
}
// If there is no existing `verifier_deps` (because of non-existing vdex), or
// the existing `verifier_deps` is not valid anymore, create a new one. The
// verifier will need it to record the new dependencies. Then dex2oat can update
// the vdex file with these new dependencies.
// Dex2oat creates the verifier deps.
// Create the main VerifierDeps, and set it to this thread.
verifier::VerifierDeps* main_verifier_deps =
Runtime::Current()->GetCompilerCallbacks()->GetVerifierDeps();
// Verifier deps can be null when unit testing.
if (main_verifier_deps != nullptr) {
Thread::Current()->SetVerifierDeps(main_verifier_deps);
// Create per-thread VerifierDeps to avoid contention on the main one.
// We will merge them after verification.
for (ThreadPoolWorker* worker : parallel_thread_pool_->GetWorkers()) {
worker->GetThread()->SetVerifierDeps(
new verifier::VerifierDeps(GetCompilerOptions().GetDexFilesForOatFile()));
}
}
// Verification updates VerifierDeps and needs to run single-threaded to be deterministic.
bool force_determinism = GetCompilerOptions().IsForceDeterminism();
ThreadPool* verify_thread_pool =
force_determinism ? single_thread_pool_.get() : parallel_thread_pool_.get();
size_t verify_thread_count = force_determinism ? 1U : parallel_thread_count_;
for (const DexFile* dex_file : dex_files) {
CHECK(dex_file != nullptr);
VerifyDexFile(jclass_loader,
*dex_file,
dex_files,
verify_thread_pool,
verify_thread_count,
timings);
}
if (main_verifier_deps != nullptr) {
// Merge all VerifierDeps into the main one.
for (ThreadPoolWorker* worker : parallel_thread_pool_->GetWorkers()) {
std::unique_ptr<verifier::VerifierDeps> thread_deps(worker->GetThread()->GetVerifierDeps());
worker->GetThread()->SetVerifierDeps(nullptr); // We just took ownership.
main_verifier_deps->MergeWith(std::move(thread_deps),
GetCompilerOptions().GetDexFilesForOatFile());
}
Thread::Current()->SetVerifierDeps(nullptr);
}
}
class VerifyClassVisitor : public CompilationVisitor {
public:
VerifyClassVisitor(const ParallelCompilationManager* manager, verifier::HardFailLogMode log_level)
: manager_(manager),
log_level_(log_level),
sdk_version_(Runtime::Current()->GetTargetSdkVersion()) {}
void Visit(size_t class_def_index) REQUIRES(!Locks::mutator_lock_) override {
ScopedTrace trace(__FUNCTION__);
ScopedObjectAccess soa(Thread::Current());
const DexFile& dex_file = *manager_->GetDexFile();
const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = manager_->GetClassLinker();
jobject jclass_loader = manager_->GetClassLoader();
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
ClassReference ref(manager_->GetDexFile(), class_def_index);
verifier::FailureKind failure_kind;
if (klass == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
/*
* At compile time, we can still structurally verify the class even if FindClass fails.
* This is to ensure the class is structurally sound for compilation. An unsound class
* will be rejected by the verifier and later skipped during compilation in the compiler.
*/
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(
soa.Self(), dex_file)));
std::string error_msg;
failure_kind =
verifier::ClassVerifier::VerifyClass(soa.Self(),
soa.Self()->GetVerifierDeps(),
&dex_file,
klass,
dex_cache,
class_loader,
class_def,
Runtime::Current()->GetCompilerCallbacks(),
log_level_,
sdk_version_,
&error_msg);
switch (failure_kind) {
case verifier::FailureKind::kHardFailure: {
manager_->GetCompiler()->SetHadHardVerifierFailure();
break;
}
case verifier::FailureKind::kSoftFailure: {
manager_->GetCompiler()->AddSoftVerifierFailure();
break;
}
case verifier::FailureKind::kTypeChecksFailure: {
// Don't record anything, we will do the type checks from the vdex
// file at runtime.
break;
}
case verifier::FailureKind::kAccessChecksFailure: {
manager_->GetCompiler()->RecordClassStatus(ref, ClassStatus::kVerifiedNeedsAccessChecks);
break;
}
case verifier::FailureKind::kNoFailure: {
manager_->GetCompiler()->RecordClassStatus(ref, ClassStatus::kVerified);
break;
}
}
} else if (&klass->GetDexFile() != &dex_file) {
// Skip a duplicate class (as the resolved class is from another, earlier dex file).
return; // Do not update state.
} else if (!SkipClass(jclass_loader, dex_file, klass.Get())) {
CHECK(klass->IsResolved()) << klass->PrettyClass();
failure_kind = class_linker->VerifyClass(soa.Self(),
soa.Self()->GetVerifierDeps(),
klass,
log_level_);
if (klass->IsErroneous()) {
// ClassLinker::VerifyClass throws, which isn't useful in the compiler.
