| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ |
| #define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ |
| |
| #include "code_generator.h" |
| #include "instruction_simplifier_shared.h" |
| #include "locations.h" |
| #include "nodes.h" |
| #include "utils/arm64/assembler_arm64.h" |
| |
| // TODO(VIXL): Make VIXL compile with -Wshadow. |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wshadow" |
| #include "aarch64/disasm-aarch64.h" |
| #include "aarch64/macro-assembler-aarch64.h" |
| #include "aarch64/simulator-aarch64.h" |
| #pragma GCC diagnostic pop |
| |
| namespace art { |
| |
| using helpers::CanFitInShifterOperand; |
| using helpers::HasShifterOperand; |
| |
| namespace arm64 { |
| namespace helpers { |
| |
| // Convenience helpers to ease conversion to and from VIXL operands. |
| static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32), |
| "Unexpected values for register codes."); |
| |
| inline int VIXLRegCodeFromART(int code) { |
| if (code == SP) { |
| return vixl::aarch64::kSPRegInternalCode; |
| } |
| if (code == XZR) { |
| return vixl::aarch64::kZeroRegCode; |
| } |
| return code; |
| } |
| |
| inline int ARTRegCodeFromVIXL(int code) { |
| if (code == vixl::aarch64::kSPRegInternalCode) { |
| return SP; |
| } |
| if (code == vixl::aarch64::kZeroRegCode) { |
| return XZR; |
| } |
| return code; |
| } |
| |
| inline vixl::aarch64::Register XRegisterFrom(Location location) { |
| DCHECK(location.IsRegister()) << location; |
| return vixl::aarch64::Register::GetXRegFromCode(VIXLRegCodeFromART(location.reg())); |
| } |
| |
| inline vixl::aarch64::Register WRegisterFrom(Location location) { |
| DCHECK(location.IsRegister()) << location; |
| return vixl::aarch64::Register::GetWRegFromCode(VIXLRegCodeFromART(location.reg())); |
| } |
| |
| inline vixl::aarch64::Register RegisterFrom(Location location, DataType::Type type) { |
| DCHECK(type != DataType::Type::kVoid && !DataType::IsFloatingPointType(type)) << type; |
| return type == DataType::Type::kInt64 ? XRegisterFrom(location) : WRegisterFrom(location); |
| } |
| |
| inline vixl::aarch64::Register OutputRegister(HInstruction* instr) { |
| return RegisterFrom(instr->GetLocations()->Out(), instr->GetType()); |
| } |
| |
| inline vixl::aarch64::Register InputRegisterAt(HInstruction* instr, int input_index) { |
| return RegisterFrom(instr->GetLocations()->InAt(input_index), |
| instr->InputAt(input_index)->GetType()); |
| } |
| |
| inline vixl::aarch64::FPRegister DRegisterFrom(Location location) { |
| DCHECK(location.IsFpuRegister()) << location; |
| return vixl::aarch64::FPRegister::GetDRegFromCode(location.reg()); |
| } |
| |
| inline vixl::aarch64::FPRegister QRegisterFrom(Location location) { |
| DCHECK(location.IsFpuRegister()) << location; |
| return vixl::aarch64::FPRegister::GetQRegFromCode(location.reg()); |
| } |
| |
| inline vixl::aarch64::FPRegister VRegisterFrom(Location location) { |
| DCHECK(location.IsFpuRegister()) << location; |
| return vixl::aarch64::FPRegister::GetVRegFromCode(location.reg()); |
| } |
| |
| inline vixl::aarch64::FPRegister SRegisterFrom(Location location) { |
| DCHECK(location.IsFpuRegister()) << location; |
| return vixl::aarch64::FPRegister::GetSRegFromCode(location.reg()); |
| } |
| |
| inline vixl::aarch64::FPRegister FPRegisterFrom(Location location, DataType::Type type) { |
| DCHECK(DataType::IsFloatingPointType(type)) << type; |
| return type == DataType::Type::kFloat64 ? DRegisterFrom(location) : SRegisterFrom(location); |
