blob: 81fbcab96e4a70d42f9f675c769108eaac5cda48 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_CLASS_H_
#define ART_RUNTIME_MIRROR_CLASS_H_
#include "dex_file.h"
#include "gc_root.h"
#include "gc/allocator_type.h"
#include "invoke_type.h"
#include "modifiers.h"
#include "object.h"
#include "object_array.h"
#include "object_callbacks.h"
#include "primitive.h"
#include "read_barrier_option.h"
/*
* A magic value for refOffsets. Ignore the bits and walk the super
* chain when this is the value.
* [This is an unlikely "natural" value, since it would be 30 non-ref instance
* fields followed by 2 ref instance fields.]
*/
#define CLASS_WALK_SUPER 3U
#define CLASS_BITS_PER_WORD (sizeof(uint32_t) * 8)
#define CLASS_OFFSET_ALIGNMENT 4
#define CLASS_HIGH_BIT (1U << (CLASS_BITS_PER_WORD - 1))
/*
* Given an offset, return the bit number which would encode that offset.
* Local use only.
*/
#define _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) \
((unsigned int)(byteOffset) / \
CLASS_OFFSET_ALIGNMENT)
/*
* Is the given offset too large to be encoded?
*/
#define CLASS_CAN_ENCODE_OFFSET(byteOffset) \
(_CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) < CLASS_BITS_PER_WORD)
/*
* Return a single bit, encoding the offset.
* Undefined if the offset is too large, as defined above.
*/
#define CLASS_BIT_FROM_OFFSET(byteOffset) \
(CLASS_HIGH_BIT >> _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset))
/*
* Return an offset, given a bit number as returned from CLZ.
*/
#define CLASS_OFFSET_FROM_CLZ(rshift) \
MemberOffset((static_cast<int>(rshift) * CLASS_OFFSET_ALIGNMENT))
namespace art {
struct ClassOffsets;
template<class T> class ConstHandle;
template<class T> class Handle;
class Signature;
class StringPiece;
namespace mirror {
class ArtField;
class ArtMethod;
class ClassLoader;
class DexCache;
class IfTable;
// C++ mirror of java.lang.Class
class MANAGED Class FINAL : public Object {
public:
// Interface method table size. Increasing this value reduces the chance of two interface methods
// colliding in the interface method table but increases the size of classes that implement
// (non-marker) interfaces.
static constexpr size_t kImtSize = 64;
// imtable entry embedded in class object.
struct MANAGED ImTableEntry {
HeapReference<ArtMethod> method;
};
// vtable entry embedded in class object.
struct MANAGED VTableEntry {
HeapReference<ArtMethod> method;
};
// Class Status
//
// kStatusNotReady: If a Class cannot be found in the class table by
// FindClass, it allocates an new one with AllocClass in the
// kStatusNotReady and calls LoadClass. Note if it does find a
// class, it may not be kStatusResolved and it will try to push it
// forward toward kStatusResolved.
//
// kStatusIdx: LoadClass populates with Class with information from
// the DexFile, moving the status to kStatusIdx, indicating that the
// Class value in super_class_ has not been populated. The new Class
// can then be inserted into the classes table.
//
// kStatusLoaded: After taking a lock on Class, the ClassLinker will
// attempt to move a kStatusIdx class forward to kStatusLoaded by
// using ResolveClass to initialize the super_class_ and ensuring the
// interfaces are resolved.
//
// kStatusResolving: Class is just cloned with the right size from
// temporary class that's acting as a placeholder for linking. The old
// class will be retired. New class is set to this status first before
// moving on to being resolved.
//
// kStatusResolved: Still holding the lock on Class, the ClassLinker
// shows linking is complete and fields of the Class populated by making
// it kStatusResolved. Java allows circularities of the form where a super
// class has a field that is of the type of the sub class. We need to be able
// to fully resolve super classes while resolving types for fields.
//
// kStatusRetryVerificationAtRuntime: The verifier sets a class to
// this state if it encounters a soft failure at compile time. This
// often happens when there are unresolved classes in other dex
// files, and this status marks a class as needing to be verified
// again at runtime.
