blob: 513c01902cb24a7b1d2c4ea3d5ed47713c05400c [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "thread.h"
#include <dynamic_annotations.h>
#include <pthread.h>
#include <sys/mman.h>
#include <algorithm>
#include <bitset>
#include <cerrno>
#include <iostream>
#include <list>
#include "class_linker.h"
#include "context.h"
#include "heap.h"
#include "jni_internal.h"
#include "object.h"
#include "runtime.h"
#include "runtime_support.h"
#include "scoped_jni_thread_state.h"
#include "thread_list.h"
#include "utils.h"
namespace art {
pthread_key_t Thread::pthread_key_self_;
// Temporary debugging hook for compiler.
void DebugMe(Method* method, uint32_t info) {
LOG(INFO) << "DebugMe";
if (method != NULL)
LOG(INFO) << PrettyMethod(method);
LOG(INFO) << "Info: " << info;
}
} // namespace art
// Called by generated call to throw an exception
extern "C" void artThrowExceptionHelper(art::Throwable* exception,
art::Thread* thread,
art::Method** sp) {
/*
* exception may be NULL, in which case this routine should
* throw NPE. NOTE: this is a convenience for generated code,
* which previously did the null check inline and constructed
* and threw a NPE if NULL. This routine responsible for setting
* exception_ in thread and delivering the exception.
*/
*sp = thread->CalleeSaveMethod();
thread->SetTopOfStack(sp, 0);
thread->DeliverException(exception);
}
namespace art {
// TODO: placeholder. Helper function to type
Class* InitializeTypeFromCode(uint32_t type_idx, Method* method) {
/*
* Should initialize & fix up method->dex_cache_resolved_types_[].
* Returns initialized type. Does not return normally if an exception
* is thrown, but instead initiates the catch. Should be similar to
* ClassLinker::InitializeStaticStorageFromCode.
*/
UNIMPLEMENTED(FATAL);
return NULL;
}
// TODO: placeholder. Helper function to resolve virtual method
void ResolveMethodFromCode(Method* method, uint32_t method_idx) {
/*
* Slow-path handler on invoke virtual method path in which
* base method is unresolved at compile-time. Doesn't need to
* return anything - just either ensure that
* method->dex_cache_resolved_methods_(method_idx) != NULL or
* throw and unwind. The caller will restart call sequence
* from the beginning.
*/
}
// TODO: placeholder. Helper function to alloc array for OP_FILLED_NEW_ARRAY
Array* CheckAndAllocFromCode(uint32_t type_index, Method* method, int32_t component_count) {
/*
* Just a wrapper around Array::AllocFromCode() that additionally
* throws a runtime exception "bad Filled array req" for 'D' and 'J'.
*/
UNIMPLEMENTED(WARNING) << "Need check that not 'D' or 'J'";
return Array::AllocFromCode(type_index, method, component_count);
}
// TODO: placeholder (throw on failure)
void CheckCastFromCode(const Class* a, const Class* b) {
if (a->IsAssignableFrom(b)) {
return;
}
UNIMPLEMENTED(FATAL);
}
void UnlockObjectFromCode(Thread* thread, Object* obj) {
// TODO: throw and unwind if lock not held
// TODO: throw and unwind on NPE
obj->MonitorExit(thread);
}
void LockObjectFromCode(Thread* thread, Object* obj) {
obj->MonitorEnter(thread);
// TODO: throw and unwind on failure.
}
void CheckSuspendFromCode(Thread* thread) {
Runtime::Current()->GetThreadList()->FullSuspendCheck(thread);
}
// TODO: placeholder
void StackOverflowFromCode(Method* method) {
Thread::Current()->Dump(std::cerr);
//NOTE: to save code space, this handler needs to look up its own Thread*
UNIMPLEMENTED(FATAL) << "Stack overflow: " << PrettyMethod(method);
}
// TODO: placeholder
void ThrowNullPointerFromCode() {
Thread::Current()->Dump(std::cerr);
//NOTE: to save code space, this handler must look up caller's Method*
UNIMPLEMENTED(FATAL) << "Null pointer exception";
}
// TODO: placeholder
void ThrowDivZeroFromCode() {
UNIMPLEMENTED(FATAL) << "Divide by zero";
}
// TODO: placeholder
void ThrowArrayBoundsFromCode(int32_t index, int32_t limit) {
UNIMPLEMENTED(FATAL) << "Bound check exception, idx: " << index << ", limit: " << limit;
}
// TODO: placeholder
void ThrowVerificationErrorFromCode(int32_t src1, int32_t ref) {
UNIMPLEMENTED(FATAL) << "Verification error, src1: " << src1 <<
" ref: " << ref;
}
// TODO: placeholder
void ThrowNegArraySizeFromCode(int32_t index) {
UNIMPLEMENTED(FATAL) << "Negative array size: " << index;
}
// TODO: placeholder
void ThrowInternalErrorFromCode(int32_t errnum) {
UNIMPLEMENTED(FATAL) << "Internal error: " << errnum;
}
// TODO: placeholder
void ThrowRuntimeExceptionFromCode(int32_t errnum) {
UNIMPLEMENTED(FATAL) << "Internal error: " << errnum;
}
// TODO: placeholder
void ThrowNoSuchMethodFromCode(int32_t method_idx) {
UNIMPLEMENTED(FATAL) << "No such method, idx: " << method_idx;
}
void ThrowAbstractMethodErrorFromCode(Method* method, Thread* thread) {
thread->ThrowNewException("Ljava/lang/AbstractMethodError",
"abstract method \"%s\"",
PrettyMethod(method).c_str());
thread->DeliverException(thread->GetException());
}
/*
* Temporary placeholder. Should include run-time checks for size
* of fill data <= size of array. If not, throw arrayOutOfBoundsException.