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
manager_->GetCompiler()->SetHadHardVerifierFailure();
} else if (failure_kind == verifier::FailureKind::kSoftFailure) {
manager_->GetCompiler()->AddSoftVerifierFailure();
}
CHECK(klass->ShouldVerifyAtRuntime() ||
klass->IsVerifiedNeedsAccessChecks() ||
klass->IsVerified() ||
klass->IsErroneous())
<< klass->PrettyDescriptor() << ": state=" << klass->GetStatus();
// Class has a meaningful status for the compiler now, record it.
ClassStatus status = klass->GetStatus();
if (status == ClassStatus::kInitialized) {
// Initialized classes shall be visibly initialized when loaded from the image.
status = ClassStatus::kVisiblyInitialized;
}
manager_->GetCompiler()->RecordClassStatus(ref, status);
// It is *very* problematic if there are resolution errors in the boot classpath.
//
// It is also bad if classes fail verification. For example, we rely on things working
// OK without verification when the decryption dialog is brought up. It is thus highly
// recommended to compile the boot classpath with
// --abort-on-hard-verifier-error --abort-on-soft-verifier-error
// which is the default build system configuration.
if (kIsDebugBuild) {
if (manager_->GetCompiler()->GetCompilerOptions().IsBootImage() ||
manager_->GetCompiler()->GetCompilerOptions().IsBootImageExtension()) {
if (!klass->IsResolved() || klass->IsErroneous()) {
LOG(FATAL) << "Boot classpath class " << klass->PrettyClass()
<< " failed to resolve/is erroneous: state= " << klass->GetStatus();
UNREACHABLE();
}
}
if (klass->IsVerified()) {
DCHECK_EQ(failure_kind, verifier::FailureKind::kNoFailure);
} else if (klass->IsVerifiedNeedsAccessChecks()) {
DCHECK_EQ(failure_kind, verifier::FailureKind::kAccessChecksFailure);
} else if (klass->ShouldVerifyAtRuntime()) {
DCHECK_NE(failure_kind, verifier::FailureKind::kHardFailure);
// This could either be due to:
// - kTypeChecksFailure, or
// - kSoftFailure, or
// - the superclass or interfaces not being verified.
} else {
DCHECK_EQ(failure_kind, verifier::FailureKind::kHardFailure);
}
}
} else {
// Make the skip a soft failure, essentially being considered as verify at runtime.
failure_kind = verifier::FailureKind::kSoftFailure;
}
verifier::VerifierDeps::MaybeRecordVerificationStatus(soa.Self()->GetVerifierDeps(),
dex_file,
class_def,
failure_kind);
soa.Self()->AssertNoPendingException();
}
private:
const ParallelCompilationManager* const manager_;
const verifier::HardFailLogMode log_level_;
const uint32_t sdk_version_;
};
void CompilerDriver::VerifyDexFile(jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings) {
TimingLogger::ScopedTiming t("Verify Dex File", timings);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
thread_pool);
bool abort_on_verifier_failures = GetCompilerOptions().AbortOnHardVerifierFailure()
|| GetCompilerOptions().AbortOnSoftVerifierFailure();
verifier::HardFailLogMode log_level = abort_on_verifier_failures
? verifier::HardFailLogMode::kLogInternalFatal
: verifier::HardFailLogMode::kLogWarning;
VerifyClassVisitor visitor(&context, log_level);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count);
// Make initialized classes visibly initialized.
class_linker->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
}
class SetVerifiedClassVisitor : public CompilationVisitor {
public:
explicit SetVerifiedClassVisitor(const ParallelCompilationManager* manager) : manager_(manager) {}
void Visit(size_t class_def_index) REQUIRES(!Locks::mutator_lock_) override {
ScopedTrace trace(__FUNCTION__);
ScopedObjectAccess soa(Thread::Current());
const DexFile& dex_file = *manager_->GetDexFile();
const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = manager_->GetClassLinker();
jobject jclass_loader = manager_->GetClassLoader();
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
// Class might have failed resolution. Then don't set it to verified.
if (klass != nullptr) {
// Only do this if the class is resolved. If even resolution fails, quickening will go very,
// very wrong.
if (klass->IsResolved() && !klass->IsErroneousResolved()) {
if (klass->GetStatus() < ClassStatus::kVerified) {
ObjectLock<mirror::Class> lock(soa.Self(), klass);
// Set class status to verified.
mirror::Class::SetStatus(klass, ClassStatus::kVerified, soa.Self());
// Mark methods as pre-verified. If we don't do this, the interpreter will run with
// access checks.
InstructionSet instruction_set =
manager_->GetCompiler()->GetCompilerOptions().GetInstructionSet();
klass->SetSkipAccessChecksFlagOnAllMethods(GetInstructionSetPointerSize(instruction_set));
}
// Record the final class status if necessary.
ClassReference ref(manager_->GetDexFile(), class_def_index);
manager_->GetCompiler()->RecordClassStatus(ref, klass->GetStatus());
}
} else {
Thread* self = soa.Self();
DCHECK(self->IsExceptionPending());
self->ClearException();
}
}
private:
const ParallelCompilationManager* const manager_;
};
void CompilerDriver::SetVerifiedDexFile(jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings) {
TimingLogger::ScopedTiming t("Set Verified Dex File", timings);
if (!compiled_classes_.HaveDexFile(&dex_file)) {
compiled_classes_.AddDexFile(&dex_file);
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
thread_pool);
SetVerifiedClassVisitor visitor(&context);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count);
}
class InitializeClassVisitor : public CompilationVisitor {
public:
explicit InitializeClassVisitor(const ParallelCompilationManager* manager) : manager_(manager) {}
void Visit(size_t class_def_index) override {
ScopedTrace trace(__FUNCTION__);
jobject jclass_loader = manager_->GetClassLoader();
const DexFile& dex_file = *manager_->GetDexFile();
const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const dex::TypeId& class_type_id = dex_file.GetTypeId(class_def.class_idx_);
const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_);
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(manager_->GetClassLinker()->FindClass(soa.Self(), descriptor, class_loader)));
if (klass != nullptr) {
if (!SkipClass(manager_->GetClassLoader(), dex_file, klass.Get())) {
TryInitializeClass(soa.Self(), klass, class_loader);
}
manager_->GetCompiler()->stats_->AddClassStatus(klass->GetStatus());
}
// Clear any class not found or verification exceptions.
soa.Self()->ClearException();
}
// A helper function for initializing klass.
void TryInitializeClass(Thread* self,
Handle<mirror::Class> klass,
Handle<mirror::ClassLoader>& class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
const DexFile& dex_file = klass->GetDexFile();
const dex::ClassDef* class_def = klass->GetClassDef();
const dex::TypeId& class_type_id = dex_file.GetTypeId(class_def->class_idx_);
const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_);
StackHandleScope<3> hs(self);
ClassLinker* const class_linker = manager_->GetClassLinker();
Runtime* const runtime = Runtime::Current();
const CompilerOptions& compiler_options = manager_->GetCompiler()->GetCompilerOptions();
const bool is_boot_image = compiler_options.IsBootImage();
const bool is_boot_image_extension = compiler_options.IsBootImageExtension();
const bool is_app_image = compiler_options.IsAppImage();
// For boot image extension, do not initialize classes defined
// in dex files belonging to the boot image we're compiling against.
if (is_boot_image_extension &&
runtime->GetHeap()->ObjectIsInBootImageSpace(klass->GetDexCache())) {
// Also return early and don't store the class status in the recorded class status.
return;
}
// Do not initialize classes in boot space when compiling app (with or without image).
if ((!is_boot_image && !is_boot_image_extension) && klass->IsBootStrapClassLoaded()) {
// Also return early and don't store the class status in the recorded class status.
return;
}
ClassStatus old_status = klass->GetStatus();
// Only try to initialize classes that were successfully verified.
if (klass->IsVerified()) {
// Attempt to initialize the class but bail if we either need to initialize the super-class
// or static fields.
class_linker->EnsureInitialized(self, klass, false, false);
DCHECK(!self->IsExceptionPending());
old_status = klass->GetStatus();
if (!klass->IsInitialized()) {
// We don't want non-trivial class initialization occurring on multiple threads due to
// deadlock problems. For example, a parent class is initialized (holding its lock) that
// refers to a sub-class in its static/class initializer causing it to try to acquire the
// sub-class' lock. While on a second thread the sub-class is initialized (holding its lock)
// after first initializing its parents, whose locks are acquired. This leads to a
// parent-to-child and a child-to-parent lock ordering and consequent potential deadlock.
// We need to use an ObjectLock due to potential suspension in the interpreting code. Rather
// than use a special Object for the purpose we use the Class of java.lang.Class.
Handle<mirror::Class> h_klass(hs.NewHandle(klass->GetClass()));
ObjectLock<mirror::Class> lock(self, h_klass);
// Attempt to initialize allowing initialization of parent classes but still not static
// fields.