//
// TODO: Explain the other states
enum Status {
kStatusRetired = -2,
kStatusError = -1,
kStatusNotReady = 0,
kStatusIdx = 1, // Loaded, DEX idx in super_class_type_idx_ and interfaces_type_idx_.
kStatusLoaded = 2, // DEX idx values resolved.
kStatusResolving = 3, // Just cloned from temporary class object.
kStatusResolved = 4, // Part of linking.
kStatusVerifying = 5, // In the process of being verified.
kStatusRetryVerificationAtRuntime = 6, // Compile time verification failed, retry at runtime.
kStatusVerifyingAtRuntime = 7, // Retrying verification at runtime.
kStatusVerified = 8, // Logically part of linking; done pre-init.
kStatusInitializing = 9, // Class init in progress.
kStatusInitialized = 10, // Ready to go.
kStatusMax = 11,
};
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
Status GetStatus() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
COMPILE_ASSERT(sizeof(Status) == sizeof(uint32_t), size_of_status_not_uint32);
return static_cast<Status>(
GetField32Volatile<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, status_)));
}
void SetStatus(Status new_status, Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset StatusOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, status_);
}
// Returns true if the class has been retired.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsRetired() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() == kStatusRetired;
}
// Returns true if the class has failed to link.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsErroneous() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() == kStatusError;
}
// Returns true if the class has been loaded.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsIdxLoaded() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusIdx;
}
// Returns true if the class has been loaded.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsLoaded() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusLoaded;
}
// Returns true if the class has been linked.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsResolved() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusResolved;
}
// Returns true if the class was compile-time verified.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsCompileTimeVerified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusRetryVerificationAtRuntime;
}
// Returns true if the class has been verified.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsVerified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusVerified;
}
// Returns true if the class is initializing.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsInitializing() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusInitializing;
}
// Returns true if the class is initialized.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsInitialized() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() == kStatusInitialized;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetAccessFlags() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetAccessFlags(uint32_t new_access_flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags);
}
// Returns true if the class is an interface.
bool IsInterface() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccInterface) != 0;
}
// Returns true if the class is declared public.
bool IsPublic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPublic) != 0;
}
// Returns true if the class is declared final.
bool IsFinal() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccFinal) != 0;
}
bool IsFinalizable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccClassIsFinalizable) != 0;
}
void SetFinalizable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_));
SetAccessFlags(flags | kAccClassIsFinalizable);
}
// Returns true if the class is abstract.
bool IsAbstract() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccAbstract) != 0;
}
// Returns true if the class is an annotation.
bool IsAnnotation() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccAnnotation) != 0;
}
// Returns true if the class is synthetic.
bool IsSynthetic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccSynthetic) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsTypeOfReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsReference) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsWeakReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsWeakReference) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsSoftReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccReferenceFlagsMask) == kAccClassIsReference;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsFinalizerReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsFinalizerReference) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPhantomReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsPhantomReference) != 0;
}
// Can references of this type be assigned to by things of another type? For non-array types
// this is a matter of whether sub-classes may exist - which they can't if the type is final.
// For array classes, where all the classes are final due to there being no sub-classes, an
// Object[] may be assigned to by a String[] but a String[] may not be assigned to by other
// types as the component is final.
bool CannotBeAssignedFromOtherTypes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (!IsArrayClass()) {
return IsFinal();
} else {
Class* component = GetComponentType();
if (component->IsPrimitive()) {
return true;
} else {
return component->CannotBeAssignedFromOtherTypes();
}
}
}
// Returns true if this class is the placeholder and should retire and
// be replaced with a class with the right size for embedded imt/vtable.
bool IsTemp() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Status s = GetStatus();
return s < Status::kStatusResolving && ShouldHaveEmbeddedImtAndVTable();
}
String* GetName() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the cached name.
void SetName(String* name) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Sets the cached name.
