blob: 36771b391f5bca7e3afcdab5d3f3ae73ee954909 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <log/log.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <forward_list>
#include <fstream>
#include <iostream>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
#if defined(__linux__)
#include <sched.h>
#if defined(__arm__)
#include <sys/personality.h>
#include <sys/utsname.h>
#endif // __arm__
#endif
#include "android-base/parseint.h"
#include "android-base/properties.h"
#include "android-base/scopeguard.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "android-base/unique_fd.h"
#include "aot_class_linker.h"
#include "arch/instruction_set_features.h"
#include "art_method-inl.h"
#include "base/callee_save_type.h"
#include "base/dumpable.h"
#include "base/fast_exit.h"
#include "base/file_utils.h"
#include "base/globals.h"
#include "base/leb128.h"
#include "base/macros.h"
#include "base/memory_tool.h"
#include "base/mutex.h"
#include "base/os.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/time_utils.h"
#include "base/timing_logger.h"
#include "base/unix_file/fd_file.h"
#include "base/utils.h"
#include "base/zip_archive.h"
#include "class_linker.h"
#include "class_loader_context.h"
#include "class_root-inl.h"
#include "cmdline_parser.h"
#include "compiler.h"
#include "compiler_callbacks.h"
#include "debug/elf_debug_writer.h"
#include "debug/method_debug_info.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_loader.h"
#include "dex/quick_compiler_callbacks.h"
#include "dex/verification_results.h"
#include "dex2oat_options.h"
#include "dexlayout.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "driver/compiler_options_map-inl.h"
#include "elf_file.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "gc/verification.h"
#include "interpreter/unstarted_runtime.h"
#include "jni/java_vm_ext.h"
#include "linker/elf_writer.h"
#include "linker/elf_writer_quick.h"
#include "linker/image_writer.h"
#include "linker/multi_oat_relative_patcher.h"
#include "linker/oat_writer.h"
#include "mirror/class-alloc-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat.h"
#include "oat_file.h"
#include "oat_file_assistant.h"
#include "palette/palette.h"
#include "profile/profile_compilation_info.h"
#include "runtime.h"
#include "runtime_intrinsics.h"
#include "runtime_options.h"
#include "scoped_thread_state_change-inl.h"
#include "stream/buffered_output_stream.h"
#include "stream/file_output_stream.h"
#include "vdex_file.h"
#include "verifier/verifier_deps.h"
namespace art {
namespace dex2oat {
enum class ReturnCode : int {
kNoFailure = 0, // No failure, execution completed successfully.
kOther = 1, // Some other not closer specified error occurred.
kCreateRuntime = 2, // Dex2oat failed creating a runtime.
};
} // namespace dex2oat
using android::base::StringAppendV;
using android::base::StringPrintf;
using gc::space::ImageSpace;
static constexpr size_t kDefaultMinDexFilesForSwap = 2;
static constexpr size_t kDefaultMinDexFileCumulativeSizeForSwap = 20 * MB;
// Compiler filter override for very large apps.
static constexpr CompilerFilter::Filter kLargeAppFilter = CompilerFilter::kVerify;
static int original_argc;
static char** original_argv;
static std::string CommandLine() {
std::vector<std::string> command;
command.reserve(original_argc);
for (int i = 0; i < original_argc; ++i) {
command.push_back(original_argv[i]);
}
return android::base::Join(command, ' ');
}
// A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be
// even more aggressive. There won't be much reasonable data here for us in that case anyways (the
// locations are all staged).
static std::string StrippedCommandLine() {
std::vector<std::string> command;
// Do a pre-pass to look for zip-fd and the compiler filter.
bool saw_zip_fd = false;
bool saw_compiler_filter = false;
for (int i = 0; i < original_argc; ++i) {
if (android::base::StartsWith(original_argv[i], "--zip-fd=")) {
saw_zip_fd = true;
}
if (android::base::StartsWith(original_argv[i], "--compiler-filter=")) {
saw_compiler_filter = true;
}
}
// Now filter out things.
for (int i = 0; i < original_argc; ++i) {
// All runtime-arg parameters are dropped.
if (strcmp(original_argv[i], "--runtime-arg") == 0) {
i++; // Drop the next part, too.
continue;
}
// Any instruction-setXXX is dropped.
if (android::base::StartsWith(original_argv[i], "--instruction-set")) {
continue;
}
// The boot image is dropped.
if (android::base::StartsWith(original_argv[i], "--boot-image=")) {
continue;
}
// The image format is dropped.
if (android::base::StartsWith(original_argv[i], "--image-format=")) {
continue;
}
// This should leave any dex-file and oat-file options, describing what we compiled.
// However, we prefer to drop this when we saw --zip-fd.
if (saw_zip_fd) {
// Drop anything --zip-X, --dex-X, --oat-X, --swap-X, or --app-image-X
if (android::base::StartsWith(original_argv[i], "--zip-") ||
android::base::StartsWith(original_argv[i], "--dex-") ||
android::base::StartsWith(original_argv[i], "--oat-") ||
android::base::StartsWith(original_argv[i], "--swap-") ||
android::base::StartsWith(original_argv[i], "--app-image-")) {
continue;
}
}
command.push_back(original_argv[i]);
}
if (!saw_compiler_filter) {
command.push_back("--compiler-filter=" +
CompilerFilter::NameOfFilter(CompilerFilter::kDefaultCompilerFilter));
}
// Construct the final output.
if (command.size() <= 1U) {
// It seems only "/apex/com.android.art/bin/dex2oat" is left, or not
// even that. Use a pretty line.
return "Starting dex2oat.";
}
return android::base::Join(command, ' ');
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: dex2oat [options]...");
UsageError("");
std::stringstream oss;
VariableIndentationOutputStream vios(&oss);
auto parser = CreateDex2oatArgumentParser();
parser.DumpHelp(vios);
UsageError(oss.str().c_str());
std::cerr << "See log for usage error information\n";
exit(EXIT_FAILURE);
}
// Set CPU affinity from a string containing a comma-separated list of numeric CPU identifiers.
static void SetCpuAffinity(const std::vector<int32_t>& cpu_list) {
#ifdef __linux__
int cpu_count = sysconf(_SC_NPROCESSORS_CONF);
cpu_set_t target_cpu_set;
CPU_ZERO(&target_cpu_set);
for (int32_t cpu : cpu_list) {
if (cpu >= 0 && cpu < cpu_count) {
CPU_SET(cpu, &target_cpu_set);
} else {
// Argument error is considered fatal, suggests misconfigured system properties.
Usage("Invalid cpu \"d\" specified in --cpu-set argument (nprocessors = %d)",
cpu, cpu_count);
}
}
if (sched_setaffinity(getpid(), sizeof(target_cpu_set), &target_cpu_set) == -1) {
// Failure to set affinity may be outside control of requestor, log warning rather than
// treating as fatal.
PLOG(WARNING) << "Failed to set CPU affinity.";
}
#else
LOG(WARNING) << "--cpu-set not supported on this platform.";
#endif // __linux__
}
// The primary goal of the watchdog is to prevent stuck build servers
// during development when fatal aborts lead to a cascade of failures
// that result in a deadlock.
class WatchDog {
// WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks
#undef CHECK_PTHREAD_CALL
#define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \
do { \
int rc = call args; \
if (rc != 0) { \
errno = rc; \
std::string message(# call); \
message += " failed for "; \
message += reason; \
Fatal(message); \
} \
} while (false)
public:
explicit WatchDog(int64_t timeout_in_milliseconds)
: timeout_in_milliseconds_(timeout_in_milliseconds),
shutting_down_(false) {
const char* reason = "dex2oat watch dog thread startup";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason);
#ifndef __APPLE__
pthread_condattr_t condattr;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_init, (&condattr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_setclock, (&condattr, CLOCK_MONOTONIC), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, &condattr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_destroy, (&condattr), reason);
#endif
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason);
}
~WatchDog() {
const char* reason = "dex2oat watch dog thread shutdown";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
shutting_down_ = true;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason);
}
static void SetRuntime(Runtime* runtime) {
const char* reason = "dex2oat watch dog set runtime";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason);
runtime_ = runtime;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason);
}
// TODO: tune the multiplier for GC verification, the following is just to make the timeout
// large.
static constexpr int64_t kWatchdogVerifyMultiplier =
kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1;
// When setting timeouts, keep in mind that the build server may not be as fast as your
// desktop. Debug builds are slower so they have larger timeouts.
static constexpr int64_t kWatchdogSlowdownFactor = kIsDebugBuild ? 5U : 1U;
// 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager
// watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort
// itself before that watchdog would take down the system server.
static constexpr int64_t kWatchDogTimeoutSeconds = kWatchdogSlowdownFactor * (9 * 60 + 30);
static constexpr int64_t kDefaultWatchdogTimeoutInMS =
kWatchdogVerifyMultiplier * kWatchDogTimeoutSeconds * 1000;
private:
static void* CallBack(void* arg) {
WatchDog* self = reinterpret_cast<WatchDog*>(arg);
::art::SetThreadName("dex2oat watch dog");
self->Wait();
return nullptr;
}
NO_RETURN static void Fatal(const std::string& message) {
// TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However,
// it's rather easy to hang in unwinding.
// LogLine also avoids ART logging lock issues, as it's really only a wrapper around
// logcat logging or stderr output.
LogHelper::LogLineLowStack(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str());
// If we're on the host, try to dump all threads to get a sense of what's going on. This is
// restricted to the host as the dump may itself go bad.
// TODO: Use a double watchdog timeout, so we can enable this on-device.
Runtime* runtime = GetRuntime();
if (!kIsTargetBuild && runtime != nullptr) {
runtime->AttachCurrentThread("Watchdog thread attached for dumping",
true,
nullptr,
false);
runtime->DumpForSigQuit(std::cerr);
}
exit(1);
}
void Wait() {
timespec timeout_ts;
#if defined(__APPLE__)
InitTimeSpec(true, CLOCK_REALTIME, timeout_in_milliseconds_, 0, &timeout_ts);
#else
InitTimeSpec(true, CLOCK_MONOTONIC, timeout_in_milliseconds_, 0, &timeout_ts);
#endif
const char* reason = "dex2oat watch dog thread waiting";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
while (!shutting_down_) {
int rc = pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts);
if (rc == EINTR) {
continue;
} else if (rc == ETIMEDOUT) {
Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " milliseconds",
timeout_in_milliseconds_));
} else if (rc != 0) {
std::string message(StringPrintf("pthread_cond_timedwait failed: %s", strerror(rc)));
Fatal(message);
}
}
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
}
static Runtime* GetRuntime() {
const char* reason = "dex2oat watch dog get runtime";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason);
Runtime* runtime = runtime_;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason);
return runtime;
}
static pthread_mutex_t runtime_mutex_;
static Runtime* runtime_;
// TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases.
pthread_mutex_t mutex_;
pthread_cond_t cond_;
pthread_attr_t attr_;
pthread_t pthread_;
const int64_t timeout_in_milliseconds_;
bool shutting_down_;
};
pthread_mutex_t WatchDog::runtime_mutex_ = PTHREAD_MUTEX_INITIALIZER;
Runtime* WatchDog::runtime_ = nullptr;
// Helper class for overriding `java.lang.ThreadLocal.nextHashCode`.
//
// The class ThreadLocal has a static field nextHashCode used for assigning hash codes to
// new ThreadLocal objects. Since the class and the object referenced by the field are
// in the boot image, they cannot be modified under normal rules for AOT compilation.
// However, since this is a private detail that's used only for assigning hash codes and
// everything should work fine with different hash codes, we override the field for the
// compilation, providing another object that the AOT class initialization can modify.
class ThreadLocalHashOverride {
public:
ThreadLocalHashOverride(bool apply, int32_t initial_value) {
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
hs_.emplace(self); // While holding the mutator lock.
Runtime* runtime = Runtime::Current();
klass_ = hs_->NewHandle(apply
? runtime->GetClassLinker()->LookupClass(self,
"Ljava/lang/ThreadLocal;",
/*class_loader=*/ nullptr)
: nullptr);
field_ = ((klass_ != nullptr) && klass_->IsVisiblyInitialized())
? klass_->FindDeclaredStaticField("nextHashCode",
"Ljava/util/concurrent/atomic/AtomicInteger;")
: nullptr;
old_field_value_ =
hs_->NewHandle(field_ != nullptr ? field_->GetObject(klass_.Get()) : nullptr);
if (old_field_value_ != nullptr) {
gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
StackHandleScope<1u> hs2(self);
Handle<mirror::Object> new_field_value = hs2.NewHandle(
old_field_value_->GetClass()->Alloc(self, allocator_type));
PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
ArtMethod* constructor = old_field_value_->GetClass()->FindConstructor("(I)V", pointer_size);
CHECK(constructor != nullptr);
uint32_t args[] = {
reinterpret_cast32<uint32_t>(new_field_value.Get()),
static_cast<uint32_t>(initial_value)
};
JValue result;
constructor->Invoke(self, args, sizeof(args), &result, /*shorty=*/ "VI");
CHECK(!self->IsExceptionPending());
field_->SetObject</*kTransactionActive=*/ false>(klass_.Get(), new_field_value.Get());
}
if (apply && old_field_value_ == nullptr) {
if ((klass_ != nullptr) && klass_->IsVisiblyInitialized()) {
// This would mean that the implementation of ThreadLocal has changed
// and the code above is no longer applicable.
LOG(ERROR) << "Failed to override ThreadLocal.nextHashCode";
} else {
VLOG(compiler) << "ThreadLocal is not initialized in the primary boot image.";
}
}
}
~ThreadLocalHashOverride() {
ScopedObjectAccess soa(hs_->Self());
if (old_field_value_ != nullptr) {
// Allow the overriding object to be collected.
field_->SetObject</*kTransactionActive=*/ false>(klass_.Get(), old_field_value_.Get());
}
hs_.reset(); // While holding the mutator lock.
