| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include "nodes.h" |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <functional> |
| |
| #include "art_method-inl.h" |
| #include "base/arena_allocator.h" |
| #include "base/arena_bit_vector.h" |
| #include "base/bit_utils.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/bit_vector.h" |
| #include "base/iteration_range.h" |
| #include "base/logging.h" |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "base/stl_util.h" |
| #include "class_linker-inl.h" |
| #include "class_root-inl.h" |
| #include "code_generator.h" |
| #include "common_dominator.h" |
| #include "intrinsics.h" |
| #include "mirror/class-inl.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "ssa_builder.h" |
| |
| namespace art { |
| |
| // Enable floating-point static evaluation during constant folding |
| // only if all floating-point operations and constants evaluate in the |
| // range and precision of the type used (i.e., 32-bit float, 64-bit |
| // double). |
| static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0); |
| |
| ReferenceTypeInfo::TypeHandle HandleCache::CreateRootHandle(VariableSizedHandleScope* handles, |
| ClassRoot class_root) { |
| // Mutator lock is required for NewHandle and GetClassRoot(). |
| ScopedObjectAccess soa(Thread::Current()); |
| return handles->NewHandle(GetClassRoot(class_root)); |
| } |
| |
| void HGraph::AddBlock(HBasicBlock* block) { |
| block->SetBlockId(blocks_.size()); |
| blocks_.push_back(block); |
| } |
| |
| void HGraph::FindBackEdges(ArenaBitVector* visited) { |
| // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks. |
| DCHECK_EQ(visited->GetHighestBitSet(), -1); |
| |
| // Allocate memory from local ScopedArenaAllocator. |
| ScopedArenaAllocator allocator(GetArenaStack()); |
| // Nodes that we're currently visiting, indexed by block id. |
| ArenaBitVector visiting( |
| &allocator, blocks_.size(), /* expandable= */ false, kArenaAllocGraphBuilder); |
| visiting.ClearAllBits(); |
| // Number of successors visited from a given node, indexed by block id. |
| ScopedArenaVector<size_t> successors_visited(blocks_.size(), |
| 0u, |
| allocator.Adapter(kArenaAllocGraphBuilder)); |
| // Stack of nodes that we're currently visiting (same as marked in "visiting" above). |
| ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder)); |
| constexpr size_t kDefaultWorklistSize = 8; |
| worklist.reserve(kDefaultWorklistSize); |
| visited->SetBit(entry_block_->GetBlockId()); |
| visiting.SetBit(entry_block_->GetBlockId()); |
| worklist.push_back(entry_block_); |
| |
| while (!worklist.empty()) { |
| HBasicBlock* current = worklist.back(); |
| uint32_t current_id = current->GetBlockId(); |
| if (successors_visited[current_id] == current->GetSuccessors().size()) { |
| visiting.ClearBit(current_id); |
| worklist.pop_back(); |
| } else { |
| HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++]; |
| uint32_t successor_id = successor->GetBlockId(); |
| if (visiting.IsBitSet(successor_id)) { |
| DCHECK(ContainsElement(worklist, successor)); |
| successor->AddBackEdge(current); |
| } else if (!visited->IsBitSet(successor_id)) { |
| visited->SetBit(successor_id); |
| visiting.SetBit(successor_id); |
| worklist.push_back(successor); |
| } |
| } |
| } |
| } |
| |
| // Remove the environment use records of the instruction for users. |
| void RemoveEnvironmentUses(HInstruction* instruction) { |
| for (HEnvironment* environment = instruction->GetEnvironment(); |
| environment != nullptr; |
| environment = environment->GetParent()) { |
| for (size_t i = 0, e = environment->Size(); i < e; ++i) { |
| if (environment->GetInstructionAt(i) != nullptr) { |
| environment->RemoveAsUserOfInput(i); |
| } |
| } |
| } |
| } |
| |
| // Return whether the instruction has an environment and it's used by others. |
| bool HasEnvironmentUsedByOthers(HInstruction* instruction) { |
| for (HEnvironment* environment = instruction->GetEnvironment(); |
| environment != nullptr; |
| environment = environment->GetParent()) { |
| for (size_t i = 0, e = environment->Size(); i < e; ++i) { |
| HInstruction* user = environment->GetInstructionAt(i); |
| if (user != nullptr) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| // Reset environment records of the instruction itself. |
| void ResetEnvironmentInputRecords(HInstruction* instruction) { |
| for (HEnvironment* environment = instruction->GetEnvironment(); |
| environment != nullptr; |
| environment = environment->GetParent()) { |
| for (size_t i = 0, e = environment->Size(); i < e; ++i) { |
| DCHECK(environment->GetHolder() == instruction); |
| if (environment->GetInstructionAt(i) != nullptr) { |
| environment->SetRawEnvAt(i, nullptr); |
| } |
| } |
| } |
| } |
| |
| static void RemoveAsUser(HInstruction* instruction) { |
| instruction->RemoveAsUserOfAllInputs(); |
| RemoveEnvironmentUses(instruction); |
| } |
| |
| void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const { |
| for (size_t i = 0; i < blocks_.size(); ++i) { |
| if (!visited.IsBitSet(i)) { |
| HBasicBlock* block = blocks_[i]; |
| if (block == nullptr) continue; |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| RemoveAsUser(it.Current()); |
| } |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| RemoveAsUser(it.Current()); |
| } |
| } |
| } |
| } |
| |
| void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) { |
| for (size_t i = 0; i < blocks_.size(); ++i) { |
| if (!visited.IsBitSet(i)) { |
| HBasicBlock* block = blocks_[i]; |
| if (block == nullptr) continue; |
| // We only need to update the successor, which might be live. |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| successor->RemovePredecessor(block); |
| } |
| // Remove the block from the list of blocks, so that further analyses |
| // never see it. |
| blocks_[i] = nullptr; |
| if (block->IsExitBlock()) { |
| SetExitBlock(nullptr); |
| } |
| // Mark the block as removed. This is used by the HGraphBuilder to discard |
| // the block as a branch target. |
| block->SetGraph(nullptr); |
| } |
| } |
| } |
| |
| GraphAnalysisResult HGraph::BuildDominatorTree() { |
| // Allocate memory from local ScopedArenaAllocator. |
| ScopedArenaAllocator allocator(GetArenaStack()); |
| |
| ArenaBitVector visited(&allocator, blocks_.size(), false, kArenaAllocGraphBuilder); |
| visited.ClearAllBits(); |
| |
| // (1) Find the back edges in the graph doing a DFS traversal. |
| FindBackEdges(&visited); |
| |
| // (2) Remove instructions and phis from blocks not visited during |
| // the initial DFS as users from other instructions, so that |
| // users can be safely removed before uses later. |
| RemoveInstructionsAsUsersFromDeadBlocks(visited); |
| |
| // (3) Remove blocks not visited during the initial DFS. |
| // Step (5) requires dead blocks to be removed from the |
| // predecessors list of live blocks. |
| RemoveDeadBlocks(visited); |
| |
| // (4) Simplify the CFG now, so that we don't need to recompute |
| // dominators and the reverse post order. |
| SimplifyCFG(); |
| |
| // (5) Compute the dominance information and the reverse post order. |
| ComputeDominanceInformation(); |
| |
| // (6) Analyze loops discovered through back edge analysis, and |
| // set the loop information on each block. |
| GraphAnalysisResult result = AnalyzeLoops(); |
| if (result != kAnalysisSuccess) { |
| return result; |
| } |
| |
| // (7) Precompute per-block try membership before entering the SSA builder, |
| // which needs the information to build catch block phis from values of |
| // locals at throwing instructions inside try blocks. |
| ComputeTryBlockInformation(); |
| |
| return kAnalysisSuccess; |
| } |
| |
| void HGraph::ClearDominanceInformation() { |
| for (HBasicBlock* block : GetActiveBlocks()) { |
| block->ClearDominanceInformation(); |
| } |
| reverse_post_order_.clear(); |
| } |
| |
| void HGraph::ClearLoopInformation() { |
| SetHasIrreducibleLoops(false); |
| for (HBasicBlock* block : GetActiveBlocks()) { |
| block->SetLoopInformation(nullptr); |
| } |
| } |
| |
| void HBasicBlock::ClearDominanceInformation() { |
| dominated_blocks_.clear(); |
| dominator_ = nullptr; |
| } |
| |
| HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const { |
| HInstruction* instruction = GetFirstInstruction(); |
| while (instruction->IsParallelMove()) { |
| instruction = instruction->GetNext(); |
| } |
| return instruction; |
| } |
| |
| static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) { |
| DCHECK(ContainsElement(block->GetSuccessors(), successor)); |
| |
| HBasicBlock* old_dominator = successor->GetDominator(); |
| HBasicBlock* new_dominator = |
| (old_dominator == nullptr) ? block |
| : CommonDominator::ForPair(old_dominator, block); |
| |
| if (old_dominator == new_dominator) { |
| return false; |
| } else { |
| successor->SetDominator(new_dominator); |
| return true; |
| } |
| } |
| |
| // TODO Consider moving this entirely into LoadStoreAnalysis/Elimination. |
| bool HGraph::PathBetween(uint32_t source_idx, uint32_t dest_idx) const { |
| DCHECK_LT(source_idx, blocks_.size()) << "source not present in graph!"; |
| DCHECK_LT(dest_idx, blocks_.size()) << "dest not present in graph!"; |
| DCHECK(blocks_[source_idx] != nullptr); |
| DCHECK(blocks_[dest_idx] != nullptr); |
| return reachability_graph_.IsBitSet(source_idx, dest_idx); |
| } |
| |
| bool HGraph::PathBetween(const HBasicBlock* source, const HBasicBlock* dest) const { |
| if (source == nullptr || dest == nullptr) { |
| return false; |
| } |
| size_t source_idx = source->GetBlockId(); |
| size_t dest_idx = dest->GetBlockId(); |
| return PathBetween(source_idx, dest_idx); |
| } |
| |
| // This function/struct calculates the reachability of every node from every |
| // other node by iteratively using DFS to find reachability of each individual |
| // block. |
| // |
| // This is in practice faster then the simpler Floyd-Warshall since while that |
| // is O(N**3) this is O(N*(E + N)) where N is the number of blocks and E is the |
| // number of edges. Since in practice each block only has a few outgoing edges |
| // we can confidently say that E ~ B*N where B is a small number (~3). We also |
| // memoize the results as we go allowing us to (potentially) avoid walking the |
| // entire graph for every node. To make best use of this memoization we |
| // calculate the reachability of blocks in PostOrder. This means that |
| // (generally) blocks that are dominated by many other blocks and dominate few |
| // blocks themselves will be examined first. This makes it more likely we can |
| // use our memoized results. |
| class ReachabilityAnalysisHelper { |
| public: |
| ReachabilityAnalysisHelper(const HGraph* graph, |
| ArenaBitVectorArray* reachability_graph, |
| ArenaStack* arena_stack) |
| : graph_(graph), |
| reachability_graph_(reachability_graph), |
| arena_stack_(arena_stack), |
| temporaries_(arena_stack_), |
| block_size_(RoundUp(graph_->GetBlocks().size(), BitVector::kWordBits)), |
| all_visited_nodes_( |
| &temporaries_, graph_->GetBlocks().size(), false, kArenaAllocReachabilityGraph), |
| not_post_order_visited_( |
| &temporaries_, graph_->GetBlocks().size(), false, kArenaAllocReachabilityGraph) { |
| // We can't adjust the size of reachability graph any more without breaking |
| // our allocator invariants so it had better be large enough. |
| CHECK_GE(reachability_graph_->NumRows(), graph_->GetBlocks().size()); |
| CHECK_GE(reachability_graph_->NumColumns(), graph_->GetBlocks().size()); |
| not_post_order_visited_.SetInitialBits(graph_->GetBlocks().size()); |
| } |
| |
| void CalculateReachability() { |
| // Calculate what blocks connect using repeated DFS |
| // |
| // Going in PostOrder should generally give memoization a good shot of |
| // hitting. |
| for (const HBasicBlock* blk : graph_->GetPostOrder()) { |
| if (blk == nullptr) { |
| continue; |
| } |
| not_post_order_visited_.ClearBit(blk->GetBlockId()); |
| CalculateConnectednessOn(blk); |
| all_visited_nodes_.SetBit(blk->GetBlockId()); |
| } |
| // Get all other bits |
| for (auto idx : not_post_order_visited_.Indexes()) { |
| const HBasicBlock* blk = graph_->GetBlocks()[idx]; |
| if (blk == nullptr) { |
| continue; |
| } |
| CalculateConnectednessOn(blk); |
| all_visited_nodes_.SetBit(blk->GetBlockId()); |
| } |
| } |
| |
| private: |
| void AddEdge(uint32_t source, const HBasicBlock* dest) { |
| reachability_graph_->SetBit(source, dest->GetBlockId()); |
| } |
| |
| // Union the reachability of 'idx' into 'update_block_idx'. This is done to |
| // implement memoization. In order to improve performance we do this in 4-byte |
| // blocks. Clang should be able to optimize this to larger blocks if possible. |
| void UnionBlock(size_t update_block_idx, size_t idx) { |
| reachability_graph_->UnionRows(update_block_idx, idx); |
| } |
| |
| // Single DFS to get connectedness of a single block |
| void CalculateConnectednessOn(const HBasicBlock* const target_block) { |
| const uint32_t target_idx = target_block->GetBlockId(); |
| ScopedArenaAllocator connectedness_temps(arena_stack_); |
| // What nodes we have already discovered and either have processed or are |
| // already on the queue. |
| ArenaBitVector discovered( |
| &connectedness_temps, graph_->GetBlocks().size(), false, kArenaAllocReachabilityGraph); |
| // The work stack. What blocks we still need to process. |
| ScopedArenaVector<const HBasicBlock*> work_stack( |
| connectedness_temps.Adapter(kArenaAllocReachabilityGraph)); |
| // Known max size since otherwise we'd have blocks multiple times. Avoids |
| // re-allocation |
| work_stack.reserve(graph_->GetBlocks().size()); |
| discovered.SetBit(target_idx); |
| work_stack.push_back(target_block); |
| // Main DFS Loop. |
| while (!work_stack.empty()) { |
| const HBasicBlock* cur = work_stack.back(); |
| work_stack.pop_back(); |
| // Memoization of previous runs. |
| if (all_visited_nodes_.IsBitSet(cur->GetBlockId())) { |
| DCHECK_NE(target_block, cur); |
| // Already explored from here. Just use that data. |
| UnionBlock(target_idx, cur->GetBlockId()); |
| continue; |
| } |
| for (const HBasicBlock* succ : cur->GetSuccessors()) { |
| AddEdge(target_idx, succ); |
| if (!discovered.IsBitSet(succ->GetBlockId())) { |
| work_stack.push_back(succ); |
| discovered.SetBit(succ->GetBlockId()); |
| } |
| } |
| } |
| } |
| |
| const HGraph* graph_; |
| // The graph's reachability_graph_ on the main allocator. |
| ArenaBitVectorArray* reachability_graph_; |
| ArenaStack* arena_stack_; |
| // An allocator for temporary bit-vectors used by this algorithm. The |
| // 'SetBit,ClearBit' on reachability_graph_ prior to the construction of this |
| // object should be the only allocation on the main allocator so it's safe to |
| // make a sub-allocator here. |
| ScopedArenaAllocator temporaries_; |
| // number of columns |
| const size_t block_size_; |
| // Where we've already completely calculated connectedness. |
| ArenaBitVector all_visited_nodes_; |
| // What we never visited and need to do later |
| ArenaBitVector not_post_order_visited_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReachabilityAnalysisHelper); |
| }; |
| |
| void HGraph::ComputeReachabilityInformation() { |
| DCHECK_EQ(reachability_graph_.GetRawData().NumSetBits(), 0u); |
| DCHECK(reachability_graph_.IsExpandable()); |
| // Reserve all the bits we'll need. This is the only allocation on the |
| // standard allocator we do here, enabling us to create a new ScopedArena for |
| // use with temporaries. |
| // |
| // reachability_graph_ acts as |N| x |N| graph for PathBetween. Array is |
| // padded so each row starts on an BitVector::kWordBits-bit alignment for |
| // simplicity and performance, allowing us to union blocks together without |
| // going bit-by-bit. |
| reachability_graph_.Resize(blocks_.size(), blocks_.size(), /*clear=*/false); |
| ReachabilityAnalysisHelper helper(this, &reachability_graph_, GetArenaStack()); |
| helper.CalculateReachability(); |