// Computes the name, then sets the cached value.
static String* ComputeName(Handle<Class> h_this) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsProxyClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Read access flags without using getter as whether something is a proxy can be check in
// any loaded state
// TODO: switch to a check if the super class is java.lang.reflect.Proxy?
uint32_t access_flags = GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_));
return (access_flags & kAccClassIsProxy) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
Primitive::Type GetPrimitiveType() ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetPrimitiveType(Primitive::Type new_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t));
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_), new_type);
}
// Returns true if the class is a primitive type.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitive() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() != Primitive::kPrimNot;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveBoolean() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimBoolean;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveByte() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimByte;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveChar() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimChar;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveShort() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimShort;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveInt() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType() == Primitive::kPrimInt;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveLong() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimLong;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveFloat() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimFloat;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveDouble() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimDouble;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveVoid() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimVoid;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveArray() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return IsArrayClass<kVerifyFlags>() &&
GetComponentType<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>()->
IsPrimitive();
}
// Depth of class from java.lang.Object
uint32_t Depth() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t depth = 0;
for (Class* klass = this; klass->GetSuperClass() != NULL; klass = klass->GetSuperClass()) {
depth++;
}
return depth;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags,
ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
bool IsArrayClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetComponentType<kVerifyFlags, kReadBarrierOption>() != NULL;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags,
ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
bool IsClassClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsStringClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsThrowableClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
bool IsArtFieldClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
bool IsArtMethodClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
bool IsReferenceClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset ComponentTypeOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, component_type_);
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags,
ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
Class* GetComponentType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFieldObject<Class, kVerifyFlags, kReadBarrierOption>(ComponentTypeOffset());
}
void SetComponentType(Class* new_component_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(GetComponentType() == NULL);
DCHECK(new_component_type != NULL);
// Component type is invariant: use non-transactional mode without check.
SetFieldObject<false, false>(ComponentTypeOffset(), new_component_type);
}
template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
size_t GetComponentSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return Primitive::ComponentSize(
GetComponentType<kDefaultVerifyFlags, kReadBarrierOption>()->GetPrimitiveType());
}
bool IsObjectClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return !IsPrimitive() && GetSuperClass() == NULL;
}
bool IsInstantiableNonArray() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return !IsPrimitive() && !IsInterface() && !IsAbstract() && !IsArrayClass();
}
bool IsInstantiable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (!IsPrimitive() && !IsInterface() && !IsAbstract()) ||
((IsAbstract()) && IsArrayClass());
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsObjectArrayClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetComponentType<kVerifyFlags>() != nullptr && !GetComponentType<kVerifyFlags>()->IsPrimitive();
}
// Creates a raw object instance but does not invoke the default constructor.
template<bool kIsInstrumented, bool kCheckAddFinalizer = true>
ALWAYS_INLINE Object* Alloc(Thread* self, gc::AllocatorType allocator_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Object* AllocObject(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Object* AllocNonMovableObject(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags,
ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
bool IsVariableSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Classes and arrays vary in size, and so the object_size_ field cannot
// be used to Get their instance size
return IsClassClass<kVerifyFlags, kReadBarrierOption>() ||
IsArrayClass<kVerifyFlags, kReadBarrierOption>();
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags,
ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
uint32_t SizeOf() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_));
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetClassSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_));
}
void SetClassSize(uint32_t new_class_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Compute how many bytes would be used a class with the given elements.
static uint32_t ComputeClassSize(bool has_embedded_tables,
uint32_t num_vtable_entries,
uint32_t num_32bit_static_fields,
uint32_t num_64bit_static_fields,
uint32_t num_ref_static_fields);
// The size of java.lang.Class.class.
static uint32_t ClassClassSize() {
// The number of vtable entries in java.lang.Class.
uint32_t vtable_entries = Object::kVTableLength + 64;
return ComputeClassSize(true, vtable_entries, 0, 1, 0);
}
// The size of a java.lang.Class representing a primitive such as int.class.
static uint32_t PrimitiveClassSize() {
return ComputeClassSize(false, 0, 0, 0, 0);
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags,
ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
uint32_t GetObjectSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetObjectSize(uint32_t new_object_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(!IsVariableSize());
// Not called within a transaction.
return SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, object_size_), new_object_size);
}
// Returns true if this class is in the same packages as that class.
bool IsInSamePackage(Class* that) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static bool IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2);
// Returns true if this class can access that class.
bool CanAccess(Class* that) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return that->IsPublic() || this->IsInSamePackage(that);
}
// Can this class access a member in the provided class with the provided member access flags?