}
private:
std::optional<StackHandleScope<2u>> hs_;
Handle<mirror::Class> klass_;
ArtField* field_;
Handle<mirror::Object> old_field_value_;
};
class OatKeyValueStore : public SafeMap<std::string, std::string> {
public:
using SafeMap::Put;
iterator Put(const std::string& k, bool v) {
return SafeMap::Put(k, v ? OatHeader::kTrueValue : OatHeader::kFalseValue);
}
};
class Dex2Oat final {
public:
explicit Dex2Oat(TimingLogger* timings)
: compiler_kind_(Compiler::kOptimizing),
// Take the default set of instruction features from the build.
key_value_store_(nullptr),
verification_results_(nullptr),
runtime_(nullptr),
thread_count_(sysconf(_SC_NPROCESSORS_CONF)),
start_ns_(NanoTime()),
start_cputime_ns_(ProcessCpuNanoTime()),
strip_(false),
oat_fd_(-1),
input_vdex_fd_(-1),
output_vdex_fd_(-1),
input_vdex_file_(nullptr),
dm_fd_(-1),
zip_fd_(-1),
image_fd_(-1),
have_multi_image_arg_(false),
image_base_(0U),
image_storage_mode_(ImageHeader::kStorageModeUncompressed),
passes_to_run_filename_(nullptr),
dirty_image_objects_filename_(nullptr),
dirty_image_objects_fd_(-1),
is_host_(false),
elf_writers_(),
oat_writers_(),
rodata_(),
image_writer_(nullptr),
driver_(nullptr),
opened_dex_files_maps_(),
opened_dex_files_(),
avoid_storing_invocation_(false),
swap_fd_(File::kInvalidFd),
app_image_fd_(File::kInvalidFd),
timings_(timings),
force_determinism_(false),
check_linkage_conditions_(false),
crash_on_linkage_violation_(false),
compile_individually_(false),
profile_load_attempted_(false),
should_report_dex2oat_compilation_(false) {}
~Dex2Oat() {
// Log completion time before deleting the runtime_, because this accesses
// the runtime.
LogCompletionTime();
if (!kIsDebugBuild && !(kRunningOnMemoryTool && kMemoryToolDetectsLeaks)) {
// We want to just exit on non-debug builds, not bringing the runtime down
// in an orderly fashion. So release the following fields.
if (!compiler_options_->GetDumpStats()) {
// The --dump-stats get logged when the optimizing compiler gets destroyed, so we can't
// release the driver_.
driver_.release(); // NOLINT
}
image_writer_.release(); // NOLINT
for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files_) {
dex_file.release(); // NOLINT
}
new std::vector<MemMap>(std::move(opened_dex_files_maps_)); // Leak MemMaps.
for (std::unique_ptr<File>& vdex_file : vdex_files_) {
vdex_file.release(); // NOLINT
}
for (std::unique_ptr<File>& oat_file : oat_files_) {
oat_file.release(); // NOLINT
}
runtime_.release(); // NOLINT
verification_results_.release(); // NOLINT
key_value_store_.release(); // NOLINT
}
// Remind the user if they passed testing only flags.
if (!kIsTargetBuild && force_allow_oj_inlines_) {
LOG(ERROR) << "Inlines allowed from core-oj! FOR TESTING USE ONLY! DO NOT DISTRIBUTE"
<< " BINARIES BUILT WITH THIS OPTION!";
}
}
struct ParserOptions {
std::vector<std::string> oat_symbols;
std::string boot_image_filename;
int64_t watch_dog_timeout_in_ms = -1;
bool watch_dog_enabled = true;
bool requested_specific_compiler = false;
std::string error_msg;
};
void ParseBase(const std::string& option) {
char* end;
image_base_ = strtoul(option.c_str(), &end, 16);
if (end == option.c_str() || *end != '\0') {
Usage("Failed to parse hexadecimal value for option %s", option.data());
}
}
bool VerifyProfileData() {
return profile_compilation_info_->VerifyProfileData(compiler_options_->dex_files_for_oat_file_);
}
void ParseInstructionSetVariant(const std::string& option, ParserOptions* parser_options) {
if (kIsTargetBuild) {
compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariantAndHwcap(
compiler_options_->instruction_set_, option, &parser_options->error_msg);
} else {
compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant(
compiler_options_->instruction_set_, option, &parser_options->error_msg);
}
if (compiler_options_->instruction_set_features_ == nullptr) {
Usage("%s", parser_options->error_msg.c_str());
}
}
void ParseInstructionSetFeatures(const std::string& option, ParserOptions* parser_options) {
if (compiler_options_->instruction_set_features_ == nullptr) {
compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant(
compiler_options_->instruction_set_, "default", &parser_options->error_msg);
if (compiler_options_->instruction_set_features_ == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
compiler_options_->instruction_set_features_ =
compiler_options_->instruction_set_features_->AddFeaturesFromString(
option, &parser_options->error_msg);
if (compiler_options_->instruction_set_features_ == nullptr) {
Usage("Error parsing '%s': %s", option.c_str(), parser_options->error_msg.c_str());
}
}
void ProcessOptions(ParserOptions* parser_options) {
compiler_options_->compiler_type_ = CompilerOptions::CompilerType::kAotCompiler;
compiler_options_->compile_pic_ = true; // All AOT compilation is PIC.
if (android_root_.empty()) {
const char* android_root_env_var = getenv("ANDROID_ROOT");
if (android_root_env_var == nullptr) {
Usage("--android-root unspecified and ANDROID_ROOT not set");
}
android_root_ += android_root_env_var;
}
if (!parser_options->boot_image_filename.empty()) {
boot_image_filename_ = parser_options->boot_image_filename;
}
DCHECK(compiler_options_->image_type_ == CompilerOptions::ImageType::kNone);
if (!image_filenames_.empty() || image_fd_ != -1) {
// If no boot image is provided, then dex2oat is compiling the primary boot image,
// otherwise it is compiling the boot image extension.
compiler_options_->image_type_ = boot_image_filename_.empty()
? CompilerOptions::ImageType::kBootImage
: CompilerOptions::ImageType::kBootImageExtension;
}
if (app_image_fd_ != -1 || !app_image_file_name_.empty()) {
if (compiler_options_->IsBootImage() || compiler_options_->IsBootImageExtension()) {
Usage("Can't have both (--image or --image-fd) and (--app-image-fd or --app-image-file)");
}
compiler_options_->image_type_ = CompilerOptions::ImageType::kAppImage;
}
if (!image_filenames_.empty() && image_fd_ != -1) {
Usage("Can't have both --image and --image-fd");
}
if (oat_filenames_.empty() && oat_fd_ == -1) {
Usage("Output must be supplied with either --oat-file or --oat-fd");
}
if (input_vdex_fd_ != -1 && !input_vdex_.empty()) {
Usage("Can't have both --input-vdex-fd and --input-vdex");
}
if (output_vdex_fd_ != -1 && !output_vdex_.empty()) {
Usage("Can't have both --output-vdex-fd and --output-vdex");
}
if (!oat_filenames_.empty() && oat_fd_ != -1) {
Usage("--oat-file should not be used with --oat-fd");
}
if ((output_vdex_fd_ == -1) != (oat_fd_ == -1)) {
Usage("VDEX and OAT output must be specified either with one --oat-file "
"or with --oat-fd and --output-vdex-fd file descriptors");
}
if ((image_fd_ != -1) && (oat_fd_ == -1)) {
Usage("--image-fd must be used with --oat_fd and --output_vdex_fd");
}
if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) {
Usage("--oat-symbols should not be used with --oat-fd");
}
if (!parser_options->oat_symbols.empty() && is_host_) {
Usage("--oat-symbols should not be used with --host");
}
if (output_vdex_fd_ != -1 && !image_filenames_.empty()) {
Usage("--output-vdex-fd should not be used with --image");
}
if (oat_fd_ != -1 && !image_filenames_.empty()) {
Usage("--oat-fd should not be used with --image");
}
if (!parser_options->oat_symbols.empty() &&
parser_options->oat_symbols.size() != oat_filenames_.size()) {
Usage("--oat-file arguments do not match --oat-symbols arguments");
}
if (!image_filenames_.empty() && image_filenames_.size() != oat_filenames_.size()) {
Usage("--oat-file arguments do not match --image arguments");
}
if (!IsBootImage() && boot_image_filename_.empty()) {
DCHECK(!IsBootImageExtension());
boot_image_filename_ =
GetDefaultBootImageLocation(android_root_, /*deny_art_apex_data_files=*/false);
}
if (dex_filenames_.empty() && zip_fd_ == -1) {
Usage("Input must be supplied with either --dex-file or --zip-fd");
}
if (!dex_filenames_.empty() && zip_fd_ != -1) {
Usage("--dex-file should not be used with --zip-fd");
}
if (!dex_filenames_.empty() && !zip_location_.empty()) {
Usage("--dex-file should not be used with --zip-location");
}
if (dex_locations_.empty()) {
dex_locations_ = dex_filenames_;
} else if (dex_locations_.size() != dex_filenames_.size()) {
Usage("--dex-location arguments do not match --dex-file arguments");
}
if (!dex_filenames_.empty() && !oat_filenames_.empty()) {
if (oat_filenames_.size() != 1 && oat_filenames_.size() != dex_filenames_.size()) {
Usage("--oat-file arguments must be singular or match --dex-file arguments");
}
}
if (!dex_fds_.empty() && dex_fds_.size() != dex_filenames_.size()) {
Usage("--dex-fd arguments do not match --dex-file arguments");
}
if (zip_fd_ != -1 && zip_location_.empty()) {
Usage("--zip-location should be supplied with --zip-fd");
}
if (boot_image_filename_.empty()) {
if (image_base_ == 0) {
Usage("Non-zero --base not specified for boot image");
}
} else {
if (image_base_ != 0) {
Usage("Non-zero --base specified for app image or boot image extension");
}
}
if (have_multi_image_arg_) {
if (!IsImage()) {
Usage("--multi-image or --single-image specified for non-image compilation");
}
} else {
// Use the default, i.e. multi-image for boot image and boot image extension.
// This shall pass the checks below.
compiler_options_->multi_image_ = IsBootImage() || IsBootImageExtension();
}
// On target we support generating a single image for the primary boot image.
if (!kIsTargetBuild) {
if (IsBootImage() && !compiler_options_->multi_image_) {
Usage("--single-image specified for primary boot image on host");
}
}
if (IsAppImage() && compiler_options_->multi_image_) {
Usage("--multi-image specified for app image");
}
if (image_fd_ != -1 && compiler_options_->multi_image_) {
Usage("--single-image not specified for --image-fd");
}
const bool have_profile_file = !profile_files_.empty();
const bool have_profile_fd = !profile_file_fds_.empty();
if (have_profile_file && have_profile_fd) {
Usage("Profile files should not be specified with both --profile-file-fd and --profile-file");
}
if (!parser_options->oat_symbols.empty()) {
oat_unstripped_ = std::move(parser_options->oat_symbols);
}
if (compiler_options_->instruction_set_features_ == nullptr) {
// '--instruction-set-features/--instruction-set-variant' were not used.
// Use features for the 'default' variant.
compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant(
compiler_options_->instruction_set_, "default", &parser_options->error_msg);
if (compiler_options_->instruction_set_features_ == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
if (compiler_options_->instruction_set_ == kRuntimeISA) {
std::unique_ptr<const InstructionSetFeatures> runtime_features(
InstructionSetFeatures::FromCppDefines());
if (!compiler_options_->GetInstructionSetFeatures()->Equals(runtime_features.get())) {
LOG(WARNING) << "Mismatch between dex2oat instruction set features to use ("
<< *compiler_options_->GetInstructionSetFeatures()
<< ") and those from CPP defines (" << *runtime_features
<< ") for the command line:\n" << CommandLine();
}
}
if (dirty_image_objects_filename_ != nullptr && dirty_image_objects_fd_ != -1) {
Usage("--dirty-image-objects and --dirty-image-objects-fd should not be both specified");
}
if (!preloaded_classes_files_.empty() && !preloaded_classes_fds_.empty()) {
Usage("--preloaded-classes and --preloaded-classes-fds should not be both specified");
}
if (!cpu_set_.empty()) {
SetCpuAffinity(cpu_set_);
}
if (compiler_options_->inline_max_code_units_ == CompilerOptions::kUnsetInlineMaxCodeUnits) {
compiler_options_->inline_max_code_units_ = CompilerOptions::kDefaultInlineMaxCodeUnits;
}
// Checks are all explicit until we know the architecture.
// Set the compilation target's implicit checks options.
switch (compiler_options_->GetInstructionSet()) {
case InstructionSet::kArm64:
compiler_options_->implicit_suspend_checks_ = true;
FALLTHROUGH_INTENDED;
case InstructionSet::kArm:
case InstructionSet::kThumb2:
case InstructionSet::kX86:
case InstructionSet::kX86_64:
compiler_options_->implicit_null_checks_ = true;
compiler_options_->implicit_so_checks_ = true;
break;
default:
// Defaults are correct.
break;
}
// Done with usage checks, enable watchdog if requested
if (parser_options->watch_dog_enabled) {
int64_t timeout = parser_options->watch_dog_timeout_in_ms > 0
? parser_options->watch_dog_timeout_in_ms
: WatchDog::kDefaultWatchdogTimeoutInMS;
watchdog_.reset(new WatchDog(timeout));
}
// Fill some values into the key-value store for the oat header.
key_value_store_.reset(new OatKeyValueStore());
// Automatically force determinism for the boot image and boot image extensions in a host build.
if (!kIsTargetBuild && (IsBootImage() || IsBootImageExtension())) {
force_determinism_ = true;
}
compiler_options_->force_determinism_ = force_determinism_;
compiler_options_->check_linkage_conditions_ = check_linkage_conditions_;
compiler_options_->crash_on_linkage_violation_ = crash_on_linkage_violation_;
if (passes_to_run_filename_ != nullptr) {
passes_to_run_ = ReadCommentedInputFromFile<std::vector<std::string>>(
passes_to_run_filename_,
nullptr); // No post-processing.
if (passes_to_run_.get() == nullptr) {
Usage("Failed to read list of passes to run.");
}
}
// Prune profile specifications of the boot image location.