// Initialize dependencies first only for app or boot image extension,
// to make TryInitializeClass() recursive.
bool try_initialize_with_superclasses =
is_boot_image ? true : InitializeDependencies(klass, class_loader, self);
if (try_initialize_with_superclasses) {
class_linker->EnsureInitialized(self, klass, false, true);
DCHECK(!self->IsExceptionPending());
}
// Otherwise it's in app image or boot image extension but superclasses
// cannot be initialized, no need to proceed.
old_status = klass->GetStatus();
bool too_many_encoded_fields = (!is_boot_image && !is_boot_image_extension) &&
klass->NumStaticFields() > kMaxEncodedFields;
bool have_profile = (compiler_options.GetProfileCompilationInfo() != nullptr) &&
!compiler_options.GetProfileCompilationInfo()->IsEmpty();
// If the class was not initialized, we can proceed to see if we can initialize static
// fields. Limit the max number of encoded fields.
if (!klass->IsInitialized() &&
(is_app_image || is_boot_image || is_boot_image_extension) &&
try_initialize_with_superclasses && !too_many_encoded_fields &&
compiler_options.IsImageClass(descriptor) &&
// TODO(b/274077782): remove this test.
(have_profile || !is_boot_image_extension)) {
bool can_init_static_fields = false;
if (is_boot_image || is_boot_image_extension) {
// We need to initialize static fields, we only do this for image classes that aren't
// marked with the $NoPreloadHolder (which implies this should not be initialized
// early).
can_init_static_fields = !EndsWith(std::string_view(descriptor), "$NoPreloadHolder;");
} else {
CHECK(is_app_image);
// The boot image case doesn't need to recursively initialize the dependencies with
// special logic since the class linker already does this.
// Optimization will be disabled in debuggable build, because in debuggable mode we
// want the <clinit> behavior to be observable for the debugger, so we don't do the
// <clinit> at compile time.
can_init_static_fields =
ClassLinker::kAppImageMayContainStrings &&
!self->IsExceptionPending() &&
!compiler_options.GetDebuggable() &&
(compiler_options.InitializeAppImageClasses() ||
NoClinitInDependency(klass, self, &class_loader));
// TODO The checking for clinit can be removed since it's already
// checked when init superclass. Currently keep it because it contains
// processing of intern strings. Will be removed later when intern strings
// and clinit are both initialized.
}
if (can_init_static_fields) {
VLOG(compiler) << "Initializing: " << descriptor;
// TODO multithreading support. We should ensure the current compilation thread has
// exclusive access to the runtime and the transaction. To achieve this, we could use
// a ReaderWriterMutex but we're holding the mutator lock so we fail the check of mutex
// validity in Thread::AssertThreadSuspensionIsAllowable.
// Resolve and initialize the exception type before enabling the transaction in case
// the transaction aborts and cannot resolve the type.
// TransactionAbortError is not initialized ant not in boot image, needed only by
// compiler and will be pruned by ImageWriter.
Handle<mirror::Class> exception_class =
hs.NewHandle(class_linker->FindClass(self,
Transaction::kAbortExceptionDescriptor,
class_loader));
bool exception_initialized =
class_linker->EnsureInitialized(self, exception_class, true, true);
DCHECK(exception_initialized);
// Run the class initializer in transaction mode.
runtime->EnterTransactionMode(is_app_image, klass.Get());
bool success = class_linker->EnsureInitialized(self, klass, true, true);
// TODO we detach transaction from runtime to indicate we quit the transactional
// mode which prevents the GC from visiting objects modified during the transaction.
// Ensure GC is not run so don't access freed objects when aborting transaction.
{
ScopedAssertNoThreadSuspension ants("Transaction end");
if (success) {
runtime->ExitTransactionMode();
DCHECK(!runtime->IsActiveTransaction());
if (is_boot_image || is_boot_image_extension) {
// For boot image and boot image extension, we want to put the updated
// status in the oat class. This is not the case for app image as we
// want to keep the ability to load the oat file without the app image.
old_status = klass->GetStatus();
}
} else {
CHECK(self->IsExceptionPending());
mirror::Throwable* exception = self->GetException();
VLOG(compiler) << "Initialization of " << descriptor << " aborted because of "
<< exception->Dump();
std::ostream* file_log = manager_->GetCompiler()->
GetCompilerOptions().GetInitFailureOutput();
if (file_log != nullptr) {
*file_log << descriptor << "\n";
*file_log << exception->Dump() << "\n";
}
self->ClearException();
runtime->RollbackAllTransactions();
CHECK_EQ(old_status, klass->GetStatus()) << "Previous class status not restored";
}
}
if (!success && (is_boot_image || is_boot_image_extension)) {
// On failure, still intern strings of static fields and seen in <clinit>, as these
// will be created in the zygote. This is separated from the transaction code just
// above as we will allocate strings, so must be allowed to suspend.