| } |
| |
| void HGraph::ClearReachabilityInformation() { |
| reachability_graph_.Clear(); |
| } |
| |
| void HGraph::ComputeDominanceInformation() { |
| DCHECK(reverse_post_order_.empty()); |
| reverse_post_order_.reserve(blocks_.size()); |
| reverse_post_order_.push_back(entry_block_); |
| |
| // Allocate memory from local ScopedArenaAllocator. |
| ScopedArenaAllocator allocator(GetArenaStack()); |
| // Number of visits of a given node, indexed by block id. |
| ScopedArenaVector<size_t> visits(blocks_.size(), 0u, allocator.Adapter(kArenaAllocGraphBuilder)); |
| // Number of successors visited from a given node, indexed by block id. |
| ScopedArenaVector<size_t> successors_visited(blocks_.size(), |
| 0u, |
| allocator.Adapter(kArenaAllocGraphBuilder)); |
| // Nodes for which we need to visit successors. |
| ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder)); |
| constexpr size_t kDefaultWorklistSize = 8; |
| worklist.reserve(kDefaultWorklistSize); |
| worklist.push_back(entry_block_); |
| |
| while (!worklist.empty()) { |
| HBasicBlock* current = worklist.back(); |
| uint32_t current_id = current->GetBlockId(); |
| if (successors_visited[current_id] == current->GetSuccessors().size()) { |
| worklist.pop_back(); |
| } else { |
| HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++]; |
| UpdateDominatorOfSuccessor(current, successor); |
| |
| // Once all the forward edges have been visited, we know the immediate |
| // dominator of the block. We can then start visiting its successors. |
| if (++visits[successor->GetBlockId()] == |
| successor->GetPredecessors().size() - successor->NumberOfBackEdges()) { |
| reverse_post_order_.push_back(successor); |
| worklist.push_back(successor); |
| } |
| } |
| } |
| |
| // Check if the graph has back edges not dominated by their respective headers. |
| // If so, we need to update the dominators of those headers and recursively of |
| // their successors. We do that with a fix-point iteration over all blocks. |
| // The algorithm is guaranteed to terminate because it loops only if the sum |
| // of all dominator chains has decreased in the current iteration. |
| bool must_run_fix_point = false; |
| for (HBasicBlock* block : blocks_) { |
| if (block != nullptr && |
| block->IsLoopHeader() && |
| block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) { |
| must_run_fix_point = true; |
| break; |
| } |
| } |
| if (must_run_fix_point) { |
| bool update_occurred = true; |
| while (update_occurred) { |
| update_occurred = false; |
| for (HBasicBlock* block : GetReversePostOrder()) { |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| update_occurred |= UpdateDominatorOfSuccessor(block, successor); |
| } |
| } |
| } |
| } |
| |
| // Make sure that there are no remaining blocks whose dominator information |
| // needs to be updated. |
| if (kIsDebugBuild) { |
| for (HBasicBlock* block : GetReversePostOrder()) { |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| DCHECK(!UpdateDominatorOfSuccessor(block, successor)); |
| } |
| } |
| } |
| |
| // Populate `dominated_blocks_` information after computing all dominators. |
| // The potential presence of irreducible loops requires to do it after. |
| for (HBasicBlock* block : GetReversePostOrder()) { |
| if (!block->IsEntryBlock()) { |
| block->GetDominator()->AddDominatedBlock(block); |
| } |
| } |
| } |
| |
| HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) { |
| HBasicBlock* new_block = new (allocator_) HBasicBlock(this, successor->GetDexPc()); |
| AddBlock(new_block); |
| // Use `InsertBetween` to ensure the predecessor index and successor index of |
| // `block` and `successor` are preserved. |
| new_block->InsertBetween(block, successor); |
| return new_block; |
| } |
| |
| void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) { |
| // Insert a new node between `block` and `successor` to split the |
| // critical edge. |
| HBasicBlock* new_block = SplitEdge(block, successor); |
| new_block->AddInstruction(new (allocator_) HGoto(successor->GetDexPc())); |
| if (successor->IsLoopHeader()) { |
| // If we split at a back edge boundary, make the new block the back edge. |
| HLoopInformation* info = successor->GetLoopInformation(); |
| if (info->IsBackEdge(*block)) { |
| info->RemoveBackEdge(block); |
| info->AddBackEdge(new_block); |
| } |
| } |
| } |
| |
| // Reorder phi inputs to match reordering of the block's predecessors. |
| static void FixPhisAfterPredecessorsReodering(HBasicBlock* block, size_t first, size_t second) { |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| HInstruction* first_instr = phi->InputAt(first); |
| HInstruction* second_instr = phi->InputAt(second); |
| phi->ReplaceInput(first_instr, second); |
| phi->ReplaceInput(second_instr, first); |
| } |
| } |
| |
| // Make sure that the first predecessor of a loop header is the incoming block. |
| void HGraph::OrderLoopHeaderPredecessors(HBasicBlock* header) { |
| DCHECK(header->IsLoopHeader()); |
| HLoopInformation* info = header->GetLoopInformation(); |
| if (info->IsBackEdge(*header->GetPredecessors()[0])) { |
| HBasicBlock* to_swap = header->GetPredecessors()[0]; |
| for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) { |
| HBasicBlock* predecessor = header->GetPredecessors()[pred]; |
| if (!info->IsBackEdge(*predecessor)) { |
| header->predecessors_[pred] = to_swap; |
| header->predecessors_[0] = predecessor; |
| FixPhisAfterPredecessorsReodering(header, 0, pred); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Transform control flow of the loop to a single preheader format (don't touch the data flow). |
| // New_preheader can be already among the header predecessors - this situation will be correctly |
| // processed. |
| static void FixControlForNewSinglePreheader(HBasicBlock* header, HBasicBlock* new_preheader) { |
| HLoopInformation* loop_info = header->GetLoopInformation(); |
| for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) { |
| HBasicBlock* predecessor = header->GetPredecessors()[pred]; |
| if (!loop_info->IsBackEdge(*predecessor) && predecessor != new_preheader) { |
| predecessor->ReplaceSuccessor(header, new_preheader); |
| pred--; |
| } |
| } |
| } |
| |
| // == Before == == After == |
| // _________ _________ _________ _________ |
| // | B0 | | B1 | (old preheaders) | B0 | | B1 | |
| // |=========| |=========| |=========| |=========| |
| // | i0 = .. | | i1 = .. | | i0 = .. | | i1 = .. | |
| // |_________| |_________| |_________| |_________| |
| // \ / \ / |
| // \ / ___v____________v___ |
| // \ / (new preheader) | B20 <- B0, B1 | |
| // | | |====================| |
| // | | | i20 = phi(i0, i1) | |
| // | | |____________________| |
| // | | | |
| // /\ | | /\ /\ | /\ |
| // / v_______v_________v_______v \ / v___________v_____________v \ |
| // | | B10 <- B0, B1, B2, B3 | | | | B10 <- B20, B2, B3 | | |
| // | |===========================| | (header) | |===========================| | |
| // | | i10 = phi(i0, i1, i2, i3) | | | | i10 = phi(i20, i2, i3) | | |
| // | |___________________________| | | |___________________________| | |
| // | / \ | | / \ | |
| // | ... ... | | ... ... | |
| // | _________ _________ | | _________ _________ | |
| // | | B2 | | B3 | | | | B2 | | B3 | | |
| // | |=========| |=========| | (back edges) | |=========| |=========| | |
| // | | i2 = .. | | i3 = .. | | | | i2 = .. | | i3 = .. | | |
| // | |_________| |_________| | | |_________| |_________| | |
| // \ / \ / \ / \ / |
| // \___/ \___/ \___/ \___/ |
| // |
| void HGraph::TransformLoopToSinglePreheaderFormat(HBasicBlock* header) { |
| HLoopInformation* loop_info = header->GetLoopInformation(); |
| |
| HBasicBlock* preheader = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| AddBlock(preheader); |
| preheader->AddInstruction(new (allocator_) HGoto(header->GetDexPc())); |
| |
| // If the old header has no Phis then we only need to fix the control flow. |
| if (header->GetPhis().IsEmpty()) { |
| FixControlForNewSinglePreheader(header, preheader); |
| preheader->AddSuccessor(header); |
| return; |
| } |
| |
| // Find the first non-back edge block in the header's predecessors list. |
| size_t first_nonbackedge_pred_pos = 0; |
| bool found = false; |
| for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) { |
| HBasicBlock* predecessor = header->GetPredecessors()[pred]; |
| if (!loop_info->IsBackEdge(*predecessor)) { |
| first_nonbackedge_pred_pos = pred; |
| found = true; |
| break; |
| } |
| } |
| |
| DCHECK(found); |
| |
| // Fix the data-flow. |
| for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* header_phi = it.Current()->AsPhi(); |
| |
| HPhi* preheader_phi = new (GetAllocator()) HPhi(GetAllocator(), |
| header_phi->GetRegNumber(), |
| 0, |
| header_phi->GetType()); |
| if (header_phi->GetType() == DataType::Type::kReference) { |
| preheader_phi->SetReferenceTypeInfo(header_phi->GetReferenceTypeInfo()); |
| } |
| preheader->AddPhi(preheader_phi); |
| |
| HInstruction* orig_input = header_phi->InputAt(first_nonbackedge_pred_pos); |
| header_phi->ReplaceInput(preheader_phi, first_nonbackedge_pred_pos); |
| preheader_phi->AddInput(orig_input); |
| |
| for (size_t input_pos = first_nonbackedge_pred_pos + 1; |
| input_pos < header_phi->InputCount(); |
| input_pos++) { |
| HInstruction* input = header_phi->InputAt(input_pos); |
| HBasicBlock* pred_block = header->GetPredecessors()[input_pos]; |
| |
| if (loop_info->Contains(*pred_block)) { |
| DCHECK(loop_info->IsBackEdge(*pred_block)); |
| } else { |
| preheader_phi->AddInput(input); |
| header_phi->RemoveInputAt(input_pos); |
| input_pos--; |
| } |
| } |
| } |
| |
| // Fix the control-flow. |
| HBasicBlock* first_pred = header->GetPredecessors()[first_nonbackedge_pred_pos]; |
| preheader->InsertBetween(first_pred, header); |
| |
| FixControlForNewSinglePreheader(header, preheader); |
| } |
| |
| void HGraph::SimplifyLoop(HBasicBlock* header) { |
| HLoopInformation* info = header->GetLoopInformation(); |
| |
| // Make sure the loop has only one pre header. This simplifies SSA building by having |
| // to just look at the pre header to know which locals are initialized at entry of the |
| // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining |
| // this graph. |
| size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges(); |
| if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) { |
| TransformLoopToSinglePreheaderFormat(header); |
| } |
| |
| OrderLoopHeaderPredecessors(header); |
| |
| HInstruction* first_instruction = header->GetFirstInstruction(); |
| if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) { |
| // Called from DeadBlockElimination. Update SuspendCheck pointer. |
| info->SetSuspendCheck(first_instruction->AsSuspendCheck()); |
| } |
| } |
| |
| void HGraph::ComputeTryBlockInformation() { |
| // Iterate in reverse post order to propagate try membership information from |
| // predecessors to their successors. |
| for (HBasicBlock* block : GetReversePostOrder()) { |
| if (block->IsEntryBlock() || block->IsCatchBlock()) { |
| // Catch blocks after simplification have only exceptional predecessors |
| // and hence are never in tries. |
| continue; |
| } |
| |
| // Infer try membership from the first predecessor. Having simplified loops, |
| // the first predecessor can never be a back edge and therefore it must have |
| // been visited already and had its try membership set. |
| HBasicBlock* first_predecessor = block->GetPredecessors()[0]; |
| DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor)); |
| const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors(); |
| if (try_entry != nullptr && |
| (block->GetTryCatchInformation() == nullptr || |
| try_entry != &block->GetTryCatchInformation()->GetTryEntry())) { |
| // We are either setting try block membership for the first time or it |
| // has changed. |
| block->SetTryCatchInformation(new (allocator_) TryCatchInformation(*try_entry)); |
| } |
| } |
| } |
| |
| void HGraph::SimplifyCFG() { |
| // Simplify the CFG for future analysis, and code generation: |
| // (1): Split critical edges. |
| // (2): Simplify loops by having only one preheader. |
| // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators |
| // can be invalidated. We remember the initial size to avoid iterating over the new blocks. |
| for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) { |
| HBasicBlock* block = blocks_[block_id]; |
| if (block == nullptr) continue; |
| if (block->GetSuccessors().size() > 1) { |
| // Only split normal-flow edges. We cannot split exceptional edges as they |
| // are synthesized (approximate real control flow), and we do not need to |
| // anyway. Moves that would be inserted there are performed by the runtime. |
| ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors(); |
| for (size_t j = 0, e = normal_successors.size(); j < e; ++j) { |
| HBasicBlock* successor = normal_successors[j]; |
| DCHECK(!successor->IsCatchBlock()); |
| if (successor == exit_block_) { |
| // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we |
| // do not want to split because Goto->Exit is not allowed. |
| DCHECK(block->IsSingleTryBoundary()); |
| } else if (successor->GetPredecessors().size() > 1) { |
| SplitCriticalEdge(block, successor); |
| // SplitCriticalEdge could have invalidated the `normal_successors` |
| // ArrayRef. We must re-acquire it. |
| normal_successors = block->GetNormalSuccessors(); |
| DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor); |
| DCHECK_EQ(e, normal_successors.size()); |
| } |
| } |
| } |
| if (block->IsLoopHeader()) { |
| SimplifyLoop(block); |
| } else if (!block->IsEntryBlock() && |
| block->GetFirstInstruction() != nullptr && |
| block->GetFirstInstruction()->IsSuspendCheck()) { |
| // We are being called by the dead code elimiation pass, and what used to be |
| // a loop got dismantled. Just remove the suspend check. |
| block->RemoveInstruction(block->GetFirstInstruction()); |
| } |
| } |
| } |
| |
| GraphAnalysisResult HGraph::AnalyzeLoops() const { |
| // We iterate post order to ensure we visit inner loops before outer loops. |
| // `PopulateRecursive` needs this guarantee to know whether a natural loop |
| // contains an irreducible loop. |
| for (HBasicBlock* block : GetPostOrder()) { |
| if (block->IsLoopHeader()) { |
| if (block->IsCatchBlock()) { |
| // TODO: Dealing with exceptional back edges could be tricky because |
| // they only approximate the real control flow. Bail out for now. |
| VLOG(compiler) << "Not compiled: Exceptional back edges"; |
| return kAnalysisFailThrowCatchLoop; |
| } |
| block->GetLoopInformation()->Populate(); |
| } |
| } |
| return kAnalysisSuccess; |
| } |
| |
| void HLoopInformation::Dump(std::ostream& os) { |
| os << "header: " << header_->GetBlockId() << std::endl; |
| os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl; |
| for (HBasicBlock* block : back_edges_) { |
| os << "back edge: " << block->GetBlockId() << std::endl; |
| } |
| for (HBasicBlock* block : header_->GetPredecessors()) { |
| os << "predecessor: " << block->GetBlockId() << std::endl; |
| } |
| for (uint32_t idx : blocks_.Indexes()) { |
| os << " in loop: " << idx << std::endl; |
| } |
| } |
| |
| void HGraph::InsertConstant(HConstant* constant) { |
| // New constants are inserted before the SuspendCheck at the bottom of the |
| // entry block. Note that this method can be called from the graph builder and |
| // the entry block therefore may not end with SuspendCheck->Goto yet. |
| HInstruction* insert_before = nullptr; |
| |
| HInstruction* gota = entry_block_->GetLastInstruction(); |
| if (gota != nullptr && gota->IsGoto()) { |
| HInstruction* suspend_check = gota->GetPrevious(); |
| if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) { |
| insert_before = suspend_check; |
| } else { |
| insert_before = gota; |
| } |
| } |
| |
| if (insert_before == nullptr) { |
| entry_block_->AddInstruction(constant); |
| } else { |