std::vector<std::string> boot_images =
android::base::Split(boot_image_filename_, {ImageSpace::kComponentSeparator});
bool boot_image_filename_pruned = false;
for (std::string& boot_image : boot_images) {
size_t profile_separator_pos = boot_image.find(ImageSpace::kProfileSeparator);
if (profile_separator_pos != std::string::npos) {
boot_image.resize(profile_separator_pos);
boot_image_filename_pruned = true;
}
}
if (boot_image_filename_pruned) {
std::string new_boot_image_filename =
android::base::Join(boot_images, ImageSpace::kComponentSeparator);
VLOG(compiler) << "Pruning profile specifications of the boot image location. Before: "
<< boot_image_filename_ << ", After: " << new_boot_image_filename;
boot_image_filename_ = std::move(new_boot_image_filename);
}
compiler_options_->passes_to_run_ = passes_to_run_.get();
}
void ExpandOatAndImageFilenames() {
ArrayRef<const std::string> locations(dex_locations_);
if (!compiler_options_->multi_image_) {
locations = locations.SubArray(/*pos=*/ 0u, /*length=*/ 1u);
}
if (image_fd_ == -1) {
if (image_filenames_[0].rfind('/') == std::string::npos) {
Usage("Unusable boot image filename %s", image_filenames_[0].c_str());
}
image_filenames_ = ImageSpace::ExpandMultiImageLocations(
locations, image_filenames_[0], IsBootImageExtension());
if (oat_filenames_[0].rfind('/') == std::string::npos) {
Usage("Unusable boot image oat filename %s", oat_filenames_[0].c_str());
}
oat_filenames_ = ImageSpace::ExpandMultiImageLocations(
locations, oat_filenames_[0], IsBootImageExtension());
} else {
DCHECK(!compiler_options_->multi_image_);
std::vector<std::string> oat_locations = ImageSpace::ExpandMultiImageLocations(
locations, oat_location_, IsBootImageExtension());
DCHECK_EQ(1u, oat_locations.size());
oat_location_ = oat_locations[0];
}
if (!oat_unstripped_.empty()) {
if (oat_unstripped_[0].rfind('/') == std::string::npos) {
Usage("Unusable boot image symbol filename %s", oat_unstripped_[0].c_str());
}
oat_unstripped_ = ImageSpace::ExpandMultiImageLocations(
locations, oat_unstripped_[0], IsBootImageExtension());
}
}
void InsertCompileOptions(int argc, char** argv) {
if (!avoid_storing_invocation_) {
std::ostringstream oss;
for (int i = 0; i < argc; ++i) {
if (i > 0) {
oss << ' ';
}
oss << argv[i];
}
key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str());
}
key_value_store_->Put(OatHeader::kDebuggableKey, compiler_options_->debuggable_);
key_value_store_->Put(OatHeader::kNativeDebuggableKey,
compiler_options_->GetNativeDebuggable());
key_value_store_->Put(OatHeader::kCompilerFilter,
CompilerFilter::NameOfFilter(compiler_options_->GetCompilerFilter()));
key_value_store_->Put(OatHeader::kConcurrentCopying, gUseReadBarrier);
if (invocation_file_.get() != -1) {
std::ostringstream oss;
for (int i = 0; i < argc; ++i) {
if (i > 0) {
oss << std::endl;
}
oss << argv[i];
}
std::string invocation(oss.str());
if (TEMP_FAILURE_RETRY(write(invocation_file_.get(),
invocation.c_str(),
invocation.size())) == -1) {
Usage("Unable to write invocation file");
}
}
}
// This simple forward is here so the string specializations below don't look out of place.
template <typename T, typename U>
void AssignIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<T>& key,
U* out) {
map.AssignIfExists(key, out);
}
// Specializations to handle const char* vs std::string.
void AssignIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<std::string>& key,
const char** out) {
if (map.Exists(key)) {
char_backing_storage_.push_front(std::move(*map.Get(key)));
*out = char_backing_storage_.front().c_str();
}
}
void AssignIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<std::vector<std::string>>& key,
std::vector<const char*>* out) {
if (map.Exists(key)) {
for (auto& val : *map.Get(key)) {
char_backing_storage_.push_front(std::move(val));
out->push_back(char_backing_storage_.front().c_str());
}
}
}
template <typename T>
void AssignTrueIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<T>& key,
bool* out) {
if (map.Exists(key)) {
*out = true;
}
}
void AssignIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<std::string>& key,
std::vector<std::string>* out) {
DCHECK(out->empty());
if (map.Exists(key)) {
out->push_back(*map.Get(key));
}
}
// Parse the arguments from the command line. In case of an unrecognized option or impossible
// values/combinations, a usage error will be displayed and exit() is called. Thus, if the method
// returns, arguments have been successfully parsed.
void ParseArgs(int argc, char** argv) {
original_argc = argc;
original_argv = argv;
Locks::Init();
// Microdroid doesn't support logd logging, so don't override there.
if (android::base::GetProperty("ro.hardware", "") == "microdroid") {
android::base::SetAborter(Runtime::Abort);
} else {
InitLogging(argv, Runtime::Abort);
}
compiler_options_.reset(new CompilerOptions());
using M = Dex2oatArgumentMap;
std::string error_msg;
std::unique_ptr<M> args_uptr = M::Parse(argc, const_cast<const char**>(argv), &error_msg);
if (args_uptr == nullptr) {
Usage("Failed to parse command line: %s", error_msg.c_str());
UNREACHABLE();
}
M& args = *args_uptr;
std::unique_ptr<ParserOptions> parser_options(new ParserOptions());
AssignIfExists(args, M::CompactDexLevel, &compact_dex_level_);
AssignIfExists(args, M::DexFiles, &dex_filenames_);
AssignIfExists(args, M::DexLocations, &dex_locations_);
AssignIfExists(args, M::DexFds, &dex_fds_);
AssignIfExists(args, M::OatFile, &oat_filenames_);
AssignIfExists(args, M::OatSymbols, &parser_options->oat_symbols);
AssignTrueIfExists(args, M::Strip, &strip_);
AssignIfExists(args, M::ImageFilename, &image_filenames_);
AssignIfExists(args, M::ImageFd, &image_fd_);
AssignIfExists(args, M::ZipFd, &zip_fd_);
AssignIfExists(args, M::ZipLocation, &zip_location_);
AssignIfExists(args, M::InputVdexFd, &input_vdex_fd_);
AssignIfExists(args, M::OutputVdexFd, &output_vdex_fd_);
AssignIfExists(args, M::InputVdex, &input_vdex_);
AssignIfExists(args, M::OutputVdex, &output_vdex_);
AssignIfExists(args, M::DmFd, &dm_fd_);
AssignIfExists(args, M::DmFile, &dm_file_location_);
AssignIfExists(args, M::OatFd, &oat_fd_);
AssignIfExists(args, M::OatLocation, &oat_location_);
AssignIfExists(args, M::Watchdog, &parser_options->watch_dog_enabled);
AssignIfExists(args, M::WatchdogTimeout, &parser_options->watch_dog_timeout_in_ms);
AssignIfExists(args, M::Threads, &thread_count_);
AssignIfExists(args, M::CpuSet, &cpu_set_);
AssignIfExists(args, M::Passes, &passes_to_run_filename_);
AssignIfExists(args, M::BootImage, &parser_options->boot_image_filename);
AssignIfExists(args, M::AndroidRoot, &android_root_);
AssignIfExists(args, M::Profile, &profile_files_);
AssignIfExists(args, M::ProfileFd, &profile_file_fds_);
AssignIfExists(args, M::PreloadedClasses, &preloaded_classes_files_);
AssignIfExists(args, M::PreloadedClassesFds, &preloaded_classes_fds_);
AssignIfExists(args, M::RuntimeOptions, &runtime_args_);
AssignIfExists(args, M::SwapFile, &swap_file_name_);
AssignIfExists(args, M::SwapFileFd, &swap_fd_);
AssignIfExists(args, M::SwapDexSizeThreshold, &min_dex_file_cumulative_size_for_swap_);
AssignIfExists(args, M::SwapDexCountThreshold, &min_dex_files_for_swap_);
AssignIfExists(args, M::VeryLargeAppThreshold, &very_large_threshold_);
AssignIfExists(args, M::AppImageFile, &app_image_file_name_);
AssignIfExists(args, M::AppImageFileFd, &app_image_fd_);
AssignIfExists(args, M::NoInlineFrom, &no_inline_from_string_);
AssignIfExists(args, M::ClasspathDir, &classpath_dir_);
AssignIfExists(args, M::DirtyImageObjects, &dirty_image_objects_filename_);
AssignIfExists(args, M::DirtyImageObjectsFd, &dirty_image_objects_fd_);
AssignIfExists(args, M::ImageFormat, &image_storage_mode_);
AssignIfExists(args, M::CompilationReason, &compilation_reason_);
AssignTrueIfExists(args, M::CheckLinkageConditions, &check_linkage_conditions_);
AssignTrueIfExists(args, M::CrashOnLinkageViolation, &crash_on_linkage_violation_);
AssignTrueIfExists(args, M::ForceAllowOjInlines, &force_allow_oj_inlines_);
AssignIfExists(args, M::PublicSdk, &public_sdk_);
AssignIfExists(args, M::ApexVersions, &apex_versions_argument_);
// Check for phenotype flag to override compact_dex_level_, if it isn't "none" already.
// TODO(b/256664509): Clean this up.
if (compact_dex_level_ != CompactDexLevel::kCompactDexLevelNone) {
std::string ph_disable_compact_dex =
android::base::GetProperty(kPhDisableCompactDex, "false");
if (ph_disable_compact_dex == "true") {
LOG(WARNING)
<< "Overriding --compact-dex-level due to "
"persist.device_config.runtime_native_boot.disable_compact_dex set to `true`";
compact_dex_level_ = CompactDexLevel::kCompactDexLevelNone;
}
}
AssignIfExists(args, M::Backend, &compiler_kind_);
parser_options->requested_specific_compiler = args.Exists(M::Backend);
AssignIfExists(args, M::TargetInstructionSet, &compiler_options_->instruction_set_);
// arm actually means thumb2.
if (compiler_options_->instruction_set_ == InstructionSet::kArm) {
compiler_options_->instruction_set_ = InstructionSet::kThumb2;
}
AssignTrueIfExists(args, M::Host, &is_host_);
AssignTrueIfExists(args, M::AvoidStoringInvocation, &avoid_storing_invocation_);
if (args.Exists(M::InvocationFile)) {
invocation_file_.reset(open(args.Get(M::InvocationFile)->c_str(),
O_CREAT|O_WRONLY|O_TRUNC|O_CLOEXEC,
S_IRUSR|S_IWUSR));
if (invocation_file_.get() == -1) {
int err = errno;
Usage("Unable to open invocation file '%s' for writing due to %s.",
args.Get(M::InvocationFile)->c_str(), strerror(err));
}
}
AssignIfExists(args, M::CopyDexFiles, &copy_dex_files_);
AssignTrueIfExists(args, M::MultiImage, &have_multi_image_arg_);
AssignIfExists(args, M::MultiImage, &compiler_options_->multi_image_);
if (args.Exists(M::ForceDeterminism)) {
force_determinism_ = true;
}
AssignTrueIfExists(args, M::CompileIndividually, &compile_individually_);
if (args.Exists(M::Base)) {
ParseBase(*args.Get(M::Base));
}
if (args.Exists(M::TargetInstructionSetVariant)) {
ParseInstructionSetVariant(*args.Get(M::TargetInstructionSetVariant), parser_options.get());
}
if (args.Exists(M::TargetInstructionSetFeatures)) {
ParseInstructionSetFeatures(*args.Get(M::TargetInstructionSetFeatures), parser_options.get());
}
if (args.Exists(M::ClassLoaderContext)) {
std::string class_loader_context_arg = *args.Get(M::ClassLoaderContext);
class_loader_context_ = ClassLoaderContext::Create(class_loader_context_arg);
if (class_loader_context_ == nullptr) {
Usage("Option --class-loader-context has an incorrect format: %s",
class_loader_context_arg.c_str());
}
if (args.Exists(M::ClassLoaderContextFds)) {
std::string str_fds_arg = *args.Get(M::ClassLoaderContextFds);
std::vector<std::string> str_fds = android::base::Split(str_fds_arg, ":");
for (const std::string& str_fd : str_fds) {
class_loader_context_fds_.push_back(std::stoi(str_fd, nullptr, 0));
if (class_loader_context_fds_.back() < 0) {
Usage("Option --class-loader-context-fds has incorrect format: %s",
str_fds_arg.c_str());
}
}
}
if (args.Exists(M::StoredClassLoaderContext)) {
const std::string stored_context_arg = *args.Get(M::StoredClassLoaderContext);
stored_class_loader_context_ = ClassLoaderContext::Create(stored_context_arg);
if (stored_class_loader_context_ == nullptr) {
Usage("Option --stored-class-loader-context has an incorrect format: %s",
stored_context_arg.c_str());
} else if (class_loader_context_->VerifyClassLoaderContextMatch(
stored_context_arg,
/*verify_names*/ false,
/*verify_checksums*/ false) != ClassLoaderContext::VerificationResult::kVerifies) {
Usage(
"Option --stored-class-loader-context '%s' mismatches --class-loader-context '%s'",
stored_context_arg.c_str(),
class_loader_context_arg.c_str());
}
}
} else if (args.Exists(M::StoredClassLoaderContext)) {
Usage("Option --stored-class-loader-context should only be used if "
"--class-loader-context is also specified");
}
if (args.Exists(M::UpdatableBcpPackagesFile)) {
LOG(WARNING)
<< "Option --updatable-bcp-packages-file is deprecated and no longer takes effect";
}
if (args.Exists(M::UpdatableBcpPackagesFd)) {
LOG(WARNING) << "Option --updatable-bcp-packages-fd is deprecated and no longer takes effect";
}
if (args.Exists(M::ForceJitZygote)) {
if (!parser_options->boot_image_filename.empty()) {
Usage("Option --boot-image and --force-jit-zygote cannot be specified together");
}
parser_options->boot_image_filename = GetJitZygoteBootImageLocation();
}
// If we have a profile, change the default compiler filter to speed-profile
// before reading compiler options.
static_assert(CompilerFilter::kDefaultCompilerFilter == CompilerFilter::kSpeed);
DCHECK_EQ(compiler_options_->GetCompilerFilter(), CompilerFilter::kSpeed);
if (HasProfileInput()) {
compiler_options_->SetCompilerFilter(CompilerFilter::kSpeedProfile);
}
if (!ReadCompilerOptions(args, compiler_options_.get(), &error_msg)) {
Usage(error_msg.c_str());
}
if (!compiler_options_->GetDumpCfgFileName().empty() && thread_count_ != 1) {
LOG(INFO) << "Since we are dumping the CFG to " << compiler_options_->GetDumpCfgFileName()
<< ", we override thread number to 1 to have determinism. It was " << thread_count_
<< ".";
thread_count_ = 1;
}
// For debuggable apps, we do not want to generate compact dex as class
// redefinition will want a proper dex file.
if (compiler_options_->GetDebuggable()) {
compact_dex_level_ = CompactDexLevel::kCompactDexLevelNone;
}
PaletteShouldReportDex2oatCompilation(&should_report_dex2oat_compilation_);
AssignTrueIfExists(args, M::ForcePaletteCompilationHooks, &should_report_dex2oat_compilation_);
ProcessOptions(parser_options.get());
}
// Check whether the oat output files are writable, and open them for later. Also open a swap
// file, if a name is given.
bool OpenFile() {
// Prune non-existent dex files now so that we don't create empty oat files for multi-image.
