blob: c0e73bce0eddc774e9a31aefea90a1b1c9f18cd5 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Preparation and completion of hprof data generation. The output is
* written into two files and then combined. This is necessary because
* we generate some of the data (strings and classes) while we dump the
* heap, and some analysis tools require that the class and string data
* appear first.
*/
#include "hprof.h"
#include <cutils/open_memstream.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <time.h>
#include <time.h>
#include <unistd.h>
#include <set>
#include "base/logging.h"
#include "base/stringprintf.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "debugger.h"
#include "globals.h"
#include "heap.h"
#include "object.h"
#include "object_utils.h"
#include "os.h"
#include "safe_map.h"
#include "scoped_thread_state_change.h"
#include "gc/space.h"
#include "thread_list.h"
namespace art {
namespace hprof {
#define UNIQUE_ERROR -((((uintptr_t)__func__) << 16 | __LINE__) & (0x7fffffff))
#define HPROF_TIME 0
#define HPROF_NULL_STACK_TRACE 0
#define HPROF_NULL_THREAD 0
#define U2_TO_BUF_BE(buf, offset, value) \
do { \
unsigned char* buf_ = (unsigned char*)(buf); \
int offset_ = (int)(offset); \
uint16_t value_ = (uint16_t)(value); \
buf_[offset_ + 0] = (unsigned char)(value_ >> 8); \
buf_[offset_ + 1] = (unsigned char)(value_ ); \
} while (0)
#define U4_TO_BUF_BE(buf, offset, value) \
do { \
unsigned char* buf_ = (unsigned char*)(buf); \
int offset_ = (int)(offset); \
uint32_t value_ = (uint32_t)(value); \
buf_[offset_ + 0] = (unsigned char)(value_ >> 24); \
buf_[offset_ + 1] = (unsigned char)(value_ >> 16); \
buf_[offset_ + 2] = (unsigned char)(value_ >> 8); \
buf_[offset_ + 3] = (unsigned char)(value_ ); \
} while (0)
#define U8_TO_BUF_BE(buf, offset, value) \
do { \
unsigned char* buf_ = (unsigned char*)(buf); \
int offset_ = (int)(offset); \
uint64_t value_ = (uint64_t)(value); \
buf_[offset_ + 0] = (unsigned char)(value_ >> 56); \
buf_[offset_ + 1] = (unsigned char)(value_ >> 48); \
buf_[offset_ + 2] = (unsigned char)(value_ >> 40); \
buf_[offset_ + 3] = (unsigned char)(value_ >> 32); \
buf_[offset_ + 4] = (unsigned char)(value_ >> 24); \
buf_[offset_ + 5] = (unsigned char)(value_ >> 16); \
buf_[offset_ + 6] = (unsigned char)(value_ >> 8); \
buf_[offset_ + 7] = (unsigned char)(value_ ); \
} while (0)
enum HprofTag {
HPROF_TAG_STRING = 0x01,
HPROF_TAG_LOAD_CLASS = 0x02,
HPROF_TAG_UNLOAD_CLASS = 0x03,
HPROF_TAG_STACK_FRAME = 0x04,
HPROF_TAG_STACK_TRACE = 0x05,
HPROF_TAG_ALLOC_SITES = 0x06,
HPROF_TAG_HEAP_SUMMARY = 0x07,
HPROF_TAG_START_THREAD = 0x0A,
HPROF_TAG_END_THREAD = 0x0B,
HPROF_TAG_HEAP_DUMP = 0x0C,
HPROF_TAG_HEAP_DUMP_SEGMENT = 0x1C,
HPROF_TAG_HEAP_DUMP_END = 0x2C,
HPROF_TAG_CPU_SAMPLES = 0x0D,
HPROF_TAG_CONTROL_SETTINGS = 0x0E,
};
// Values for the first byte of HEAP_DUMP and HEAP_DUMP_SEGMENT records:
enum HprofHeapTag {
// Traditional.
HPROF_ROOT_UNKNOWN = 0xFF,
HPROF_ROOT_JNI_GLOBAL = 0x01,
HPROF_ROOT_JNI_LOCAL = 0x02,
HPROF_ROOT_JAVA_FRAME = 0x03,
HPROF_ROOT_NATIVE_STACK = 0x04,
HPROF_ROOT_STICKY_CLASS = 0x05,
HPROF_ROOT_THREAD_BLOCK = 0x06,
HPROF_ROOT_MONITOR_USED = 0x07,
HPROF_ROOT_THREAD_OBJECT = 0x08,
HPROF_CLASS_DUMP = 0x20,
HPROF_INSTANCE_DUMP = 0x21,
HPROF_OBJECT_ARRAY_DUMP = 0x22,
HPROF_PRIMITIVE_ARRAY_DUMP = 0x23,
// Android.
HPROF_HEAP_DUMP_INFO = 0xfe,
HPROF_ROOT_INTERNED_STRING = 0x89,
HPROF_ROOT_FINALIZING = 0x8a, // Obsolete.
HPROF_ROOT_DEBUGGER = 0x8b,
HPROF_ROOT_REFERENCE_CLEANUP = 0x8c, // Obsolete.
HPROF_ROOT_VM_INTERNAL = 0x8d,
HPROF_ROOT_JNI_MONITOR = 0x8e,
HPROF_UNREACHABLE = 0x90, // Obsolete.
HPROF_PRIMITIVE_ARRAY_NODATA_DUMP = 0xc3, // Obsolete.
};
enum HprofHeapId {
HPROF_HEAP_DEFAULT = 0,
HPROF_HEAP_ZYGOTE = 'Z',
HPROF_HEAP_APP = 'A'
};
enum HprofBasicType {
hprof_basic_object = 2,
hprof_basic_boolean = 4,
hprof_basic_char = 5,
hprof_basic_float = 6,
hprof_basic_double = 7,
hprof_basic_byte = 8,
hprof_basic_short = 9,
hprof_basic_int = 10,
hprof_basic_long = 11,
};
typedef uint32_t HprofId;
typedef HprofId HprofStringId;
typedef HprofId HprofObjectId;
typedef HprofId HprofClassObjectId;
typedef std::set<Class*> ClassSet;
typedef std::set<Class*>::iterator ClassSetIterator;
typedef SafeMap<std::string, size_t> StringMap;
typedef SafeMap<std::string, size_t>::iterator StringMapIterator;
// Represents a top-level hprof record, whose serialized format is:
// U1 TAG: denoting the type of the record
// U4 TIME: number of microseconds since the time stamp in the header
// U4 LENGTH: number of bytes that follow this uint32_t field and belong to this record
// U1* BODY: as many bytes as specified in the above uint32_t field
class HprofRecord {
public:
HprofRecord() {
dirty_ = false;
alloc_length_ = 128;
body_ = reinterpret_cast<unsigned char*>(malloc(alloc_length_));
fp_ = NULL;
}
~HprofRecord() {
free(body_);
}
int StartNewRecord(FILE* fp, uint8_t tag, uint32_t time) {
int rc = Flush();
if (rc != 0) {
return rc;
}
fp_ = fp;
tag_ = tag;
time_ = time;
length_ = 0;
dirty_ = true;
return 0;
}
int Flush() {
if (dirty_) {
unsigned char headBuf[sizeof(uint8_t) + 2 * sizeof(uint32_t)];
headBuf[0] = tag_;
U4_TO_BUF_BE(headBuf, 1, time_);
U4_TO_BUF_BE(headBuf, 5, length_);
int nb = fwrite(headBuf, 1, sizeof(headBuf), fp_);
if (nb != sizeof(headBuf)) {
return UNIQUE_ERROR;
}
nb = fwrite(body_, 1, length_, fp_);
if (nb != (int)length_) {
return UNIQUE_ERROR;
}
dirty_ = false;
}
// TODO if we used less than half (or whatever) of allocLen, shrink the buffer.
return 0;
}
int AddU1(uint8_t value) {
int err = GuaranteeRecordAppend(1);
if (err != 0) {
return err;
}
body_[length_++] = value;
return 0;
}
int AddU2(uint16_t value) {
return AddU2List(&value, 1);
}
int AddU4(uint32_t value) {
return AddU4List(&value, 1);
}
int AddU8(uint64_t value) {
return AddU8List(&value, 1);
}
int AddId(HprofObjectId value) {
return AddU4((uint32_t) value);
}
int AddU1List(const uint8_t* values, size_t numValues) {
int err = GuaranteeRecordAppend(numValues);
if (err != 0) {
return err;
}
memcpy(body_ + length_, values, numValues);
length_ += numValues;
return 0;
}
int AddU2List(const uint16_t* values, size_t numValues) {
int err = GuaranteeRecordAppend(numValues * 2);
if (err != 0) {
return err;
}
unsigned char* insert = body_ + length_;
for (size_t i = 0; i < numValues; ++i) {
U2_TO_BUF_BE(insert, 0, *values++);
insert += sizeof(*values);
}
length_ += numValues * 2;
return 0;
}
int AddU4List(const uint32_t* values, size_t numValues) {
int err = GuaranteeRecordAppend(numValues * 4);
if (err != 0) {
return err;
}
unsigned char* insert = body_ + length_;
for (size_t i = 0; i < numValues; ++i) {
U4_TO_BUF_BE(insert, 0, *values++);
insert += sizeof(*values);
}
length_ += numValues * 4;
return 0;
}
void UpdateU4(size_t offset, uint32_t new_value) {
U4_TO_BUF_BE(body_, offset, new_value);
}
int AddU8List(const uint64_t* values, size_t numValues) {
int err = GuaranteeRecordAppend(numValues * 8);
if (err != 0) {
return err;
}
unsigned char* insert = body_ + length_;
for (size_t i = 0; i < numValues; ++i) {
U8_TO_BUF_BE(insert, 0, *values++);
insert += sizeof(*values);
}
length_ += numValues * 8;
return 0;
}
int AddIdList(const HprofObjectId* values, size_t numValues) {
return AddU4List((const uint32_t*) values, numValues);
}
int AddUtf8String(const char* str) {
// The terminating NUL character is NOT written.
return AddU1List((const uint8_t*)str, strlen(str));
}
size_t Size() const {
return length_;
}
private:
int GuaranteeRecordAppend(size_t nmore) {
size_t minSize = length_ + nmore;
if (minSize > alloc_length_) {
size_t newAllocLen = alloc_length_ * 2;
if (newAllocLen < minSize) {
newAllocLen = alloc_length_ + nmore + nmore/2;
}
unsigned char* newBody = (unsigned char*)realloc(body_, newAllocLen);
if (newBody != NULL) {
body_ = newBody;
alloc_length_ = newAllocLen;
} else {
// TODO: set an error flag so future ops will fail
return UNIQUE_ERROR;
}
}
CHECK_LE(length_ + nmore, alloc_length_);
return 0;
}
size_t alloc_length_;
unsigned char* body_;
FILE* fp_;
uint8_t tag_;
uint32_t time_;
size_t length_;
bool dirty_;
DISALLOW_COPY_AND_ASSIGN(HprofRecord);
};
class Hprof {
public:
Hprof(const char* output_filename, int fd, bool direct_to_ddms)
: filename_(output_filename),
fd_(fd),
direct_to_ddms_(direct_to_ddms),
start_ns_(NanoTime()),
current_record_(),
gc_thread_serial_number_(0),
gc_scan_state_(0),
current_heap_(HPROF_HEAP_DEFAULT),
objects_in_segment_(0),
header_fp_(NULL),
header_data_ptr_(NULL),
header_data_size_(0),
body_fp_(NULL),
body_data_ptr_(NULL),
body_data_size_(0),
next_string_id_(0x400000) {
LOG(INFO) << "hprof: heap dump \"" << filename_ << "\" starting...";
header_fp_ = open_memstream(&header_data_ptr_, &header_data_size_);
if (header_fp_ == NULL) {
PLOG(FATAL) << "header open_memstream failed";
}
body_fp_ = open_memstream(&body_data_ptr_, &body_data_size_);
if (body_fp_ == NULL) {
PLOG(FATAL) << "body open_memstream failed";
}
}
~Hprof() {
if (header_fp_ != NULL) {
fclose(header_fp_);
}
if (body_fp_ != NULL) {
fclose(body_fp_);
}
free(header_data_ptr_);
free(body_data_ptr_);
}
void Dump()
EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) {
// Walk the roots and the heap.
current_record_.StartNewRecord(body_fp_, HPROF_TAG_HEAP_DUMP_SEGMENT, HPROF_TIME);
Runtime::Current()->VisitRoots(RootVisitor, this);
Thread* self = Thread::Current();
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
Runtime::Current()->GetHeap()->FlushAllocStack();
}
{
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
Runtime::Current()->GetHeap()->GetLiveBitmap()->Walk(HeapBitmapCallback, this);
}
current_record_.StartNewRecord(body_fp_, HPROF_TAG_HEAP_DUMP_END, HPROF_TIME);
current_record_.Flush();
fflush(body_fp_);
// Write the header.
WriteFixedHeader();
// Write the string and class tables, and any stack traces, to the header.
// (jhat requires that these appear before any of the data in the body that refers to them.)
WriteStringTable();
WriteClassTable();
WriteStackTraces();
current_record_.Flush();
fflush(header_fp_);
bool okay = true;
if (direct_to_ddms_) {
// Send the data off to DDMS.
iovec iov[2];
iov[0].iov_base = header_data_ptr_;
iov[0].iov_len = header_data_size_;
iov[1].iov_base = body_data_ptr_;
iov[1].iov_len = body_data_size_;
Dbg::DdmSendChunkV(CHUNK_TYPE("HPDS"), iov, 2);
} else {
// Where exactly are we writing to?
int out_fd;
if (fd_ >= 0) {
out_fd = dup(fd_);
if (out_fd < 0) {
self->ThrowNewExceptionF("Ljava/lang/RuntimeException;",
"Couldn't dump heap; dup(%d) failed: %s", fd_, strerror(errno));
return;
}
} else {
out_fd = open(filename_.c_str(), O_WRONLY|O_CREAT|O_TRUNC, 0644);
if (out_fd < 0) {
self->ThrowNewExceptionF("Ljava/lang/RuntimeException;",
"Couldn't dump heap; open(\"%s\") failed: %s", filename_.c_str(),
strerror(errno));
return;
}
}
UniquePtr<File> file(new File(out_fd, filename_));
okay = file->WriteFully(header_data_ptr_, header_data_size_) &&
file->WriteFully(body_data_ptr_, body_data_size_);
if (!okay) {
std::string msg(StringPrintf("Couldn't dump heap; writing \"%s\" failed: %s",
filename_.c_str(), strerror(errno)));
self->ThrowNewException("Ljava/lang/RuntimeException;", msg.c_str());
LOG(ERROR) << msg;
}
}
// Throw out a log message for the benefit of "runhat".
if (okay) {
uint64_t duration = NanoTime() - start_ns_;
LOG(INFO) << "hprof: heap dump completed ("
<< PrettySize(header_data_size_ + body_data_size_ + 1023)
<< ") in " << PrettyDuration(duration);
}
}
private:
static void RootVisitor(const Object* obj, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(arg != NULL);
Hprof* hprof = reinterpret_cast<Hprof*>(arg);
hprof->VisitRoot(obj);
}
static void HeapBitmapCallback(Object* obj, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(obj != NULL);
CHECK(arg != NULL);
Hprof* hprof = reinterpret_cast<Hprof*>(arg);
hprof->DumpHeapObject(obj);
}
void VisitRoot(const Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
int DumpHeapObject(Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void Finish() {
}
int WriteClassTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
HprofRecord* rec = &current_record_;
uint32_t nextSerialNumber = 1;
for (ClassSetIterator it = classes_.begin(); it != classes_.end(); ++it) {
const Class* c = *it;
CHECK(c != NULL);
int err = current_record_.StartNewRecord(header_fp_, HPROF_TAG_LOAD_CLASS, HPROF_TIME);
if (err != 0) {
return err;
}
// LOAD CLASS format:
// U4: class serial number (always > 0)
// ID: class object ID. We use the address of the class object structure as its ID.
// U4: stack trace serial number
// ID: class name string ID
rec->AddU4(nextSerialNumber++);
rec->AddId((HprofClassObjectId) c);
rec->AddU4(HPROF_NULL_STACK_TRACE);
rec->AddId(LookupClassNameId(c));
}
return 0;
}
int WriteStringTable() {
HprofRecord* rec = &current_record_;
for (StringMapIterator it = strings_.begin(); it != strings_.end(); ++it) {
std::string string((*it).first);
size_t id = (*it).second;
int err = current_record_.StartNewRecord(header_fp_, HPROF_TAG_STRING, HPROF_TIME);
if (err != 0) {
return err;
}
// STRING format:
// ID: ID for this string
// U1*: UTF8 characters for string (NOT NULL terminated)
// (the record format encodes the length)
err = rec->AddU4(id);
if (err != 0) {
return err;
}
err = rec->AddUtf8String(string.c_str());
if (err != 0) {
return err;
}
}
return 0;
}
void StartNewHeapDumpSegment() {
// This flushes the old segment and starts a new one.
current_record_.StartNewRecord(body_fp_, HPROF_TAG_HEAP_DUMP_SEGMENT, HPROF_TIME);
objects_in_segment_ = 0;
// Starting a new HEAP_DUMP resets the heap to default.
current_heap_ = HPROF_HEAP_DEFAULT;
}
int MarkRootObject(const Object* obj, jobject jniObj);
HprofClassObjectId LookupClassId(Class* c)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (c == NULL) {
// c is the superclass of java.lang.Object or a primitive
return (HprofClassObjectId)0;
}
std::pair<ClassSetIterator, bool> result = classes_.insert(c);
const Class* present = *result.first;
// Make sure that we've assigned a string ID for this class' name
LookupClassNameId(c);
CHECK_EQ(present, c);
return (HprofStringId) present;
}
HprofStringId LookupStringId(String* string) {
return LookupStringId(string->ToModifiedUtf8());
}
HprofStringId LookupStringId(const char* string) {
return LookupStringId(std::string(string));
}
HprofStringId LookupStringId(const std::string& string) {
StringMapIterator it = strings_.find(string);
if (it != strings_.end()) {
return it->second;
}
HprofStringId id = next_string_id_++;
strings_.Put(string, id);
return id;
}
HprofStringId LookupClassNameId(const Class* c)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return LookupStringId(PrettyDescriptor(c));
}
void WriteFixedHeader() {
char magic[] = "JAVA PROFILE 1.0.3";
unsigned char buf[4];
// Write the file header.
// U1: NUL-terminated magic string.
fwrite(magic, 1, sizeof(magic), header_fp_);
// U4: size of identifiers. We're using addresses as IDs, so make sure a pointer fits.
U4_TO_BUF_BE(buf, 0, sizeof(void*));
fwrite(buf, 1, sizeof(uint32_t), header_fp_);
// The current time, in milliseconds since 0:00 GMT, 1/1/70.
timeval now;
uint64_t nowMs;
if (gettimeofday(&now, NULL) < 0) {
nowMs = 0;
} else {
nowMs = (uint64_t)now.tv_sec * 1000 + now.tv_usec / 1000;
}
// U4: high word of the 64-bit time.
U4_TO_BUF_BE(buf, 0, (uint32_t)(nowMs >> 32));
fwrite(buf, 1, sizeof(uint32_t), header_fp_);
// U4: low word of the 64-bit time.
U4_TO_BUF_BE(buf, 0, (uint32_t)(nowMs & 0xffffffffULL));
fwrite(buf, 1, sizeof(uint32_t), header_fp_); //xxx fix the time
}
void WriteStackTraces() {
// Write a dummy stack trace record so the analysis tools don't freak out.
current_record_.StartNewRecord(header_fp_, HPROF_TAG_STACK_TRACE, HPROF_TIME);
current_record_.AddU4(HPROF_NULL_STACK_TRACE);
current_record_.AddU4(HPROF_NULL_THREAD);
current_record_.AddU4(0); // no frames
}
// If direct_to_ddms_ is set, "filename_" and "fd" will be ignored.
// Otherwise, "filename_" must be valid, though if "fd" >= 0 it will
// only be used for debug messages.
std::string filename_;
int fd_;
bool direct_to_ddms_;
uint64_t start_ns_;
HprofRecord current_record_;
uint32_t gc_thread_serial_number_;
uint8_t gc_scan_state_;
HprofHeapId current_heap_; // Which heap we're currently dumping.
size_t objects_in_segment_;
FILE* header_fp_;
char* header_data_ptr_;
size_t header_data_size_;
FILE* body_fp_;
char* body_data_ptr_;
size_t body_data_size_;
ClassSet classes_;
size_t next_string_id_;
StringMap strings_;
DISALLOW_COPY_AND_ASSIGN(Hprof);
};
#define OBJECTS_PER_SEGMENT ((size_t)128)
#define BYTES_PER_SEGMENT ((size_t)4096)
// The static field-name for the synthetic object generated to account
// for class static overhead.
#define STATIC_OVERHEAD_NAME "$staticOverhead"
// The ID for the synthetic object generated to account for class static overhead.
#define CLASS_STATICS_ID(c) ((HprofObjectId)(((uint32_t)(c)) | 1))
static HprofBasicType SignatureToBasicTypeAndSize(const char* sig, size_t* sizeOut) {
char c = sig[0];
HprofBasicType ret;
size_t size;
switch (c) {
case '[':
case 'L': ret = hprof_basic_object; size = 4; break;
case 'Z': ret = hprof_basic_boolean; size = 1; break;
case 'C': ret = hprof_basic_char; size = 2; break;
case 'F': ret = hprof_basic_float; size = 4; break;
case 'D': ret = hprof_basic_double; size = 8; break;
case 'B': ret = hprof_basic_byte; size = 1; break;
case 'S': ret = hprof_basic_short; size = 2; break;
default: CHECK(false);
case 'I': ret = hprof_basic_int; size = 4; break;
case 'J': ret = hprof_basic_long; size = 8; break;
}
if (sizeOut != NULL) {
*sizeOut = size;
}
return ret;
}
static HprofBasicType PrimitiveToBasicTypeAndSize(Primitive::Type prim, size_t* sizeOut) {
HprofBasicType ret;
size_t size;
switch (prim) {
case Primitive::kPrimBoolean: ret = hprof_basic_boolean; size = 1; break;
case Primitive::kPrimChar: ret = hprof_basic_char; size = 2; break;
case Primitive::kPrimFloat: ret = hprof_basic_float; size = 4; break;
case Primitive::kPrimDouble: ret = hprof_basic_double; size = 8; break;
case Primitive::kPrimByte: ret = hprof_basic_byte; size = 1; break;
case Primitive::kPrimShort: ret = hprof_basic_short; size = 2; break;
default: CHECK(false);
case Primitive::kPrimInt: ret = hprof_basic_int; size = 4; break;
case Primitive::kPrimLong: ret = hprof_basic_long; size = 8; break;
}
if (sizeOut != NULL) {
*sizeOut = size;
}
return ret;
}
// Always called when marking objects, but only does
// something when ctx->gc_scan_state_ is non-zero, which is usually
// only true when marking the root set or unreachable
// objects. Used to add rootset references to obj.
int Hprof::MarkRootObject(const Object* obj, jobject jniObj) {
HprofRecord* rec = &current_record_;
HprofHeapTag heapTag = (HprofHeapTag)gc_scan_state_;
if (heapTag == 0) {
return 0;
}
if (objects_in_segment_ >= OBJECTS_PER_SEGMENT || rec->Size() >= BYTES_PER_SEGMENT) {
StartNewHeapDumpSegment();
}
switch (heapTag) {
// ID: object ID
case HPROF_ROOT_UNKNOWN:
case HPROF_ROOT_STICKY_CLASS:
case HPROF_ROOT_MONITOR_USED:
case HPROF_ROOT_INTERNED_STRING:
case HPROF_ROOT_DEBUGGER:
case HPROF_ROOT_VM_INTERNAL:
rec->AddU1(heapTag);
rec->AddId((HprofObjectId)obj);
break;
// ID: object ID
// ID: JNI global ref ID
case HPROF_ROOT_JNI_GLOBAL:
rec->AddU1(heapTag);
rec->AddId((HprofObjectId)obj);
rec->AddId((HprofId)jniObj);
break;
// ID: object ID
// U4: thread serial number
// U4: frame number in stack trace (-1 for empty)
case HPROF_ROOT_JNI_LOCAL:
case HPROF_ROOT_JNI_MONITOR:
case HPROF_ROOT_JAVA_FRAME:
rec->AddU1(heapTag);
rec->AddId((HprofObjectId)obj);
rec->AddU4(gc_thread_serial_number_);
rec->AddU4((uint32_t)-1);
break;
// ID: object ID
// U4: thread serial number
case HPROF_ROOT_NATIVE_STACK:
case HPROF_ROOT_THREAD_BLOCK:
rec->AddU1(heapTag);
rec->AddId((HprofObjectId)obj);
rec->AddU4(gc_thread_serial_number_);
break;
// ID: thread object ID
// U4: thread serial number
// U4: stack trace serial number
case HPROF_ROOT_THREAD_OBJECT:
rec->AddU1(heapTag);
rec->AddId((HprofObjectId)obj);
rec->AddU4(gc_thread_serial_number_);
rec->AddU4((uint32_t)-1); //xxx
break;
case HPROF_CLASS_DUMP:
case HPROF_INSTANCE_DUMP:
case HPROF_OBJECT_ARRAY_DUMP:
case HPROF_PRIMITIVE_ARRAY_DUMP:
case HPROF_HEAP_DUMP_INFO:
case HPROF_PRIMITIVE_ARRAY_NODATA_DUMP:
// Ignored.
break;
case HPROF_ROOT_FINALIZING:
case HPROF_ROOT_REFERENCE_CLEANUP:
case HPROF_UNREACHABLE:
LOG(FATAL) << "obsolete tag " << static_cast<int>(heapTag);
break;
}
++objects_in_segment_;
return 0;
}
static int StackTraceSerialNumber(const Object* /*obj*/) {
return HPROF_NULL_STACK_TRACE;
}
int Hprof::DumpHeapObject(Object* obj) {
HprofRecord* rec = &current_record_;
HprofHeapId desiredHeap = false ? HPROF_HEAP_ZYGOTE : HPROF_HEAP_APP; // TODO: zygote objects?
if (objects_in_segment_ >= OBJECTS_PER_SEGMENT || rec->Size() >= BYTES_PER_SEGMENT) {
StartNewHeapDumpSegment();
}
if (desiredHeap != current_heap_) {
HprofStringId nameId;
// This object is in a different heap than the current one.
// Emit a HEAP_DUMP_INFO tag to change heaps.
rec->AddU1(HPROF_HEAP_DUMP_INFO);
rec->AddU4((uint32_t)desiredHeap); // uint32_t: heap id
switch (desiredHeap) {
case HPROF_HEAP_APP:
nameId = LookupStringId("app");
break;
case HPROF_HEAP_ZYGOTE:
nameId = LookupStringId("zygote");
break;
default:
// Internal error
LOG(ERROR) << "Unexpected desiredHeap";
nameId = LookupStringId("<ILLEGAL>");
break;
}
rec->AddId(nameId);
current_heap_ = desiredHeap;
}
Class* c = obj->GetClass();
if (c == NULL) {
// This object will bother HprofReader, because it has a NULL
// class, so just don't dump it. It could be
// gDvm.unlinkedJavaLangClass or it could be an object just
// allocated which hasn't been initialized yet.
} else {
if (obj->IsClass()) {
Class* thisClass = obj->AsClass();
// obj is a ClassObject.
size_t sFieldCount = thisClass->NumStaticFields();
if (sFieldCount != 0) {
int byteLength = sFieldCount*sizeof(JValue); // TODO bogus; fields are packed
// Create a byte array to reflect the allocation of the
// StaticField array at the end of this class.
rec->AddU1(HPROF_PRIMITIVE_ARRAY_DUMP);
rec->AddId(CLASS_STATICS_ID(obj));
rec->AddU4(StackTraceSerialNumber(obj));
rec->AddU4(byteLength);
rec->AddU1(hprof_basic_byte);
for (int i = 0; i < byteLength; ++i) {
rec->AddU1(0);
}
}
rec->AddU1(HPROF_CLASS_DUMP);
rec->AddId(LookupClassId(thisClass));
rec->AddU4(StackTraceSerialNumber(thisClass));
rec->AddId(LookupClassId(thisClass->GetSuperClass()));
rec->AddId((HprofObjectId)thisClass->GetClassLoader());
rec->AddId((HprofObjectId)0); // no signer
rec->AddId((HprofObjectId)0); // no prot domain
rec->AddId((HprofId)0); // reserved
rec->AddId((HprofId)0); // reserved
if (thisClass->IsClassClass()) {
// ClassObjects have their static fields appended, so aren't all the same size.
// But they're at least this size.
rec->AddU4(sizeof(Class)); // instance size
} else if (thisClass->IsArrayClass() || thisClass->IsPrimitive()) {
rec->AddU4(0);
} else {
rec->AddU4(thisClass->GetObjectSize()); // instance size
}
rec->AddU2(0); // empty const pool
FieldHelper fh;
// Static fields
if (sFieldCount == 0) {
rec->AddU2((uint16_t)0);
} else {
rec->AddU2((uint16_t)(sFieldCount+1));
rec->AddId(LookupStringId(STATIC_OVERHEAD_NAME));
rec->AddU1(hprof_basic_object);
rec->AddId(CLASS_STATICS_ID(obj));
for (size_t i = 0; i < sFieldCount; ++i) {
Field* f = thisClass->GetStaticField(i);
fh.ChangeField(f);
size_t size;
HprofBasicType t = SignatureToBasicTypeAndSize(fh.GetTypeDescriptor(), &size);
rec->AddId(LookupStringId(fh.GetName()));
rec->AddU1(t);
if (size == 1) {
rec->AddU1(static_cast<uint8_t>(f->Get32(NULL)));
} else if (size == 2) {
rec->AddU2(static_cast<uint16_t>(f->Get32(NULL)));
} else if (size == 4) {
rec->AddU4(f->Get32(NULL));
} else if (size == 8) {
rec->AddU8(f->Get64(NULL));
} else {
CHECK(false);
}
}
}
// Instance fields for this class (no superclass fields)
int iFieldCount = thisClass->IsObjectClass() ? 0 : thisClass->NumInstanceFields();
rec->AddU2((uint16_t)iFieldCount);
for (int i = 0; i < iFieldCount; ++i) {
Field* f = thisClass->GetInstanceField(i);
fh.ChangeField(f);
HprofBasicType t = SignatureToBasicTypeAndSize(fh.GetTypeDescriptor(), NULL);
rec->AddId(LookupStringId(fh.GetName()));
rec->AddU1(t);
}
} else if (c->IsArrayClass()) {
const Array* aobj = obj->AsArray();
uint32_t length = aobj->GetLength();
if (obj->IsObjectArray()) {
// obj is an object array.
rec->AddU1(HPROF_OBJECT_ARRAY_DUMP);
rec->AddId((HprofObjectId)obj);
rec->AddU4(StackTraceSerialNumber(obj));
rec->AddU4(length);
rec->AddId(LookupClassId(c));
// Dump the elements, which are always objects or NULL.
rec->AddIdList((const HprofObjectId*)aobj->GetRawData(sizeof(Object*)), length);
} else {
size_t size;
HprofBasicType t = PrimitiveToBasicTypeAndSize(c->GetComponentType()->GetPrimitiveType(), &size);
// obj is a primitive array.
rec->AddU1(HPROF_PRIMITIVE_ARRAY_DUMP);
rec->AddId((HprofObjectId)obj);
rec->AddU4(StackTraceSerialNumber(obj));
rec->AddU4(length);
rec->AddU1(t);
// Dump the raw, packed element values.
if (size == 1) {
rec->AddU1List((const uint8_t*)aobj->GetRawData(sizeof(uint8_t)), length);
} else if (size == 2) {
rec->AddU2List((const uint16_t*)(void*)aobj->GetRawData(sizeof(uint16_t)), length);
} else if (size == 4) {
rec->AddU4List((const uint32_t*)(void*)aobj->GetRawData(sizeof(uint32_t)), length);
} else if (size == 8) {
rec->AddU8List((const uint64_t*)aobj->GetRawData(sizeof(uint64_t)), length);
}
}
} else {
// obj is an instance object.
rec->AddU1(HPROF_INSTANCE_DUMP);
rec->AddId((HprofObjectId)obj);
rec->AddU4(StackTraceSerialNumber(obj));
rec->AddId(LookupClassId(c));
// Reserve some space for the length of the instance data, which we won't
// know until we're done writing it.
size_t size_patch_offset = rec->Size();
rec->AddU4(0x77777777);
// Write the instance data; fields for this class, followed by super class fields,
// and so on. Don't write the klass or monitor fields of Object.class.
const Class* sclass = c;
FieldHelper fh;
while (!sclass->IsObjectClass()) {
int ifieldCount = sclass->NumInstanceFields();
for (int i = 0; i < ifieldCount; ++i) {
Field* f = sclass->GetInstanceField(i);
fh.ChangeField(f);
size_t size;
SignatureToBasicTypeAndSize(fh.GetTypeDescriptor(), &size);
if (size == 1) {
rec->AddU1(f->Get32(obj));
} else if (size == 2) {
rec->AddU2(f->Get32(obj));
} else if (size == 4) {
rec->AddU4(f->Get32(obj));
} else if (size == 8) {
rec->AddU8(f->Get64(obj));
} else {
CHECK(false);
}
}
sclass = sclass->GetSuperClass();
}
// Patch the instance field length.
rec->UpdateU4(size_patch_offset, rec->Size() - (size_patch_offset + 4));
}
}
++objects_in_segment_;
return 0;
}
void Hprof::VisitRoot(const Object* obj) {
uint32_t threadId = 0; // TODO
/*RootType*/ size_t type = 0; // TODO
static const HprofHeapTag xlate[] = {
HPROF_ROOT_UNKNOWN,
HPROF_ROOT_JNI_GLOBAL,
HPROF_ROOT_JNI_LOCAL,
HPROF_ROOT_JAVA_FRAME,
HPROF_ROOT_NATIVE_STACK,
HPROF_ROOT_STICKY_CLASS,
HPROF_ROOT_THREAD_BLOCK,
HPROF_ROOT_MONITOR_USED,
HPROF_ROOT_THREAD_OBJECT,
HPROF_ROOT_INTERNED_STRING,
HPROF_ROOT_FINALIZING,
HPROF_ROOT_DEBUGGER,
HPROF_ROOT_REFERENCE_CLEANUP,
HPROF_ROOT_VM_INTERNAL,
HPROF_ROOT_JNI_MONITOR,
};
CHECK_LT(type, sizeof(xlate) / sizeof(HprofHeapTag));
if (obj == NULL) {
return;
}
gc_scan_state_ = xlate[type];
gc_thread_serial_number_ = threadId;
MarkRootObject(obj, 0);
gc_scan_state_ = 0;
gc_thread_serial_number_ = 0;
}
// If "direct_to_ddms" is true, the other arguments are ignored, and data is
// sent directly to DDMS.
// If "fd" is >= 0, the output will be written to that file descriptor.
// Otherwise, "filename" is used to create an output file.
void DumpHeap(const char* filename, int fd, bool direct_to_ddms) {
CHECK(filename != NULL);
Runtime::Current()->GetThreadList()->SuspendAll();
Hprof hprof(filename, fd, direct_to_ddms);
hprof.Dump();
Runtime::Current()->GetThreadList()->ResumeAll();
}
} // namespace hprof
} // namespace art