| entry_block_->InsertInstructionBefore(constant, insert_before); |
| } |
| } |
| |
| HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) { |
| // For simplicity, don't bother reviving the cached null constant if it is |
| // not null and not in a block. Otherwise, we need to clear the instruction |
| // id and/or any invariants the graph is assuming when adding new instructions. |
| if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) { |
| cached_null_constant_ = new (allocator_) HNullConstant(dex_pc); |
| cached_null_constant_->SetReferenceTypeInfo(GetInexactObjectRti()); |
| InsertConstant(cached_null_constant_); |
| } |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid()); |
| } |
| return cached_null_constant_; |
| } |
| |
| HCurrentMethod* HGraph::GetCurrentMethod() { |
| // For simplicity, don't bother reviving the cached current method if it is |
| // not null and not in a block. Otherwise, we need to clear the instruction |
| // id and/or any invariants the graph is assuming when adding new instructions. |
| if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) { |
| cached_current_method_ = new (allocator_) HCurrentMethod( |
| Is64BitInstructionSet(instruction_set_) ? DataType::Type::kInt64 : DataType::Type::kInt32, |
| entry_block_->GetDexPc()); |
| if (entry_block_->GetFirstInstruction() == nullptr) { |
| entry_block_->AddInstruction(cached_current_method_); |
| } else { |
| entry_block_->InsertInstructionBefore( |
| cached_current_method_, entry_block_->GetFirstInstruction()); |
| } |
| } |
| return cached_current_method_; |
| } |
| |
| const char* HGraph::GetMethodName() const { |
| const dex::MethodId& method_id = dex_file_.GetMethodId(method_idx_); |
| return dex_file_.GetMethodName(method_id); |
| } |
| |
| std::string HGraph::PrettyMethod(bool with_signature) const { |
| return dex_file_.PrettyMethod(method_idx_, with_signature); |
| } |
| |
| HConstant* HGraph::GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc) { |
| switch (type) { |
| case DataType::Type::kBool: |
| DCHECK(IsUint<1>(value)); |
| FALLTHROUGH_INTENDED; |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| DCHECK(IsInt(DataType::Size(type) * kBitsPerByte, value)); |
| return GetIntConstant(static_cast<int32_t>(value), dex_pc); |
| |
| case DataType::Type::kInt64: |
| return GetLongConstant(value, dex_pc); |
| |
| default: |
| LOG(FATAL) << "Unsupported constant type"; |
| UNREACHABLE(); |
| } |
| } |
| |
| void HGraph::CacheFloatConstant(HFloatConstant* constant) { |
| int32_t value = bit_cast<int32_t, float>(constant->GetValue()); |
| DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end()); |
| cached_float_constants_.Overwrite(value, constant); |
| } |
| |
| void HGraph::CacheDoubleConstant(HDoubleConstant* constant) { |
| int64_t value = bit_cast<int64_t, double>(constant->GetValue()); |
| DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end()); |
| cached_double_constants_.Overwrite(value, constant); |
| } |
| |
| void HLoopInformation::Add(HBasicBlock* block) { |
| blocks_.SetBit(block->GetBlockId()); |
| } |
| |
| void HLoopInformation::Remove(HBasicBlock* block) { |
| blocks_.ClearBit(block->GetBlockId()); |
| } |
| |
| void HLoopInformation::PopulateRecursive(HBasicBlock* block) { |
| if (blocks_.IsBitSet(block->GetBlockId())) { |
| return; |
| } |
| |
| blocks_.SetBit(block->GetBlockId()); |
| block->SetInLoop(this); |
| if (block->IsLoopHeader()) { |
| // We're visiting loops in post-order, so inner loops must have been |
| // populated already. |
| DCHECK(block->GetLoopInformation()->IsPopulated()); |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| contains_irreducible_loop_ = true; |
| } |
| } |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| PopulateRecursive(predecessor); |
| } |
| } |
| |
| void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) { |
| size_t block_id = block->GetBlockId(); |
| |
| // If `block` is in `finalized`, we know its membership in the loop has been |
| // decided and it does not need to be revisited. |
| if (finalized->IsBitSet(block_id)) { |
| return; |
| } |
| |
| bool is_finalized = false; |
| if (block->IsLoopHeader()) { |
| // If we hit a loop header in an irreducible loop, we first check if the |
| // pre header of that loop belongs to the currently analyzed loop. If it does, |
| // then we visit the back edges. |
| // Note that we cannot use GetPreHeader, as the loop may have not been populated |
| // yet. |
| HBasicBlock* pre_header = block->GetPredecessors()[0]; |
| PopulateIrreducibleRecursive(pre_header, finalized); |
| if (blocks_.IsBitSet(pre_header->GetBlockId())) { |
| block->SetInLoop(this); |
| blocks_.SetBit(block_id); |
| finalized->SetBit(block_id); |
| is_finalized = true; |
| |
| HLoopInformation* info = block->GetLoopInformation(); |
| for (HBasicBlock* back_edge : info->GetBackEdges()) { |
| PopulateIrreducibleRecursive(back_edge, finalized); |
| } |
| } |
| } else { |
| // Visit all predecessors. If one predecessor is part of the loop, this |
| // block is also part of this loop. |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| PopulateIrreducibleRecursive(predecessor, finalized); |
| if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) { |
| block->SetInLoop(this); |
| blocks_.SetBit(block_id); |
| finalized->SetBit(block_id); |
| is_finalized = true; |
| } |
| } |
| } |
| |
| // All predecessors have been recursively visited. Mark finalized if not marked yet. |
| if (!is_finalized) { |
| finalized->SetBit(block_id); |
| } |
| } |
| |
| void HLoopInformation::Populate() { |
| DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated"; |
| // Populate this loop: starting with the back edge, recursively add predecessors |
| // that are not already part of that loop. Set the header as part of the loop |
| // to end the recursion. |
| // This is a recursive implementation of the algorithm described in |
| // "Advanced Compiler Design & Implementation" (Muchnick) p192. |
| HGraph* graph = header_->GetGraph(); |
| blocks_.SetBit(header_->GetBlockId()); |
| header_->SetInLoop(this); |
| |
| bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader(); |
| |
| if (is_irreducible_loop) { |
| // Allocate memory from local ScopedArenaAllocator. |
| ScopedArenaAllocator allocator(graph->GetArenaStack()); |
| ArenaBitVector visited(&allocator, |
| graph->GetBlocks().size(), |
| /* expandable= */ false, |
| kArenaAllocGraphBuilder); |
| visited.ClearAllBits(); |
| // Stop marking blocks at the loop header. |
| visited.SetBit(header_->GetBlockId()); |
| |
| for (HBasicBlock* back_edge : GetBackEdges()) { |
| PopulateIrreducibleRecursive(back_edge, &visited); |
| } |
| } else { |
| for (HBasicBlock* back_edge : GetBackEdges()) { |
| PopulateRecursive(back_edge); |
| } |
| } |
| |
| if (!is_irreducible_loop && graph->IsCompilingOsr()) { |
| // When compiling in OSR mode, all loops in the compiled method may be entered |
| // from the interpreter. We treat this OSR entry point just like an extra entry |
| // to an irreducible loop, so we need to mark the method's loops as irreducible. |
| // This does not apply to inlined loops which do not act as OSR entry points. |
| if (suspend_check_ == nullptr) { |
| // Just building the graph in OSR mode, this loop is not inlined. We never build an |
| // inner graph in OSR mode as we can do OSR transition only from the outer method. |
| is_irreducible_loop = true; |
| } else { |
| // Look at the suspend check's environment to determine if the loop was inlined. |
| DCHECK(suspend_check_->HasEnvironment()); |
| if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) { |
| is_irreducible_loop = true; |
| } |
| } |
| } |
| if (is_irreducible_loop) { |
| irreducible_ = true; |
| contains_irreducible_loop_ = true; |
| graph->SetHasIrreducibleLoops(true); |
| } |
| graph->SetHasLoops(true); |
| } |
| |
| void HLoopInformation::PopulateInnerLoopUpwards(HLoopInformation* inner_loop) { |
| DCHECK(inner_loop->GetPreHeader()->GetLoopInformation() == this); |
| blocks_.Union(&inner_loop->blocks_); |
| HLoopInformation* outer_loop = GetPreHeader()->GetLoopInformation(); |
| if (outer_loop != nullptr) { |
| outer_loop->PopulateInnerLoopUpwards(this); |
| } |
| } |
| |
| HBasicBlock* HLoopInformation::GetPreHeader() const { |
| HBasicBlock* block = header_->GetPredecessors()[0]; |
| DCHECK(irreducible_ || (block == header_->GetDominator())); |
| return block; |
| } |
| |
| bool HLoopInformation::Contains(const HBasicBlock& block) const { |
| return blocks_.IsBitSet(block.GetBlockId()); |
| } |
| |
| bool HLoopInformation::IsIn(const HLoopInformation& other) const { |
| return other.blocks_.IsBitSet(header_->GetBlockId()); |
| } |
| |
| bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const { |
| return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId()); |
| } |
| |
| size_t HLoopInformation::GetLifetimeEnd() const { |
| size_t last_position = 0; |
| for (HBasicBlock* back_edge : GetBackEdges()) { |
| last_position = std::max(back_edge->GetLifetimeEnd(), last_position); |
| } |
| return last_position; |
| } |
| |
| bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const { |
| for (HBasicBlock* back_edge : GetBackEdges()) { |
| DCHECK(back_edge->GetDominator() != nullptr); |
| if (!header_->Dominates(back_edge)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) { |
| for (HBasicBlock* back_edge : GetBackEdges()) { |
| if (!block->Dominates(back_edge)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| bool HLoopInformation::HasExitEdge() const { |
| // Determine if this loop has at least one exit edge. |
| HBlocksInLoopReversePostOrderIterator it_loop(*this); |
| for (; !it_loop.Done(); it_loop.Advance()) { |
| for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) { |
| if (!Contains(*successor)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool HBasicBlock::Dominates(HBasicBlock* other) const { |
| // Walk up the dominator tree from `other`, to find out if `this` |
| // is an ancestor. |
| HBasicBlock* current = other; |
| while (current != nullptr) { |
| if (current == this) { |
| return true; |
| } |
| current = current->GetDominator(); |
| } |
| return false; |
| } |
| |
| static void UpdateInputsUsers(HInstruction* instruction) { |
| HInputsRef inputs = instruction->GetInputs(); |
| for (size_t i = 0; i < inputs.size(); ++i) { |
| inputs[i]->AddUseAt(instruction, i); |
| } |
| // Environment should be created later. |
| DCHECK(!instruction->HasEnvironment()); |
| } |
| |
| void HBasicBlock::ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement) { |
| DCHECK(initial->GetBlock() == this); |
| InsertPhiAfter(replacement, initial); |
| initial->ReplaceWith(replacement); |
| RemovePhi(initial); |
| } |
| |
| void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial, |
| HInstruction* replacement) { |
| DCHECK(initial->GetBlock() == this); |
| if (initial->IsControlFlow()) { |
| // We can only replace a control flow instruction with another control flow instruction. |
| DCHECK(replacement->IsControlFlow()); |
| DCHECK_EQ(replacement->GetId(), -1); |
| DCHECK_EQ(replacement->GetType(), DataType::Type::kVoid); |
| DCHECK_EQ(initial->GetBlock(), this); |
| DCHECK_EQ(initial->GetType(), DataType::Type::kVoid); |
| DCHECK(initial->GetUses().empty()); |
| DCHECK(initial->GetEnvUses().empty()); |
| replacement->SetBlock(this); |
| replacement->SetId(GetGraph()->GetNextInstructionId()); |
| instructions_.InsertInstructionBefore(replacement, initial); |
| UpdateInputsUsers(replacement); |
| } else { |
| InsertInstructionBefore(replacement, initial); |
| initial->ReplaceWith(replacement); |
| } |
| RemoveInstruction(initial); |
| } |
| |
| static void Add(HInstructionList* instruction_list, |
| HBasicBlock* block, |
| HInstruction* instruction) { |
| DCHECK(instruction->GetBlock() == nullptr); |
| DCHECK_EQ(instruction->GetId(), -1); |
| instruction->SetBlock(block); |
| instruction->SetId(block->GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instruction_list->AddInstruction(instruction); |
| } |
| |
| void HBasicBlock::AddInstruction(HInstruction* instruction) { |
| Add(&instructions_, this, instruction); |
| } |
| |
| void HBasicBlock::AddPhi(HPhi* phi) { |
| Add(&phis_, this, phi); |
| } |
| |
| void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(!cursor->IsPhi()); |
| DCHECK(!instruction->IsPhi()); |
| DCHECK_EQ(instruction->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| DCHECK(!instruction->IsControlFlow()); |
| instruction->SetBlock(this); |
| instruction->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instructions_.InsertInstructionBefore(instruction, cursor); |
| } |
| |
| void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(!cursor->IsPhi()); |
| DCHECK(!instruction->IsPhi()); |
| DCHECK_EQ(instruction->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| DCHECK(!instruction->IsControlFlow()); |
| DCHECK(!cursor->IsControlFlow()); |
| instruction->SetBlock(this); |
| instruction->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instructions_.InsertInstructionAfter(instruction, cursor); |
| } |
| |
| void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) { |
| DCHECK_EQ(phi->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| phi->SetBlock(this); |
| phi->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(phi); |
| phis_.InsertInstructionAfter(phi, cursor); |
| } |
| |
| static void Remove(HInstructionList* instruction_list, |
| HBasicBlock* block, |
| HInstruction* instruction, |
| bool ensure_safety) { |
| DCHECK_EQ(block, instruction->GetBlock()); |
| instruction->SetBlock(nullptr); |
| instruction_list->RemoveInstruction(instruction); |
| if (ensure_safety) { |
| DCHECK(instruction->GetUses().empty()); |
| DCHECK(instruction->GetEnvUses().empty()); |
| RemoveAsUser(instruction); |
| } |
| } |
| |
| void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) { |
| DCHECK(!instruction->IsPhi()); |
| Remove(&instructions_, this, instruction, ensure_safety); |
| } |
| |
| void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) { |
| Remove(&phis_, this, phi, ensure_safety); |
| } |
| |
| void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) { |
| if (instruction->IsPhi()) { |
| RemovePhi(instruction->AsPhi(), ensure_safety); |
| } else { |
| RemoveInstruction(instruction, ensure_safety); |
| } |
| } |
| |
| void HEnvironment::CopyFrom(ArrayRef<HInstruction* const> locals) { |
| for (size_t i = 0; i < locals.size(); i++) { |
| HInstruction* instruction = locals[i]; |
| SetRawEnvAt(i, instruction); |
| if (instruction != nullptr) { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::CopyFrom(HEnvironment* env) { |
| for (size_t i = 0; i < env->Size(); i++) { |
| HInstruction* instruction = env->GetInstructionAt(i); |
| SetRawEnvAt(i, instruction); |
| if (instruction != nullptr) { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env, |
| HBasicBlock* loop_header) { |
| DCHECK(loop_header->IsLoopHeader()); |
| for (size_t i = 0; i < env->Size(); i++) { |
| HInstruction* instruction = env->GetInstructionAt(i); |
| SetRawEnvAt(i, instruction); |
| if (instruction == nullptr) { |
| continue; |
| } |
| if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) { |
| // At the end of the loop pre-header, the corresponding value for instruction |
| // is the first input of the phi. |
| HInstruction* initial = instruction->AsPhi()->InputAt(0); |
| SetRawEnvAt(i, initial); |
| initial->AddEnvUseAt(this, i); |
| } else { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::RemoveAsUserOfInput(size_t index) const { |
| const HUserRecord<HEnvironment*>& env_use = vregs_[index]; |
| HInstruction* user = env_use.GetInstruction(); |
| auto before_env_use_node = env_use.GetBeforeUseNode(); |
| user->env_uses_.erase_after(before_env_use_node); |
| user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node); |
| } |
| |
| void HEnvironment::ReplaceInput(HInstruction* replacement, size_t index) { |