// We only need to intern strings for boot image and boot image extension
// because classes that failed to be initialized will not appear in app image.
if (&klass->GetDexFile() == manager_->GetDexFile()) {
InternStrings(klass, class_loader);
} else {
DCHECK(!is_boot_image) << "Boot image must have equal dex files";
}
}
}
}
// Clear exception in case EnsureInitialized has caused one in the code above.
// It's OK to clear the exception here since the compiler is supposed to be fault
// tolerant and will silently not initialize classes that have exceptions.
self->ClearException();
// If the class still isn't initialized, at least try some checks that initialization
// would do so they can be skipped at runtime.
if (!klass->IsInitialized() && class_linker->ValidateSuperClassDescriptors(klass)) {
old_status = ClassStatus::kSuperclassValidated;
} else {
self->ClearException();
}
self->AssertNoPendingException();
}
}
if (old_status == ClassStatus::kInitialized) {
// Initialized classes shall be visibly initialized when loaded from the image.
old_status = ClassStatus::kVisiblyInitialized;
}
// Record the final class status if necessary.
ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
// Back up the status before doing initialization for static encoded fields,
// because the static encoded branch wants to keep the status to uninitialized.
manager_->GetCompiler()->RecordClassStatus(ref, old_status);
if (kIsDebugBuild) {
// Make sure the class initialization did not leave any local references.
self->GetJniEnv()->AssertLocalsEmpty();
}
if (!klass->IsVisiblyInitialized() &&
(is_boot_image || is_boot_image_extension) &&
!compiler_options.IsPreloadedClass(PrettyDescriptor(descriptor).c_str())) {
klass->SetInBootImageAndNotInPreloadedClasses();
}
if (compiler_options.CompileArtTest()) {
// For stress testing and unit-testing the clinit check in compiled code feature.
if (kIsDebugBuild || EndsWith(std::string_view(descriptor), "$NoPreloadHolder;")) {
klass->SetInBootImageAndNotInPreloadedClasses();
}
}
}
private:
void InternStrings(Handle<mirror::Class> klass, Handle<mirror::ClassLoader> class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(manager_->GetCompiler()->GetCompilerOptions().IsBootImage() ||
manager_->GetCompiler()->GetCompilerOptions().IsBootImageExtension());
DCHECK(klass->IsVerified());
DCHECK(!klass->IsInitialized());
StackHandleScope<1> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache = hs.NewHandle(klass->GetDexCache());
const dex::ClassDef* class_def = klass->GetClassDef();
ClassLinker* class_linker = manager_->GetClassLinker();
// Check encoded final field values for strings and intern.
annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_cache,
class_loader,
manager_->GetClassLinker(),
*class_def);
for ( ; value_it.HasNext(); value_it.Next()) {
if (value_it.GetValueType() == annotations::RuntimeEncodedStaticFieldValueIterator::kString) {
// Resolve the string. This will intern the string.
art::ObjPtr<mirror::String> resolved = class_linker->ResolveString(
dex::StringIndex(value_it.GetJavaValue().i), dex_cache);
CHECK(resolved != nullptr);
}
}
// Intern strings seen in <clinit>.
ArtMethod* clinit = klass->FindClassInitializer(class_linker->GetImagePointerSize());
if (clinit != nullptr) {
for (const DexInstructionPcPair& inst : clinit->DexInstructions()) {
if (inst->Opcode() == Instruction::CONST_STRING) {
ObjPtr<mirror::String> s = class_linker->ResolveString(
dex::StringIndex(inst->VRegB_21c()), dex_cache);
CHECK(s != nullptr);
} else if (inst->Opcode() == Instruction::CONST_STRING_JUMBO) {
ObjPtr<mirror::String> s = class_linker->ResolveString(
dex::StringIndex(inst->VRegB_31c()), dex_cache);
CHECK(s != nullptr);
}
}
}
}
bool ResolveTypesOfMethods(Thread* self, ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Return value of ResolveReturnType() is discarded because resolve will be done internally.
ObjPtr<mirror::Class> rtn_type = m->ResolveReturnType();
if (rtn_type == nullptr) {
self->ClearException();
return false;
}
const dex::TypeList* types = m->GetParameterTypeList();
if (types != nullptr) {
for (uint32_t i = 0; i < types->Size(); ++i) {
dex::TypeIndex param_type_idx = types->GetTypeItem(i).type_idx_;
ObjPtr<mirror::Class> param_type = m->ResolveClassFromTypeIndex(param_type_idx);
if (param_type == nullptr) {
self->ClearException();
return false;
}
}
}
return true;
}
// Pre resolve types mentioned in all method signatures before start a transaction
// since ResolveType doesn't work in transaction mode.