PruneNonExistentDexFiles();
// Expand oat and image filenames for boot image and boot image extension.
// This is mostly for multi-image but single-image also needs some processing.
if (IsBootImage() || IsBootImageExtension()) {
ExpandOatAndImageFilenames();
}
// OAT and VDEX file handling
if (oat_fd_ == -1) {
DCHECK(!oat_filenames_.empty());
for (const std::string& oat_filename : oat_filenames_) {
std::unique_ptr<File> oat_file(OS::CreateEmptyFile(oat_filename.c_str()));
if (oat_file == nullptr) {
PLOG(ERROR) << "Failed to create oat file: " << oat_filename;
return false;
}
if (fchmod(oat_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make oat file world readable: " << oat_filename;
oat_file->Erase();
return false;
}
oat_files_.push_back(std::move(oat_file));
DCHECK_EQ(input_vdex_fd_, -1);
if (!input_vdex_.empty()) {
std::string error_msg;
input_vdex_file_ = VdexFile::Open(input_vdex_,
/* writable */ false,
/* low_4gb */ false,
&error_msg);
}
DCHECK_EQ(output_vdex_fd_, -1);
std::string vdex_filename = output_vdex_.empty()
? ReplaceFileExtension(oat_filename, "vdex")
: output_vdex_;
if (vdex_filename == input_vdex_ && output_vdex_.empty()) {
use_existing_vdex_ = true;
std::unique_ptr<File> vdex_file(OS::OpenFileForReading(vdex_filename.c_str()));
vdex_files_.push_back(std::move(vdex_file));
} else {
std::unique_ptr<File> vdex_file(OS::CreateEmptyFile(vdex_filename.c_str()));
if (vdex_file == nullptr) {
PLOG(ERROR) << "Failed to open vdex file: " << vdex_filename;
return false;
}
if (fchmod(vdex_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make vdex file world readable: " << vdex_filename;
vdex_file->Erase();
return false;
}
vdex_files_.push_back(std::move(vdex_file));
}
}
} else {
std::unique_ptr<File> oat_file(
new File(DupCloexec(oat_fd_), oat_location_, /* check_usage */ true));
if (!oat_file->IsOpened()) {
PLOG(ERROR) << "Failed to create oat file: " << oat_location_;
return false;
}
if (oat_file->SetLength(0) != 0) {
PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed.";
oat_file->Erase();
return false;
}
oat_files_.push_back(std::move(oat_file));
if (input_vdex_fd_ != -1) {
struct stat s;
int rc = TEMP_FAILURE_RETRY(fstat(input_vdex_fd_, &s));
if (rc == -1) {
PLOG(WARNING) << "Failed getting length of vdex file";
} else {
std::string error_msg;
input_vdex_file_ = VdexFile::Open(input_vdex_fd_,
s.st_size,
"vdex",
/* writable */ false,
/* low_4gb */ false,
&error_msg);
// If there's any problem with the passed vdex, just warn and proceed
// without it.
if (input_vdex_file_ == nullptr) {
PLOG(WARNING) << "Failed opening vdex file: " << error_msg;
}
}
}
DCHECK_NE(output_vdex_fd_, -1);
std::string vdex_location = ReplaceFileExtension(oat_location_, "vdex");
if (input_vdex_file_ != nullptr && output_vdex_fd_ == input_vdex_fd_) {
use_existing_vdex_ = true;
}
std::unique_ptr<File> vdex_file(new File(DupCloexec(output_vdex_fd_),
vdex_location,
/* check_usage= */ true,
/* read_only_mode= */ use_existing_vdex_));
if (!vdex_file->IsOpened()) {
PLOG(ERROR) << "Failed to create vdex file: " << vdex_location;
return false;
}
if (!use_existing_vdex_) {
if (vdex_file->SetLength(0) != 0) {
PLOG(ERROR) << "Truncating vdex file " << vdex_location << " failed.";
vdex_file->Erase();
return false;
}
}
vdex_files_.push_back(std::move(vdex_file));
oat_filenames_.push_back(oat_location_);
}
if (dm_fd_ != -1 || !dm_file_location_.empty()) {
std::string error_msg;
if (dm_fd_ != -1) {
dm_file_.reset(ZipArchive::OpenFromFd(dm_fd_, "DexMetadata", &error_msg));
} else {
dm_file_.reset(ZipArchive::Open(dm_file_location_.c_str(), &error_msg));
}
if (dm_file_ == nullptr) {
LOG(WARNING) << "Could not open DexMetadata archive " << error_msg;
}
}
// If we have a dm file and a vdex file, we (arbitrarily) pick the vdex file.
// In theory the files should be the same.
if (dm_file_ != nullptr) {
if (input_vdex_file_ == nullptr) {
input_vdex_file_ = VdexFile::OpenFromDm(dm_file_location_, *dm_file_);
if (input_vdex_file_ != nullptr) {
VLOG(verifier) << "Doing fast verification with vdex from DexMetadata archive";
}
} else {
LOG(INFO) << "Ignoring vdex file in dex metadata due to vdex file already being passed";
}
}
// Swap file handling
//
// If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file
// that we can use for swap.
//
// If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We
// will immediately unlink to satisfy the swap fd assumption.
if (swap_fd_ == -1 && !swap_file_name_.empty()) {
std::unique_ptr<File> swap_file(OS::CreateEmptyFile(swap_file_name_.c_str()));
if (swap_file.get() == nullptr) {
PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_;
return false;
}
swap_fd_ = swap_file->Release();
unlink(swap_file_name_.c_str());
}
return true;
}
void EraseOutputFiles() {
for (auto& files : { &vdex_files_, &oat_files_ }) {
for (size_t i = 0; i < files->size(); ++i) {
auto& file = (*files)[i];
if (file != nullptr) {
if (!file->ReadOnlyMode()) {
file->Erase();
}
file.reset();
}
}
}
}
void LoadClassProfileDescriptors() {
if (!IsImage()) {
return;
}
if (DoProfileGuidedOptimizations()) {
// TODO: The following comment looks outdated or misplaced.
// Filter out class path classes since we don't want to include these in the image.
HashSet<std::string> image_classes = profile_compilation_info_->GetClassDescriptors(
compiler_options_->dex_files_for_oat_file_);
VLOG(compiler) << "Loaded " << image_classes.size()
<< " image class descriptors from profile";
if (VLOG_IS_ON(compiler)) {
for (const std::string& s : image_classes) {
LOG(INFO) << "Image class " << s;
}
}
compiler_options_->image_classes_.swap(image_classes);
}
}
// Set up the environment for compilation. Includes starting the runtime and loading/opening the
// boot class path.
dex2oat::ReturnCode Setup() {
TimingLogger::ScopedTiming t("dex2oat Setup", timings_);
if (!PrepareDirtyObjects()) {
return dex2oat::ReturnCode::kOther;
}
if (!PreparePreloadedClasses()) {
return dex2oat::ReturnCode::kOther;
}
callbacks_.reset(new QuickCompilerCallbacks(
// For class verification purposes, boot image extension is the same as boot image.
(IsBootImage() || IsBootImageExtension())
? CompilerCallbacks::CallbackMode::kCompileBootImage
: CompilerCallbacks::CallbackMode::kCompileApp));
RuntimeArgumentMap runtime_options;
if (!PrepareRuntimeOptions(&runtime_options, callbacks_.get())) {
return dex2oat::ReturnCode::kOther;
}
CreateOatWriters();
if (!AddDexFileSources()) {
return dex2oat::ReturnCode::kOther;
}
{
TimingLogger::ScopedTiming t_dex("Writing and opening dex files", timings_);
for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) {
// Unzip or copy dex files straight to the oat file.
std::vector<MemMap> opened_dex_files_map;
std::vector<std::unique_ptr<const DexFile>> opened_dex_files;
// No need to verify the dex file when we have a vdex file, which means it was already
// verified.
const bool verify =
(input_vdex_file_ == nullptr) && !compiler_options_->AssumeDexFilesAreVerified();
if (!oat_writers_[i]->WriteAndOpenDexFiles(
vdex_files_[i].get(),
verify,
use_existing_vdex_,
copy_dex_files_,
&opened_dex_files_map,
&opened_dex_files)) {
return dex2oat::ReturnCode::kOther;
}
dex_files_per_oat_file_.push_back(MakeNonOwningPointerVector(opened_dex_files));
if (opened_dex_files_map.empty()) {
DCHECK(opened_dex_files.empty());
} else {
for (MemMap& map : opened_dex_files_map) {
opened_dex_files_maps_.push_back(std::move(map));
}
for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files) {
dex_file_oat_index_map_.insert(std::make_pair(dex_file.get(), i));
opened_dex_files_.push_back(std::move(dex_file));
}
}
}
}
compiler_options_->dex_files_for_oat_file_ = MakeNonOwningPointerVector(opened_dex_files_);
const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_;
if (!ValidateInputVdexChecksums()) {
return dex2oat::ReturnCode::kOther;
}
// Check if we need to downgrade the compiler-filter for size reasons.
// Note: This does not affect the compiler filter already stored in the key-value
// store which is used for determining whether the oat file is up to date,
// together with the boot class path locations and checksums stored below.
CompilerFilter::Filter original_compiler_filter = compiler_options_->GetCompilerFilter();
if (!IsBootImage() && !IsBootImageExtension() && IsVeryLarge(dex_files)) {
// Disable app image to make sure dex2oat unloading is enabled.
compiler_options_->image_type_ = CompilerOptions::ImageType::kNone;
// If we need to downgrade the compiler-filter for size reasons, do that early before we read
// it below for creating verification callbacks.
if (!CompilerFilter::IsAsGoodAs(kLargeAppFilter, compiler_options_->GetCompilerFilter())) {
LOG(INFO) << "Very large app, downgrading to verify.";
compiler_options_->SetCompilerFilter(kLargeAppFilter);
}
}
if (CompilerFilter::IsAnyCompilationEnabled(compiler_options_->GetCompilerFilter()) ||
IsImage()) {
// Only modes with compilation or image generation require verification results.
verification_results_.reset(new VerificationResults());
callbacks_->SetVerificationResults(verification_results_.get());
}
if (IsBootImage() || IsBootImageExtension()) {
// For boot image or boot image extension, pass opened dex files to the Runtime::Create().
// Note: Runtime acquires ownership of these dex files.
runtime_options.Set(RuntimeArgumentMap::BootClassPathDexList, &opened_dex_files_);
}
if (!CreateRuntime(std::move(runtime_options))) {
return dex2oat::ReturnCode::kCreateRuntime;
}
if (runtime_->GetHeap()->GetBootImageSpaces().empty() &&
(IsBootImageExtension() || IsAppImage())) {
LOG(WARNING) << "Cannot create "
<< (IsBootImageExtension() ? "boot image extension" : "app image")
<< " without a primary boot image.";
compiler_options_->image_type_ = CompilerOptions::ImageType::kNone;
}
ArrayRef<const DexFile* const> bcp_dex_files(runtime_->GetClassLinker()->GetBootClassPath());
if (IsBootImage() || IsBootImageExtension()) {
// Check boot class path dex files and, if compiling an extension, the images it depends on.
if ((IsBootImage() && bcp_dex_files.size() != dex_files.size()) ||
(IsBootImageExtension() && bcp_dex_files.size() <= dex_files.size())) {
LOG(ERROR) << "Unexpected number of boot class path dex files for boot image or extension, "
<< bcp_dex_files.size() << (IsBootImage() ? " != " : " <= ") << dex_files.size();
return dex2oat::ReturnCode::kOther;
}
if (!std::equal(dex_files.begin(), dex_files.end(), bcp_dex_files.end() - dex_files.size())) {
LOG(ERROR) << "Boot class path dex files do not end with the compiled dex files.";
return dex2oat::ReturnCode::kOther;
}
size_t bcp_df_pos = 0u;
size_t bcp_df_end = bcp_dex_files.size();
for (const std::string& bcp_location : runtime_->GetBootClassPathLocations()) {
if (bcp_df_pos == bcp_df_end || bcp_dex_files[bcp_df_pos]->GetLocation() != bcp_location) {
LOG(ERROR) << "Missing dex file for boot class component " << bcp_location;
return dex2oat::ReturnCode::kOther;
}
CHECK(!DexFileLoader::IsMultiDexLocation(bcp_dex_files[bcp_df_pos]->GetLocation().c_str()));
++bcp_df_pos;
while (bcp_df_pos != bcp_df_end &&
DexFileLoader::IsMultiDexLocation(bcp_dex_files[bcp_df_pos]->GetLocation().c_str())) {
++bcp_df_pos;
}
}
if (bcp_df_pos != bcp_df_end) {
LOG(ERROR) << "Unexpected dex file in boot class path "
<< bcp_dex_files[bcp_df_pos]->GetLocation();
return dex2oat::ReturnCode::kOther;
}
auto lacks_image = [](const DexFile* df) {
if (kIsDebugBuild && df->GetOatDexFile() != nullptr) {
const OatFile* oat_file = df->GetOatDexFile()->GetOatFile();
CHECK(oat_file != nullptr);
const auto& image_spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces();
CHECK(std::any_of(image_spaces.begin(),
image_spaces.end(),
[=](const ImageSpace* space) {
return oat_file == space->GetOatFile();
}));
}
return df->GetOatDexFile() == nullptr;
};
if (std::any_of(bcp_dex_files.begin(), bcp_dex_files.end() - dex_files.size(), lacks_image)) {
LOG(ERROR) << "Missing required boot image(s) for boot image extension.";
return dex2oat::ReturnCode::kOther;
}
}
if (!compilation_reason_.empty()) {
key_value_store_->Put(OatHeader::kCompilationReasonKey, compilation_reason_);
}
Runtime* runtime = Runtime::Current();
if (IsBootImage()) {
// If we're compiling the boot image, store the boot classpath into the Key-Value store.
// We use this when loading the boot image.
key_value_store_->Put(OatHeader::kBootClassPathKey, android::base::Join(dex_locations_, ':'));
} else if (IsBootImageExtension()) {
// Validate the boot class path and record the dependency on the loaded boot images.