// Note that access to the class isn't checked in case the declaring class is protected and the
// method has been exposed by a public sub-class
bool CanAccessMember(Class* access_to, uint32_t member_flags)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Classes can access all of their own members
if (this == access_to) {
return true;
}
// Public members are trivially accessible
if (member_flags & kAccPublic) {
return true;
}
// Private members are trivially not accessible
if (member_flags & kAccPrivate) {
return false;
}
// Check for protected access from a sub-class, which may or may not be in the same package.
if (member_flags & kAccProtected) {
if (!this->IsInterface() && this->IsSubClass(access_to)) {
return true;
}
}
// Allow protected access from other classes in the same package.
return this->IsInSamePackage(access_to);
}
// Can this class access a resolved field?
// Note that access to field's class is checked and this may require looking up the class
// referenced by the FieldId in the DexFile in case the declaring class is inaccessible.
bool CanAccessResolvedField(Class* access_to, ArtField* field,
DexCache* dex_cache, uint32_t field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool CheckResolvedFieldAccess(Class* access_to, ArtField* field,
uint32_t field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Can this class access a resolved method?
// Note that access to methods's class is checked and this may require looking up the class
// referenced by the MethodId in the DexFile in case the declaring class is inaccessible.
bool CanAccessResolvedMethod(Class* access_to, ArtMethod* resolved_method,
DexCache* dex_cache, uint32_t method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <InvokeType throw_invoke_type>
bool CheckResolvedMethodAccess(Class* access_to, ArtMethod* resolved_method,
uint32_t method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsSubClass(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Can src be assigned to this class? For example, String can be assigned to Object (by an
// upcast), however, an Object cannot be assigned to a String as a potentially exception throwing
// downcast would be necessary. Similarly for interfaces, a class that implements (or an interface
// that extends) another can be assigned to its parent, but not vice-versa. All Classes may assign
// to themselves. Classes for primitive types may not assign to each other.
inline bool IsAssignableFrom(Class* src) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(src != NULL);
if (this == src) {
// Can always assign to things of the same type.
return true;
} else if (IsObjectClass()) {
// Can assign any reference to java.lang.Object.
return !src->IsPrimitive();
} else if (IsInterface()) {
return src->Implements(this);
} else if (src->IsArrayClass()) {
return IsAssignableFromArray(src);
} else {
return !src->IsInterface() && src->IsSubClass(this);
}
}
Class* GetSuperClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetSuperClass(Class *new_super_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Super class is assigned once, except during class linker initialization.
Class* old_super_class = GetFieldObject<Class>(OFFSET_OF_OBJECT_MEMBER(Class, super_class_));
DCHECK(old_super_class == nullptr || old_super_class == new_super_class);
DCHECK(new_super_class != nullptr);
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, super_class_), new_super_class);
}
bool HasSuperClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetSuperClass() != NULL;
}
static MemberOffset SuperClassOffset() {
return MemberOffset(OFFSETOF_MEMBER(Class, super_class_));
}
ClassLoader* GetClassLoader() ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetClassLoader(ClassLoader* new_cl) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset DexCacheOffset() {
return MemberOffset(OFFSETOF_MEMBER(Class, dex_cache_));
}
enum {
kDumpClassFullDetail = 1,
kDumpClassClassLoader = (1 << 1),
kDumpClassInitialized = (1 << 2),
};
void DumpClass(std::ostream& os, int flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
DexCache* GetDexCache() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDexCache(DexCache* new_dex_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetDirectMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDirectMethods(ObjectArray<ArtMethod>* new_direct_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetDirectMethod(int32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDirectMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of static, private, and constructor methods.