| const HUserRecord<HEnvironment*>& env_use_record = vregs_[index]; |
| HInstruction* orig_instr = env_use_record.GetInstruction(); |
| |
| DCHECK(orig_instr != replacement); |
| |
| HUseList<HEnvironment*>::iterator before_use_node = env_use_record.GetBeforeUseNode(); |
| // Note: fixup_end remains valid across splice_after(). |
| auto fixup_end = replacement->env_uses_.empty() ? replacement->env_uses_.begin() |
| : ++replacement->env_uses_.begin(); |
| replacement->env_uses_.splice_after(replacement->env_uses_.before_begin(), |
| env_use_record.GetInstruction()->env_uses_, |
| before_use_node); |
| replacement->FixUpUserRecordsAfterEnvUseInsertion(fixup_end); |
| orig_instr->FixUpUserRecordsAfterEnvUseRemoval(before_use_node); |
| } |
| |
| std::ostream& HInstruction::Dump(std::ostream& os, bool dump_args) { |
| HGraph* graph = GetBlock()->GetGraph(); |
| HGraphVisualizer::DumpInstruction(&os, graph, this); |
| if (dump_args) { |
| // Allocate memory from local ScopedArenaAllocator. |
| ScopedArenaAllocator allocator(graph->GetArenaStack()); |
| // Instructions that we already visited. We print each instruction only once. |
| ArenaBitVector visited( |
| &allocator, graph->GetCurrentInstructionId(), /* expandable= */ false, kArenaAllocMisc); |
| visited.ClearAllBits(); |
| visited.SetBit(GetId()); |
| // Keep a queue of instructions with their indentations. |
| ScopedArenaDeque<std::pair<HInstruction*, size_t>> queue(allocator.Adapter(kArenaAllocMisc)); |
| auto add_args = [&queue](HInstruction* instruction, size_t indentation) { |
| for (HInstruction* arg : ReverseRange(instruction->GetInputs())) { |
| queue.emplace_front(arg, indentation); |
| } |
| }; |
| add_args(this, /*indentation=*/ 1u); |
| while (!queue.empty()) { |
| HInstruction* instruction; |
| size_t indentation; |
| std::tie(instruction, indentation) = queue.front(); |
| queue.pop_front(); |
| if (!visited.IsBitSet(instruction->GetId())) { |
| visited.SetBit(instruction->GetId()); |
| os << '\n'; |
| for (size_t i = 0; i != indentation; ++i) { |
| os << " "; |
| } |
| HGraphVisualizer::DumpInstruction(&os, graph, instruction); |
| add_args(instruction, indentation + 1u); |
| } |
| } |
| } |
| return os; |
| } |
| |
| HInstruction* HInstruction::GetNextDisregardingMoves() const { |
| HInstruction* next = GetNext(); |
| while (next != nullptr && next->IsParallelMove()) { |
| next = next->GetNext(); |
| } |
| return next; |
| } |
| |
| HInstruction* HInstruction::GetPreviousDisregardingMoves() const { |
| HInstruction* previous = GetPrevious(); |
| while (previous != nullptr && previous->IsParallelMove()) { |
| previous = previous->GetPrevious(); |
| } |
| return previous; |
| } |
| |
| void HInstructionList::AddInstruction(HInstruction* instruction) { |
| if (first_instruction_ == nullptr) { |
| DCHECK(last_instruction_ == nullptr); |
| first_instruction_ = last_instruction_ = instruction; |
| } else { |
| DCHECK(last_instruction_ != nullptr); |
| last_instruction_->next_ = instruction; |
| instruction->previous_ = last_instruction_; |
| last_instruction_ = instruction; |
| } |
| } |
| |
| void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(Contains(cursor)); |
| if (cursor == first_instruction_) { |
| cursor->previous_ = instruction; |
| instruction->next_ = cursor; |
| first_instruction_ = instruction; |
| } else { |
| instruction->previous_ = cursor->previous_; |
| instruction->next_ = cursor; |
| cursor->previous_ = instruction; |
| instruction->previous_->next_ = instruction; |
| } |
| } |
| |
| void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(Contains(cursor)); |
| if (cursor == last_instruction_) { |
| cursor->next_ = instruction; |
| instruction->previous_ = cursor; |
| last_instruction_ = instruction; |
| } else { |
| instruction->next_ = cursor->next_; |
| instruction->previous_ = cursor; |
| cursor->next_ = instruction; |
| instruction->next_->previous_ = instruction; |
| } |
| } |
| |
| void HInstructionList::RemoveInstruction(HInstruction* instruction) { |
| if (instruction->previous_ != nullptr) { |
| instruction->previous_->next_ = instruction->next_; |
| } |
| if (instruction->next_ != nullptr) { |
| instruction->next_->previous_ = instruction->previous_; |
| } |
| if (instruction == first_instruction_) { |
| first_instruction_ = instruction->next_; |
| } |
| if (instruction == last_instruction_) { |
| last_instruction_ = instruction->previous_; |
| } |
| } |
| |
| bool HInstructionList::Contains(HInstruction* instruction) const { |
| for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { |
| if (it.Current() == instruction) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool HInstructionList::FoundBefore(const HInstruction* instruction1, |
| const HInstruction* instruction2) const { |
| DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock()); |
| for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { |
| if (it.Current() == instruction1) { |
| return true; |
| } |
| if (it.Current() == instruction2) { |
| return false; |
| } |
| } |
| LOG(FATAL) << "Did not find an order between two instructions of the same block."; |
| UNREACHABLE(); |
| } |
| |
| bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const { |
| if (other_instruction == this) { |
| // An instruction does not strictly dominate itself. |
| return false; |
| } |
| HBasicBlock* block = GetBlock(); |
| HBasicBlock* other_block = other_instruction->GetBlock(); |
| if (block != other_block) { |
| return GetBlock()->Dominates(other_instruction->GetBlock()); |
| } else { |
| // If both instructions are in the same block, ensure this |
| // instruction comes before `other_instruction`. |
| if (IsPhi()) { |
| if (!other_instruction->IsPhi()) { |
| // Phis appear before non phi-instructions so this instruction |
| // dominates `other_instruction`. |
| return true; |
| } else { |
| // There is no order among phis. |
| LOG(FATAL) << "There is no dominance between phis of a same block."; |
| UNREACHABLE(); |
| } |
| } else { |
| // `this` is not a phi. |
| if (other_instruction->IsPhi()) { |
| // Phis appear before non phi-instructions so this instruction |
| // does not dominate `other_instruction`. |
| return false; |
| } else { |
| // Check whether this instruction comes before |
| // `other_instruction` in the instruction list. |
| return block->GetInstructions().FoundBefore(this, other_instruction); |
| } |
| } |
| } |
| } |
| |
| void HInstruction::RemoveEnvironment() { |
| RemoveEnvironmentUses(this); |
| environment_ = nullptr; |
| } |
| |
| void HInstruction::ReplaceWith(HInstruction* other) { |
| DCHECK(other != nullptr); |
| // Note: fixup_end remains valid across splice_after(). |
| auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin(); |
| other->uses_.splice_after(other->uses_.before_begin(), uses_); |
| other->FixUpUserRecordsAfterUseInsertion(fixup_end); |
| |
| // Note: env_fixup_end remains valid across splice_after(). |
| auto env_fixup_end = |
| other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin(); |
| other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_); |
| other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end); |
| |
| DCHECK(uses_.empty()); |
| DCHECK(env_uses_.empty()); |
| } |
| |
| void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) { |
| const HUseList<HInstruction*>& uses = GetUses(); |
| for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) { |
| HInstruction* user = it->GetUser(); |
| size_t index = it->GetIndex(); |
| // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput(). |
| ++it; |
| if (dominator->StrictlyDominates(user)) { |
| user->ReplaceInput(replacement, index); |
| } else if (user->IsPhi() && !user->AsPhi()->IsCatchPhi()) { |
| // If the input flows from a block dominated by `dominator`, we can replace it. |
| // We do not perform this for catch phis as we don't have control flow support |
| // for their inputs. |
| const ArenaVector<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors(); |
| HBasicBlock* predecessor = predecessors[index]; |
| if (dominator->GetBlock()->Dominates(predecessor)) { |
| user->ReplaceInput(replacement, index); |
| } |
| } |
| } |
| } |
| |
| void HInstruction::ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) { |
| const HUseList<HEnvironment*>& uses = GetEnvUses(); |
| for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) { |
| HEnvironment* user = it->GetUser(); |
| size_t index = it->GetIndex(); |
| // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput(). |
| ++it; |
| if (dominator->StrictlyDominates(user->GetHolder())) { |
| user->ReplaceInput(replacement, index); |
| } |
| } |
| } |
| |
| void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) { |
| HUserRecord<HInstruction*> input_use = InputRecordAt(index); |
| if (input_use.GetInstruction() == replacement) { |
| // Nothing to do. |
| return; |
| } |
| HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); |
| // Note: fixup_end remains valid across splice_after(). |
| auto fixup_end = |
| replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin(); |
| replacement->uses_.splice_after(replacement->uses_.before_begin(), |
| input_use.GetInstruction()->uses_, |
| before_use_node); |
| replacement->FixUpUserRecordsAfterUseInsertion(fixup_end); |
| input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); |
| } |
| |
| size_t HInstruction::EnvironmentSize() const { |
| return HasEnvironment() ? environment_->Size() : 0; |
| } |
| |
| void HVariableInputSizeInstruction::AddInput(HInstruction* input) { |
| DCHECK(input->GetBlock() != nullptr); |
| inputs_.push_back(HUserRecord<HInstruction*>(input)); |
| input->AddUseAt(this, inputs_.size() - 1); |
| } |
| |
| void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) { |
| inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input)); |
| input->AddUseAt(this, index); |
| // Update indexes in use nodes of inputs that have been pushed further back by the insert(). |
| for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) { |
| DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u); |
| inputs_[i].GetUseNode()->SetIndex(i); |
| } |
| } |
| |
| void HVariableInputSizeInstruction::RemoveInputAt(size_t index) { |
| RemoveAsUserOfInput(index); |
| inputs_.erase(inputs_.begin() + index); |
| // Update indexes in use nodes of inputs that have been pulled forward by the erase(). |
| for (size_t i = index, e = inputs_.size(); i < e; ++i) { |
| DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u); |
| inputs_[i].GetUseNode()->SetIndex(i); |
| } |
| } |
| |
| void HVariableInputSizeInstruction::RemoveAllInputs() { |
| RemoveAsUserOfAllInputs(); |
| DCHECK(!HasNonEnvironmentUses()); |
| |
| inputs_.clear(); |
| DCHECK_EQ(0u, InputCount()); |
| } |
| |
| size_t HConstructorFence::RemoveConstructorFences(HInstruction* instruction) { |
| DCHECK(instruction->GetBlock() != nullptr); |
| // Removing constructor fences only makes sense for instructions with an object return type. |
| DCHECK_EQ(DataType::Type::kReference, instruction->GetType()); |
| |
| // Return how many instructions were removed for statistic purposes. |
| size_t remove_count = 0; |
| |
| // Efficient implementation that simultaneously (in one pass): |
| // * Scans the uses list for all constructor fences. |
| // * Deletes that constructor fence from the uses list of `instruction`. |
| // * Deletes `instruction` from the constructor fence's inputs. |
| // * Deletes the constructor fence if it now has 0 inputs. |
| |
| const HUseList<HInstruction*>& uses = instruction->GetUses(); |
| // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt. |
| for (auto it = uses.begin(), end = uses.end(); it != end; ) { |
| const HUseListNode<HInstruction*>& use_node = *it; |
| HInstruction* const use_instruction = use_node.GetUser(); |
| |
| // Advance the iterator immediately once we fetch the use_node. |
| // Warning: If the input is removed, the current iterator becomes invalid. |
| ++it; |
| |
| if (use_instruction->IsConstructorFence()) { |
| HConstructorFence* ctor_fence = use_instruction->AsConstructorFence(); |
| size_t input_index = use_node.GetIndex(); |
| |
| // Process the candidate instruction for removal |
| // from the graph. |
| |
| // Constructor fence instructions are never |
| // used by other instructions. |
| // |
| // If we wanted to make this more generic, it |
| // could be a runtime if statement. |
| DCHECK(!ctor_fence->HasUses()); |
| |
| // A constructor fence's return type is "kPrimVoid" |
| // and therefore it can't have any environment uses. |
| DCHECK(!ctor_fence->HasEnvironmentUses()); |
| |
| // Remove the inputs first, otherwise removing the instruction |
| // will try to remove its uses while we are already removing uses |
| // and this operation will fail. |
| DCHECK_EQ(instruction, ctor_fence->InputAt(input_index)); |
| |
| // Removing the input will also remove the `use_node`. |
| // (Do not look at `use_node` after this, it will be a dangling reference). |
| ctor_fence->RemoveInputAt(input_index); |
| |
| // Once all inputs are removed, the fence is considered dead and |
| // is removed. |
| if (ctor_fence->InputCount() == 0u) { |
| ctor_fence->GetBlock()->RemoveInstruction(ctor_fence); |
| ++remove_count; |
| } |
| } |
| } |
| |
| if (kIsDebugBuild) { |
| // Post-condition checks: |
| // * None of the uses of `instruction` are a constructor fence. |
| // * The `instruction` itself did not get removed from a block. |
| for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) { |
| CHECK(!use_node.GetUser()->IsConstructorFence()); |
| } |
| CHECK(instruction->GetBlock() != nullptr); |
| } |
| |
| return remove_count; |
| } |
| |
| void HConstructorFence::Merge(HConstructorFence* other) { |
| // Do not delete yourself from the graph. |
| DCHECK(this != other); |
| // Don't try to merge with an instruction not associated with a block. |
| DCHECK(other->GetBlock() != nullptr); |
| // A constructor fence's return type is "kPrimVoid" |
| // and therefore it cannot have any environment uses. |
| DCHECK(!other->HasEnvironmentUses()); |
| |
| auto has_input = [](HInstruction* haystack, HInstruction* needle) { |
| // Check if `haystack` has `needle` as any of its inputs. |
| for (size_t input_count = 0; input_count < haystack->InputCount(); ++input_count) { |
| if (haystack->InputAt(input_count) == needle) { |
| return true; |
| } |
| } |
| return false; |
| }; |
| |
| // Add any inputs from `other` into `this` if it wasn't already an input. |
| for (size_t input_count = 0; input_count < other->InputCount(); ++input_count) { |
| HInstruction* other_input = other->InputAt(input_count); |
| if (!has_input(this, other_input)) { |
| AddInput(other_input); |
| } |
| } |
| |
| other->GetBlock()->RemoveInstruction(other); |
| } |
| |
| HInstruction* HConstructorFence::GetAssociatedAllocation(bool ignore_inputs) { |
| HInstruction* new_instance_inst = GetPrevious(); |
| // Check if the immediately preceding instruction is a new-instance/new-array. |
| // Otherwise this fence is for protecting final fields. |
| if (new_instance_inst != nullptr && |
| (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) { |
| if (ignore_inputs) { |
| // If inputs are ignored, simply check if the predecessor is |
| // *any* HNewInstance/HNewArray. |
| // |
| // Inputs are normally only ignored for prepare_for_register_allocation, |
| // at which point *any* prior HNewInstance/Array can be considered |
| // associated. |
| return new_instance_inst; |
| } else { |
| // Normal case: There must be exactly 1 input and the previous instruction |
| // must be that input. |
| if (InputCount() == 1u && InputAt(0) == new_instance_inst) { |
| return new_instance_inst; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| #define DEFINE_ACCEPT(name, super) \ |
| void H##name::Accept(HGraphVisitor* visitor) { \ |
| visitor->Visit##name(this); \ |
| } |
| |
| FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT) |