* As with other new "FromCode" routines, this should return to the caller
* only if no exception has been thrown.
*
* NOTE: When dealing with a raw dex file, the data to be copied uses
* little-endian ordering. Require that oat2dex do any required swapping
* so this routine can get by with a memcpy().
*
* Format of the data:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*/
void HandleFillArrayDataFromCode(Array* array, const uint16_t* table) {
uint32_t size = (uint32_t)table[2] | (((uint32_t)table[3]) << 16);
uint32_t size_in_bytes = size * table[1];
if (static_cast<int32_t>(size) > array->GetLength()) {
ThrowArrayBoundsFromCode(array->GetLength(), size);
}
memcpy((char*)array + art::Array::DataOffset().Int32Value(),
(char*)&table[4], size_in_bytes);
}
/*
* TODO: placeholder for a method that can be called by the
* invoke-interface trampoline to unwind and handle exception. The
* trampoline will arrange it so that the caller appears to be the
* callsite of the failed invoke-interface. See comments in
* runtime_support.S
*/
extern "C" void artFailedInvokeInterface() {
UNIMPLEMENTED(FATAL) << "Unimplemented exception throw";
}
// See comments in runtime_support.S
extern "C" uint64_t artFindInterfaceMethodInCache(uint32_t method_idx,
Object* this_object , Method* caller_method)
{
if (this_object == NULL) {
ThrowNullPointerFromCode();
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Method* interface_method = class_linker->ResolveMethod(method_idx, caller_method, false);
if (interface_method == NULL) {
UNIMPLEMENTED(FATAL) << "Could not resolve interface method. Throw error and unwind";
}
Method* method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
const void* code = method->GetCode();
uint32_t method_uint = reinterpret_cast<uint32_t>(method);
uint64_t code_uint = reinterpret_cast<uint32_t>(code);
uint64_t result = ((code_uint << 32) | method_uint);
return result;
}
// TODO: move to more appropriate location
/*
* Float/double conversion requires clamping to min and max of integer form. If
* target doesn't support this normally, use these.
*/
int64_t D2L(double d) {
static const double kMaxLong = (double)(int64_t)0x7fffffffffffffffULL;
static const double kMinLong = (double)(int64_t)0x8000000000000000ULL;
if (d >= kMaxLong)
return (int64_t)0x7fffffffffffffffULL;
else if (d <= kMinLong)
return (int64_t)0x8000000000000000ULL;
else if (d != d) // NaN case
return 0;
else
return (int64_t)d;
}
int64_t F2L(float f) {
static const float kMaxLong = (float)(int64_t)0x7fffffffffffffffULL;
static const float kMinLong = (float)(int64_t)0x8000000000000000ULL;
if (f >= kMaxLong)
return (int64_t)0x7fffffffffffffffULL;
else if (f <= kMinLong)
return (int64_t)0x8000000000000000ULL;
else if (f != f) // NaN case
return 0;
else
return (int64_t)f;
}
// Return value helper for jobject return types
static Object* DecodeJObjectInThread(Thread* thread, jobject obj) {
return thread->DecodeJObject(obj);
}
void Thread::InitFunctionPointers() {
#if defined(__arm__)
pShlLong = art_shl_long;
pShrLong = art_shr_long;
pUshrLong = art_ushr_long;
pIdiv = __aeabi_idiv;
pIdivmod = __aeabi_idivmod;
pI2f = __aeabi_i2f;
pF2iz = __aeabi_f2iz;
pD2f = __aeabi_d2f;
pF2d = __aeabi_f2d;
pD2iz = __aeabi_d2iz;
pL2f = __aeabi_l2f;
pL2d = __aeabi_l2d;
pFadd = __aeabi_fadd;
pFsub = __aeabi_fsub;
pFdiv = __aeabi_fdiv;
pFmul = __aeabi_fmul;
pFmodf = fmodf;
pDadd = __aeabi_dadd;
pDsub = __aeabi_dsub;
pDdiv = __aeabi_ddiv;
pDmul = __aeabi_dmul;
pFmod = fmod;
pLdivmod = __aeabi_ldivmod;
pLmul = __aeabi_lmul;
pInvokeInterfaceTrampoline = art_invoke_interface_trampoline;
pThrowException = art_throw_exception;
#endif
pF2l = F2L;
pD2l = D2L;
pAllocFromCode = Array::AllocFromCode;
pCheckAndAllocFromCode = CheckAndAllocFromCode;
pAllocObjectFromCode = Class::AllocObjectFromCode;
pMemcpy = memcpy;
pHandleFillArrayDataFromCode = HandleFillArrayDataFromCode;
pGet32Static = Field::Get32StaticFromCode;
pSet32Static = Field::Set32StaticFromCode;
pGet64Static = Field::Get64StaticFromCode;
pSet64Static = Field::Set64StaticFromCode;
pGetObjStatic = Field::GetObjStaticFromCode;
pSetObjStatic = Field::SetObjStaticFromCode;
pCanPutArrayElementFromCode = Class::CanPutArrayElementFromCode;
pInitializeTypeFromCode = InitializeTypeFromCode;