| } |
| |
| inline vixl::aarch64::FPRegister OutputFPRegister(HInstruction* instr) { |
| return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType()); |
| } |
| |
| inline vixl::aarch64::FPRegister InputFPRegisterAt(HInstruction* instr, int input_index) { |
| return FPRegisterFrom(instr->GetLocations()->InAt(input_index), |
| instr->InputAt(input_index)->GetType()); |
| } |
| |
| inline vixl::aarch64::CPURegister CPURegisterFrom(Location location, DataType::Type type) { |
| return DataType::IsFloatingPointType(type) |
| ? vixl::aarch64::CPURegister(FPRegisterFrom(location, type)) |
| : vixl::aarch64::CPURegister(RegisterFrom(location, type)); |
| } |
| |
| inline vixl::aarch64::CPURegister OutputCPURegister(HInstruction* instr) { |
| return DataType::IsFloatingPointType(instr->GetType()) |
| ? static_cast<vixl::aarch64::CPURegister>(OutputFPRegister(instr)) |
| : static_cast<vixl::aarch64::CPURegister>(OutputRegister(instr)); |
| } |
| |
| inline vixl::aarch64::CPURegister InputCPURegisterAt(HInstruction* instr, int index) { |
| return DataType::IsFloatingPointType(instr->InputAt(index)->GetType()) |
| ? static_cast<vixl::aarch64::CPURegister>(InputFPRegisterAt(instr, index)) |
| : static_cast<vixl::aarch64::CPURegister>(InputRegisterAt(instr, index)); |
| } |
| |
| inline vixl::aarch64::CPURegister InputCPURegisterOrZeroRegAt(HInstruction* instr, |
| int index) { |
| HInstruction* input = instr->InputAt(index); |
| DataType::Type input_type = input->GetType(); |
| if (input->IsConstant() && input->AsConstant()->IsZeroBitPattern()) { |
| return (DataType::Size(input_type) >= vixl::aarch64::kXRegSizeInBytes) |
| ? vixl::aarch64::Register(vixl::aarch64::xzr) |
| : vixl::aarch64::Register(vixl::aarch64::wzr); |
| } |
| return InputCPURegisterAt(instr, index); |
| } |
| |
| inline int64_t Int64FromLocation(Location location) { |
| return Int64FromConstant(location.GetConstant()); |
| } |
| |
| inline vixl::aarch64::Operand OperandFrom(Location location, DataType::Type type) { |
| if (location.IsRegister()) { |
| return vixl::aarch64::Operand(RegisterFrom(location, type)); |
| } else { |
| return vixl::aarch64::Operand(Int64FromLocation(location)); |
| } |
| } |
| |
| inline vixl::aarch64::Operand InputOperandAt(HInstruction* instr, int input_index) { |
| return OperandFrom(instr->GetLocations()->InAt(input_index), |
| instr->InputAt(input_index)->GetType()); |
| } |
| |
| inline vixl::aarch64::MemOperand StackOperandFrom(Location location) { |
| return vixl::aarch64::MemOperand(vixl::aarch64::sp, location.GetStackIndex()); |
| } |
| |
| inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base, |
| size_t offset = 0) { |
| // A heap reference must be 32bit, so fit in a W register. |
| DCHECK(base.IsW()); |
| return vixl::aarch64::MemOperand(base.X(), offset); |
| } |
| |
| inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base, |
| const vixl::aarch64::Register& regoffset, |
| vixl::aarch64::Shift shift = vixl::aarch64::LSL, |
| unsigned shift_amount = 0) { |
| // A heap reference must be 32bit, so fit in a W register. |
| DCHECK(base.IsW()); |
| return vixl::aarch64::MemOperand(base.X(), regoffset, shift, shift_amount); |
| } |
| |
| inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base, |
| Offset offset) { |
| return HeapOperand(base, offset.SizeValue()); |
| } |
| |
| inline vixl::aarch64::MemOperand HeapOperandFrom(Location location, Offset offset) { |