| |
| #undef DEFINE_ACCEPT |
| |
| void HGraphVisitor::VisitInsertionOrder() { |
| for (HBasicBlock* block : graph_->GetActiveBlocks()) { |
| VisitBasicBlock(block); |
| } |
| } |
| |
| void HGraphVisitor::VisitReversePostOrder() { |
| for (HBasicBlock* block : graph_->GetReversePostOrder()) { |
| VisitBasicBlock(block); |
| } |
| } |
| |
| void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) { |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| } |
| |
| HConstant* HTypeConversion::TryStaticEvaluation() const { |
| HGraph* graph = GetBlock()->GetGraph(); |
| if (GetInput()->IsIntConstant()) { |
| int32_t value = GetInput()->AsIntConstant()->GetValue(); |
| switch (GetResultType()) { |
| case DataType::Type::kInt8: |
| return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc()); |
| case DataType::Type::kUint8: |
| return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc()); |
| case DataType::Type::kInt16: |
| return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc()); |
| case DataType::Type::kUint16: |
| return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc()); |
| case DataType::Type::kInt64: |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case DataType::Type::kFloat32: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| case DataType::Type::kFloat64: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsLongConstant()) { |
| int64_t value = GetInput()->AsLongConstant()->GetValue(); |
| switch (GetResultType()) { |
| case DataType::Type::kInt8: |
| return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc()); |
| case DataType::Type::kUint8: |
| return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc()); |
| case DataType::Type::kInt16: |
| return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc()); |
| case DataType::Type::kUint16: |
| return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc()); |
| case DataType::Type::kInt32: |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case DataType::Type::kFloat32: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| case DataType::Type::kFloat64: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsFloatConstant()) { |
| float value = GetInput()->AsFloatConstant()->GetValue(); |
| switch (GetResultType()) { |
| case DataType::Type::kInt32: |
| if (std::isnan(value)) |
| return graph->GetIntConstant(0, GetDexPc()); |
| if (value >= static_cast<float>(kPrimIntMax)) |
| return graph->GetIntConstant(kPrimIntMax, GetDexPc()); |
| if (value <= kPrimIntMin) |
| return graph->GetIntConstant(kPrimIntMin, GetDexPc()); |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case DataType::Type::kInt64: |
| if (std::isnan(value)) |
| return graph->GetLongConstant(0, GetDexPc()); |
| if (value >= static_cast<float>(kPrimLongMax)) |
| return graph->GetLongConstant(kPrimLongMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetLongConstant(kPrimLongMin, GetDexPc()); |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case DataType::Type::kFloat64: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsDoubleConstant()) { |
| double value = GetInput()->AsDoubleConstant()->GetValue(); |
| switch (GetResultType()) { |
| case DataType::Type::kInt32: |
| if (std::isnan(value)) |
| return graph->GetIntConstant(0, GetDexPc()); |
| if (value >= kPrimIntMax) |
| return graph->GetIntConstant(kPrimIntMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetIntConstant(kPrimIntMin, GetDexPc()); |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case DataType::Type::kInt64: |
| if (std::isnan(value)) |
| return graph->GetLongConstant(0, GetDexPc()); |
| if (value >= static_cast<double>(kPrimLongMax)) |
| return graph->GetLongConstant(kPrimLongMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetLongConstant(kPrimLongMin, GetDexPc()); |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case DataType::Type::kFloat32: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } |
| return nullptr; |
| } |
| |
| HConstant* HUnaryOperation::TryStaticEvaluation() const { |
| if (GetInput()->IsIntConstant()) { |
| return Evaluate(GetInput()->AsIntConstant()); |
| } else if (GetInput()->IsLongConstant()) { |
| return Evaluate(GetInput()->AsLongConstant()); |
| } else if (kEnableFloatingPointStaticEvaluation) { |
| if (GetInput()->IsFloatConstant()) { |
| return Evaluate(GetInput()->AsFloatConstant()); |
| } else if (GetInput()->IsDoubleConstant()) { |
| return Evaluate(GetInput()->AsDoubleConstant()); |
| } |
| } |
| return nullptr; |
| } |
| |
| HConstant* HBinaryOperation::TryStaticEvaluation() const { |
| if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) { |
| return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant()); |
| } else if (GetLeft()->IsLongConstant()) { |
| if (GetRight()->IsIntConstant()) { |
| // The binop(long, int) case is only valid for shifts and rotations. |
| DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName(); |
| return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant()); |
| } else if (GetRight()->IsLongConstant()) { |
| return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant()); |
| } |
| } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) { |
| // The binop(null, null) case is only valid for equal and not-equal conditions. |
| DCHECK(IsEqual() || IsNotEqual()) << DebugName(); |
| return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant()); |
| } else if (kEnableFloatingPointStaticEvaluation) { |
| if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) { |
| return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant()); |
| } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) { |
| return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant()); |
| } |
| } |
| return nullptr; |
| } |
| |
| HConstant* HBinaryOperation::GetConstantRight() const { |
| if (GetRight()->IsConstant()) { |
| return GetRight()->AsConstant(); |
| } else if (IsCommutative() && GetLeft()->IsConstant()) { |
| return GetLeft()->AsConstant(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // If `GetConstantRight()` returns one of the input, this returns the other |
| // one. Otherwise it returns null. |
| HInstruction* HBinaryOperation::GetLeastConstantLeft() const { |
| HInstruction* most_constant_right = GetConstantRight(); |
| if (most_constant_right == nullptr) { |
| return nullptr; |
| } else if (most_constant_right == GetLeft()) { |
| return GetRight(); |
| } else { |
| return GetLeft(); |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, ComparisonBias rhs) { |
| // TODO: Replace with auto-generated operator<<. |
| switch (rhs) { |
| case ComparisonBias::kNoBias: |
| return os << "none"; |
| case ComparisonBias::kGtBias: |
| return os << "gt"; |
| case ComparisonBias::kLtBias: |
| return os << "lt"; |
| default: |
| LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs); |
| UNREACHABLE(); |
| } |
| } |
| |
| bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const { |
| return this == instruction->GetPreviousDisregardingMoves(); |
| } |
| |
| bool HInstruction::Equals(const HInstruction* other) const { |
| if (GetKind() != other->GetKind()) return false; |
| if (GetType() != other->GetType()) return false; |
| if (!InstructionDataEquals(other)) return false; |
| HConstInputsRef inputs = GetInputs(); |
| HConstInputsRef other_inputs = other->GetInputs(); |
| if (inputs.size() != other_inputs.size()) return false; |
| for (size_t i = 0; i != inputs.size(); ++i) { |
| if (inputs[i] != other_inputs[i]) return false; |
| } |
| |
| DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode()); |
| return true; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs) { |
| #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break; |
| switch (rhs) { |
| FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_CASE) |
| default: |
| os << "Unknown instruction kind " << static_cast<int>(rhs); |
| break; |
| } |
| #undef DECLARE_CASE |
| return os; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs) { |
| // TODO Really this should be const but that would require const-ifying |
| // graph-visualizer and HGraphVisitor which are tangled up everywhere. |
| return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ false); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs) { |
| // TODO Really this should be const but that would require const-ifying |
| // graph-visualizer and HGraphVisitor which are tangled up everywhere. |
| return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ true); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const HInstruction& rhs) { |
| return os << rhs.DumpWithoutArgs(); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst) { |
| os << "Instructions["; |
| bool first = true; |
| for (const auto& hi : lst) { |
| if (!first) { |
| os << ", "; |
| } |
| first = false; |
| os << hi.GetUser()->DebugName() << "[id: " << hi.GetUser()->GetId() |
| << ", blk: " << hi.GetUser()->GetBlock()->GetBlockId() << "]@" << hi.GetIndex(); |
| } |
| os << "]"; |
| return os; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst) { |
| os << "Environments["; |
| bool first = true; |
| for (const auto& hi : lst) { |
| if (!first) { |
| os << ", "; |
| } |
| first = false; |
| os << *hi.GetUser()->GetHolder() << "@" << hi.GetIndex(); |
| } |
| os << "]"; |
| return os; |
| } |
| |
| std::ostream& HGraph::Dump(std::ostream& os, |
| std::optional<std::reference_wrapper<const BlockNamer>> namer) { |
| HGraphVisualizer vis(&os, this, nullptr, namer); |
| vis.DumpGraphDebug(); |
| return os; |
| } |
| |
| void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) { |
| if (do_checks) { |
| DCHECK(!IsPhi()); |
| DCHECK(!IsControlFlow()); |
| DCHECK(CanBeMoved() || |
| // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization. |
| IsShouldDeoptimizeFlag()); |
| DCHECK(!cursor->IsPhi()); |
| } |
| |
| next_->previous_ = previous_; |
| if (previous_ != nullptr) { |
| previous_->next_ = next_; |
| } |
| if (block_->instructions_.first_instruction_ == this) { |
| block_->instructions_.first_instruction_ = next_; |
| } |
| DCHECK_NE(block_->instructions_.last_instruction_, this); |
| |
| previous_ = cursor->previous_; |
| if (previous_ != nullptr) { |
| previous_->next_ = this; |
| } |
| next_ = cursor; |
| cursor->previous_ = this; |
| block_ = cursor->block_; |
| |
| if (block_->instructions_.first_instruction_ == cursor) { |
| block_->instructions_.first_instruction_ = this; |
| } |
| } |
| |
| void HInstruction::MoveBeforeFirstUserAndOutOfLoops() { |
| DCHECK(!CanThrow()); |
| DCHECK(!HasSideEffects()); |
| DCHECK(!HasEnvironmentUses()); |
| DCHECK(HasNonEnvironmentUses()); |
| DCHECK(!IsPhi()); // Makes no sense for Phi. |
| DCHECK_EQ(InputCount(), 0u); |
| |
| // Find the target block. |
| auto uses_it = GetUses().begin(); |
| auto uses_end = GetUses().end(); |
| HBasicBlock* target_block = uses_it->GetUser()->GetBlock(); |
| ++uses_it; |
| while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) { |
| ++uses_it; |
| } |
| if (uses_it != uses_end) { |
| // This instruction has uses in two or more blocks. Find the common dominator. |
| CommonDominator finder(target_block); |
| for (; uses_it != uses_end; ++uses_it) { |
| finder.Update(uses_it->GetUser()->GetBlock()); |
| } |
| target_block = finder.Get(); |
| DCHECK(target_block != nullptr); |
| } |
| // Move to the first dominator not in a loop. |
| while (target_block->IsInLoop()) { |
| target_block = target_block->GetDominator(); |
| DCHECK(target_block != nullptr); |
| } |
| |
| // Find insertion position. |
| HInstruction* insert_pos = nullptr; |
| for (const HUseListNode<HInstruction*>& use : GetUses()) { |
| if (use.GetUser()->GetBlock() == target_block && |
| (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) { |
| insert_pos = use.GetUser(); |
| } |
| } |
| if (insert_pos == nullptr) { |
| // No user in `target_block`, insert before the control flow instruction. |
| insert_pos = target_block->GetLastInstruction(); |
| DCHECK(insert_pos->IsControlFlow()); |
| // Avoid splitting HCondition from HIf to prevent unnecessary materialization. |
| if (insert_pos->IsIf()) { |
| HInstruction* if_input = insert_pos->AsIf()->InputAt(0); |
| if (if_input == insert_pos->GetPrevious()) { |
| insert_pos = if_input; |
| } |
| } |
| } |
| MoveBefore(insert_pos); |
| } |
| |
| HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) { |
| DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented."; |
| DCHECK_EQ(cursor->GetBlock(), this); |
| |
| HBasicBlock* new_block = |
| new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc()); |
| new_block->instructions_.first_instruction_ = cursor; |
| new_block->instructions_.last_instruction_ = instructions_.last_instruction_; |
| instructions_.last_instruction_ = cursor->previous_; |
| if (cursor->previous_ == nullptr) { |
| instructions_.first_instruction_ = nullptr; |
| } else { |
| cursor->previous_->next_ = nullptr; |
| cursor->previous_ = nullptr; |
| } |
| |
| new_block->instructions_.SetBlockOfInstructions(new_block); |
| AddInstruction(new (GetGraph()->GetAllocator()) HGoto(new_block->GetDexPc())); |
| |
| for (HBasicBlock* successor : GetSuccessors()) { |
| successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block; |
| } |
| new_block->successors_.swap(successors_); |
| DCHECK(successors_.empty()); |
| AddSuccessor(new_block); |
| |
| GetGraph()->AddBlock(new_block); |
| return new_block; |
| } |
| |
| HBasicBlock* HBasicBlock::CreateImmediateDominator() { |
| DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented."; |
| DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented."; |
| |
| HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc()); |
| |
| for (HBasicBlock* predecessor : GetPredecessors()) { |
| predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block; |
| } |
| new_block->predecessors_.swap(predecessors_); |
| DCHECK(predecessors_.empty()); |
| AddPredecessor(new_block); |
| |
| GetGraph()->AddBlock(new_block); |
| return new_block; |
| } |
| |
| HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) { |
| DCHECK_EQ(cursor->GetBlock(), this); |
| |
| HBasicBlock* new_block = |
| new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc()); |
| new_block->instructions_.first_instruction_ = cursor; |
| new_block->instructions_.last_instruction_ = instructions_.last_instruction_; |
| instructions_.last_instruction_ = cursor->previous_; |
| if (cursor->previous_ == nullptr) { |
| instructions_.first_instruction_ = nullptr; |
| } else { |
| cursor->previous_->next_ = nullptr; |
| cursor->previous_ = nullptr; |
| } |
| |
| new_block->instructions_.SetBlockOfInstructions(new_block); |
| |
| for (HBasicBlock* successor : GetSuccessors()) { |
| successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block; |
| } |
| new_block->successors_.swap(successors_); |
| DCHECK(successors_.empty()); |
| |
| for (HBasicBlock* dominated : GetDominatedBlocks()) { |
| dominated->dominator_ = new_block; |
| } |
| new_block->dominated_blocks_.swap(dominated_blocks_); |
| DCHECK(dominated_blocks_.empty()); |
| return new_block; |
| } |
| |
| HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) { |
| DCHECK(!cursor->IsControlFlow()); |
| DCHECK_NE(instructions_.last_instruction_, cursor); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| |
| HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc()); |
| new_block->instructions_.first_instruction_ = cursor->GetNext(); |
| new_block->instructions_.last_instruction_ = instructions_.last_instruction_; |
| cursor->next_->previous_ = nullptr; |
| cursor->next_ = nullptr; |
| instructions_.last_instruction_ = cursor; |
| |
| new_block->instructions_.SetBlockOfInstructions(new_block); |
| for (HBasicBlock* successor : GetSuccessors()) { |
| successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block; |
| } |
| new_block->successors_.swap(successors_); |
| DCHECK(successors_.empty()); |
| |
| for (HBasicBlock* dominated : GetDominatedBlocks()) { |