bool PreResolveTypes(Thread* self, const Handle<mirror::Class>& klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
PointerSize pointer_size = manager_->GetClassLinker()->GetImagePointerSize();
for (ArtMethod& m : klass->GetMethods(pointer_size)) {
if (!ResolveTypesOfMethods(self, &m)) {
return false;
}
}
if (klass->IsInterface()) {
return true;
} else if (klass->HasSuperClass()) {
StackHandleScope<1> hs(self);
MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(klass->GetSuperClass()));
for (int i = super_klass->GetVTableLength() - 1; i >= 0; --i) {
ArtMethod* m = klass->GetVTableEntry(i, pointer_size);
ArtMethod* super_m = super_klass->GetVTableEntry(i, pointer_size);
if (!ResolveTypesOfMethods(self, m) || !ResolveTypesOfMethods(self, super_m)) {
return false;
}
}
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
super_klass.Assign(klass->GetIfTable()->GetInterface(i));
if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
uint32_t num_methods = super_klass->NumVirtualMethods();
for (uint32_t j = 0; j < num_methods; ++j) {
ArtMethod* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
j, pointer_size);
ArtMethod* super_m = super_klass->GetVirtualMethod(j, pointer_size);
if (!ResolveTypesOfMethods(self, m) || !ResolveTypesOfMethods(self, super_m)) {
return false;
}
}
}
}
}
return true;
}
// Initialize the klass's dependencies recursively before initializing itself.
// Checking for interfaces is also necessary since interfaces that contain
// default methods must be initialized before the class.
bool InitializeDependencies(const Handle<mirror::Class>& klass,
Handle<mirror::ClassLoader> class_loader,
Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (klass->HasSuperClass()) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> super_class = hs.NewHandle(klass->GetSuperClass());
if (!super_class->IsInitialized()) {
this->TryInitializeClass(self, super_class, class_loader);
if (!super_class->IsInitialized()) {
return false;
}
}
}
if (!klass->IsInterface()) {
size_t num_interfaces = klass->GetIfTableCount();
for (size_t i = 0; i < num_interfaces; ++i) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> iface = hs.NewHandle(klass->GetIfTable()->GetInterface(i));
if (iface->HasDefaultMethods() && !iface->IsInitialized()) {
TryInitializeClass(self, iface, class_loader);
if (!iface->IsInitialized()) {
return false;
}
}
}
}
return PreResolveTypes(self, klass);
}
// In this phase the classes containing class initializers are ignored. Make sure no
// clinit appears in klass's super class chain and interfaces.
bool NoClinitInDependency(const Handle<mirror::Class>& klass,
Thread* self,
Handle<mirror::ClassLoader>* class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* clinit =
klass->FindClassInitializer(manager_->GetClassLinker()->GetImagePointerSize());
if (clinit != nullptr) {
VLOG(compiler) << klass->PrettyClass() << ' ' << clinit->PrettyMethod(true);
return false;
}
if (klass->HasSuperClass()) {
ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
if (!NoClinitInDependency(handle_scope_super, self, class_loader)) {
return false;
}
}
uint32_t num_if = klass->NumDirectInterfaces();
for (size_t i = 0; i < num_if; i++) {
ObjPtr<mirror::Class> interface = klass->GetDirectInterface(i);
DCHECK(interface != nullptr);
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_interface(hs.NewHandle(interface));
if (!NoClinitInDependency(handle_interface, self, class_loader)) {
return false;
}
}
return true;
}
const ParallelCompilationManager* const manager_;
};
void CompilerDriver::InitializeClasses(jobject jni_class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
TimingLogger::ScopedTiming t("InitializeNoClinit", timings);
// Initialization allocates objects and needs to run single-threaded to be deterministic.
bool force_determinism = GetCompilerOptions().IsForceDeterminism();
ThreadPool* init_thread_pool = force_determinism
? single_thread_pool_.get()
: parallel_thread_pool_.get();
size_t init_thread_count = force_determinism ? 1U : parallel_thread_count_;
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, jni_class_loader, this, &dex_file, dex_files,
init_thread_pool);
if (GetCompilerOptions().IsBootImage() ||
GetCompilerOptions().IsBootImageExtension() ||
GetCompilerOptions().IsAppImage()) {
// Set the concurrency thread to 1 to support initialization for images since transaction
// doesn't support multithreading now.
// TODO: remove this when transactional mode supports multithreading.
init_thread_count = 1U;
}
InitializeClassVisitor visitor(&context);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, init_thread_count);
// Make initialized classes visibly initialized.
class_linker->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
}
void CompilerDriver::InitializeClasses(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != nullptr);
InitializeClasses(class_loader, *dex_file, dex_files, timings);
}
if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
// Prune garbage objects created during aborted transactions.