uint32_t NumDirectMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ObjectArray<ArtMethod>* GetVirtualMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVirtualMethods(ObjectArray<ArtMethod>* new_virtual_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of non-inherited virtual methods.
uint32_t NumVirtualMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ArtMethod* GetVirtualMethod(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetVirtualMethodDuringLinking(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVirtualMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetVTableDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVTable(ObjectArray<ArtMethod>* new_vtable)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset VTableOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, vtable_);
}
void SetImTable(ObjectArray<ArtMethod>* new_imtable)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset ImTableOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, imtable_);
}
static MemberOffset EmbeddedImTableOffset() {
return MemberOffset(sizeof(Class));
}
static MemberOffset EmbeddedVTableLengthOffset() {
return MemberOffset(sizeof(Class) + kImtSize * sizeof(mirror::Class::ImTableEntry));
}
static MemberOffset EmbeddedVTableOffset() {
return MemberOffset(sizeof(Class) + kImtSize * sizeof(mirror::Class::ImTableEntry) + sizeof(int32_t));
}
bool ShouldHaveEmbeddedImtAndVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return IsInstantiable();
}
bool HasVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetEmbeddedImTableEntry(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetEmbeddedImTableEntry(uint32_t i, ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
int32_t GetVTableLength() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetVTableEntry(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
int32_t GetEmbeddedVTableLength() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetEmbeddedVTableLength(int32_t len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetEmbeddedVTableEntry(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetEmbeddedVTableEntry(uint32_t i, ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void PopulateEmbeddedImtAndVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Given a method implemented by this class but potentially from a super class, return the
// specific implementation method for this class.
ArtMethod* FindVirtualMethodForVirtual(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Given a method implemented by this class' super class, return the specific implementation
// method for this class.
ArtMethod* FindVirtualMethodForSuper(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Given a method implemented by this class, but potentially from a
// super class or interface, return the specific implementation
// method for this class.
ArtMethod* FindVirtualMethodForInterface(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE;
ArtMethod* FindVirtualMethodForVirtualOrInterface(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindInterfaceMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindInterfaceMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindClassInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
int32_t GetIfTableCount() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
IfTable* GetIfTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetIfTable(IfTable* new_iftable) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Get instance fields of the class (See also GetSFields).
ObjectArray<ArtField>* GetIFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetIFields(ObjectArray<ArtField>* new_ifields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t NumInstanceFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* GetInstanceField(uint32_t i) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetInstanceField(uint32_t i, ArtField* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of instance fields containing reference types.
uint32_t NumReferenceInstanceFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsResolved() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_));
}
uint32_t NumReferenceInstanceFieldsDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsLoaded() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_));
}
void SetNumReferenceInstanceFields(uint32_t new_num) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), new_num);
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetReferenceInstanceOffsets() ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetReferenceInstanceOffsets(uint32_t new_reference_offsets)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of static fields containing reference types.
uint32_t NumReferenceStaticFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsResolved() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_));
}
uint32_t NumReferenceStaticFieldsDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsLoaded() || IsErroneous() || IsRetired());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_));
}
void SetNumReferenceStaticFields(uint32_t new_num) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), new_num);
}
// Gets the static fields of the class.
ObjectArray<ArtField>* GetSFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetSFields(ObjectArray<ArtField>* new_sfields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t NumStaticFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// TODO: uint16_t
ArtField* GetStaticField(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// TODO: uint16_t
void SetStaticField(uint32_t i, ArtField* f) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetReferenceStaticOffsets() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_));
}
void SetReferenceStaticOffsets(uint32_t new_reference_offsets)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Find a static or instance field using the JLS resolution order
static ArtField* FindField(Thread* self, Handle<Class> klass, const StringPiece& name,
const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given instance field in this class or a superclass.
ArtField* FindInstanceField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given instance field in this class or a superclass, only searches classes that
// have the same dex cache.