| dominated->dominator_ = new_block; |
| } |
| new_block->dominated_blocks_.swap(dominated_blocks_); |
| DCHECK(dominated_blocks_.empty()); |
| return new_block; |
| } |
| |
| const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const { |
| if (EndsWithTryBoundary()) { |
| HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary(); |
| if (try_boundary->IsEntry()) { |
| DCHECK(!IsTryBlock()); |
| return try_boundary; |
| } else { |
| DCHECK(IsTryBlock()); |
| DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary)); |
| return nullptr; |
| } |
| } else if (IsTryBlock()) { |
| return &try_catch_information_->GetTryEntry(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| bool HBasicBlock::HasThrowingInstructions() const { |
| for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) { |
| if (it.Current()->CanThrow()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool HasOnlyOneInstruction(const HBasicBlock& block) { |
| return block.GetPhis().IsEmpty() |
| && !block.GetInstructions().IsEmpty() |
| && block.GetFirstInstruction() == block.GetLastInstruction(); |
| } |
| |
| bool HBasicBlock::IsSingleGoto() const { |
| return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto(); |
| } |
| |
| bool HBasicBlock::IsSingleReturn() const { |
| return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsReturn(); |
| } |
| |
| bool HBasicBlock::IsSingleReturnOrReturnVoidAllowingPhis() const { |
| return (GetFirstInstruction() == GetLastInstruction()) && |
| (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid()); |
| } |
| |
| bool HBasicBlock::IsSingleTryBoundary() const { |
| return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary(); |
| } |
| |
| bool HBasicBlock::EndsWithControlFlowInstruction() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow(); |
| } |
| |
| bool HBasicBlock::EndsWithReturn() const { |
| return !GetInstructions().IsEmpty() && |
| (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid()); |
| } |
| |
| bool HBasicBlock::EndsWithIf() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf(); |
| } |
| |
| bool HBasicBlock::EndsWithTryBoundary() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary(); |
| } |
| |
| bool HBasicBlock::HasSinglePhi() const { |
| return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr; |
| } |
| |
| ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const { |
| if (EndsWithTryBoundary()) { |
| // The normal-flow successor of HTryBoundary is always stored at index zero. |
| DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor()); |
| return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u); |
| } else { |
| // All successors of blocks not ending with TryBoundary are normal. |
| return ArrayRef<HBasicBlock* const>(successors_); |
| } |
| } |
| |
| ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const { |
| if (EndsWithTryBoundary()) { |
| return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers(); |
| } else { |
| // Blocks not ending with TryBoundary do not have exceptional successors. |
| return ArrayRef<HBasicBlock* const>(); |
| } |
| } |
| |
| bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const { |
| ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers(); |
| ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers(); |
| |
| size_t length = handlers1.size(); |
| if (length != handlers2.size()) { |
| return false; |
| } |
| |
| // Exception handlers need to be stored in the same order. |
| for (size_t i = 0; i < length; ++i) { |
| if (handlers1[i] != handlers2[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| size_t HInstructionList::CountSize() const { |
| size_t size = 0; |
| HInstruction* current = first_instruction_; |
| for (; current != nullptr; current = current->GetNext()) { |
| size++; |
| } |
| return size; |
| } |
| |
| void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const { |
| for (HInstruction* current = first_instruction_; |
| current != nullptr; |
| current = current->GetNext()) { |
| current->SetBlock(block); |
| } |
| } |
| |
| void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) { |
| DCHECK(Contains(cursor)); |
| if (!instruction_list.IsEmpty()) { |
| if (cursor == last_instruction_) { |
| last_instruction_ = instruction_list.last_instruction_; |
| } else { |
| cursor->next_->previous_ = instruction_list.last_instruction_; |
| } |
| instruction_list.last_instruction_->next_ = cursor->next_; |
| cursor->next_ = instruction_list.first_instruction_; |
| instruction_list.first_instruction_->previous_ = cursor; |
| } |
| } |
| |
| void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) { |
| DCHECK(Contains(cursor)); |
| if (!instruction_list.IsEmpty()) { |
| if (cursor == first_instruction_) { |
| first_instruction_ = instruction_list.first_instruction_; |
| } else { |
| cursor->previous_->next_ = instruction_list.first_instruction_; |
| } |
| instruction_list.last_instruction_->next_ = cursor; |
| instruction_list.first_instruction_->previous_ = cursor->previous_; |
| cursor->previous_ = instruction_list.last_instruction_; |
| } |
| } |
| |
| void HInstructionList::Add(const HInstructionList& instruction_list) { |
| if (IsEmpty()) { |
| first_instruction_ = instruction_list.first_instruction_; |
| last_instruction_ = instruction_list.last_instruction_; |
| } else { |
| AddAfter(last_instruction_, instruction_list); |
| } |
| } |
| |
| // Should be called on instructions in a dead block in post order. This method |
| // assumes `insn` has been removed from all users with the exception of catch |
| // phis because of missing exceptional edges in the graph. It removes the |
| // instruction from catch phi uses, together with inputs of other catch phis in |
| // the catch block at the same index, as these must be dead too. |
| static void RemoveUsesOfDeadInstruction(HInstruction* insn) { |
| DCHECK(!insn->HasEnvironmentUses()); |
| while (insn->HasNonEnvironmentUses()) { |
| const HUseListNode<HInstruction*>& use = insn->GetUses().front(); |
| size_t use_index = use.GetIndex(); |
| HBasicBlock* user_block = use.GetUser()->GetBlock(); |
| DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock()); |
| for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| phi_it.Current()->AsPhi()->RemoveInputAt(use_index); |
| } |
| } |
| } |
| |
| void HBasicBlock::DisconnectAndDelete() { |
| // Dominators must be removed after all the blocks they dominate. This way |
| // a loop header is removed last, a requirement for correct loop information |
| // iteration. |
| DCHECK(dominated_blocks_.empty()); |
| |
| // The following steps gradually remove the block from all its dependants in |
| // post order (b/27683071). |
| |
| // (1) Store a basic block that we'll use in step (5) to find loops to be updated. |
| // We need to do this before step (4) which destroys the predecessor list. |
| HBasicBlock* loop_update_start = this; |
| if (IsLoopHeader()) { |
| HLoopInformation* loop_info = GetLoopInformation(); |
| // All other blocks in this loop should have been removed because the header |
| // was their dominator. |
| // Note that we do not remove `this` from `loop_info` as it is unreachable. |
| DCHECK(!loop_info->IsIrreducible()); |
| DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u); |
| DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId()); |
| loop_update_start = loop_info->GetPreHeader(); |
| } |
| |
| // (2) Disconnect the block from its successors and update their phis. |
| for (HBasicBlock* successor : successors_) { |
| // Delete this block from the list of predecessors. |
| size_t this_index = successor->GetPredecessorIndexOf(this); |
| successor->predecessors_.erase(successor->predecessors_.begin() + this_index); |
| |
| // Check that `successor` has other predecessors, otherwise `this` is the |
| // dominator of `successor` which violates the order DCHECKed at the top. |
| DCHECK(!successor->predecessors_.empty()); |
| |
| // Remove this block's entries in the successor's phis. Skip exceptional |
| // successors because catch phi inputs do not correspond to predecessor |
| // blocks but throwing instructions. The inputs of the catch phis will be |
| // updated in step (3). |
| if (!successor->IsCatchBlock()) { |
| if (successor->predecessors_.size() == 1u) { |
| // The successor has just one predecessor left. Replace phis with the only |
| // remaining input. |
| for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HPhi* phi = phi_it.Current()->AsPhi(); |
| phi->ReplaceWith(phi->InputAt(1 - this_index)); |
| successor->RemovePhi(phi); |
| } |
| } else { |
| for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| phi_it.Current()->AsPhi()->RemoveInputAt(this_index); |
| } |
| } |
| } |
| } |
| successors_.clear(); |
| |
| // (3) Remove instructions and phis. Instructions should have no remaining uses |
| // except in catch phis. If an instruction is used by a catch phi at `index`, |
| // remove `index`-th input of all phis in the catch block since they are |
| // guaranteed dead. Note that we may miss dead inputs this way but the |
| // graph will always remain consistent. |
| for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* insn = it.Current(); |
| RemoveUsesOfDeadInstruction(insn); |
| RemoveInstruction(insn); |
| } |
| for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* insn = it.Current()->AsPhi(); |
| RemoveUsesOfDeadInstruction(insn); |
| RemovePhi(insn); |
| } |
| |
| // (4) Disconnect the block from its predecessors and update their |
| // control-flow instructions. |
| for (HBasicBlock* predecessor : predecessors_) { |
| // We should not see any back edges as they would have been removed by step (3). |
| DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor)); |
| |
| HInstruction* last_instruction = predecessor->GetLastInstruction(); |
| if (last_instruction->IsTryBoundary() && !IsCatchBlock()) { |
| // This block is the only normal-flow successor of the TryBoundary which |
| // makes `predecessor` dead. Since DCE removes blocks in post order, |
| // exception handlers of this TryBoundary were already visited and any |
| // remaining handlers therefore must be live. We remove `predecessor` from |
| // their list of predecessors. |
| DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this); |
| while (predecessor->GetSuccessors().size() > 1) { |
| HBasicBlock* handler = predecessor->GetSuccessors()[1]; |
| DCHECK(handler->IsCatchBlock()); |
| predecessor->RemoveSuccessor(handler); |
| handler->RemovePredecessor(predecessor); |
| } |
| } |
| |
| predecessor->RemoveSuccessor(this); |
| uint32_t num_pred_successors = predecessor->GetSuccessors().size(); |
| if (num_pred_successors == 1u) { |
| // If we have one successor after removing one, then we must have |
| // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one |
| // successor. Replace those with a HGoto. |
| DCHECK(last_instruction->IsIf() || |
| last_instruction->IsPackedSwitch() || |
| (last_instruction->IsTryBoundary() && IsCatchBlock())); |
| predecessor->RemoveInstruction(last_instruction); |
| predecessor->AddInstruction(new (graph_->GetAllocator()) HGoto(last_instruction->GetDexPc())); |
| } else if (num_pred_successors == 0u) { |
| // The predecessor has no remaining successors and therefore must be dead. |
| // We deliberately leave it without a control-flow instruction so that the |
| // GraphChecker fails unless it is not removed during the pass too. |
| predecessor->RemoveInstruction(last_instruction); |
| } else { |
| // There are multiple successors left. The removed block might be a successor |
| // of a PackedSwitch which will be completely removed (perhaps replaced with |
| // a Goto), or we are deleting a catch block from a TryBoundary. In either |
| // case, leave `last_instruction` as is for now. |
| DCHECK(last_instruction->IsPackedSwitch() || |
| (last_instruction->IsTryBoundary() && IsCatchBlock())); |
| } |
| } |
| predecessors_.clear(); |
| |
| // (5) Remove the block from all loops it is included in. Skip the inner-most |
| // loop if this is the loop header (see definition of `loop_update_start`) |
| // because the loop header's predecessor list has been destroyed in step (4). |
| for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) { |
| HLoopInformation* loop_info = it.Current(); |
| loop_info->Remove(this); |
| if (loop_info->IsBackEdge(*this)) { |
| // If this was the last back edge of the loop, we deliberately leave the |
| // loop in an inconsistent state and will fail GraphChecker unless the |
| // entire loop is removed during the pass. |
| loop_info->RemoveBackEdge(this); |
| } |
| } |
| |
| // (6) Disconnect from the dominator. |
| dominator_->RemoveDominatedBlock(this); |
| SetDominator(nullptr); |
| |
| // (7) Delete from the graph, update reverse post order. |
| graph_->DeleteDeadEmptyBlock(this); |
| SetGraph(nullptr); |
| } |
| |
| void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) { |
| DCHECK(EndsWithControlFlowInstruction()); |
| RemoveInstruction(GetLastInstruction()); |
| instructions_.Add(other->GetInstructions()); |
| other->instructions_.SetBlockOfInstructions(this); |
| other->instructions_.Clear(); |
| } |
| |
| void HBasicBlock::MergeWith(HBasicBlock* other) { |
| DCHECK_EQ(GetGraph(), other->GetGraph()); |
| DCHECK(ContainsElement(dominated_blocks_, other)); |
| DCHECK_EQ(GetSingleSuccessor(), other); |
| DCHECK_EQ(other->GetSinglePredecessor(), this); |
| DCHECK(other->GetPhis().IsEmpty()); |
| |
| // Move instructions from `other` to `this`. |
| MergeInstructionsWith(other); |
| |
| // Remove `other` from the loops it is included in. |
| for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) { |
| HLoopInformation* loop_info = it.Current(); |
| loop_info->Remove(other); |
| if (loop_info->IsBackEdge(*other)) { |
| loop_info->ReplaceBackEdge(other, this); |
| } |
| } |
| |
| // Update links to the successors of `other`. |
| successors_.clear(); |
| for (HBasicBlock* successor : other->GetSuccessors()) { |
| successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this; |
| } |
| successors_.swap(other->successors_); |
| DCHECK(other->successors_.empty()); |
| |
| // Update the dominator tree. |
| RemoveDominatedBlock(other); |
| for (HBasicBlock* dominated : other->GetDominatedBlocks()) { |
| dominated->SetDominator(this); |
| } |
| dominated_blocks_.insert( |
| dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end()); |
| other->dominated_blocks_.clear(); |
| other->dominator_ = nullptr; |
| |
| // Clear the list of predecessors of `other` in preparation of deleting it. |
| other->predecessors_.clear(); |
| |
| // Delete `other` from the graph. The function updates reverse post order. |
| graph_->DeleteDeadEmptyBlock(other); |
| other->SetGraph(nullptr); |
| } |
| |
| void HBasicBlock::MergeWithInlined(HBasicBlock* other) { |
| DCHECK_NE(GetGraph(), other->GetGraph()); |
| DCHECK(GetDominatedBlocks().empty()); |
| DCHECK(GetSuccessors().empty()); |
| DCHECK(!EndsWithControlFlowInstruction()); |
| DCHECK(other->GetSinglePredecessor()->IsEntryBlock()); |
| DCHECK(other->GetPhis().IsEmpty()); |
| DCHECK(!other->IsInLoop()); |
| |
| // Move instructions from `other` to `this`. |
| instructions_.Add(other->GetInstructions()); |
| other->instructions_.SetBlockOfInstructions(this); |
| |
| // Update links to the successors of `other`. |
| successors_.clear(); |
| for (HBasicBlock* successor : other->GetSuccessors()) { |
| successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this; |
| } |
| successors_.swap(other->successors_); |
| DCHECK(other->successors_.empty()); |
| |
| // Update the dominator tree. |
| for (HBasicBlock* dominated : other->GetDominatedBlocks()) { |
| dominated->SetDominator(this); |
| } |
| dominated_blocks_.insert( |
| dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end()); |
| other->dominated_blocks_.clear(); |
| other->dominator_ = nullptr; |
| other->graph_ = nullptr; |
| } |
| |
| void HBasicBlock::ReplaceWith(HBasicBlock* other) { |
| while (!GetPredecessors().empty()) { |
| HBasicBlock* predecessor = GetPredecessors()[0]; |
| predecessor->ReplaceSuccessor(this, other); |
| } |
| while (!GetSuccessors().empty()) { |
| HBasicBlock* successor = GetSuccessors()[0]; |
| successor->ReplacePredecessor(this, other); |
| } |
| for (HBasicBlock* dominated : GetDominatedBlocks()) { |
| other->AddDominatedBlock(dominated); |
| } |
| GetDominator()->ReplaceDominatedBlock(this, other); |
| other->SetDominator(GetDominator()); |
| dominator_ = nullptr; |
| graph_ = nullptr; |
| } |
| |
| void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) { |
| DCHECK_EQ(block->GetGraph(), this); |
| DCHECK(block->GetSuccessors().empty()); |
| DCHECK(block->GetPredecessors().empty()); |
| DCHECK(block->GetDominatedBlocks().empty()); |
| DCHECK(block->GetDominator() == nullptr); |
| DCHECK(block->GetInstructions().IsEmpty()); |
| DCHECK(block->GetPhis().IsEmpty()); |
| |
| if (block->IsExitBlock()) { |
| SetExitBlock(nullptr); |
| } |
| |
| RemoveElement(reverse_post_order_, block); |
| blocks_[block->GetBlockId()] = nullptr; |
| block->SetGraph(nullptr); |
| } |
| |
| void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, |
| HBasicBlock* reference, |
| bool replace_if_back_edge) { |
| if (block->IsLoopHeader()) { |
| // Clear the information of which blocks are contained in that loop. Since the |
| // information is stored as a bit vector based on block ids, we have to update |
| // it, as those block ids were specific to the callee graph and we are now adding |
| // these blocks to the caller graph. |
| block->GetLoopInformation()->ClearAllBlocks(); |
| } |
| |
| // If not already in a loop, update the loop information. |
| if (!block->IsInLoop()) { |
| block->SetLoopInformation(reference->GetLoopInformation()); |
| } |
| |
| // If the block is in a loop, update all its outward loops. |
| HLoopInformation* loop_info = block->GetLoopInformation(); |
| if (loop_info != nullptr) { |
| for (HLoopInformationOutwardIterator loop_it(*block); |
| !loop_it.Done(); |
| loop_it.Advance()) { |
| loop_it.Current()->Add(block); |
| } |
| if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) { |
| loop_info->ReplaceBackEdge(reference, block); |
| } |
| } |
| |
| // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block. |
| TryCatchInformation* try_catch_info = reference->IsTryBlock() |
| ? reference->GetTryCatchInformation() |
| : nullptr; |
| block->SetTryCatchInformation(try_catch_info); |
| } |
| |
| HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) { |
| DCHECK(HasExitBlock()) << "Unimplemented scenario"; |
| // Update the environments in this graph to have the invoke's environment |
| // as parent. |
| { |
| // Skip the entry block, we do not need to update the entry's suspend check. |
| for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) { |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| HInstruction* current = instr_it.Current(); |
| if (current->NeedsEnvironment()) { |
| DCHECK(current->HasEnvironment()); |
| current->GetEnvironment()->SetAndCopyParentChain( |
| outer_graph->GetAllocator(), invoke->GetEnvironment()); |
| } |
| } |
| } |
| } |
| outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs()); |
| |
| if (HasBoundsChecks()) { |
| outer_graph->SetHasBoundsChecks(true); |
| } |
| if (HasLoops()) { |
| outer_graph->SetHasLoops(true); |
| } |
| if (HasIrreducibleLoops()) { |
| outer_graph->SetHasIrreducibleLoops(true); |
| } |
| if (HasDirectCriticalNativeCall()) { |
| outer_graph->SetHasDirectCriticalNativeCall(true); |
| } |
| if (HasTryCatch()) { |
| outer_graph->SetHasTryCatch(true); |
| } |
| if (HasSIMD()) { |
| outer_graph->SetHasSIMD(true); |
| } |
| |
| HInstruction* return_value = nullptr; |
| if (GetBlocks().size() == 3) { |
| // Inliner already made sure we don't inline methods that always throw. |
| DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow()); |
| // Simple case of an entry block, a body block, and an exit block. |
| // Put the body block's instruction into `invoke`'s block. |
| HBasicBlock* body = GetBlocks()[1]; |
| DCHECK(GetBlocks()[0]->IsEntryBlock()); |
| DCHECK(GetBlocks()[2]->IsExitBlock()); |
| DCHECK(!body->IsExitBlock()); |
| DCHECK(!body->IsInLoop()); |
| HInstruction* last = body->GetLastInstruction(); |
| |
| // Note that we add instructions before the invoke only to simplify polymorphic inlining. |
| invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions()); |
| body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock()); |
| |
| // Replace the invoke with the return value of the inlined graph. |
| if (last->IsReturn()) { |
| return_value = last->InputAt(0); |
| } else { |
| DCHECK(last->IsReturnVoid()); |
| } |
| |
| invoke->GetBlock()->RemoveInstruction(last); |
| } else { |
| // Need to inline multiple blocks. We split `invoke`'s block |
| // into two blocks, merge the first block of the inlined graph into |
| // the first half, and replace the exit block of the inlined graph |
| // with the second half. |
| ArenaAllocator* allocator = outer_graph->GetAllocator(); |
| HBasicBlock* at = invoke->GetBlock(); |
| // Note that we split before the invoke only to simplify polymorphic inlining. |
| HBasicBlock* to = at->SplitBeforeForInlining(invoke); |
| |
| HBasicBlock* first = entry_block_->GetSuccessors()[0]; |
| DCHECK(!first->IsInLoop()); |
| at->MergeWithInlined(first); |
| exit_block_->ReplaceWith(to); |
| |
| // Update the meta information surrounding blocks: |
| // (1) the graph they are now in, |
| // (2) the reverse post order of that graph, |
| // (3) their potential loop information, inner and outer, |
| // (4) try block membership. |
| // Note that we do not need to update catch phi inputs because they |
| // correspond to the register file of the outer method which the inlinee |
| // cannot modify. |
| |
| // We don't add the entry block, the exit block, and the first block, which |
| // has been merged with `at`. |
| static constexpr int kNumberOfSkippedBlocksInCallee = 3; |
| |
| // We add the `to` block. |
| static constexpr int kNumberOfNewBlocksInCaller = 1; |
| size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee) |
| + kNumberOfNewBlocksInCaller; |
| |
| // Find the location of `at` in the outer graph's reverse post order. The new |
| // blocks will be added after it. |
| size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at); |
| MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at); |
| |
| // Do a reverse post order of the blocks in the callee and do (1), (2), (3) |
| // and (4) to the blocks that apply. |
| for (HBasicBlock* current : GetReversePostOrder()) { |
| if (current != exit_block_ && current != entry_block_ && current != first) { |
| DCHECK(current->GetTryCatchInformation() == nullptr); |
| DCHECK(current->GetGraph() == this); |
| current->SetGraph(outer_graph); |
| outer_graph->AddBlock(current); |
| outer_graph->reverse_post_order_[++index_of_at] = current; |
| UpdateLoopAndTryInformationOfNewBlock(current, at, /* replace_if_back_edge= */ false); |
| } |
| } |
| |
| // Do (1), (2), (3) and (4) to `to`. |
| to->SetGraph(outer_graph); |
| outer_graph->AddBlock(to); |
| outer_graph->reverse_post_order_[++index_of_at] = to; |
| // Only `to` can become a back edge, as the inlined blocks |
| // are predecessors of `to`. |
| UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge= */ true); |
| |
| // Update all predecessors of the exit block (now the `to` block) |
| // to not `HReturn` but `HGoto` instead. Special case throwing blocks |
| // to now get the outer graph exit block as successor. Note that the inliner |
| // currently doesn't support inlining methods with try/catch. |
| HPhi* return_value_phi = nullptr; |
| bool rerun_dominance = false; |
| bool rerun_loop_analysis = false; |
| for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) { |
| HBasicBlock* predecessor = to->GetPredecessors()[pred]; |
| HInstruction* last = predecessor->GetLastInstruction(); |
| if (last->IsThrow()) { |
| DCHECK(!at->IsTryBlock()); |
| predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock()); |
| --pred; |
| // We need to re-run dominance information, as the exit block now has |
| // a new dominator. |
| rerun_dominance = true; |
| if (predecessor->GetLoopInformation() != nullptr) { |
| // The exit block and blocks post dominated by the exit block do not belong |
| // to any loop. Because we do not compute the post dominators, we need to re-run |
| // loop analysis to get the loop information correct. |
| rerun_loop_analysis = true; |
| } |
| } else { |
| if (last->IsReturnVoid()) { |
| DCHECK(return_value == nullptr); |
| DCHECK(return_value_phi == nullptr); |
| } else { |
| DCHECK(last->IsReturn()); |
| if (return_value_phi != nullptr) { |
| return_value_phi->AddInput(last->InputAt(0)); |
| } else if (return_value == nullptr) { |
| return_value = last->InputAt(0); |
| } else { |
| // There will be multiple returns. |
| return_value_phi = new (allocator) HPhi( |
| allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc()); |
| to->AddPhi(return_value_phi); |
| return_value_phi->AddInput(return_value); |
| return_value_phi->AddInput(last->InputAt(0)); |
| return_value = return_value_phi; |
| } |
| } |
| predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc())); |
| predecessor->RemoveInstruction(last); |
| } |
| } |
| if (rerun_loop_analysis) { |
| DCHECK(!outer_graph->HasIrreducibleLoops()) |
| << "Recomputing loop information in graphs with irreducible loops " |
| << "is unsupported, as it could lead to loop header changes"; |
| outer_graph->ClearLoopInformation(); |
| outer_graph->ClearDominanceInformation(); |
| outer_graph->BuildDominatorTree(); |
| } else if (rerun_dominance) { |
| outer_graph->ClearDominanceInformation(); |
| outer_graph->ComputeDominanceInformation(); |
| } |
| } |
| |
| // Walk over the entry block and: |
| // - Move constants from the entry block to the outer_graph's entry block, |
| // - Replace HParameterValue instructions with their real value. |
| // - Remove suspend checks, that hold an environment. |
| // We must do this after the other blocks have been inlined, otherwise ids of |
| // constants could overlap with the inner graph. |
| size_t parameter_index = 0; |
| for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* current = it.Current(); |
| HInstruction* replacement = nullptr; |
| if (current->IsNullConstant()) { |
| replacement = outer_graph->GetNullConstant(current->GetDexPc()); |
| } else if (current->IsIntConstant()) { |
| replacement = outer_graph->GetIntConstant( |
| current->AsIntConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsLongConstant()) { |
| replacement = outer_graph->GetLongConstant( |
| current->AsLongConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsFloatConstant()) { |
| replacement = outer_graph->GetFloatConstant( |
| current->AsFloatConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsDoubleConstant()) { |
| replacement = outer_graph->GetDoubleConstant( |
| current->AsDoubleConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsParameterValue()) { |
| if (kIsDebugBuild |
| && invoke->IsInvokeStaticOrDirect() |
| && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) { |
| // Ensure we do not use the last input of `invoke`, as it |
| // contains a clinit check which is not an actual argument. |
| size_t last_input_index = invoke->InputCount() - 1; |
| DCHECK(parameter_index != last_input_index); |
| } |
| replacement = invoke->InputAt(parameter_index++); |
| } else if (current->IsCurrentMethod()) { |
| replacement = outer_graph->GetCurrentMethod(); |
| } else { |
| DCHECK(current->IsGoto() || current->IsSuspendCheck()); |
| entry_block_->RemoveInstruction(current); |
| } |
| if (replacement != nullptr) { |
| current->ReplaceWith(replacement); |
| // If the current is the return value then we need to update the latter. |
| if (current == return_value) { |
| DCHECK_EQ(entry_block_, return_value->GetBlock()); |
| return_value = replacement; |
| } |
| } |
| } |
| |
| return return_value; |
| } |
| |
| /* |
| * Loop will be transformed to: |
| * old_pre_header |
| * | |
| * if_block |
| * / \ |
| * true_block false_block |
| * \ / |
| * new_pre_header |
| * | |
| * header |
| */ |
| void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) { |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* old_pre_header = header->GetDominator(); |
| |
| // Need extra block to avoid critical edge. |
| HBasicBlock* if_block = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* true_block = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* false_block = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| AddBlock(if_block); |
| AddBlock(true_block); |
| AddBlock(false_block); |
| AddBlock(new_pre_header); |
| |
| header->ReplacePredecessor(old_pre_header, new_pre_header); |
| old_pre_header->successors_.clear(); |
| old_pre_header->dominated_blocks_.clear(); |
| |
| old_pre_header->AddSuccessor(if_block); |
| if_block->AddSuccessor(true_block); // True successor |
| if_block->AddSuccessor(false_block); // False successor |
| true_block->AddSuccessor(new_pre_header); |
| false_block->AddSuccessor(new_pre_header); |
| |
| old_pre_header->dominated_blocks_.push_back(if_block); |
| if_block->SetDominator(old_pre_header); |
| if_block->dominated_blocks_.push_back(true_block); |
| true_block->SetDominator(if_block); |
| if_block->dominated_blocks_.push_back(false_block); |
| false_block->SetDominator(if_block); |
| if_block->dominated_blocks_.push_back(new_pre_header); |
| new_pre_header->SetDominator(if_block); |
| new_pre_header->dominated_blocks_.push_back(header); |
| header->SetDominator(new_pre_header); |
| |
| // Fix reverse post order. |
| size_t index_of_header = IndexOfElement(reverse_post_order_, header); |
| MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1); |
| reverse_post_order_[index_of_header++] = if_block; |
| reverse_post_order_[index_of_header++] = true_block; |
| reverse_post_order_[index_of_header++] = false_block; |
| reverse_post_order_[index_of_header++] = new_pre_header; |
| |
| // The pre_header can never be a back edge of a loop. |
| DCHECK((old_pre_header->GetLoopInformation() == nullptr) || |
| !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header)); |
| UpdateLoopAndTryInformationOfNewBlock( |
| if_block, old_pre_header, /* replace_if_back_edge= */ false); |
| UpdateLoopAndTryInformationOfNewBlock( |
| true_block, old_pre_header, /* replace_if_back_edge= */ false); |
| UpdateLoopAndTryInformationOfNewBlock( |
| false_block, old_pre_header, /* replace_if_back_edge= */ false); |
| UpdateLoopAndTryInformationOfNewBlock( |
| new_pre_header, old_pre_header, /* replace_if_back_edge= */ false); |
| } |
| |
| HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header, |
| HBasicBlock* body, |
| HBasicBlock* exit) { |
| DCHECK(header->IsLoopHeader()); |
| HLoopInformation* loop = header->GetLoopInformation(); |
| |
| // Add new loop blocks. |
| HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* new_header = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* new_body = new (allocator_) HBasicBlock(this, header->GetDexPc()); |
| AddBlock(new_pre_header); |
| AddBlock(new_header); |
| AddBlock(new_body); |
| |
| // Set up control flow. |
| header->ReplaceSuccessor(exit, new_pre_header); |
| new_pre_header->AddSuccessor(new_header); |
| new_header->AddSuccessor(exit); |
| new_header->AddSuccessor(new_body); |
| new_body->AddSuccessor(new_header); |
| |
| // Set up dominators. |
| header->ReplaceDominatedBlock(exit, new_pre_header); |
| new_pre_header->SetDominator(header); |
| new_pre_header->dominated_blocks_.push_back(new_header); |
| new_header->SetDominator(new_pre_header); |
| new_header->dominated_blocks_.push_back(new_body); |
| new_body->SetDominator(new_header); |
| new_header->dominated_blocks_.push_back(exit); |
| exit->SetDominator(new_header); |
| |
| // Fix reverse post order. |
| size_t index_of_header = IndexOfElement(reverse_post_order_, header); |
| MakeRoomFor(&reverse_post_order_, 2, index_of_header); |
| reverse_post_order_[++index_of_header] = new_pre_header; |
| reverse_post_order_[++index_of_header] = new_header; |
| size_t index_of_body = IndexOfElement(reverse_post_order_, body); |
| MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1); |
| reverse_post_order_[index_of_body] = new_body; |
| |
| // Add gotos and suspend check (client must add conditional in header). |
| new_pre_header->AddInstruction(new (allocator_) HGoto()); |
| HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(header->GetDexPc()); |
| new_header->AddInstruction(suspend_check); |
| new_body->AddInstruction(new (allocator_) HGoto()); |
| suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment( |
| loop->GetSuspendCheck()->GetEnvironment(), header); |
| |
| // Update loop information. |
| new_header->AddBackEdge(new_body); |
| new_header->GetLoopInformation()->SetSuspendCheck(suspend_check); |
| new_header->GetLoopInformation()->Populate(); |
| new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation()); // outward |
| HLoopInformationOutwardIterator it(*new_header); |
| for (it.Advance(); !it.Done(); it.Advance()) { |
| it.Current()->Add(new_pre_header); |
| it.Current()->Add(new_header); |
| it.Current()->Add(new_body); |
| } |
| return new_pre_header; |
| } |
| |
| static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (rti.IsValid()) { |
| DCHECK(upper_bound_rti.IsSupertypeOf(rti)) |
| << " upper_bound_rti: " << upper_bound_rti |
| << " rti: " << rti; |
| DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact()) |
| << " upper_bound_rti: " << upper_bound_rti |
| << " rti: " << rti; |
| } |
| } |
| |
| void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) { |
| if (kIsDebugBuild) { |
| DCHECK_EQ(GetType(), DataType::Type::kReference); |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName(); |
| if (IsBoundType()) { |
| // Having the test here spares us from making the method virtual just for |
| // the sake of a DCHECK. |
| CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound()); |
| } |
| } |
| reference_type_handle_ = rti.GetTypeHandle(); |
| SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact()); |
| } |
| |
| bool HBoundType::InstructionDataEquals(const HInstruction* other) const { |
| const HBoundType* other_bt = other->AsBoundType(); |
| ScopedObjectAccess soa(Thread::Current()); |
| return GetUpperBound().IsEqual(other_bt->GetUpperBound()) && |
| GetUpperCanBeNull() == other_bt->GetUpperCanBeNull() && |
| CanBeNull() == other_bt->CanBeNull(); |
| } |
| |
| void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) { |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(upper_bound.IsValid()); |
| DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once."; |
| CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound); |
| } |
| upper_bound_ = upper_bound; |
| SetPackedFlag<kFlagUpperCanBeNull>(can_be_null); |
| } |
| |
| ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) { |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(IsValidHandle(type_handle)); |
| if (!is_exact) { |
| DCHECK(!type_handle->CannotBeAssignedFromOtherTypes()) |
| << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed"; |
| } |
| } |
| return ReferenceTypeInfo(type_handle, is_exact); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) { |
| ScopedObjectAccess soa(Thread::Current()); |
| os << "[" |
| << " is_valid=" << rhs.IsValid() |
| << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get())) |
| << " is_exact=" << rhs.IsExact() |
| << " ]"; |
| return os; |
| } |
| |
| bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) { |
| // For now, assume that instructions in different blocks may use the |
| // environment. |
| // TODO: Use the control flow to decide if this is true. |
| if (GetBlock() != other->GetBlock()) { |
| return true; |
| } |
| |
| // We know that we are in the same block. Walk from 'this' to 'other', |
| // checking to see if there is any instruction with an environment. |
| HInstruction* current = this; |
| for (; current != other && current != nullptr; current = current->GetNext()) { |
| // This is a conservative check, as the instruction result may not be in |
| // the referenced environment. |
| if (current->HasEnvironment()) { |
| return true; |
| } |
| } |
| |
| // We should have been called with 'this' before 'other' in the block. |
| // Just confirm this. |
| DCHECK(current != nullptr); |
| return false; |
| } |
| |
| void HInvoke::SetIntrinsic(Intrinsics intrinsic, |
| IntrinsicNeedsEnvironment needs_env, |
| IntrinsicSideEffects side_effects, |
| IntrinsicExceptions exceptions) { |
| intrinsic_ = intrinsic; |
| IntrinsicOptimizations opt(this); |
| |
| // Adjust method's side effects from intrinsic table. |
| switch (side_effects) { |
| case kNoSideEffects: SetSideEffects(SideEffects::None()); break; |
| case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break; |
| case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break; |
| case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break; |
| } |
| |
| if (needs_env == kNoEnvironment) { |
| opt.SetDoesNotNeedEnvironment(); |
| } else { |
| // If we need an environment, that means there will be a call, which can trigger GC. |
| SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC())); |
| } |
| // Adjust method's exception status from intrinsic table. |
| SetCanThrow(exceptions == kCanThrow); |
| } |
| |
| bool HNewInstance::IsStringAlloc() const { |
| return GetEntrypoint() == kQuickAllocStringObject; |
| } |
| |
| bool HInvoke::NeedsEnvironment() const { |
| if (!IsIntrinsic()) { |
| return true; |
| } |
| IntrinsicOptimizations opt(*this); |
| return !opt.GetDoesNotNeedEnvironment(); |
| } |
| |
| const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const { |
| ArtMethod* caller = GetEnvironment()->GetMethod(); |
| ScopedObjectAccess soa(Thread::Current()); |
| // `caller` is null for a top-level graph representing a method whose declaring |
| // class was not resolved. |
| return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile(); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) { |
| switch (rhs) { |
| case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit: |
| return os << "explicit"; |
| case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit: |
| return os << "implicit"; |
| case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone: |
| return os << "none"; |
| default: |
| LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs); |
| UNREACHABLE(); |
| } |
| } |
| |
| bool HInvokeVirtual::CanDoImplicitNullCheckOn(HInstruction* obj) const { |
| if (obj != InputAt(0)) { |
| return false; |
| } |
| switch (GetIntrinsic()) { |
| case Intrinsics::kReferenceRefersTo: |
| return true; |
| default: |
| // TODO: Add implicit null checks in more intrinsics. |
| return false; |
| } |
| } |
| |
| bool HLoadClass::InstructionDataEquals(const HInstruction* other) const { |
| const HLoadClass* other_load_class = other->AsLoadClass(); |
| // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type |
| // names rather than type indexes. However, we shall also have to re-think the hash code. |
| if (type_index_ != other_load_class->type_index_ || |
| GetPackedFields() != other_load_class->GetPackedFields()) { |
| return false; |
| } |
| switch (GetLoadKind()) { |
| case LoadKind::kBootImageRelRo: |
| case LoadKind::kJitBootImageAddress: |
| case LoadKind::kJitTableAddress: { |
| ScopedObjectAccess soa(Thread::Current()); |
| return GetClass().Get() == other_load_class->GetClass().Get(); |
| } |
| default: |
| DCHECK(HasTypeReference(GetLoadKind())); |
| return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile()); |
| } |
| } |
| |
| bool HLoadString::InstructionDataEquals(const HInstruction* other) const { |
| const HLoadString* other_load_string = other->AsLoadString(); |
| // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings |
| // rather than their indexes. However, we shall also have to re-think the hash code. |
| if (string_index_ != other_load_string->string_index_ || |
| GetPackedFields() != other_load_string->GetPackedFields()) { |
| return false; |
| } |
| switch (GetLoadKind()) { |
| case LoadKind::kBootImageRelRo: |
| case LoadKind::kJitBootImageAddress: |
| case LoadKind::kJitTableAddress: { |
| ScopedObjectAccess soa(Thread::Current()); |
| return GetString().Get() == other_load_string->GetString().Get(); |
| } |
| default: |
| return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile()); |
| } |
| } |
| |
| void HInstruction::RemoveEnvironmentUsers() { |
| for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) { |
| HEnvironment* user = use.GetUser(); |
| user->SetRawEnvAt(use.GetIndex(), nullptr); |
| } |
| env_uses_.clear(); |
| } |
| |
| HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr) { |
| HInstruction* clone = instr->Clone(instr->GetBlock()->GetGraph()->GetAllocator()); |
| HBasicBlock* block = instr->GetBlock(); |
| |
| if (instr->IsPhi()) { |
| HPhi* phi = instr->AsPhi(); |
| DCHECK(!phi->HasEnvironment()); |
| HPhi* phi_clone = clone->AsPhi(); |
| block->ReplaceAndRemovePhiWith(phi, phi_clone); |
| } else { |
| block->ReplaceAndRemoveInstructionWith(instr, clone); |
| if (instr->HasEnvironment()) { |
| clone->CopyEnvironmentFrom(instr->GetEnvironment()); |
| HLoopInformation* loop_info = block->GetLoopInformation(); |
| if (instr->IsSuspendCheck() && loop_info != nullptr) { |
| loop_info->SetSuspendCheck(clone->AsSuspendCheck()); |
| } |
| } |
| } |
| return clone; |
| } |
| |
| // Returns an instruction with the opposite Boolean value from 'cond'. |
| HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) { |
| ArenaAllocator* allocator = GetAllocator(); |
| |
| if (cond->IsCondition() && |
| !DataType::IsFloatingPointType(cond->InputAt(0)->GetType())) { |
| // Can't reverse floating point conditions. We have to use HBooleanNot in that case. |
| HInstruction* lhs = cond->InputAt(0); |
| HInstruction* rhs = cond->InputAt(1); |
| HInstruction* replacement = nullptr; |
| switch (cond->AsCondition()->GetOppositeCondition()) { // get *opposite* |
| case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break; |
| case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break; |
| case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break; |
| case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break; |
| case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break; |
| case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break; |
| case kCondB: replacement = new (allocator) HBelow(lhs, rhs); break; |
| case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break; |
| case kCondA: replacement = new (allocator) HAbove(lhs, rhs); break; |
| case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break; |
| default: |
| LOG(FATAL) << "Unexpected condition"; |
| UNREACHABLE(); |
| } |
| cursor->GetBlock()->InsertInstructionBefore(replacement, cursor); |
| return replacement; |
| } else if (cond->IsIntConstant()) { |
| HIntConstant* int_const = cond->AsIntConstant(); |
| if (int_const->IsFalse()) { |
| return GetIntConstant(1); |
| } else { |
| DCHECK(int_const->IsTrue()) << int_const->GetValue(); |
| return GetIntConstant(0); |
| } |
| } else { |
| HInstruction* replacement = new (allocator) HBooleanNot(cond); |
| cursor->GetBlock()->InsertInstructionBefore(replacement, cursor); |
| return replacement; |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) { |
| os << "[" |
| << " source=" << rhs.GetSource() |
| << " destination=" << rhs.GetDestination() |
| << " type=" << rhs.GetType() |
| << " instruction="; |
| if (rhs.GetInstruction() != nullptr) { |
| os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId(); |
| } else { |
| os << "null"; |
| } |
| os << " ]"; |
| return os; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) { |
| switch (rhs) { |
| case TypeCheckKind::kUnresolvedCheck: |
| return os << "unresolved_check"; |
| case TypeCheckKind::kExactCheck: |
| return os << "exact_check"; |
| case TypeCheckKind::kClassHierarchyCheck: |
| return os << "class_hierarchy_check"; |
| case TypeCheckKind::kAbstractClassCheck: |
| return os << "abstract_class_check"; |
| case TypeCheckKind::kInterfaceCheck: |
| return os << "interface_check"; |
| case TypeCheckKind::kArrayObjectCheck: |
| return os << "array_object_check"; |
| case TypeCheckKind::kArrayCheck: |
| return os << "array_check"; |
| case TypeCheckKind::kBitstringCheck: |
| return os << "bitstring_check"; |
| default: |
| LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs); |
| UNREACHABLE(); |
| } |
| } |
| |
| // Check that intrinsic enum values fit within space set aside in ArtMethod modifier flags. |
| #define CHECK_INTRINSICS_ENUM_VALUES(Name, InvokeType, _, SideEffects, Exceptions, ...) \ |
| static_assert( \ |
| static_cast<uint32_t>(Intrinsics::k ## Name) <= (kAccIntrinsicBits >> CTZ(kAccIntrinsicBits)), \ |
| "Instrinsics enumeration space overflow."); |
| #include "intrinsics_list.h" |
| INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES) |
| #undef INTRINSICS_LIST |
| #undef CHECK_INTRINSICS_ENUM_VALUES |
| |
| // Function that returns whether an intrinsic needs an environment or not. |
| static inline IntrinsicNeedsEnvironment NeedsEnvironmentIntrinsic(Intrinsics i) { |
| switch (i) { |
| case Intrinsics::kNone: |
| return kNeedsEnvironment; // Non-sensical for intrinsic. |
| #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \ |
| case Intrinsics::k ## Name: \ |
| return NeedsEnv; |
| #include "intrinsics_list.h" |
| INTRINSICS_LIST(OPTIMIZING_INTRINSICS) |
| #undef INTRINSICS_LIST |
| #undef OPTIMIZING_INTRINSICS |
| } |
| return kNeedsEnvironment; |
| } |
| |
| // Function that returns whether an intrinsic has side effects. |
| static inline IntrinsicSideEffects GetSideEffectsIntrinsic(Intrinsics i) { |
| switch (i) { |
| case Intrinsics::kNone: |
| return kAllSideEffects; |
| #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \ |
| case Intrinsics::k ## Name: \ |
| return SideEffects; |
| #include "intrinsics_list.h" |
| INTRINSICS_LIST(OPTIMIZING_INTRINSICS) |
| #undef INTRINSICS_LIST |
| #undef OPTIMIZING_INTRINSICS |
| } |
| return kAllSideEffects; |
| } |
| |
| // Function that returns whether an intrinsic can throw exceptions. |
| static inline IntrinsicExceptions GetExceptionsIntrinsic(Intrinsics i) { |
| switch (i) { |
| case Intrinsics::kNone: |
| return kCanThrow; |
| #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \ |
| case Intrinsics::k ## Name: \ |
| return Exceptions; |
| #include "intrinsics_list.h" |
| INTRINSICS_LIST(OPTIMIZING_INTRINSICS) |
| #undef INTRINSICS_LIST |
| #undef OPTIMIZING_INTRINSICS |
| } |
| return kCanThrow; |
| } |
| |
| void HInvoke::SetResolvedMethod(ArtMethod* method) { |
| if (method != nullptr && method->IsIntrinsic()) { |
| Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic()); |
| SetIntrinsic(intrinsic, |
| NeedsEnvironmentIntrinsic(intrinsic), |
| GetSideEffectsIntrinsic(intrinsic), |
| GetExceptionsIntrinsic(intrinsic)); |
| } |
| resolved_method_ = method; |
| } |
| |
| bool IsGEZero(HInstruction* instruction) { |
| DCHECK(instruction != nullptr); |
| if (instruction->IsArrayLength()) { |
| return true; |
| } else if (instruction->IsMin()) { |
| // Instruction MIN(>=0, >=0) is >= 0. |
| return IsGEZero(instruction->InputAt(0)) && |
| IsGEZero(instruction->InputAt(1)); |
| } else if (instruction->IsAbs()) { |
| // Instruction ABS(>=0) is >= 0. |
| // NOTE: ABS(minint) = minint prevents assuming |
| // >= 0 without looking at the argument. |
| return IsGEZero(instruction->InputAt(0)); |
| } |
| int64_t value = -1; |
| return IsInt64AndGet(instruction, &value) && value >= 0; |
| } |
| |
| } // namespace art |