| return HeapOperand(RegisterFrom(location, DataType::Type::kReference), offset); |
| } |
| |
| inline Location LocationFrom(const vixl::aarch64::Register& reg) { |
| return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.GetCode())); |
| } |
| |
| inline Location LocationFrom(const vixl::aarch64::FPRegister& fpreg) { |
| return Location::FpuRegisterLocation(fpreg.GetCode()); |
| } |
| |
| inline vixl::aarch64::Operand OperandFromMemOperand( |
| const vixl::aarch64::MemOperand& mem_op) { |
| if (mem_op.IsImmediateOffset()) { |
| return vixl::aarch64::Operand(mem_op.GetOffset()); |
| } else { |
| DCHECK(mem_op.IsRegisterOffset()); |
| if (mem_op.GetExtend() != vixl::aarch64::NO_EXTEND) { |
| return vixl::aarch64::Operand(mem_op.GetRegisterOffset(), |
| mem_op.GetExtend(), |
| mem_op.GetShiftAmount()); |
| } else if (mem_op.GetShift() != vixl::aarch64::NO_SHIFT) { |
| return vixl::aarch64::Operand(mem_op.GetRegisterOffset(), |
| mem_op.GetShift(), |
| mem_op.GetShiftAmount()); |
| } else { |
| LOG(FATAL) << "Should not reach here"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| inline bool AddSubCanEncodeAsImmediate(int64_t value) { |
| // If `value` does not fit but `-value` does, VIXL will automatically use |
| // the 'opposite' instruction. |
| return vixl::aarch64::Assembler::IsImmAddSub(value) |
| || vixl::aarch64::Assembler::IsImmAddSub(-value); |
| } |
| |
| inline bool Arm64CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(constant); |
| |
| // TODO: Improve this when IsSIMDConstantEncodable method is implemented in VIXL. |
| if (instr->IsVecReplicateScalar()) { |
| if (constant->IsLongConstant()) { |
| return false; |
| } else if (constant->IsFloatConstant()) { |
| return vixl::aarch64::Assembler::IsImmFP32(constant->AsFloatConstant()->GetValue()); |
| } else if (constant->IsDoubleConstant()) { |
| return vixl::aarch64::Assembler::IsImmFP64(constant->AsDoubleConstant()->GetValue()); |
| } |
| return IsUint<8>(value); |
| } |
| |
| // Code generation for Min/Max: |
| // Cmp left_op, right_op |
| // Csel dst, left_op, right_op, cond |
| if (instr->IsMin() || instr->IsMax()) { |
| if (constant->GetUses().HasExactlyOneElement()) { |
| // If value can be encoded as immediate for the Cmp, then let VIXL handle |
| // the constant generation for the Csel. |
| return AddSubCanEncodeAsImmediate(value); |
| } |
| // These values are encodable as immediates for Cmp and VIXL will use csinc and csinv |
| // with the zr register as right_op, hence no constant generation is required. |
| return constant->IsZeroBitPattern() || constant->IsOne() || constant->IsMinusOne(); |
| } |
| |
| // For single uses we let VIXL handle the constant generation since it will |
| // use registers that are not managed by the register allocator (wip0, wip1). |
| if (constant->GetUses().HasExactlyOneElement()) { |
| return true; |
| } |
| |
| // Our code generator ensures shift distances are within an encodable range. |
| if (instr->IsRor()) { |
| return true; |
| } |
| |
| if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) { |
| // Uses logical operations. |
| return vixl::aarch64::Assembler::IsImmLogical(value, vixl::aarch64::kXRegSize); |
| } else if (instr->IsNeg()) { |
| // Uses mov -immediate. |
| return vixl::aarch64::Assembler::IsImmMovn(value, vixl::aarch64::kXRegSize); |
| } else { |
| DCHECK(instr->IsAdd() || |
| instr->IsIntermediateAddress() || |
| instr->IsBoundsCheck() || |
| instr->IsCompare() || |
| instr->IsCondition() || |
| instr->IsSub()) |