pResolveMethodFromCode = ResolveMethodFromCode;
pInitializeStaticStorage = ClassLinker::InitializeStaticStorageFromCode;
pInstanceofNonTrivialFromCode = Object::InstanceOf;
pCheckCastFromCode = CheckCastFromCode;
pLockObjectFromCode = LockObjectFromCode;
pUnlockObjectFromCode = UnlockObjectFromCode;
pFindFieldFromCode = Field::FindFieldFromCode;
pCheckSuspendFromCode = CheckSuspendFromCode;
pStackOverflowFromCode = StackOverflowFromCode;
pThrowNullPointerFromCode = ThrowNullPointerFromCode;
pThrowArrayBoundsFromCode = ThrowArrayBoundsFromCode;
pThrowDivZeroFromCode = ThrowDivZeroFromCode;
pThrowVerificationErrorFromCode = ThrowVerificationErrorFromCode;
pThrowNegArraySizeFromCode = ThrowNegArraySizeFromCode;
pThrowRuntimeExceptionFromCode = ThrowRuntimeExceptionFromCode;
pThrowInternalErrorFromCode = ThrowInternalErrorFromCode;
pThrowNoSuchMethodFromCode = ThrowNoSuchMethodFromCode;
pThrowAbstractMethodErrorFromCode = ThrowAbstractMethodErrorFromCode;
pFindNativeMethod = FindNativeMethod;
pDecodeJObjectInThread = DecodeJObjectInThread;
pDebugMe = DebugMe;
}
void Frame::Next() {
byte* next_sp = reinterpret_cast<byte*>(sp_) +
GetMethod()->GetFrameSizeInBytes();
sp_ = reinterpret_cast<Method**>(next_sp);
}
uintptr_t Frame::GetReturnPC() const {
byte* pc_addr = reinterpret_cast<byte*>(sp_) +
GetMethod()->GetReturnPcOffsetInBytes();
return *reinterpret_cast<uintptr_t*>(pc_addr);
}
uintptr_t Frame::LoadCalleeSave(int num) const {
// Callee saves are held at the top of the frame
Method* method = GetMethod();
DCHECK(method != NULL);
size_t frame_size = method->GetFrameSizeInBytes();
byte* save_addr = reinterpret_cast<byte*>(sp_) + frame_size -
((num + 1) * kPointerSize);
return *reinterpret_cast<uintptr_t*>(save_addr);
}
Method* Frame::NextMethod() const {
byte* next_sp = reinterpret_cast<byte*>(sp_) +
GetMethod()->GetFrameSizeInBytes();
return *reinterpret_cast<Method**>(next_sp);
}
void* Thread::CreateCallback(void *arg) {
Thread* self = reinterpret_cast<Thread*>(arg);
Runtime* runtime = Runtime::Current();
self->Attach(runtime);
ClassLinker* class_linker = runtime->GetClassLinker();
Class* thread_class = class_linker->FindSystemClass("Ljava/lang/Thread;");
Class* string_class = class_linker->FindSystemClass("Ljava/lang/String;");
Field* name_field = thread_class->FindDeclaredInstanceField("name", string_class);
String* thread_name = reinterpret_cast<String*>(name_field->GetObject(self->peer_));
if (thread_name != NULL) {
SetThreadName(thread_name->ToModifiedUtf8().c_str());
}
// Wait until it's safe to start running code. (There may have been a suspend-all
// in progress while we were starting up.)
runtime->GetThreadList()->WaitForGo();
// TODO: say "hi" to the debugger.
//if (gDvm.debuggerConnected) {
// dvmDbgPostThreadStart(self);
//}
// Invoke the 'run' method of our java.lang.Thread.
CHECK(self->peer_ != NULL);
Object* receiver = self->peer_;
Method* Thread_run = thread_class->FindVirtualMethod("run", "()V");
Method* m = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(Thread_run);
m->Invoke(self, receiver, NULL, NULL);
// Detach.
runtime->GetThreadList()->Unregister();
return NULL;
}
void SetVmData(Object* managed_thread, Thread* native_thread) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Class* thread_class = class_linker->FindSystemClass("Ljava/lang/Thread;");
Class* int_class = class_linker->FindPrimitiveClass('I');
Field* vmData_field = thread_class->FindDeclaredInstanceField("vmData", int_class);
vmData_field->SetInt(managed_thread, reinterpret_cast<uintptr_t>(native_thread));
}
void Thread::Create(Object* peer, size_t stack_size) {
CHECK(peer != NULL);
if (stack_size == 0) {
stack_size = Runtime::Current()->GetDefaultStackSize();
}
Thread* native_thread = new Thread;
native_thread->peer_ = peer;
// Thread.start is synchronized, so we know that vmData is 0,
// and know that we're not racing to assign it.
SetVmData(peer, native_thread);
pthread_attr_t attr;
CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
CHECK_PTHREAD_CALL(pthread_create, (&native_thread->pthread_, &attr, Thread::CreateCallback, native_thread), "new thread");
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
// Let the child know when it's safe to start running.