ArtField* FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given static field in this class or a superclass.
static ArtField* FindStaticField(Thread* self, Handle<Class> klass, const StringPiece& name,
const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given static field in this class or superclass, only searches classes that
// have the same dex cache.
static ArtField* FindStaticField(Thread* self, Handle<Class> klass, const DexCache* dex_cache,
uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredStaticField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
pid_t GetClinitThreadId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsIdxLoaded() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_));
}
void SetClinitThreadId(pid_t new_clinit_thread_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Class* GetVerifyErrorClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// DCHECK(IsErroneous());
return GetFieldObject<Class>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_));
}
uint16_t GetDexClassDefIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_));
}
void SetDexClassDefIndex(uint16_t class_def_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_), class_def_idx);
}
uint16_t GetDexTypeIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_));
}
void SetDexTypeIndex(uint16_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_), type_idx);
}
static Class* GetJavaLangClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(!java_lang_Class_.IsNull());
return java_lang_Class_.Read();
}
// Can't call this SetClass or else gets called instead of Object::SetClass in places.
static void SetClassClass(Class* java_lang_Class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void ResetClass();
static void VisitRoots(RootCallback* callback, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// When class is verified, set the kAccPreverified flag on each method.
void SetPreverifiedFlagOnAllMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool kVisitClass, typename Visitor>
void VisitReferences(mirror::Class* klass, const Visitor& visitor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Visit references within the embedded tables of the class.
// TODO: remove NO_THREAD_SAFETY_ANALYSIS when annotalysis handles visitors better.
template<typename Visitor>
void VisitEmbeddedImtAndVTable(const Visitor& visitor) NO_THREAD_SAFETY_ANALYSIS;
// Get the descriptor of the class. In a few cases a std::string is required, rather than
// always create one the storage argument is populated and its internal c_str() returned. We do
// this to avoid memory allocation in the common case.
const char* GetDescriptor(std::string* storage) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const char* GetArrayDescriptor(std::string* storage) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool DescriptorEquals(const char* match) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile::ClassDef* GetClassDef() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t NumDirectInterfaces() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint16_t GetDirectInterfaceTypeIdx(uint32_t idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static mirror::Class* GetDirectInterface(Thread* self, ConstHandle<mirror::Class> klass,
uint32_t idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const char* GetSourceFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
std::string GetLocation() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile& GetDexFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile::TypeList* GetInterfaceTypeList() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Asserts we are initialized or initializing in the given thread.
void AssertInitializedOrInitializingInThread(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Class* CopyOf(Thread* self, int32_t new_length)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// For proxy class only.
ObjectArray<Class>* GetInterfaces() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// For proxy class only.
ObjectArray<ObjectArray<Class>>* GetThrows() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// For reference class only.
MemberOffset GetDisableIntrinsicFlagOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
MemberOffset GetSlowPathFlagOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool GetSlowPathEnabled() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetSlowPath(bool enabled) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Used to initialize a class in the allocation code path to ensure it is guarded by a StoreStore
// fence.
class InitializeClassVisitor {
public:
explicit InitializeClassVisitor(uint32_t class_size) : class_size_(class_size) {
}
void operator()(mirror::Object* obj, size_t usable_size) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
private:
const uint32_t class_size_;
DISALLOW_COPY_AND_ASSIGN(InitializeClassVisitor);
};
private:
void SetVerifyErrorClass(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool throw_on_failure, bool use_referrers_cache>
bool ResolvedFieldAccessTest(Class* access_to, ArtField* field,
uint32_t field_idx, DexCache* dex_cache)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool throw_on_failure, bool use_referrers_cache, InvokeType throw_invoke_type>
bool ResolvedMethodAccessTest(Class* access_to, ArtMethod* resolved_method,
uint32_t method_idx, DexCache* dex_cache)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool Implements(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsArrayAssignableFromArray(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsAssignableFromArray(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckObjectAlloc() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetImTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// defining class loader, or NULL for the "bootstrap" system loader
HeapReference<ClassLoader> class_loader_;
// For array classes, the component class object for instanceof/checkcast
// (for String[][][], this will be String[][]). NULL for non-array classes.
HeapReference<Class> component_type_;
// DexCache of resolved constant pool entries (will be NULL for classes generated by the
// runtime such as arrays and primitive classes).