Runtime::Current()->GetHeap()->CollectGarbage(/* clear_soft_references= */ true);
}
}
template <typename CompileFn>
static void CompileDexFile(CompilerDriver* driver,
jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings,
const char* timing_name,
CompileFn compile_fn) {
TimingLogger::ScopedTiming t(timing_name, timings);
ParallelCompilationManager context(Runtime::Current()->GetClassLinker(),
class_loader,
driver,
&dex_file,
dex_files,
thread_pool);
const CompilerOptions& compiler_options = driver->GetCompilerOptions();
bool have_profile = (compiler_options.GetProfileCompilationInfo() != nullptr);
bool use_profile = CompilerFilter::DependsOnProfile(compiler_options.GetCompilerFilter());
ProfileCompilationInfo::ProfileIndexType profile_index = (have_profile && use_profile)
? compiler_options.GetProfileCompilationInfo()->FindDexFile(dex_file)
: ProfileCompilationInfo::MaxProfileIndex();
auto compile = [&context, &compile_fn, profile_index](size_t class_def_index) {
const DexFile& dex_file = *context.GetDexFile();
SCOPED_TRACE << "compile " << dex_file.GetLocation() << "@" << class_def_index;
ClassLinker* class_linker = context.GetClassLinker();
jobject jclass_loader = context.GetClassLoader();
ClassReference ref(&dex_file, class_def_index);
const dex::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
ClassAccessor accessor(dex_file, class_def_index);
CompilerDriver* const driver = context.GetCompiler();
// Skip compiling classes with generic verifier failures since they will still fail at runtime
DCHECK(driver->GetVerificationResults() != nullptr);
if (driver->GetVerificationResults()->IsClassRejected(ref)) {
return;
}
// Use a scoped object access to perform to the quick SkipClass check.
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), accessor.GetDescriptor(), class_loader)));
Handle<mirror::DexCache> dex_cache;
if (klass == nullptr) {
soa.Self()->AssertPendingException();
soa.Self()->ClearException();
dex_cache = hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file));
} else if (SkipClass(jclass_loader, dex_file, klass.Get())) {
return;
} else if (&klass->GetDexFile() != &dex_file) {
// Skip a duplicate class (as the resolved class is from another, earlier dex file).
return; // Do not update state.
} else {
dex_cache = hs.NewHandle(klass->GetDexCache());
}
// Avoid suspension if there are no methods to compile.
if (accessor.NumDirectMethods() + accessor.NumVirtualMethods() == 0) {
return;
}
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
// Compile direct and virtual methods.
int64_t previous_method_idx = -1;
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
const uint32_t method_idx = method.GetIndex();
if (method_idx == previous_method_idx) {
// smali can create dex files with two encoded_methods sharing the same method_idx
// http://code.google.com/p/smali/issues/detail?id=119
continue;
}
previous_method_idx = method_idx;
compile_fn(soa.Self(),
driver,
method.GetCodeItem(),
method.GetAccessFlags(),
method.GetInvokeType(class_def.access_flags_),
class_def_index,
method_idx,
class_loader,
dex_file,
dex_cache,
profile_index);
}
};
context.ForAllLambda(0, dex_file.NumClassDefs(), compile, thread_count);
}
void CompilerDriver::Compile(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
if (kDebugProfileGuidedCompilation) {
const ProfileCompilationInfo* profile_compilation_info =
GetCompilerOptions().GetProfileCompilationInfo();
LOG(INFO) << "[ProfileGuidedCompilation] " <<
((profile_compilation_info == nullptr)
? "null"
: profile_compilation_info->DumpInfo(dex_files));
}
for (const DexFile* dex_file : dex_files) {
CHECK(dex_file != nullptr);
CompileDexFile(this,
class_loader,
*dex_file,
dex_files,
parallel_thread_pool_.get(),
parallel_thread_count_,
timings,
"Compile Dex File Quick",
CompileMethodQuick);
const ArenaPool* const arena_pool = Runtime::Current()->GetArenaPool();
const size_t arena_alloc = arena_pool->GetBytesAllocated();
max_arena_alloc_ = std::max(arena_alloc, max_arena_alloc_);
Runtime::Current()->ReclaimArenaPoolMemory();
}
VLOG(compiler) << "Compile: " << GetMemoryUsageString(false);
}
void CompilerDriver::AddCompiledMethod(const MethodReference& method_ref,
CompiledMethod* const compiled_method) {
DCHECK(GetCompiledMethod(method_ref) == nullptr) << method_ref.PrettyMethod();
MethodTable::InsertResult result = compiled_methods_.Insert(method_ref,
/*expected*/ nullptr,
compiled_method);
CHECK(result == MethodTable::kInsertResultSuccess);
DCHECK(GetCompiledMethod(method_ref) != nullptr) << method_ref.PrettyMethod();
}
CompiledMethod* CompilerDriver::RemoveCompiledMethod(const MethodReference& method_ref) {
CompiledMethod* ret = nullptr;
CHECK(compiled_methods_.Remove(method_ref, &ret));
return ret;
}
bool CompilerDriver::GetCompiledClass(const ClassReference& ref, ClassStatus* status) const {
DCHECK(status != nullptr);
// The table doesn't know if something wasn't inserted. For this case it will return
// ClassStatus::kNotReady. To handle this, just assume anything we didn't try to verify
// is not compiled.