TimingLogger::ScopedTiming t3("Loading image checksum", timings_);
std::string full_bcp = android::base::Join(runtime->GetBootClassPathLocations(), ':');
std::string extension_part = ":" + android::base::Join(dex_locations_, ':');
if (!android::base::EndsWith(full_bcp, extension_part)) {
LOG(ERROR) << "Full boot class path does not end with extension parts, full: " << full_bcp
<< ", extension: " << extension_part.substr(1u);
return dex2oat::ReturnCode::kOther;
}
std::string bcp_dependency = full_bcp.substr(0u, full_bcp.size() - extension_part.size());
key_value_store_->Put(OatHeader::kBootClassPathKey, bcp_dependency);
ArrayRef<const DexFile* const> bcp_dex_files_dependency =
bcp_dex_files.SubArray(/*pos=*/ 0u, bcp_dex_files.size() - dex_files.size());
ArrayRef<ImageSpace* const> image_spaces(runtime->GetHeap()->GetBootImageSpaces());
key_value_store_->Put(
OatHeader::kBootClassPathChecksumsKey,
gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files_dependency));
} else {
if (CompilerFilter::DependsOnImageChecksum(original_compiler_filter)) {
TimingLogger::ScopedTiming t3("Loading image checksum", timings_);
key_value_store_->Put(OatHeader::kBootClassPathKey,
android::base::Join(runtime->GetBootClassPathLocations(), ':'));
ArrayRef<ImageSpace* const> image_spaces(runtime->GetHeap()->GetBootImageSpaces());
key_value_store_->Put(
OatHeader::kBootClassPathChecksumsKey,
gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files));
}
// Open dex files for class path.
if (class_loader_context_ == nullptr) {
// If no context was specified use the default one (which is an empty PathClassLoader).
class_loader_context_ = ClassLoaderContext::Default();
}
DCHECK_EQ(oat_writers_.size(), 1u);
// Note: Ideally we would reject context where the source dex files are also
// specified in the classpath (as it doesn't make sense). However this is currently
// needed for non-prebuild tests and benchmarks which expects on the fly compilation.
// Also, for secondary dex files we do not have control on the actual classpath.
// Instead of aborting, remove all the source location from the context classpaths.
if (class_loader_context_->RemoveLocationsFromClassPaths(
oat_writers_[0]->GetSourceLocations())) {
LOG(WARNING) << "The source files to be compiled are also in the classpath.";
}
// We need to open the dex files before encoding the context in the oat file.
// (because the encoding adds the dex checksum...)
// TODO(calin): consider redesigning this so we don't have to open the dex files before
// creating the actual class loader.
if (!class_loader_context_->OpenDexFiles(classpath_dir_,
class_loader_context_fds_)) {
// Do not abort if we couldn't open files from the classpath. They might be
// apks without dex files and right now are opening flow will fail them.
LOG(WARNING) << "Failed to open classpath dex files";
}
// Store the class loader context in the oat header.
// TODO: deprecate this since store_class_loader_context should be enough to cover the users
// of classpath_dir as well.
std::string class_path_key =
class_loader_context_->EncodeContextForOatFile(classpath_dir_,
stored_class_loader_context_.get());
key_value_store_->Put(OatHeader::kClassPathKey, class_path_key);
}
if (IsBootImage() ||
IsBootImageExtension() ||
CompilerFilter::DependsOnImageChecksum(original_compiler_filter)) {
std::string versions =
apex_versions_argument_.empty() ? runtime->GetApexVersions() : apex_versions_argument_;
key_value_store_->Put(OatHeader::kApexVersionsKey, versions);
}
// Now that we have adjusted whether we generate an image, encode it in the
// key/value store.
key_value_store_->Put(OatHeader::kRequiresImage, compiler_options_->IsGeneratingImage());
// Now that we have finalized key_value_store_, start writing the .rodata section.
// Among other things, this creates type lookup tables that speed up the compilation.
{
TimingLogger::ScopedTiming t_dex("Starting .rodata", timings_);
rodata_.reserve(oat_writers_.size());
for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) {
rodata_.push_back(elf_writers_[i]->StartRoData());
if (!oat_writers_[i]->StartRoData(dex_files_per_oat_file_[i],
rodata_.back(),
(i == 0u) ? key_value_store_.get() : nullptr)) {
return dex2oat::ReturnCode::kOther;
}
}
}
// We had to postpone the swap decision till now, as this is the point when we actually
// know about the dex files we're going to use.
// Make sure that we didn't create the driver, yet.
CHECK(driver_ == nullptr);
// If we use a swap file, ensure we are above the threshold to make it necessary.
if (swap_fd_ != -1) {
if (!UseSwap(IsBootImage() || IsBootImageExtension(), dex_files)) {
close(swap_fd_);
swap_fd_ = -1;
VLOG(compiler) << "Decided to run without swap.";
} else {
LOG(INFO) << "Large app, accepted running with swap.";
}
}
// Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that.
if (!IsBootImage() && !IsBootImageExtension()) {
constexpr bool kSaveDexInput = false;
if (kSaveDexInput) {
SaveDexInput();
}
}
// Setup VerifierDeps for compilation and report if we fail to parse the data.
// When we do profile guided optimizations, the compiler currently needs to run
// full verification.
if (!DoProfileGuidedOptimizations() && input_vdex_file_ != nullptr) {
std::unique_ptr<verifier::VerifierDeps> verifier_deps(
new verifier::VerifierDeps(dex_files, /*output_only=*/ false));
if (!verifier_deps->ParseStoredData(dex_files, input_vdex_file_->GetVerifierDepsData())) {
return dex2oat::ReturnCode::kOther;
}
// We can do fast verification.
callbacks_->SetVerifierDeps(verifier_deps.release());
} else {
// Create the main VerifierDeps, here instead of in the compiler since we want to aggregate
// the results for all the dex files, not just the results for the current dex file.
callbacks_->SetVerifierDeps(new verifier::VerifierDeps(dex_files));
}
return dex2oat::ReturnCode::kNoFailure;
}
// Validates that the input vdex checksums match the source dex checksums.
// Note that this is only effective and relevant if the input_vdex_file does not
// contain a dex section (e.g. when they come from .dm files).
// If the input vdex does contain dex files, the dex files will be opened from there
// and so this check is redundant.
bool ValidateInputVdexChecksums() {
if (input_vdex_file_ == nullptr) {
// Nothing to validate
return true;
}
if (input_vdex_file_->GetNumberOfDexFiles()
!= compiler_options_->dex_files_for_oat_file_.size()) {
LOG(ERROR) << "Vdex file contains a different number of dex files than the source. "
<< " vdex_num=" << input_vdex_file_->GetNumberOfDexFiles()
<< " dex_source_num=" << compiler_options_->dex_files_for_oat_file_.size();
return false;
}
for (size_t i = 0; i < compiler_options_->dex_files_for_oat_file_.size(); i++) {
uint32_t dex_source_checksum =
compiler_options_->dex_files_for_oat_file_[i]->GetLocationChecksum();
uint32_t vdex_checksum = input_vdex_file_->GetLocationChecksum(i);
if (dex_source_checksum != vdex_checksum) {
LOG(ERROR) << "Vdex file checksum different than source dex checksum for position " << i
<< std::hex
<< " vdex_checksum=0x" << vdex_checksum
<< " dex_source_checksum=0x" << dex_source_checksum
<< std::dec;
return false;
}
}
return true;
}
// If we need to keep the oat file open for the image writer.
bool ShouldKeepOatFileOpen() const {
return IsImage() && oat_fd_ != File::kInvalidFd;
}
// Doesn't return the class loader since it's not meant to be used for image compilation.
void CompileDexFilesIndividually() {
CHECK(!IsImage()) << "Not supported with image";
for (const DexFile* dex_file : compiler_options_->dex_files_for_oat_file_) {
std::vector<const DexFile*> dex_files(1u, dex_file);
VLOG(compiler) << "Compiling " << dex_file->GetLocation();
jobject class_loader = CompileDexFiles(dex_files);
CHECK(class_loader != nullptr);
ScopedObjectAccess soa(Thread::Current());
// Unload class loader to free RAM.
jweak weak_class_loader = soa.Env()->GetVm()->AddWeakGlobalRef(
soa.Self(),
soa.Decode<mirror::ClassLoader>(class_loader));
soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), class_loader);
runtime_->GetHeap()->CollectGarbage(/* clear_soft_references */ true);
ObjPtr<mirror::ClassLoader> decoded_weak = soa.Decode<mirror::ClassLoader>(weak_class_loader);
if (decoded_weak != nullptr) {
LOG(FATAL) << "Failed to unload class loader, path from root set: "
<< runtime_->GetHeap()->GetVerification()->FirstPathFromRootSet(decoded_weak);
}
VLOG(compiler) << "Unloaded classloader";
}
}
bool ShouldCompileDexFilesIndividually() const {
// Compile individually if we are allowed to, and
// 1. not building an image, and
// 2. not verifying a vdex file, and
// 3. using multidex, and
// 4. not doing any AOT compilation.
// This means extract, no-vdex verify, and quicken, will use the individual compilation
// mode (to reduce RAM used by the compiler).
return compile_individually_ &&
(!IsImage() && !use_existing_vdex_ &&
compiler_options_->dex_files_for_oat_file_.size() > 1 &&
!CompilerFilter::IsAotCompilationEnabled(compiler_options_->GetCompilerFilter()));
}
uint32_t GetCombinedChecksums() const {
uint32_t combined_checksums = 0u;
for (const DexFile* dex_file : compiler_options_->GetDexFilesForOatFile()) {
combined_checksums ^= dex_file->GetLocationChecksum();
}
return combined_checksums;
}
// Set up and create the compiler driver and then invoke it to compile all the dex files.
jobject Compile() REQUIRES(!Locks::mutator_lock_) {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
TimingLogger::ScopedTiming t("dex2oat Compile", timings_);
// Find the dex files we should not inline from.
std::vector<std::string> no_inline_filters;
Split(no_inline_from_string_, ',', &no_inline_filters);
// For now, on the host always have core-oj removed.
const std::string core_oj = "core-oj";
if (!kIsTargetBuild && !ContainsElement(no_inline_filters, core_oj)) {
if (force_allow_oj_inlines_) {
LOG(ERROR) << "Inlines allowed from core-oj! FOR TESTING USE ONLY! DO NOT DISTRIBUTE"
<< " BINARIES BUILT WITH THIS OPTION!";
} else {
no_inline_filters.push_back(core_oj);
}
}
if (!no_inline_filters.empty()) {
std::vector<const DexFile*> class_path_files;
if (!IsBootImage() && !IsBootImageExtension()) {
// The class loader context is used only for apps.
class_path_files = class_loader_context_->FlattenOpenedDexFiles();
}
const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_;
std::vector<const DexFile*> no_inline_from_dex_files;
const std::vector<const DexFile*>* dex_file_vectors[] = {
&class_linker->GetBootClassPath(),
&class_path_files,
&dex_files
};
for (const std::vector<const DexFile*>* dex_file_vector : dex_file_vectors) {
for (const DexFile* dex_file : *dex_file_vector) {
for (const std::string& filter : no_inline_filters) {
// Use dex_file->GetLocation() rather than dex_file->GetBaseLocation(). This
// allows tests to specify <test-dexfile>!classes2.dex if needed but if the
// base location passes the StartsWith() test, so do all extra locations.
std::string dex_location = dex_file->GetLocation();
if (filter.find('/') == std::string::npos) {
// The filter does not contain the path. Remove the path from dex_location as well.
size_t last_slash = dex_file->GetLocation().rfind('/');
if (last_slash != std::string::npos) {
dex_location = dex_location.substr(last_slash + 1);
}
}
if (android::base::StartsWith(dex_location, filter.c_str())) {
VLOG(compiler) << "Disabling inlining from " << dex_file->GetLocation();
no_inline_from_dex_files.push_back(dex_file);
break;
}
}
}
}
if (!no_inline_from_dex_files.empty()) {
compiler_options_->no_inline_from_.swap(no_inline_from_dex_files);
}
}
compiler_options_->profile_compilation_info_ = profile_compilation_info_.get();
driver_.reset(new CompilerDriver(compiler_options_.get(),
verification_results_.get(),
compiler_kind_,
thread_count_,
swap_fd_));
driver_->PrepareDexFilesForOatFile(timings_);
if (!IsBootImage() && !IsBootImageExtension()) {
driver_->SetClasspathDexFiles(class_loader_context_->FlattenOpenedDexFiles());
}
const bool compile_individually = ShouldCompileDexFilesIndividually();
if (compile_individually) {
// Set the compiler driver in the callbacks so that we can avoid re-verification. This not
// only helps performance but also prevents reverifying quickened bytecodes. Attempting
// verify quickened bytecode causes verification failures.
// Only set the compiler filter if we are doing separate compilation since there is a bit
// of overhead when checking if a class was previously verified.
callbacks_->SetDoesClassUnloading(true, driver_.get());
}
// Setup vdex for compilation.
const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_;
// To allow initialization of classes that construct ThreadLocal objects in class initializer,
// re-initialize the ThreadLocal.nextHashCode to a new object that's not in the boot image.
ThreadLocalHashOverride thread_local_hash_override(
/*apply=*/ !IsBootImage(), /*initial_value=*/ 123456789u ^ GetCombinedChecksums());
// Invoke the compilation.
if (compile_individually) {
CompileDexFilesIndividually();
// Return a null classloader since we already freed released it.
return nullptr;
}
return CompileDexFiles(dex_files);
}
// Create the class loader, use it to compile, and return.
jobject CompileDexFiles(const std::vector<const DexFile*>& dex_files) {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
jobject class_loader = nullptr;
if (!IsBootImage() && !IsBootImageExtension()) {
class_loader =
class_loader_context_->CreateClassLoader(compiler_options_->GetDexFilesForOatFile());
}
if (!IsBootImage()) {
callbacks_->SetDexFiles(&dex_files);
// We need to set this after we create the class loader so that the runtime can access
// the hidden fields of the well known class loaders.
if (!public_sdk_.empty()) {
std::string error_msg;
std::unique_ptr<SdkChecker> sdk_checker(SdkChecker::Create(public_sdk_, &error_msg));
if (sdk_checker != nullptr) {
AotClassLinker* aot_class_linker = down_cast<AotClassLinker*>(class_linker);
aot_class_linker->SetSdkChecker(std::move(sdk_checker));
} else {
LOG(FATAL) << "Failed to create SdkChecker with dex files "
<< public_sdk_ << " Error: " << error_msg;
UNREACHABLE();
}
}
}
// Register dex caches and key them to the class loader so that they only unload when the
// class loader unloads.
for (const auto& dex_file : dex_files) {
ScopedObjectAccess soa(Thread::Current());
// Registering the dex cache adds a strong root in the class loader that prevents the dex
// cache from being unloaded early.