HeapReference<DexCache> dex_cache_;
// static, private, and <init> methods
HeapReference<ObjectArray<ArtMethod>> direct_methods_;
// instance fields
//
// These describe the layout of the contents of an Object.
// Note that only the fields directly declared by this class are
// listed in ifields; fields declared by a superclass are listed in
// the superclass's Class.ifields.
//
// All instance fields that refer to objects are guaranteed to be at
// the beginning of the field list. num_reference_instance_fields_
// specifies the number of reference fields.
HeapReference<ObjectArray<ArtField>> ifields_;
// The interface table (iftable_) contains pairs of a interface class and an array of the
// interface methods. There is one pair per interface supported by this class. That means one
// pair for each interface we support directly, indirectly via superclass, or indirectly via a
// superinterface. This will be null if neither we nor our superclass implement any interfaces.
//
// Why we need this: given "class Foo implements Face", declare "Face faceObj = new Foo()".
// Invoke faceObj.blah(), where "blah" is part of the Face interface. We can't easily use a
// single vtable.
//
// For every interface a concrete class implements, we create an array of the concrete vtable_
// methods for the methods in the interface.
HeapReference<IfTable> iftable_;
// Interface method table (imt), for quick "invoke-interface".
HeapReference<ObjectArray<ArtMethod>> imtable_;
// Descriptor for the class such as "java.lang.Class" or "[C". Lazily initialized by ComputeName
HeapReference<String> name_;
// Static fields
HeapReference<ObjectArray<ArtField>> sfields_;
// The superclass, or NULL if this is java.lang.Object, an interface or primitive type.
HeapReference<Class> super_class_;
// If class verify fails, we must return same error on subsequent tries.
HeapReference<Class> verify_error_class_;
// Virtual methods defined in this class; invoked through vtable.
HeapReference<ObjectArray<ArtMethod>> virtual_methods_;
// Virtual method table (vtable), for use by "invoke-virtual". The vtable from the superclass is
// copied in, and virtual methods from our class either replace those from the super or are
// appended. For abstract classes, methods may be created in the vtable that aren't in
// virtual_ methods_ for miranda methods.
HeapReference<ObjectArray<ArtMethod>> vtable_;
// Access flags; low 16 bits are defined by VM spec.
uint32_t access_flags_;
// Total size of the Class instance; used when allocating storage on gc heap.
// See also object_size_.
uint32_t class_size_;
// Tid used to check for recursive <clinit> invocation.
pid_t clinit_thread_id_;
// ClassDef index in dex file, -1 if no class definition such as an array.
// TODO: really 16bits
int32_t dex_class_def_idx_;
// Type index in dex file.
// TODO: really 16bits
int32_t dex_type_idx_;
// Number of instance fields that are object refs.
uint32_t num_reference_instance_fields_;
// Number of static fields that are object refs,
uint32_t num_reference_static_fields_;
// Total object size; used when allocating storage on gc heap.
// (For interfaces and abstract classes this will be zero.)
// See also class_size_.
uint32_t object_size_;
// Primitive type value, or Primitive::kPrimNot (0); set for generated primitive classes.
Primitive::Type primitive_type_;
// Bitmap of offsets of ifields.
uint32_t reference_instance_offsets_;
// Bitmap of offsets of sfields.
uint32_t reference_static_offsets_;
// State of class initialization.
Status status_;
// TODO: ?
// initiating class loader list
// NOTE: for classes with low serialNumber, these are unused, and the
// values are kept in a table in gDvm.
// InitiatingLoaderList initiating_loader_list_;
// The following data exist in real class objects.
// Embedded Imtable, for class object that's not an interface, fixed size.
ImTableEntry embedded_imtable_[0];
// Embedded Vtable, for class object that's not an interface, variable size.
VTableEntry embedded_vtable_[0];
// Static fields, variable size.
uint32_t fields_[0];
// java.lang.Class
static GcRoot<Class> java_lang_Class_;
friend struct art::ClassOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(Class);
};
std::ostream& operator<<(std::ostream& os, const Class::Status& rhs);
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_CLASS_H_