if (!compiled_classes_.Get(ref, status) ||
*status < ClassStatus::kRetryVerificationAtRuntime) {
return false;
}
return true;
}
ClassStatus CompilerDriver::GetClassStatus(const ClassReference& ref) const {
ClassStatus status = ClassStatus::kNotReady;
if (!GetCompiledClass(ref, &status)) {
classpath_classes_.Get(ref, &status);
}
return status;
}
void CompilerDriver::RecordClassStatus(const ClassReference& ref, ClassStatus status) {
switch (status) {
case ClassStatus::kErrorResolved:
case ClassStatus::kErrorUnresolved:
case ClassStatus::kNotReady:
case ClassStatus::kResolved:
case ClassStatus::kRetryVerificationAtRuntime:
case ClassStatus::kVerifiedNeedsAccessChecks:
case ClassStatus::kVerified:
case ClassStatus::kSuperclassValidated:
case ClassStatus::kVisiblyInitialized:
break; // Expected states.
default:
LOG(FATAL) << "Unexpected class status for class "
<< PrettyDescriptor(
ref.dex_file->GetClassDescriptor(ref.dex_file->GetClassDef(ref.index)))
<< " of " << status;
}
ClassStateTable::InsertResult result;
ClassStateTable* table = &compiled_classes_;
do {
ClassStatus existing = ClassStatus::kNotReady;
if (!table->Get(ref, &existing)) {
// A classpath class.
if (kIsDebugBuild) {
// Check to make sure it's not a dex file for an oat file we are compiling since these
// should always succeed. These do not include classes in for used libraries.
for (const DexFile* dex_file : GetCompilerOptions().GetDexFilesForOatFile()) {
CHECK_NE(ref.dex_file, dex_file) << ref.dex_file->GetLocation();
}
}
if (!classpath_classes_.HaveDexFile(ref.dex_file)) {
// Boot classpath dex file.
return;
}
table = &classpath_classes_;
table->Get(ref, &existing);
}
if (existing >= status) {
// Existing status is already better than we expect, break.
break;
}
// Update the status if we now have a greater one. This happens with vdex,
// which records a class is verified, but does not resolve it.
result = table->Insert(ref, existing, status);
CHECK(result != ClassStateTable::kInsertResultInvalidDexFile) << ref.dex_file->GetLocation();
} while (result != ClassStateTable::kInsertResultSuccess);
}
CompiledMethod* CompilerDriver::GetCompiledMethod(MethodReference ref) const {
CompiledMethod* compiled_method = nullptr;
compiled_methods_.Get(ref, &compiled_method);
return compiled_method;
}
std::string CompilerDriver::GetMemoryUsageString(bool extended) const {
std::ostringstream oss;
const gc::Heap* const heap = Runtime::Current()->GetHeap();
const size_t java_alloc = heap->GetBytesAllocated();
oss << "arena alloc=" << PrettySize(max_arena_alloc_) << " (" << max_arena_alloc_ << "B)";
oss << " java alloc=" << PrettySize(java_alloc) << " (" << java_alloc << "B)";
#if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL)
const struct mallinfo info = mallinfo();
const size_t allocated_space = static_cast<size_t>(info.uordblks);
const size_t free_space = static_cast<size_t>(info.fordblks);
oss << " native alloc=" << PrettySize(allocated_space) << " (" << allocated_space << "B)"
<< " free=" << PrettySize(free_space) << " (" << free_space << "B)";
#endif
compiled_method_storage_.DumpMemoryUsage(oss, extended);
return oss.str();
}
void CompilerDriver::InitializeThreadPools() {
size_t parallel_count = parallel_thread_count_ > 0 ? parallel_thread_count_ - 1 : 0;
parallel_thread_pool_.reset(
ThreadPool::Create("Compiler driver thread pool", parallel_count));
single_thread_pool_.reset(ThreadPool::Create("Single-threaded Compiler driver thread pool", 0));
}
void CompilerDriver::FreeThreadPools() {
parallel_thread_pool_.reset();
single_thread_pool_.reset();
}
void CompilerDriver::SetClasspathDexFiles(const std::vector<const DexFile*>& dex_files) {
classpath_classes_.AddDexFiles(dex_files);
}
} // namespace art