ObjPtr<mirror::DexCache> dex_cache = class_linker->RegisterDexFile(
*dex_file,
soa.Decode<mirror::ClassLoader>(class_loader));
if (dex_cache == nullptr) {
soa.Self()->AssertPendingException();
LOG(FATAL) << "Failed to register dex file " << dex_file->GetLocation() << " "
<< soa.Self()->GetException()->Dump();
}
}
driver_->InitializeThreadPools();
driver_->PreCompile(class_loader,
dex_files,
timings_,
&compiler_options_->image_classes_);
callbacks_->SetVerificationResults(nullptr); // Should not be needed anymore.
driver_->CompileAll(class_loader, dex_files, timings_);
driver_->FreeThreadPools();
return class_loader;
}
// Notes on the interleaving of creating the images and oat files to
// ensure the references between the two are correct.
//
// Currently we have a memory layout that looks something like this:
//
// +--------------+
// | images |
// +--------------+
// | oat files |
// +--------------+
// | alloc spaces |
// +--------------+
//
// There are several constraints on the loading of the images and oat files.
//
// 1. The images are expected to be loaded at an absolute address and
// contain Objects with absolute pointers within the images.
//
// 2. There are absolute pointers from Methods in the images to their
// code in the oat files.
//
// 3. There are absolute pointers from the code in the oat files to Methods
// in the images.
//
// 4. There are absolute pointers from code in the oat files to other code
// in the oat files.
//
// To get this all correct, we go through several steps.
//
// 1. We prepare offsets for all data in the oat files and calculate
// the oat data size and code size. During this stage, we also set
// oat code offsets in methods for use by the image writer.
//
// 2. We prepare offsets for the objects in the images and calculate
// the image sizes.
//
// 3. We create the oat files. Originally this was just our own proprietary
// file but now it is contained within an ELF dynamic object (aka an .so
// file). Since we know the image sizes and oat data sizes and code sizes we
// can prepare the ELF headers and we then know the ELF memory segment
// layout and we can now resolve all references. The compiler provides
// LinkerPatch information in each CompiledMethod and we resolve these,
// using the layout information and image object locations provided by
// image writer, as we're writing the method code.
//
// 4. We create the image files. They need to know where the oat files
// will be loaded after itself. Originally oat files were simply
// memory mapped so we could predict where their contents were based
// on the file size. Now that they are ELF files, we need to inspect
// the ELF files to understand the in memory segment layout including
// where the oat header is located within.
// TODO: We could just remember this information from step 3.
//
// 5. We fixup the ELF program headers so that dlopen will try to
// load the .so at the desired location at runtime by offsetting the
// Elf32_Phdr.p_vaddr values by the desired base address.
// TODO: Do this in step 3. We already know the layout there.
//
// Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5.
// are done by the CreateImageFile() below.
// Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the
// ImageWriter, if necessary.
// Note: Flushing (and closing) the file is the caller's responsibility, except for the failure
// case (when the file will be explicitly erased).
bool WriteOutputFiles(jobject class_loader) {
TimingLogger::ScopedTiming t("dex2oat Oat", timings_);
// Sync the data to the file, in case we did dex2dex transformations.
for (MemMap& map : opened_dex_files_maps_) {
if (!map.Sync()) {
PLOG(ERROR) << "Failed to Sync() dex2dex output. Map: " << map.GetName();
return false;
}
}
if (IsImage()) {
if (!IsBootImage()) {
DCHECK_EQ(image_base_, 0u);
gc::Heap* const heap = Runtime::Current()->GetHeap();
image_base_ = heap->GetBootImagesStartAddress() + heap->GetBootImagesSize();
}
VLOG(compiler) << "Image base=" << reinterpret_cast<void*>(image_base_);
image_writer_.reset(new linker::ImageWriter(*compiler_options_,
image_base_,
image_storage_mode_,
oat_filenames_,
dex_file_oat_index_map_,
class_loader,
dirty_image_objects_.get()));
// We need to prepare method offsets in the image address space for resolving linker patches.
TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_);
if (!image_writer_->PrepareImageAddressSpace(timings_)) {
LOG(ERROR) << "Failed to prepare image address space.";
return false;
}
}
// Initialize the writers with the compiler driver, image writer, and their
// dex files. The writers were created without those being there yet.
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i];
std::vector<const DexFile*>& dex_files = dex_files_per_oat_file_[i];
oat_writer->Initialize(driver_.get(), image_writer_.get(), dex_files);
}
if (!use_existing_vdex_) {
TimingLogger::ScopedTiming t2("dex2oat Write VDEX", timings_);
DCHECK(IsBootImage() || IsBootImageExtension() || oat_files_.size() == 1u);
verifier::VerifierDeps* verifier_deps = callbacks_->GetVerifierDeps();
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
File* vdex_file = vdex_files_[i].get();
if (!oat_writers_[i]->FinishVdexFile(vdex_file, verifier_deps)) {
LOG(ERROR) << "Failed to finish VDEX file " << vdex_file->GetPath();
return false;
}
}
}
{
TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_);
linker::MultiOatRelativePatcher patcher(compiler_options_->GetInstructionSet(),
compiler_options_->GetInstructionSetFeatures(),
driver_->GetCompiledMethodStorage());
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
std::unique_ptr<linker::ElfWriter>& elf_writer = elf_writers_[i];
std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i];
oat_writer->PrepareLayout(&patcher);
elf_writer->PrepareDynamicSection(oat_writer->GetOatHeader().GetExecutableOffset(),
oat_writer->GetCodeSize(),
oat_writer->GetDataBimgRelRoSize(),
oat_writer->GetBssSize(),
oat_writer->GetBssMethodsOffset(),
oat_writer->GetBssRootsOffset(),
oat_writer->GetVdexSize());
if (IsImage()) {
// Update oat layout.
DCHECK(image_writer_ != nullptr);
DCHECK_LT(i, oat_filenames_.size());
image_writer_->UpdateOatFileLayout(i,
elf_writer->GetLoadedSize(),
oat_writer->GetOatDataOffset(),
oat_writer->GetOatSize());
}
}
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
std::unique_ptr<File>& oat_file = oat_files_[i];
std::unique_ptr<linker::ElfWriter>& elf_writer = elf_writers_[i];
std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i];
// We need to mirror the layout of the ELF file in the compressed debug-info.
// Therefore PrepareDebugInfo() relies on the SetLoadedSectionSizes() call further above.
debug::DebugInfo debug_info = oat_writer->GetDebugInfo(); // Keep the variable alive.
elf_writer->PrepareDebugInfo(debug_info); // Processes the data on background thread.
OutputStream* rodata = rodata_[i];
DCHECK(rodata != nullptr);
if (!oat_writer->WriteRodata(rodata)) {
LOG(ERROR) << "Failed to write .rodata section to the ELF file " << oat_file->GetPath();
return false;
}
elf_writer->EndRoData(rodata);
rodata = nullptr;
OutputStream* text = elf_writer->StartText();
if (!oat_writer->WriteCode(text)) {
LOG(ERROR) << "Failed to write .text section to the ELF file " << oat_file->GetPath();
return false;
}
elf_writer->EndText(text);
if (oat_writer->GetDataBimgRelRoSize() != 0u) {
OutputStream* data_bimg_rel_ro = elf_writer->StartDataBimgRelRo();
if (!oat_writer->WriteDataBimgRelRo(data_bimg_rel_ro)) {
LOG(ERROR) << "Failed to write .data.bimg.rel.ro section to the ELF file "
<< oat_file->GetPath();
return false;
}
elf_writer->EndDataBimgRelRo(data_bimg_rel_ro);
}
if (!oat_writer->WriteHeader(elf_writer->GetStream())) {
LOG(ERROR) << "Failed to write oat header to the ELF file " << oat_file->GetPath();
return false;
}
if (IsImage()) {
// Update oat header information.
DCHECK(image_writer_ != nullptr);
DCHECK_LT(i, oat_filenames_.size());
image_writer_->UpdateOatFileHeader(i, oat_writer->GetOatHeader());
}
elf_writer->WriteDynamicSection();
elf_writer->WriteDebugInfo(oat_writer->GetDebugInfo());
if (!elf_writer->End()) {
LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath();
return false;
}
if (!FlushOutputFile(&vdex_files_[i]) || !FlushOutputFile(&oat_files_[i])) {
return false;
}
VLOG(compiler) << "Oat file written successfully: " << oat_filenames_[i];
oat_writer.reset();
// We may still need the ELF writer later for stripping.
}
}
return true;
}
// If we are compiling an image, invoke the image creation routine. Else just skip.
bool HandleImage() {
if (IsImage()) {
TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_);
if (!CreateImageFile()) {
return false;
}
VLOG(compiler) << "Images written successfully";
}
return true;
}
// Copy the full oat files to symbols directory and then strip the originals.
bool CopyOatFilesToSymbolsDirectoryAndStrip() {
for (size_t i = 0; i < oat_unstripped_.size(); ++i) {
// If we don't want to strip in place, copy from stripped location to unstripped location.
// We need to strip after image creation because FixupElf needs to use .strtab.
if (oat_unstripped_[i] != oat_filenames_[i]) {
DCHECK(oat_files_[i].get() != nullptr && oat_files_[i]->IsOpened());
TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_);
std::unique_ptr<File>& in = oat_files_[i];
int64_t in_length = in->GetLength();
if (in_length < 0) {
PLOG(ERROR) << "Failed to get the length of oat file: " << in->GetPath();
return false;
}
std::unique_ptr<File> out(OS::CreateEmptyFile(oat_unstripped_[i].c_str()));
if (out == nullptr) {
PLOG(ERROR) << "Failed to open oat file for writing: " << oat_unstripped_[i];
return false;
}
if (!out->Copy(in.get(), 0, in_length)) {
PLOG(ERROR) << "Failed to copy oat file to file: " << out->GetPath();
return false;
}
if (out->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_unstripped_[i];
return false;
}
VLOG(compiler) << "Oat file copied successfully (unstripped): " << oat_unstripped_[i];
if (strip_) {
TimingLogger::ScopedTiming t2("dex2oat OatFile strip", timings_);
if (!elf_writers_[i]->StripDebugInfo()) {
PLOG(ERROR) << "Failed strip oat file: " << in->GetPath();
return false;
}
}
}
}
return true;
}
bool FlushOutputFile(std::unique_ptr<File>* file) {
if ((file->get() != nullptr) && !file->get()->ReadOnlyMode()) {
if (file->get()->Flush() != 0) {
PLOG(ERROR) << "Failed to flush output file: " << file->get()->GetPath();
return false;
}
}
return true;
}
bool FlushCloseOutputFile(File* file) {
if ((file != nullptr) && !file->ReadOnlyMode()) {
if (file->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close output file: " << file->GetPath();
return false;
}
}
return true;
}
bool FlushOutputFiles() {
TimingLogger::ScopedTiming t2("dex2oat Flush Output Files", timings_);
for (auto& files : { &vdex_files_, &oat_files_ }) {
for (size_t i = 0; i < files->size(); ++i) {
if (!FlushOutputFile(&(*files)[i])) {
return false;
}
}
}
return true;
}
bool FlushCloseOutputFiles() {
bool result = true;
for (auto& files : { &vdex_files_, &oat_files_ }) {
for (size_t i = 0; i < files->size(); ++i) {
result &= FlushCloseOutputFile((*files)[i].get());
}
}
return result;
}
void DumpTiming() {
if (compiler_options_->GetDumpTimings() ||
(kIsDebugBuild && timings_->GetTotalNs() > MsToNs(1000))) {
LOG(INFO) << Dumpable<TimingLogger>(*timings_);
}
}
bool IsImage() const {
return IsAppImage() || IsBootImage() || IsBootImageExtension();
}
bool IsAppImage() const {
return compiler_options_->IsAppImage();
}
bool IsBootImage() const {
return compiler_options_->IsBootImage();
}
bool IsBootImageExtension() const {
return compiler_options_->IsBootImageExtension();
}
bool IsHost() const {
return is_host_;
}
bool HasProfileInput() const { return !profile_file_fds_.empty() || !profile_files_.empty(); }
// Must be called after the profile is loaded.
bool DoProfileGuidedOptimizations() const {
DCHECK(!HasProfileInput() || profile_load_attempted_)
<< "The profile has to be loaded before we can decided "
<< "if we do profile guided optimizations";
return profile_compilation_info_ != nullptr && !profile_compilation_info_->IsEmpty();
}
bool DoGenerateCompactDex() const {
return compact_dex_level_ != CompactDexLevel::kCompactDexLevelNone;
}
bool DoDexLayoutOptimizations() const {
// Only run dexlayout when being asked to generate compact dex. We do this
// to avoid having multiple arguments being passed to dex2oat and the main
// user of dex2oat (installd) will have the same reasons for
// disabling/enabling compact dex and dex layout.
return DoGenerateCompactDex();
}
bool DoOatLayoutOptimizations() const {
return DoProfileGuidedOptimizations();
}
bool LoadProfile() {
DCHECK(HasProfileInput());
profile_load_attempted_ = true;
// TODO(calin): We should be using the runtime arena pool (instead of the
// default profile arena). However the setup logic is messy and needs
// cleaning up before that (e.g. the oat writers are created before the
// runtime).
bool for_boot_image = IsBootImage() || IsBootImageExtension();
profile_compilation_info_.reset(new ProfileCompilationInfo(for_boot_image));
// Cleanup profile compilation info if we encounter any error when reading profiles.
auto cleanup = android::base::ScopeGuard([&]() { profile_compilation_info_.reset(nullptr); });
// Dex2oat only uses the reference profile and that is not updated concurrently by the app or
// other processes. So we don't need to lock (as we have to do in profman or when writing the
// profile info).
std::vector<std::unique_ptr<File>> profile_files;
if (!profile_file_fds_.empty()) {
for (int fd : profile_file_fds_) {
profile_files.push_back(std::make_unique<File>(DupCloexec(fd),
"profile",
/*check_usage=*/ false,
/*read_only_mode=*/ true));
}
} else {
for (const std::string& file : profile_files_) {
profile_files.emplace_back(OS::OpenFileForReading(file.c_str()));
if (profile_files.back().get() == nullptr) {
PLOG(ERROR) << "Cannot open profiles";
return false;
}
}
}
std::map<std::string, uint32_t> old_profile_keys, new_profile_keys;
auto filter_fn = [&](const std::string& profile_key, uint32_t checksum) {
auto it = old_profile_keys.find(profile_key);
if (it != old_profile_keys.end() && it->second != checksum) {
// Filter out this entry. We have already loaded data for the same profile key with a
// different checksum from an earlier profile file.
return false;
}
// Insert the new profile key and checksum.
// Note: If the profile contains the same key with different checksums, this insertion fails
// but we still return `true` and let the `ProfileCompilationInfo::Load()` report an error.
new_profile_keys.insert(std::make_pair(profile_key, checksum));
return true;
};
for (const std::unique_ptr<File>& profile_file : profile_files) {
if (!profile_compilation_info_->Load(profile_file->Fd(),
/*merge_classes=*/ true,
filter_fn)) {
return false;
}
old_profile_keys.merge(new_profile_keys);
new_profile_keys.clear();
}
cleanup.Disable();
return true;
}
// If we're asked to speed-profile the app but we have no profile, or the profile
// is empty, change the filter to verify, and the image_type to none.
// A speed-profile compilation without profile data is equivalent to verify and
// this change will increase the precision of the telemetry data.
void UpdateCompilerOptionsBasedOnProfile() {
if (!DoProfileGuidedOptimizations() &&
compiler_options_->GetCompilerFilter() == CompilerFilter::kSpeedProfile) {
VLOG(compiler) << "Changing compiler filter to verify from speed-profile "
<< "because of empty or non existing profile";
compiler_options_->SetCompilerFilter(CompilerFilter::kVerify);
// Note that we could reset the image_type to CompilerOptions::ImageType::kNone
// to prevent an app image generation.
// However, if we were pass an image file we would essentially leave the image
// file empty (possibly triggering some harmless errors when we try to load it).
//
// Letting the image_type_ be determined by whether or not we passed an image
// file will at least write the appropriate header making it an empty but valid
// image.
}
}
class ScopedDex2oatReporting {
public:
explicit ScopedDex2oatReporting(const Dex2Oat& dex2oat) :
should_report_(dex2oat.should_report_dex2oat_compilation_) {
if (should_report_) {
if (dex2oat.zip_fd_ != -1) {
zip_dup_fd_.reset(DupCloexecOrError(dex2oat.zip_fd_));
if (zip_dup_fd_ < 0) {
return;
}
}
int image_fd = dex2oat.IsAppImage() ? dex2oat.app_image_fd_ : dex2oat.image_fd_;
if (image_fd != -1) {
image_dup_fd_.reset(DupCloexecOrError(image_fd));
if (image_dup_fd_ < 0) {
return;
}
}
oat_dup_fd_.reset(DupCloexecOrError(dex2oat.oat_fd_));
if (oat_dup_fd_ < 0) {
return;
}
vdex_dup_fd_.reset(DupCloexecOrError(dex2oat.output_vdex_fd_));
if (vdex_dup_fd_ < 0) {
return;
}
PaletteNotifyStartDex2oatCompilation(zip_dup_fd_,
image_dup_fd_,
oat_dup_fd_,
vdex_dup_fd_);
}
error_reporting_ = false;
}
~ScopedDex2oatReporting() {
if (!error_reporting_) {
if (should_report_) {
PaletteNotifyEndDex2oatCompilation(zip_dup_fd_,
image_dup_fd_,
oat_dup_fd_,
vdex_dup_fd_);
}
}
}
bool ErrorReporting() const { return error_reporting_; }
private:
int DupCloexecOrError(int fd) {
int dup_fd = DupCloexec(fd);
if (dup_fd < 0) {
LOG(ERROR) << "Error dup'ing a file descriptor " << strerror(errno);
error_reporting_ = true;
}
return dup_fd;
}
android::base::unique_fd oat_dup_fd_;
android::base::unique_fd vdex_dup_fd_;
android::base::unique_fd zip_dup_fd_;
android::base::unique_fd image_dup_fd_;
bool error_reporting_ = false;
bool should_report_;
};
private:
bool UseSwap(bool is_image, const std::vector<const DexFile*>& dex_files) {
if (is_image) {
// Don't use swap, we know generation should succeed, and we don't want to slow it down.
return false;
}
if (dex_files.size() < min_dex_files_for_swap_) {
// If there are less dex files than the threshold, assume it's gonna be fine.
return false;
}
size_t dex_files_size = 0;
for (const auto* dex_file : dex_files) {
dex_files_size += dex_file->GetHeader().file_size_;
}
return dex_files_size >= min_dex_file_cumulative_size_for_swap_;
}
bool IsVeryLarge(const std::vector<const DexFile*>& dex_files) {
size_t dex_files_size = 0;
for (const auto* dex_file : dex_files) {
dex_files_size += dex_file->GetHeader().file_size_;
}
return dex_files_size >= very_large_threshold_;
}
bool PrepareDirtyObjects() {
if (dirty_image_objects_fd_ != -1) {
dirty_image_objects_ = ReadCommentedInputFromFd<HashSet<std::string>>(
dirty_image_objects_fd_,
nullptr);
// Close since we won't need it again.
close(dirty_image_objects_fd_);
dirty_image_objects_fd_ = -1;
if (dirty_image_objects_ == nullptr) {
LOG(ERROR) << "Failed to create list of dirty objects from fd " << dirty_image_objects_fd_;
return false;
}
} else if (dirty_image_objects_filename_ != nullptr) {
dirty_image_objects_ = ReadCommentedInputFromFile<HashSet<std::string>>(
dirty_image_objects_filename_,
nullptr);
if (dirty_image_objects_ == nullptr) {
LOG(ERROR) << "Failed to create list of dirty objects from '"
<< dirty_image_objects_filename_ << "'";
return false;
}
}
return true;
}
bool PreparePreloadedClasses() {
if (!preloaded_classes_fds_.empty()) {
for (int fd : preloaded_classes_fds_) {
if (!ReadCommentedInputFromFd(fd, nullptr, &compiler_options_->preloaded_classes_)) {
return false;
}
}
} else {
for (const std::string& file : preloaded_classes_files_) {
if (!ReadCommentedInputFromFile(
file.c_str(), nullptr, &compiler_options_->preloaded_classes_)) {
return false;
}
}
}
return true;
}
void PruneNonExistentDexFiles() {
DCHECK_EQ(dex_filenames_.size(), dex_locations_.size());
size_t kept = 0u;
for (size_t i = 0, size = dex_filenames_.size(); i != size; ++i) {
// Keep if the file exist, or is passed as FD.
if (!OS::FileExists(dex_filenames_[i].c_str()) && i >= dex_fds_.size()) {
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filenames_[i] << "'";
} else {
if (kept != i) {
dex_filenames_[kept] = dex_filenames_[i];
dex_locations_[kept] = dex_locations_[i];
}
++kept;
}
}
dex_filenames_.resize(kept);
dex_locations_.resize(kept);
}
bool AddDexFileSources() {
TimingLogger::ScopedTiming t2("AddDexFileSources", timings_);
if (input_vdex_file_ != nullptr && input_vdex_file_->HasDexSection()) {
DCHECK_EQ(oat_writers_.size(), 1u);
const std::string& name = zip_location_.empty() ? dex_locations_[0] : zip_location_;
DCHECK(!name.empty());
if (!oat_writers_[0]->AddVdexDexFilesSource(*input_vdex_file_.get(), name.c_str())) {
return false;
}
} else if (zip_fd_ != -1) {
DCHECK_EQ(oat_writers_.size(), 1u);
if (!oat_writers_[0]->AddDexFileSource(File(zip_fd_, /* check_usage */ false),
zip_location_.c_str())) {
return false;
}
} else {
DCHECK_EQ(dex_filenames_.size(), dex_locations_.size());
DCHECK_GE(oat_writers_.size(), 1u);
bool use_dex_fds = !dex_fds_.empty();
if (use_dex_fds) {
DCHECK_EQ(dex_fds_.size(), dex_filenames_.size());
}
bool is_multi_image = oat_writers_.size() > 1u;
if (is_multi_image) {
DCHECK_EQ(oat_writers_.size(), dex_filenames_.size());
}
for (size_t i = 0; i != dex_filenames_.size(); ++i) {
int oat_index = is_multi_image ? i : 0;
auto oat_writer = oat_writers_[oat_index].get();
if (use_dex_fds) {
if (!oat_writer->AddDexFileSource(File(dex_fds_[i], /* check_usage */ false),
dex_locations_[i].c_str())) {
return false;
}
} else {
if (!oat_writer->AddDexFileSource(dex_filenames_[i].c_str(),
dex_locations_[i].c_str())) {
return false;
}
}
}
}
return true;
}
void CreateOatWriters() {
TimingLogger::ScopedTiming t2("CreateOatWriters", timings_);
elf_writers_.reserve(oat_files_.size());
oat_writers_.reserve(oat_files_.size());
for (const std::unique_ptr<File>& oat_file : oat_files_) {
elf_writers_.emplace_back(linker::CreateElfWriterQuick(*compiler_options_, oat_file.get()));
elf_writers_.back()->Start();
bool do_oat_writer_layout = DoDexLayoutOptimizations() || DoOatLayoutOptimizations();
oat_writers_.emplace_back(new linker::OatWriter(
*compiler_options_,
verification_results_.get(),
timings_,
do_oat_writer_layout ? profile_compilation_info_.get() : nullptr,
compact_dex_level_));
}
}
void SaveDexInput() {
const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_;
for (size_t i = 0, size = dex_files.size(); i != size; ++i) {
const DexFile* dex_file = dex_files[i];
std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex",
getpid(), i));
std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str()));
if (tmp_file.get() == nullptr) {
PLOG(ERROR) << "Failed to open file " << tmp_file_name
<< ". Try: adb shell chmod 777 /data/local/tmp";
continue;
}
// This is just dumping files for debugging. Ignore errors, and leave remnants.
UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size()));
UNUSED(tmp_file->Flush());
UNUSED(tmp_file->Close());
LOG(INFO) << "Wrote input to " << tmp_file_name;
}
}
bool PrepareRuntimeOptions(RuntimeArgumentMap* runtime_options,
QuickCompilerCallbacks* callbacks) {
RuntimeOptions raw_options;
if (IsBootImage()) {
std::string boot_class_path = "-Xbootclasspath:";
boot_class_path += android::base::Join(dex_filenames_, ':');
raw_options.push_back(std::make_pair(boot_class_path, nullptr));
std::string boot_class_path_locations = "-Xbootclasspath-locations:";
boot_class_path_locations += android::base::Join(dex_locations_, ':');
raw_options.push_back(std::make_pair(boot_class_path_locations, nullptr));
} else {
std::string boot_image_option = "-Ximage:";
boot_image_option += boot_image_filename_;
raw_options.push_back(std::make_pair(boot_image_option, nullptr));
}
for (size_t i = 0; i < runtime_args_.size(); i++) {
raw_options.push_back(std::make_pair(runtime_args_[i], nullptr));
}
raw_options.push_back(std::make_pair("compilercallbacks", callbacks));
raw_options.push_back(
std::make_pair("imageinstructionset",
GetInstructionSetString(compiler_options_->GetInstructionSet())));
// Never allow implicit image compilation.
raw_options.push_back(std::make_pair("-Xnoimage-dex2oat", nullptr));
// Disable libsigchain. We don't don't need it during compilation and it prevents us
// from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT).
raw_options.push_back(std::make_pair("-Xno-sig-chain", nullptr));
// Disable Hspace compaction to save heap size virtual space.
// Only need disable Hspace for OOM becasue background collector is equal to
// foreground collector by default for dex2oat.
raw_options.push_back(std::make_pair("-XX:DisableHSpaceCompactForOOM", nullptr));
if (!Runtime::ParseOptions(raw_options, false, runtime_options)) {
LOG(ERROR) << "Failed to parse runtime options";
return false;
}
return true;
}
// Create a runtime necessary for compilation.
bool CreateRuntime(RuntimeArgumentMap&& runtime_options) {
// To make identity hashcode deterministic, set a seed based on the dex file checksums.
// That makes the seed also most likely different for different inputs, for example
// for primary boot image and different extensions that could be loaded together.
mirror::Object::SetHashCodeSeed(987654321u ^ GetCombinedChecksums());
TimingLogger::ScopedTiming t_runtime("Create runtime", timings_);
if (!Runtime::Create(std::move(runtime_options))) {
LOG(ERROR) << "Failed to create runtime";
return false;
}
// Runtime::Init will rename this thread to be "main". Prefer "dex2oat" so that "top" and
// "ps -a" don't change to non-descript "main."
SetThreadName(kIsDebugBuild ? "dex2oatd" : "dex2oat");
runtime_.reset(Runtime::Current());
runtime_->SetInstructionSet(compiler_options_->GetInstructionSet());
for (uint32_t i = 0; i < static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
CalleeSaveType type = CalleeSaveType(i);
if (!runtime_->HasCalleeSaveMethod(type)) {
runtime_->SetCalleeSaveMethod(runtime_->CreateCalleeSaveMethod(), type);
}
}
// Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this
// set up.
interpreter::UnstartedRuntime::Initialize();
Thread* self = Thread::Current();
runtime_->GetClassLinker()->RunEarlyRootClinits(self);
InitializeIntrinsics();
runtime_->RunRootClinits(self);
// Runtime::Create acquired the mutator_lock_ that is normally given away when we
// Runtime::Start, give it away now so that we don't starve GC.
self->TransitionFromRunnableToSuspended(ThreadState::kNative);
WatchDog::SetRuntime(runtime_.get());
return true;
}
// Let the ImageWriter write the image files. If we do not compile PIC, also fix up the oat files.
bool CreateImageFile()
REQUIRES(!Locks::mutator_lock_) {
CHECK(image_writer_ != nullptr);
if (IsAppImage()) {
DCHECK(image_filenames_.empty());
if (app_image_fd_ != -1) {
image_filenames_.push_back(StringPrintf("FileDescriptor[%d]", app_image_fd_));
} else {
image_filenames_.push_back(app_image_file_name_);
}
}
if (image_fd_ != -1) {
DCHECK(image_filenames_.empty());
image_filenames_.push_back(StringPrintf("FileDescriptor[%d]", image_fd_));
}
if (!image_writer_->Write(IsAppImage() ? app_image_fd_ : image_fd_,
image_filenames_,
IsAppImage() ? 1u : dex_locations_.size())) {
LOG(ERROR) << "Failure during image file creation";
return false;
}
// We need the OatDataBegin entries.
dchecked_vector<uintptr_t> oat_data_begins;
for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
oat_data_begins.push_back(image_writer_->GetOatDataBegin(i));
}
// Destroy ImageWriter.
image_writer_.reset();
return true;
}
template <typename T>
static bool ReadCommentedInputFromFile(
const char* input_filename, std::function<std::string(const char*)>* process, T* output) {
auto input_file = std::unique_ptr<FILE, decltype(&fclose)>{fopen(input_filename, "re"), fclose};
if (!input_file) {
LOG(ERROR) << "Failed to open input file " << input_filename;
return false;
}
ReadCommentedInputStream<T>(input_file.get(), process, output);
return true;
}
template <typename T>
static bool ReadCommentedInputFromFd(
int input_fd, std::function<std::string(const char*)>* process, T* output) {
auto input_file = std::unique_ptr<FILE, decltype(&fclose)>{fdopen(input_fd, "r"), fclose};
if (!input_file) {
LOG(ERROR) << "Failed to re-open input fd from /prof/self/fd/" << input_fd;
return false;
}
ReadCommentedInputStream<T>(input_file.get(), process, output);
return true;
}
// Read lines from the given file, dropping comments and empty lines. Post-process each line with
// the given function.
template <typename T>
static std::unique_ptr<T> ReadCommentedInputFromFile(
const char* input_filename, std::function<std::string(const char*)>* process) {
std::unique_ptr<T> output(new T());
ReadCommentedInputFromFile(input_filename, process, output.get());
return output;
}
// Read lines from the given fd, dropping comments and empty lines. Post-process each line with
// the given function.
template <typename T>
static std::unique_ptr<T> ReadCommentedInputFromFd(
int input_fd, std::function<std::string(const char*)>* process) {
std::unique_ptr<T> output(new T());
ReadCommentedInputFromFd(input_fd, process, output.get());
return output;
}
// Read lines from the given stream, dropping comments and empty lines. Post-process each line
// with the given function.
template <typename T> static void ReadCommentedInputStream(
std::FILE* in_stream,
std::function<std::string(const char*)>* process,
T* output) {
char* line = nullptr;
size_t line_alloc = 0;
ssize_t len = 0;
while ((len = getline(&line, &line_alloc, in_stream)) > 0) {
if (line[0] == '\0' || line[0] == '#' || line[0] == '\n') {
continue;
}
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
}
if (process != nullptr) {
std::string descriptor((*process)(line));
output->insert(output->end(), descriptor);
} else {
output->insert(output->end(), line);
}
}
free(line);
}
void LogCompletionTime() {
// Note: when creation of a runtime fails, e.g., when trying to compile an app but when there
// is no image, there won't be a Runtime::Current().