| << instr->DebugName(); |
| // Uses aliases of ADD/SUB instructions. |
| return AddSubCanEncodeAsImmediate(value); |
| } |
| } |
| |
| inline Location ARM64EncodableConstantOrRegister(HInstruction* constant, |
| HInstruction* instr) { |
| if (constant->IsConstant() |
| && Arm64CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) { |
| return Location::ConstantLocation(constant->AsConstant()); |
| } |
| |
| return Location::RequiresRegister(); |
| } |
| |
| // Check if registers in art register set have the same register code in vixl. If the register |
| // codes are same, we can initialize vixl register list simply by the register masks. Currently, |
| // only SP/WSP and ZXR/WZR codes are different between art and vixl. |
| // Note: This function is only used for debug checks. |
| inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers, |
| size_t num_core, |
| uint32_t art_fpu_registers, |
| size_t num_fpu) { |
| // The register masks won't work if the number of register is larger than 32. |
| DCHECK_GE(sizeof(art_core_registers) * 8, num_core); |
| DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu); |
| for (size_t art_reg_code = 0; art_reg_code < num_core; ++art_reg_code) { |
| if (RegisterSet::Contains(art_core_registers, art_reg_code)) { |
| if (art_reg_code != static_cast<size_t>(VIXLRegCodeFromART(art_reg_code))) { |
| return false; |
| } |
| } |
| } |
| // There is no register code translation for float registers. |
| return true; |
| } |
| |
| inline vixl::aarch64::Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) { |
| switch (op_kind) { |
| case HDataProcWithShifterOp::kASR: return vixl::aarch64::ASR; |
| case HDataProcWithShifterOp::kLSL: return vixl::aarch64::LSL; |
| case HDataProcWithShifterOp::kLSR: return vixl::aarch64::LSR; |
| default: |
| LOG(FATAL) << "Unexpected op kind " << op_kind; |
| UNREACHABLE(); |
| return vixl::aarch64::NO_SHIFT; |
| } |
| } |
| |
| inline vixl::aarch64::Extend ExtendFromOpKind(HDataProcWithShifterOp::OpKind op_kind) { |
| switch (op_kind) { |
| case HDataProcWithShifterOp::kUXTB: return vixl::aarch64::UXTB; |
| case HDataProcWithShifterOp::kUXTH: return vixl::aarch64::UXTH; |
| case HDataProcWithShifterOp::kUXTW: return vixl::aarch64::UXTW; |
| case HDataProcWithShifterOp::kSXTB: return vixl::aarch64::SXTB; |
| case HDataProcWithShifterOp::kSXTH: return vixl::aarch64::SXTH; |
| case HDataProcWithShifterOp::kSXTW: return vixl::aarch64::SXTW; |
| default: |
| LOG(FATAL) << "Unexpected op kind " << op_kind; |
| UNREACHABLE(); |
| return vixl::aarch64::NO_EXTEND; |
| } |
| } |
| |
| inline bool ShifterOperandSupportsExtension(HInstruction* instruction) { |
| DCHECK(HasShifterOperand(instruction, InstructionSet::kArm64)); |
| // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg` |
| // does *not* support extension. This is because the `extended register` form |
| // of the `sub` instruction interprets the left register with code 31 as the |
| // stack pointer and not the zero register. (So does the `immediate` form.) In |
| // the other form `shifted register, the register with code 31 is interpreted |
| // as the zero register. |
| return instruction->IsAdd() || instruction->IsSub(); |
| } |
| |
| inline bool IsConstantZeroBitPattern(const HInstruction* instruction) { |
| return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern(); |
| } |
| |
| } // namespace helpers |
| } // namespace arm64 |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ |