blob: 3a69865267e9d2936194daf0e50b517220cdbfb8 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "space_bitmap.h"
#include <stdint.h>
#include <memory>
#include "base/mutex.h"
#include "common_runtime_test.h"
#include "runtime_globals.h"
#include "space_bitmap-inl.h"
namespace art {
namespace gc {
namespace accounting {
class SpaceBitmapTest : public CommonRuntimeTest {};
TEST_F(SpaceBitmapTest, Init) {
uint8_t* heap_begin = reinterpret_cast<uint8_t*>(0x10000000);
size_t heap_capacity = 16 * MB;
ContinuousSpaceBitmap space_bitmap(
ContinuousSpaceBitmap::Create("test bitmap", heap_begin, heap_capacity));
EXPECT_TRUE(space_bitmap.IsValid());
}
class BitmapVerify {
public:
BitmapVerify(ContinuousSpaceBitmap* bitmap, const mirror::Object* begin,
const mirror::Object* end)
: bitmap_(bitmap),
begin_(begin),
end_(end) {}
void operator()(const mirror::Object* obj) {
EXPECT_TRUE(obj >= begin_);
EXPECT_TRUE(obj <= end_);
EXPECT_EQ(bitmap_->Test(obj), ((reinterpret_cast<uintptr_t>(obj) & 0xF) != 0));
}
ContinuousSpaceBitmap* const bitmap_;
const mirror::Object* begin_;
const mirror::Object* end_;
};
TEST_F(SpaceBitmapTest, ScanRange) {
uint8_t* heap_begin = reinterpret_cast<uint8_t*>(0x10000000);
size_t heap_capacity = 16 * MB;
ContinuousSpaceBitmap space_bitmap(
ContinuousSpaceBitmap::Create("test bitmap", heap_begin, heap_capacity));
EXPECT_TRUE(space_bitmap.IsValid());
// Set all the odd bits in the first BitsPerIntPtrT * 3 to one.
for (size_t j = 0; j < kBitsPerIntPtrT * 3; ++j) {
const mirror::Object* obj =
reinterpret_cast<mirror::Object*>(heap_begin + j * kObjectAlignment);
if (reinterpret_cast<uintptr_t>(obj) & 0xF) {
space_bitmap.Set(obj);
}
}
// Try every possible starting bit in the first word. Then for each starting bit, try each
// possible length up to a maximum of `kBitsPerIntPtrT * 2 - 1` bits.
// This handles all the cases, having runs which start and end on the same word, and different
// words.
for (size_t i = 0; i < static_cast<size_t>(kBitsPerIntPtrT); ++i) {
mirror::Object* start =
reinterpret_cast<mirror::Object*>(heap_begin + i * kObjectAlignment);
for (size_t j = 0; j < static_cast<size_t>(kBitsPerIntPtrT * 2); ++j) {
mirror::Object* end =
reinterpret_cast<mirror::Object*>(heap_begin + (i + j) * kObjectAlignment);
BitmapVerify(&space_bitmap, start, end);
}
}
}
TEST_F(SpaceBitmapTest, ClearRange) {
uint8_t* heap_begin = reinterpret_cast<uint8_t*>(0x10000000);
size_t heap_capacity = 16 * MB;
ContinuousSpaceBitmap bitmap(
ContinuousSpaceBitmap::Create("test bitmap", heap_begin, heap_capacity));
EXPECT_TRUE(bitmap.IsValid());
// Set all of the bits in the bitmap.
for (size_t j = 0; j < heap_capacity; j += kObjectAlignment) {
const mirror::Object* obj = reinterpret_cast<mirror::Object*>(heap_begin + j);
bitmap.Set(obj);
}
std::vector<std::pair<uintptr_t, uintptr_t>> ranges = {
{0, 10 * KB + kObjectAlignment},
{kObjectAlignment, kObjectAlignment},
{kObjectAlignment, 2 * kObjectAlignment},
{kObjectAlignment, 5 * kObjectAlignment},
{1 * KB + kObjectAlignment, 2 * KB + 5 * kObjectAlignment},
};
// Try clearing a few ranges.
for (const std::pair<uintptr_t, uintptr_t>& range : ranges) {
const mirror::Object* obj_begin = reinterpret_cast<mirror::Object*>(heap_begin + range.first);
const mirror::Object* obj_end = reinterpret_cast<mirror::Object*>(heap_begin + range.second);
bitmap.ClearRange(obj_begin, obj_end);
// Boundaries should still be marked.
for (uintptr_t i = 0; i < range.first; i += kObjectAlignment) {
EXPECT_TRUE(bitmap.Test(reinterpret_cast<mirror::Object*>(heap_begin + i)));
}
for (uintptr_t i = range.second; i < range.second + kPageSize; i += kObjectAlignment) {
EXPECT_TRUE(bitmap.Test(reinterpret_cast<mirror::Object*>(heap_begin + i)));
}
// Everything inside should be cleared.
for (uintptr_t i = range.first; i < range.second; i += kObjectAlignment) {
EXPECT_FALSE(bitmap.Test(reinterpret_cast<mirror::Object*>(heap_begin + i)));
bitmap.Set(reinterpret_cast<mirror::Object*>(heap_begin + i));
}
}
}
class SimpleCounter {
public:
explicit SimpleCounter(size_t* counter) : count_(counter) {}
void operator()(mirror::Object* obj ATTRIBUTE_UNUSED) const {
(*count_)++;
}
size_t* const count_;
};
class RandGen {
public:
explicit RandGen(uint32_t seed) : val_(seed) {}
uint32_t next() {
val_ = val_ * 48271 % 2147483647 + 13;
return val_;
}
uint32_t val_;
};
template <size_t kAlignment, typename TestFn>
static void RunTest(TestFn&& fn) NO_THREAD_SAFETY_ANALYSIS {
uint8_t* heap_begin = reinterpret_cast<uint8_t*>(0x10000000);
size_t heap_capacity = 16 * MB;
// Seed with 0x1234 for reproducability.
RandGen r(0x1234);
for (int i = 0; i < 5 ; ++i) {
ContinuousSpaceBitmap space_bitmap(
ContinuousSpaceBitmap::Create("test bitmap", heap_begin, heap_capacity));
for (int j = 0; j < 10000; ++j) {
size_t offset = RoundDown(r.next() % heap_capacity, kAlignment);
bool set = r.next() % 2 == 1;
if (set) {
space_bitmap.Set(reinterpret_cast<mirror::Object*>(heap_begin + offset));
} else {
space_bitmap.Clear(reinterpret_cast<mirror::Object*>(heap_begin + offset));
}
}
for (int j = 0; j < 50; ++j) {
const size_t offset = RoundDown(r.next() % heap_capacity, kAlignment);
const size_t remain = heap_capacity - offset;
const size_t end = offset + RoundDown(r.next() % (remain + 1), kAlignment);
size_t manual = 0;
for (uintptr_t k = offset; k < end; k += kAlignment) {
if (space_bitmap.Test(reinterpret_cast<mirror::Object*>(heap_begin + k))) {
manual++;
}
}
uintptr_t range_begin = reinterpret_cast<uintptr_t>(heap_begin) + offset;
uintptr_t range_end = reinterpret_cast<uintptr_t>(heap_begin) + end;
fn(&space_bitmap, range_begin, range_end, manual);
}
}
}
template <size_t kAlignment>
static void RunTestCount() {
auto count_test_fn = [](ContinuousSpaceBitmap* space_bitmap,
uintptr_t range_begin,
uintptr_t range_end,
size_t manual_count) {
size_t count = 0;
auto count_fn = [&count](mirror::Object* obj ATTRIBUTE_UNUSED) {
count++;
};
space_bitmap->VisitMarkedRange(range_begin, range_end, count_fn);
EXPECT_EQ(count, manual_count);
};
RunTest<kAlignment>(count_test_fn);
}
TEST_F(SpaceBitmapTest, VisitorObjectAlignment) {
RunTestCount<kObjectAlignment>();
}
TEST_F(SpaceBitmapTest, VisitorPageAlignment) {
RunTestCount<kPageSize>();
}
template <size_t kAlignment>
void RunTestOrder() {
auto order_test_fn = [](ContinuousSpaceBitmap* space_bitmap,
uintptr_t range_begin,
uintptr_t range_end,
size_t manual_count)
REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
mirror::Object* last_ptr = nullptr;
auto order_check = [&last_ptr](mirror::Object* obj) {
EXPECT_LT(last_ptr, obj);
last_ptr = obj;
};
// Test complete walk.
space_bitmap->Walk(order_check);
if (manual_count > 0) {
EXPECT_NE(nullptr, last_ptr);
}
// Test range.
last_ptr = nullptr;
space_bitmap->VisitMarkedRange(range_begin, range_end, order_check);
if (manual_count > 0) {
EXPECT_NE(nullptr, last_ptr);
}
};
RunTest<kAlignment>(order_test_fn);
}
TEST_F(SpaceBitmapTest, OrderObjectAlignment) {
RunTestOrder<kObjectAlignment>();
}
TEST_F(SpaceBitmapTest, OrderPageAlignment) {
RunTestOrder<kPageSize>();
}
} // namespace accounting
} // namespace gc
} // namespace art