// Note: driver creation can fail when loading an invalid dex file.
LOG(INFO) << "dex2oat took "
<< PrettyDuration(NanoTime() - start_ns_)
<< " (" << PrettyDuration(ProcessCpuNanoTime() - start_cputime_ns_) << " cpu)"
<< " (threads: " << thread_count_ << ") "
<< ((Runtime::Current() != nullptr && driver_ != nullptr) ?
driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) :
"");
}
std::string StripIsaFrom(const char* image_filename, InstructionSet isa) {
std::string res(image_filename);
size_t last_slash = res.rfind('/');
if (last_slash == std::string::npos || last_slash == 0) {
return res;
}
size_t penultimate_slash = res.rfind('/', last_slash - 1);
if (penultimate_slash == std::string::npos) {
return res;
}
// Check that the string in-between is the expected one.
if (res.substr(penultimate_slash + 1, last_slash - penultimate_slash - 1) !=
GetInstructionSetString(isa)) {
LOG(WARNING) << "Unexpected string when trying to strip isa: " << res;
return res;
}
return res.substr(0, penultimate_slash) + res.substr(last_slash);
}
std::unique_ptr<CompilerOptions> compiler_options_;
Compiler::Kind compiler_kind_;
std::unique_ptr<OatKeyValueStore> key_value_store_;
std::unique_ptr<VerificationResults> verification_results_;
std::unique_ptr<QuickCompilerCallbacks> callbacks_;
std::unique_ptr<Runtime> runtime_;
// The spec describing how the class loader should be setup for compilation.
std::unique_ptr<ClassLoaderContext> class_loader_context_;
// Optional list of file descriptors corresponding to dex file locations in
// flattened `class_loader_context_`.
std::vector<int> class_loader_context_fds_;
// The class loader context stored in the oat file. May be equal to class_loader_context_.
std::unique_ptr<ClassLoaderContext> stored_class_loader_context_;
size_t thread_count_;
std::vector<int32_t> cpu_set_;
uint64_t start_ns_;
uint64_t start_cputime_ns_;
std::unique_ptr<WatchDog> watchdog_;
std::vector<std::unique_ptr<File>> oat_files_;
std::vector<std::unique_ptr<File>> vdex_files_;
std::string oat_location_;
std::vector<std::string> oat_filenames_;
std::vector<std::string> oat_unstripped_;
bool strip_;
int oat_fd_;
int input_vdex_fd_;
int output_vdex_fd_;
std::string input_vdex_;
std::string output_vdex_;
std::unique_ptr<VdexFile> input_vdex_file_;
int dm_fd_;
std::string dm_file_location_;
std::unique_ptr<ZipArchive> dm_file_;
std::vector<std::string> dex_filenames_;
std::vector<std::string> dex_locations_;
std::vector<int> dex_fds_;
int zip_fd_;
std::string zip_location_;
std::string boot_image_filename_;
std::vector<const char*> runtime_args_;
std::vector<std::string> image_filenames_;
int image_fd_;
bool have_multi_image_arg_;
uintptr_t image_base_;
ImageHeader::StorageMode image_storage_mode_;
const char* passes_to_run_filename_;
const char* dirty_image_objects_filename_;
int dirty_image_objects_fd_;
std::unique_ptr<HashSet<std::string>> dirty_image_objects_;
std::unique_ptr<std::vector<std::string>> passes_to_run_;
bool is_host_;
std::string android_root_;
std::string no_inline_from_string_;
bool force_allow_oj_inlines_ = false;
CompactDexLevel compact_dex_level_ = kDefaultCompactDexLevel;
std::vector<std::unique_ptr<linker::ElfWriter>> elf_writers_;
std::vector<std::unique_ptr<linker::OatWriter>> oat_writers_;
std::vector<OutputStream*> rodata_;
std::vector<std::unique_ptr<OutputStream>> vdex_out_;
std::unique_ptr<linker::ImageWriter> image_writer_;
std::unique_ptr<CompilerDriver> driver_;
std::vector<MemMap> opened_dex_files_maps_;
std::vector<std::unique_ptr<const DexFile>> opened_dex_files_;
bool avoid_storing_invocation_;
android::base::unique_fd invocation_file_;
std::string swap_file_name_;
int swap_fd_;
size_t min_dex_files_for_swap_ = kDefaultMinDexFilesForSwap;
size_t min_dex_file_cumulative_size_for_swap_ = kDefaultMinDexFileCumulativeSizeForSwap;
size_t very_large_threshold_ = std::numeric_limits<size_t>::max();
std::string app_image_file_name_;
int app_image_fd_;
std::vector<std::string> profile_files_;
std::vector<int> profile_file_fds_;
std::vector<std::string> preloaded_classes_files_;
std::vector<int> preloaded_classes_fds_;
std::unique_ptr<ProfileCompilationInfo> profile_compilation_info_;
TimingLogger* timings_;
std::vector<std::vector<const DexFile*>> dex_files_per_oat_file_;
HashMap<const DexFile*, size_t> dex_file_oat_index_map_;
// Backing storage.
std::forward_list<std::string> char_backing_storage_;
// See CompilerOptions.force_determinism_.
bool force_determinism_;
// See CompilerOptions.crash_on_linkage_violation_.
bool check_linkage_conditions_;
// See CompilerOptions.crash_on_linkage_violation_.
bool crash_on_linkage_violation_;
// Directory of relative classpaths.
std::string classpath_dir_;
// Whether the given input vdex is also the output.
bool use_existing_vdex_ = false;
// By default, copy the dex to the vdex file only if dex files are
// compressed in APK.
linker::CopyOption copy_dex_files_ = linker::CopyOption::kOnlyIfCompressed;
// The reason for invoking the compiler.
std::string compilation_reason_;
// Whether to force individual compilation.
bool compile_individually_;
// The classpath that determines if a given symbol should be resolved at compile time or not.
std::string public_sdk_;
// The apex versions of jars in the boot classpath. Set through command line
// argument.
std::string apex_versions_argument_;
// Whether or we attempted to load the profile (if given).
bool profile_load_attempted_;
// Whether PaletteNotify{Start,End}Dex2oatCompilation should be called.
bool should_report_dex2oat_compilation_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat);
};
static void b13564922() {
#if defined(__linux__) && defined(__arm__)
int major, minor;
struct utsname uts;
if (uname(&uts) != -1 &&
sscanf(uts.release, "%d.%d", &major, &minor) == 2 &&
((major < 3) || ((major == 3) && (minor < 4)))) {
// Kernels before 3.4 don't handle the ASLR well and we can run out of address
// space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization.
int old_personality = personality(0xffffffff);
if ((old_personality & ADDR_NO_RANDOMIZE) == 0) {
int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE);
if (new_personality == -1) {
LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed.";
}
}
}
#endif
}
class ScopedGlobalRef {
public:
explicit ScopedGlobalRef(jobject obj) : obj_(obj) {}
~ScopedGlobalRef() {
if (obj_ != nullptr) {
ScopedObjectAccess soa(Thread::Current());
soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), obj_);
}
}
private:
jobject obj_;
};
static dex2oat::ReturnCode DoCompilation(Dex2Oat& dex2oat) REQUIRES(!Locks::mutator_lock_) {
Locks::mutator_lock_->AssertNotHeld(Thread::Current());
dex2oat.LoadClassProfileDescriptors();
jobject class_loader = dex2oat.Compile();
// Keep the class loader that was used for compilation live for the rest of the compilation
// process.
ScopedGlobalRef global_ref(class_loader);
if (!dex2oat.WriteOutputFiles(class_loader)) {
dex2oat.EraseOutputFiles();
return dex2oat::ReturnCode::kOther;
}
// Flush output files. Keep them open as we might still modify them later (strip them).
if (!dex2oat.FlushOutputFiles()) {
dex2oat.EraseOutputFiles();
return dex2oat::ReturnCode::kOther;
}
// Creates the boot.art and patches the oat files.
if (!dex2oat.HandleImage()) {
return dex2oat::ReturnCode::kOther;
}
// When given --host, finish early without stripping.
if (dex2oat.IsHost()) {
if (!dex2oat.FlushCloseOutputFiles()) {
return dex2oat::ReturnCode::kOther;
}
dex2oat.DumpTiming();
return dex2oat::ReturnCode::kNoFailure;
}
// Copy stripped to unstripped location, if necessary. This will implicitly flush & close the
// stripped versions. If this is given, we expect to be able to open writable files by name.
if (!dex2oat.CopyOatFilesToSymbolsDirectoryAndStrip()) {
return dex2oat::ReturnCode::kOther;
}
// FlushClose again, as stripping might have re-opened the oat files.
if (!dex2oat.FlushCloseOutputFiles()) {
return dex2oat::ReturnCode::kOther;
}
dex2oat.DumpTiming();
return dex2oat::ReturnCode::kNoFailure;
}
static dex2oat::ReturnCode Dex2oat(int argc, char** argv) {
b13564922();
TimingLogger timings("compiler", false, false);
// Allocate `dex2oat` on the heap instead of on the stack, as Clang
// might produce a stack frame too large for this function or for
// functions inlining it (such as main), that would not fit the
// requirements of the `-Wframe-larger-than` option.
std::unique_ptr<Dex2Oat> dex2oat = std::make_unique<Dex2Oat>(&timings);
// Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError.
dex2oat->ParseArgs(argc, argv);
art::MemMap::Init(); // For ZipEntry::ExtractToMemMap, vdex and profiles.
// If needed, process profile information for profile guided compilation.
// This operation involves I/O.
if (dex2oat->HasProfileInput()) {
if (!dex2oat->LoadProfile()) {
LOG(ERROR) << "Failed to process profile file";
return dex2oat::ReturnCode::kOther;
}
}
// Check if we need to update any of the compiler options (such as the filter)
// and do it before anything else (so that the other operations have a true
// view of the state).
dex2oat->UpdateCompilerOptionsBasedOnProfile();
// Insert the compiler options in the key value store.
// We have to do this after we altered any incoming arguments
// (such as the compiler filter).
dex2oat->InsertCompileOptions(argc, argv);
// Check early that the result of compilation can be written
if (!dex2oat->OpenFile()) {
// Flush close so that the File Guard checks don't fail the assertions.
dex2oat->FlushCloseOutputFiles();
return dex2oat::ReturnCode::kOther;
}
// Print the complete line when any of the following is true:
// 1) Debug build
// 2) Compiling an image
// 3) Compiling with --host
// 4) Compiling on the host (not a target build)
// Otherwise, print a stripped command line.
if (kIsDebugBuild ||
dex2oat->IsBootImage() || dex2oat->IsBootImageExtension() ||
dex2oat->IsHost() ||
!kIsTargetBuild) {
LOG(INFO) << CommandLine();
} else {
LOG(INFO) << StrippedCommandLine();
}
Dex2Oat::ScopedDex2oatReporting sdr(*dex2oat.get());
if (sdr.ErrorReporting()) {
dex2oat->EraseOutputFiles();
return dex2oat::ReturnCode::kOther;
}
dex2oat::ReturnCode setup_code = dex2oat->Setup();
if (setup_code != dex2oat::ReturnCode::kNoFailure) {
dex2oat->EraseOutputFiles();
return setup_code;
}
// TODO: Due to the cyclic dependencies, profile loading and verifying are
// being done separately. Refactor and place the two next to each other.
// If verification fails, we don't abort the compilation and instead log an
// error.
// TODO(b/62602192, b/65260586): We should consider aborting compilation when
// the profile verification fails.
// Note: If dex2oat fails, installd will remove the oat files causing the app
// to fallback to apk with possible in-memory extraction. We want to avoid
// that, and thus we're lenient towards profile corruptions.
if (dex2oat->DoProfileGuidedOptimizations()) {
dex2oat->VerifyProfileData();
}
// Helps debugging on device. Can be used to determine which dalvikvm instance invoked a dex2oat
// instance. Used by tools/bisection_search/bisection_search.py.
VLOG(compiler) << "Running dex2oat (parent PID = " << getppid() << ")";
dex2oat::ReturnCode result = DoCompilation(*dex2oat);
return result;
}
} // namespace art
int main(int argc, char** argv) {
int result = static_cast<int>(art::Dex2oat(argc, argv));
// Everything was done, do an explicit exit here to avoid running Runtime destructors that take
// time (bug 10645725) unless we're a debug or instrumented build or running on a memory tool.
// Note: The Dex2Oat class should not destruct the runtime in this case.
if (!art::kIsDebugBuild && !art::kIsPGOInstrumentation && !art::kRunningOnMemoryTool) {
art::FastExit(result);
}
return result;
}