Runtime::Current()->GetThreadList()->SignalGo(native_thread);
}
void Thread::Attach(const Runtime* runtime) {
InitCpu();
InitFunctionPointers();
thin_lock_id_ = Runtime::Current()->GetThreadList()->AllocThreadId();
tid_ = ::art::GetTid();
pthread_ = pthread_self();
InitStackHwm();
CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach");
jni_env_ = new JNIEnvExt(this, runtime->GetJavaVM());
runtime->GetThreadList()->Register(this);
}
Thread* Thread::Attach(const Runtime* runtime, const char* name, bool as_daemon) {
Thread* self = new Thread;
self->Attach(runtime);
self->SetState(Thread::kRunnable);
SetThreadName(name);
// If we're the main thread, ClassLinker won't be created until after we're attached,
// so that thread needs a two-stage attach. Regular threads don't need this hack.
if (self->thin_lock_id_ != ThreadList::kMainId) {
self->CreatePeer(name, as_daemon);
}
return self;
}
jobject GetWellKnownThreadGroup(JNIEnv* env, const char* field_name) {
jclass thread_group_class = env->FindClass("java/lang/ThreadGroup");
jfieldID fid = env->GetStaticFieldID(thread_group_class, field_name, "Ljava/lang/ThreadGroup;");
jobject thread_group = env->GetStaticObjectField(thread_group_class, fid);
// This will be null in the compiler (and tests), but never in a running system.
//CHECK(thread_group != NULL) << "java.lang.ThreadGroup." << field_name << " not initialized";
return thread_group;
}
void Thread::CreatePeer(const char* name, bool as_daemon) {
ScopedThreadStateChange tsc(Thread::Current(), Thread::kNative);
JNIEnv* env = jni_env_;
const char* field_name = (GetThinLockId() == ThreadList::kMainId) ? "mMain" : "mSystem";
jobject thread_group = GetWellKnownThreadGroup(env, field_name);
jobject thread_name = env->NewStringUTF(name);
jint thread_priority = GetNativePriority();
jboolean thread_is_daemon = as_daemon;
jclass c = env->FindClass("java/lang/Thread");
jmethodID mid = env->GetMethodID(c, "<init>", "(Ljava/lang/ThreadGroup;Ljava/lang/String;IZ)V");
jobject peer = env->NewObject(c, mid, thread_group, thread_name, thread_priority, thread_is_daemon);
// Because we mostly run without code available (in the compiler, in tests), we
// manually assign the fields the constructor should have set.
// TODO: lose this.
jfieldID fid;
fid = env->GetFieldID(c, "group", "Ljava/lang/ThreadGroup;");
env->SetObjectField(peer, fid, thread_group);
fid = env->GetFieldID(c, "name", "Ljava/lang/String;");
env->SetObjectField(peer, fid, thread_name);
fid = env->GetFieldID(c, "priority", "I");
env->SetIntField(peer, fid, thread_priority);
fid = env->GetFieldID(c, "daemon", "Z");
env->SetBooleanField(peer, fid, thread_is_daemon);
peer_ = DecodeJObject(peer);
}
void Thread::InitStackHwm() {
pthread_attr_t attributes;
CHECK_PTHREAD_CALL(pthread_getattr_np, (pthread_, &attributes), __FUNCTION__);
void* stack_base;
size_t stack_size;
CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, &stack_base, &stack_size), __FUNCTION__);
if (stack_size <= kStackOverflowReservedBytes) {
LOG(FATAL) << "attempt to attach a thread with a too-small stack (" << stack_size << " bytes)";
}
// stack_base is the "lowest addressable byte" of the stack.
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
// to throw a StackOverflowError.
stack_end_ = reinterpret_cast<byte*>(stack_base) + kStackOverflowReservedBytes;
// Sanity check.
int stack_variable;
CHECK_GT(&stack_variable, (void*) stack_end_);
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
}
void Thread::Dump(std::ostream& os) const {
DumpState(os);
DumpStack(os);
}
std::string GetSchedulerGroup(pid_t tid) {
// /proc/<pid>/group looks like this:
// 2:devices:/
// 1:cpuacct,cpu:/
// We want the third field from the line whose second field contains the "cpu" token.
std::string cgroup_file;
if (!ReadFileToString("/proc/self/cgroup", &cgroup_file)) {
return "";
}
std::vector<std::string> cgroup_lines;
Split(cgroup_file, '\n', cgroup_lines);
for (size_t i = 0; i < cgroup_lines.size(); ++i) {
std::vector<std::string> cgroup_fields;
Split(cgroup_lines[i], ':', cgroup_fields);
std::vector<std::string> cgroups;
Split(cgroup_fields[1], ',', cgroups);
for (size_t i = 0; i < cgroups.size(); ++i) {
if (cgroups[i] == "cpu") {
return cgroup_fields[2].substr(1); // Skip the leading slash.
}
}
}
return "";
}
void Thread::DumpState(std::ostream& os) const {
std::string thread_name("<native thread without managed peer>");
std::string group_name;
int priority;
bool is_daemon = false;
if (peer_ != NULL) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Class* boolean_class = class_linker->FindPrimitiveClass('Z');
Class* int_class = class_linker->FindPrimitiveClass('I');
Class* string_class = class_linker->FindSystemClass("Ljava/lang/String;");
Class* thread_class = class_linker->FindSystemClass("Ljava/lang/Thread;");
Class* thread_group_class = class_linker->FindSystemClass("Ljava/lang/ThreadGroup;");
Field* name_field = thread_class->FindDeclaredInstanceField("name", string_class);
Field* priority_field = thread_class->FindDeclaredInstanceField("priority", int_class);
Field* daemon_field = thread_class->FindDeclaredInstanceField("daemon", boolean_class);
Field* thread_group_field = thread_class->FindDeclaredInstanceField("group", thread_group_class);
String* thread_name_string = reinterpret_cast<String*>(name_field->GetObject(peer_));
thread_name = (thread_name_string != NULL) ? thread_name_string->ToModifiedUtf8() : "<null>";
priority = priority_field->GetInt(peer_);
is_daemon = daemon_field->GetBoolean(peer_);
Object* thread_group = thread_group_field->GetObject(peer_);
if (thread_group != NULL) {
Field* name_field = thread_group_class->FindDeclaredInstanceField("name", string_class);
String* group_name_string = reinterpret_cast<String*>(name_field->GetObject(thread_group));
group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
}
} else {
// This name may be truncated, but it's the best we can do in the absence of a managed peer.
std::string stats;
if (ReadFileToString(StringPrintf("/proc/self/task/%d/stat", GetTid()).c_str(), &stats)) {
size_t start = stats.find('(') + 1;
size_t end = stats.find(')') - start;
thread_name = stats.substr(start, end);
}
priority = GetNativePriority();
}
int policy;
sched_param sp;
CHECK_PTHREAD_CALL(pthread_getschedparam, (pthread_, &policy, &sp), __FUNCTION__);
std::string scheduler_group(GetSchedulerGroup(GetTid()));
if (scheduler_group.empty()) {
scheduler_group = "default";
}
os << '"' << thread_name << '"';
if (is_daemon) {
os << " daemon";
}
os << " prio=" << priority
<< " tid=" << GetThinLockId()
<< " " << GetState() << "\n";
int debug_suspend_count = 0; // TODO
os << " | group=\"" << group_name << "\""
<< " sCount=" << suspend_count_
<< " dsCount=" << debug_suspend_count
<< " obj=" << reinterpret_cast<void*>(peer_)
<< " self=" << reinterpret_cast<const void*>(this) << "\n";
os << " | sysTid=" << GetTid()
<< " nice=" << getpriority(PRIO_PROCESS, GetTid())
<< " sched=" << policy << "/" << sp.sched_priority
<< " cgrp=" << scheduler_group
<< " handle=" << GetImpl() << "\n";
// Grab the scheduler stats for this thread.
std::string scheduler_stats;
if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", GetTid()).c_str(), &scheduler_stats)) {
scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
} else {
scheduler_stats = "0 0 0";
}
int utime = 0;
int stime = 0;
int task_cpu = 0;
std::string stats;
if (ReadFileToString(StringPrintf("/proc/self/task/%d/stat", GetTid()).c_str(), &stats)) {
// Skip the command, which may contain spaces.
stats = stats.substr(stats.find(')') + 2);
// Extract the three fields we care about.
std::vector<std::string> fields;
Split(stats, ' ', fields);
utime = strtoull(fields[11].c_str(), NULL, 10);
stime = strtoull(fields[12].c_str(), NULL, 10);
task_cpu = strtoull(fields[36].c_str(), NULL, 10);
}
os << " | schedstat=( " << scheduler_stats << " )"
<< " utm=" << utime
<< " stm=" << stime
<< " core=" << task_cpu
<< " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
}
struct StackDumpVisitor : public Thread::StackVisitor {
StackDumpVisitor(std::ostream& os) : os(os) {
}
virtual ~StackDumpVisitor() {
}
void VisitFrame(const Frame& frame, uintptr_t pc) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Method* m = frame.GetMethod();
Class* c = m->GetDeclaringClass();
const DexFile& dex_file = class_linker->FindDexFile(c->GetDexCache());
os << " at " << PrettyMethod(m, false);
if (m->IsNative()) {
os << "(Native method)";
} else {
int line_number = dex_file.GetLineNumFromPC(m, m->ToDexPC(pc));
os << "(" << c->GetSourceFile()->ToModifiedUtf8() << ":" << line_number << ")";
}
os << "\n";
}
std::ostream& os;
};
void Thread::DumpStack(std::ostream& os) const {
StackDumpVisitor dumper(os);
WalkStack(&dumper);
}
Thread::State Thread::SetState(Thread::State new_state) {
Thread::State old_state = state_;
if (old_state == new_state) {
return old_state;
}
volatile void* raw = reinterpret_cast<volatile void*>(&state_);
volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
if (new_state == Thread::kRunnable) {
/*
* Change our status to Thread::kRunnable. The transition requires
* that we check for pending suspension, because the VM considers
* us to be "asleep" in all other states, and another thread could
* be performing a GC now.
*
* The order of operations is very significant here. One way to
* do this wrong is:
*
* GCing thread Our thread (in kNative)
* ------------ ----------------------
* check suspend count (== 0)
* SuspendAllThreads()
* grab suspend-count lock
* increment all suspend counts
* release suspend-count lock
* check thread state (== kNative)
* all are suspended, begin GC
* set state to kRunnable
* (continue executing)
*
* We can correct this by grabbing the suspend-count lock and
* performing both of our operations (check suspend count, set
* state) while holding it, now we need to grab a mutex on every
* transition to kRunnable.
*
* What we do instead is change the order of operations so that
* the transition to kRunnable happens first. If we then detect
* that the suspend count is nonzero, we switch to kSuspended.
*
* Appropriate compiler and memory barriers are required to ensure
* that the operations are observed in the expected order.
*
* This does create a small window of opportunity where a GC in
* progress could observe what appears to be a running thread (if
* it happens to look between when we set to kRunnable and when we
* switch to kSuspended). At worst this only affects assertions
* and thread logging. (We could work around it with some sort
* of intermediate "pre-running" state that is generally treated
* as equivalent to running, but that doesn't seem worthwhile.)
*
* We can also solve this by combining the "status" and "suspend
* count" fields into a single 32-bit value. This trades the
* store/load barrier on transition to kRunnable for an atomic RMW
* op on all transitions and all suspend count updates (also, all
* accesses to status or the thread count require bit-fiddling).
* It also eliminates the brief transition through kRunnable when
* the thread is supposed to be suspended. This is possibly faster
* on SMP and slightly more correct, but less convenient.
*/
android_atomic_acquire_store(new_state, addr);
if (ANNOTATE_UNPROTECTED_READ(suspend_count_) != 0) {
Runtime::Current()->GetThreadList()->FullSuspendCheck(this);
}
} else {
/*
* Not changing to Thread::kRunnable. No additional work required.
*
* We use a releasing store to ensure that, if we were runnable,
* any updates we previously made to objects on the managed heap
* will be observed before the state change.
*/
android_atomic_release_store(new_state, addr);
}
return old_state;
}
void Thread::WaitUntilSuspended() {
// TODO: dalvik dropped the waiting thread's priority after a while.
// TODO: dalvik timed out and aborted.
useconds_t delay = 0;
while (GetState() == Thread::kRunnable) {
useconds_t new_delay = delay * 2;
CHECK_GE(new_delay, delay);
delay = new_delay;
if (delay == 0) {
sched_yield();
delay = 10000;
} else {
usleep(delay);
}
}
}
void Thread::ThreadExitCallback(void* arg) {
Thread* self = reinterpret_cast<Thread*>(arg);
LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
}
void Thread::Startup() {
// Allocate a TLS slot.
CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
// Double-check the TLS slot allocation.
if (pthread_getspecific(pthread_key_self_) != NULL) {
LOG(FATAL) << "newly-created pthread TLS slot is not NULL";
}
// TODO: initialize other locks and condition variables
}
void Thread::Shutdown() {
CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
}
Thread::Thread()
: peer_(NULL),
wait_mutex_("Thread wait mutex"),
wait_monitor_(NULL),
interrupted_(false),
stack_end_(NULL),
top_of_managed_stack_(),
native_to_managed_record_(NULL),
top_sirt_(NULL),
jni_env_(NULL),
state_(Thread::kUnknown),
exception_(NULL),
suspend_count_(0),
class_loader_override_(NULL) {
}
void MonitorExitVisitor(const Object* object, void*) {
Object* entered_monitor = const_cast<Object*>(object);
entered_monitor->MonitorExit();
}
Thread::~Thread() {
// TODO: check we're not calling the JNI DetachCurrentThread function from
// a call stack that includes managed frames. (It's only valid if the stack is all-native.)
// On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
if (jni_env_ != NULL) {
jni_env_->monitors.VisitRoots(MonitorExitVisitor, NULL);
}
if (IsExceptionPending()) {
UNIMPLEMENTED(FATAL) << "threadExitUncaughtException()";
}
// TODO: ThreadGroup.removeThread(this);
if (peer_ != NULL) {
SetVmData(peer_, NULL);
}
// TODO: say "bye" to the debugger.
//if (gDvm.debuggerConnected) {
// dvmDbgPostThreadDeath(self);
//}
// Thread.join() is implemented as an Object.wait() on the Thread.lock
// object. Signal anyone who is waiting.
//Object* lock = dvmGetFieldObject(self->threadObj, gDvm.offJavaLangThread_lock);
//dvmLockObject(self, lock);
//dvmObjectNotifyAll(self, lock);
//dvmUnlockObject(self, lock);
//lock = NULL;
delete jni_env_;
jni_env_ = NULL;
SetState(Thread::kTerminated);
}
size_t Thread::NumSirtReferences() {
size_t count = 0;
for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->Link()) {
count += cur->NumberOfReferences();
}
return count;
}
bool Thread::SirtContains(jobject obj) {
Object** sirt_entry = reinterpret_cast<Object**>(obj);
for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->Link()) {
size_t num_refs = cur->NumberOfReferences();
// A SIRT should always have a jobject/jclass as a native method is passed
// in a this pointer or a class
DCHECK_GT(num_refs, 0u);
if ((&cur->References()[0] <= sirt_entry) &&
(sirt_entry <= (&cur->References()[num_refs - 1]))) {
return true;
}
}
return false;
}
Object* Thread::DecodeJObject(jobject obj) {
DCHECK(CanAccessDirectReferences());
if (obj == NULL) {
return NULL;
}
IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
IndirectRefKind kind = GetIndirectRefKind(ref);
Object* result;
switch (kind) {
case kLocal:
{
IndirectReferenceTable& locals = jni_env_->locals;
result = const_cast<Object*>(locals.Get(ref));
break;
}
case kGlobal:
{
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
IndirectReferenceTable& globals = vm->globals;
MutexLock mu(vm->globals_lock);
result = const_cast<Object*>(globals.Get(ref));
break;
}
case kWeakGlobal:
{
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
IndirectReferenceTable& weak_globals = vm->weak_globals;
MutexLock mu(vm->weak_globals_lock);
result = const_cast<Object*>(weak_globals.Get(ref));
if (result == kClearedJniWeakGlobal) {
// This is a special case where it's okay to return NULL.
return NULL;
}
break;
}
case kSirtOrInvalid:
default:
// TODO: make stack indirect reference table lookup more efficient
// Check if this is a local reference in the SIRT
if (SirtContains(obj)) {
result = *reinterpret_cast<Object**>(obj); // Read from SIRT
} else if (jni_env_->work_around_app_jni_bugs) {
// Assume an invalid local reference is actually a direct pointer.
result = reinterpret_cast<Object*>(obj);
} else {
result = kInvalidIndirectRefObject;
}
}
if (result == NULL) {
LOG(ERROR) << "JNI ERROR (app bug): use of deleted " << kind << ": " << obj;
JniAbort(NULL);
} else {
if (result != kInvalidIndirectRefObject) {
Heap::VerifyObject(result);
}
}
return result;
}
class CountStackDepthVisitor : public Thread::StackVisitor {
public:
CountStackDepthVisitor() : depth_(0) {}
virtual void VisitFrame(const Frame&, uintptr_t pc) {
++depth_;
}
int GetDepth() const {
return depth_;
}
private:
uint32_t depth_;
};
//
class BuildInternalStackTraceVisitor : public Thread::StackVisitor {
public:
explicit BuildInternalStackTraceVisitor(int depth, ScopedJniThreadState& ts) : count_(0) {
// Allocate method trace with an extra slot that will hold the PC trace
method_trace_ = Runtime::Current()->GetClassLinker()->
AllocObjectArray<Object>(depth + 1);
// Register a local reference as IntArray::Alloc may trigger GC
local_ref_ = AddLocalReference<jobject>(ts.Env(), method_trace_);
pc_trace_ = IntArray::Alloc(depth);
#ifdef MOVING_GARBAGE_COLLECTOR
// Re-read after potential GC
method_trace = Decode<ObjectArray<Object>*>(ts.Env(), local_ref_);
#endif
// Save PC trace in last element of method trace, also places it into the
// object graph.
method_trace_->Set(depth, pc_trace_);
}
virtual ~BuildInternalStackTraceVisitor() {}
virtual void VisitFrame(const Frame& frame, uintptr_t pc) {
method_trace_->Set(count_, frame.GetMethod());
pc_trace_->Set(count_, pc);
++count_;
}
jobject GetInternalStackTrace() const {
return local_ref_;
}
private:
// Current position down stack trace
uint32_t count_;
// Array of return PC values
IntArray* pc_trace_;
// An array of the methods on the stack, the last entry is a reference to the
// PC trace
ObjectArray<Object>* method_trace_;
// Local indirect reference table entry for method trace
jobject local_ref_;
};
void Thread::WalkStack(StackVisitor* visitor) const {
Frame frame = GetTopOfStack();
uintptr_t pc = top_of_managed_stack_pc_;
// TODO: enable this CHECK after native_to_managed_record_ is initialized during startup.
// CHECK(native_to_managed_record_ != NULL);
NativeToManagedRecord* record = native_to_managed_record_;
while (frame.GetSP() != 0) {
for ( ; frame.GetMethod() != 0; frame.Next()) {
DCHECK(frame.GetMethod()->IsWithinCode(pc));
visitor->VisitFrame(frame, pc);
pc = frame.GetReturnPC();
}
if (record == NULL) {
break;
}
// last_tos should return Frame instead of sp?
frame.SetSP(reinterpret_cast<art::Method**>(record->last_top_of_managed_stack_));
pc = record->last_top_of_managed_stack_pc_;
record = record->link_;
}
}
void Thread::WalkStackUntilUpCall(StackVisitor* visitor) const {
Frame frame = GetTopOfStack();
uintptr_t pc = top_of_managed_stack_pc_;
if (frame.GetSP() != 0) {
for ( ; frame.GetMethod() != 0; frame.Next()) {
visitor->VisitFrame(frame, pc);
pc = frame.GetReturnPC();
}
}
}
jobject Thread::CreateInternalStackTrace() const {
// Compute depth of stack
CountStackDepthVisitor count_visitor;
WalkStack(&count_visitor);
int32_t depth = count_visitor.GetDepth();
// Transition into runnable state to work on Object*/Array*
ScopedJniThreadState ts(jni_env_);
// Build internal stack trace
BuildInternalStackTraceVisitor build_trace_visitor(depth, ts);
WalkStack(&build_trace_visitor);
return build_trace_visitor.GetInternalStackTrace();
}
jobjectArray Thread::InternalStackTraceToStackTraceElementArray(jobject internal,
JNIEnv* env) {
// Transition into runnable state to work on Object*/Array*
ScopedJniThreadState ts(env);
// Decode the internal stack trace into the depth, method trace and PC trace
ObjectArray<Object>* method_trace =
down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal));
int32_t depth = method_trace->GetLength()-1;
IntArray* pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
// Create java_trace array and place in local reference table
ObjectArray<StackTraceElement>* java_traces =
class_linker->AllocStackTraceElementArray(depth);
jobjectArray result = AddLocalReference<jobjectArray>(ts.Env(), java_traces);
for (int32_t i = 0; i < depth; ++i) {
// Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
Method* method = down_cast<Method*>(method_trace->Get(i));
uint32_t native_pc = pc_trace->Get(i);
Class* klass = method->GetDeclaringClass();
const DexFile& dex_file = class_linker->FindDexFile(klass->GetDexCache());
String* readable_descriptor = String::AllocFromModifiedUtf8(
PrettyDescriptor(klass->GetDescriptor()).c_str());
// Allocate element, potentially triggering GC
StackTraceElement* obj =
StackTraceElement::Alloc(readable_descriptor,
method->GetName(),
klass->GetSourceFile(),
dex_file.GetLineNumFromPC(method,
method->ToDexPC(native_pc)));
#ifdef MOVING_GARBAGE_COLLECTOR
// Re-read after potential GC
java_traces = Decode<ObjectArray<Object>*>(ts.Env(), result);
method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal));
pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
#endif
java_traces->Set(i, obj);
}
return result;
}
void Thread::ThrowNewException(const char* exception_class_descriptor, const char* fmt, ...) {
std::string msg;
va_list args;
va_start(args, fmt);
StringAppendV(&msg, fmt, args);
va_end(args);
// Convert "Ljava/lang/Exception;" into JNI-style "java/lang/Exception".
CHECK_EQ('L', exception_class_descriptor[0]);
std::string descriptor(exception_class_descriptor + 1);
CHECK_EQ(';', descriptor[descriptor.length() - 1]);
descriptor.erase(descriptor.length() - 1);
JNIEnv* env = GetJniEnv();
jclass exception_class = env->FindClass(descriptor.c_str());
CHECK(exception_class != NULL) << "descriptor=\"" << descriptor << "\"";
int rc = env->ThrowNew(exception_class, msg.c_str());
CHECK_EQ(rc, JNI_OK);
}
void Thread::ThrowOutOfMemoryError() {
UNIMPLEMENTED(FATAL);
}
Method* Thread::CalleeSaveMethod() const {
// TODO: we should only allocate this once
// TODO: this code is ARM specific
Method* method = Runtime::Current()->GetClassLinker()->AllocMethod();
method->SetCode(NULL, art::kThumb2, NULL);
method->SetFrameSizeInBytes(64);
method->SetReturnPcOffsetInBytes(60);
method->SetCoreSpillMask(0x4FFE);
method->SetFpSpillMask(0);
return method;
}
class CatchBlockStackVisitor : public Thread::StackVisitor {
public:
CatchBlockStackVisitor(Class* to_find, Context* ljc)
: found_(false), to_find_(to_find), long_jump_context_(ljc) {}
virtual void VisitFrame(const Frame& fr, uintptr_t pc) {
if (!found_) {
last_pc_ = pc;
handler_frame_ = fr;
Method* method = fr.GetMethod();
if (pc > 0) {
// Move the PC back 2 bytes as a call will frequently terminate the
// decoding of a particular instruction and we want to make sure we
// get the Dex PC of the instruction with the call and not the
// instruction following.
pc -= 2;
}
uint32_t dex_pc = method->ToDexPC(pc);
if (dex_pc != DexFile::kDexNoIndex) {
uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc);
if (found_dex_pc != DexFile::kDexNoIndex) {
found_ = true;
handler_dex_pc_ = found_dex_pc;
}
}
if (!found_) {
// Caller may be handler, fill in callee saves in context
long_jump_context_->FillCalleeSaves(fr);
}
}
}
// Did we find a catch block yet?
bool found_;
// The type of the exception catch block to find
Class* to_find_;
// Frame with found handler or last frame if no handler found
Frame handler_frame_;
// Found dex PC of the handler block
uint32_t handler_dex_pc_;
// Context that will be the target of the long jump
Context* long_jump_context_;
uintptr_t last_pc_;
};
void Thread::DeliverException(Throwable* exception) {
SetException(exception); // Set exception on thread
Context* long_jump_context = GetLongJumpContext();
CatchBlockStackVisitor catch_finder(exception->GetClass(), long_jump_context);
WalkStackUntilUpCall(&catch_finder);
long_jump_context->SetSP(reinterpret_cast<intptr_t>(catch_finder.handler_frame_.GetSP()));
uintptr_t long_jump_pc;
if (catch_finder.found_) {
long_jump_pc = catch_finder.handler_frame_.GetMethod()->ToNativePC(catch_finder.handler_dex_pc_);
} else {
long_jump_pc = catch_finder.last_pc_;
}
long_jump_context->SetPC(long_jump_pc);
long_jump_context->DoLongJump();
}
Context* Thread::GetLongJumpContext() {
Context* result = long_jump_context_.get();
if (result == NULL) {
result = Context::Create();
long_jump_context_.reset(result);
}
return result;
}
void Thread::VisitRoots(Heap::RootVisitor* visitor, void* arg) const {
if (exception_ != NULL) {
visitor(exception_, arg);
}
if (peer_ != NULL) {
visitor(peer_, arg);
}
jni_env_->locals.VisitRoots(visitor, arg);
jni_env_->monitors.VisitRoots(visitor, arg);
// visitThreadStack(visitor, thread, arg);
UNIMPLEMENTED(WARNING) << "some per-Thread roots not visited";
}
static const char* kStateNames[] = {
"Terminated",
"Runnable",
"TimedWaiting",
"Blocked",
"Waiting",
"Initializing",
"Starting",
"Native",
"VmWait",
"Suspended",
};
std::ostream& operator<<(std::ostream& os, const Thread::State& state) {
int int_state = static_cast<int>(state);
if (state >= Thread::kTerminated && state <= Thread::kSuspended) {
os << kStateNames[int_state];
} else {
os << "State[" << int_state << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const Thread& thread) {
os << "Thread[" << &thread
<< ",pthread_t=" << thread.GetImpl()
<< ",tid=" << thread.GetTid()
<< ",id=" << thread.GetThinLockId()
<< ",state=" << thread.GetState()
<< ",peer=" << thread.GetPeer()
<< "]";
return os;
}
} // namespace art