blob: d854c3ba8833a48838ca3a1607c80f2f5b99c7bf [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "thread.h"
#include <dynamic_annotations.h>
#include <pthread.h>
#include <signal.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <algorithm>
#include <bitset>
#include <cerrno>
#include <iostream>
#include <list>
#include "class_linker.h"
#include "class_loader.h"
#include "debugger.h"
#include "heap.h"
#include "jni_internal.h"
#include "monitor.h"
#include "oat/runtime/context.h"
#include "object.h"
#include "object_utils.h"
#include "reflection.h"
#include "runtime.h"
#include "runtime_support.h"
#include "scoped_jni_thread_state.h"
#include "ScopedLocalRef.h"
#include "shadow_frame.h"
#include "space.h"
#include "stack.h"
#include "stack_indirect_reference_table.h"
#include "thread_list.h"
#include "utils.h"
#include "verifier/gc_map.h"
#include "well_known_classes.h"
namespace art {
pthread_key_t Thread::pthread_key_self_;
static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
void Thread::InitCardTable() {
card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
}
#if !defined(__APPLE__)
static void UnimplementedEntryPoint() {
UNIMPLEMENTED(FATAL);
}
#endif
void Thread::InitFunctionPointers() {
#if !defined(__APPLE__) // The Mac GCC is too old to accept this code.
// Insert a placeholder so we can easily tell if we call an unimplemented entry point.
uintptr_t* begin = reinterpret_cast<uintptr_t*>(&entrypoints_);
uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(entrypoints_));
for (uintptr_t* it = begin; it != end; ++it) {
*it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
}
#endif
InitEntryPoints(&entrypoints_);
}
void Thread::SetDebuggerUpdatesEnabled(bool enabled) {
LOG(INFO) << "Turning debugger updates " << (enabled ? "on" : "off") << " for " << *this;
#if !defined(ART_USE_LLVM_COMPILER)
ChangeDebuggerEntryPoint(&entrypoints_, enabled);
#else
UNIMPLEMENTED(FATAL);
#endif
}
void Thread::InitTid() {
tid_ = ::art::GetTid();
}
void Thread::InitAfterFork() {
// One thread (us) survived the fork, but we have a new tid so we need to
// update the value stashed in this Thread*.
InitTid();
}
void* Thread::CreateCallback(void* arg) {
Thread* self = reinterpret_cast<Thread*>(arg);
self->Init();
// Wait until it's safe to start running code. (There may have been a suspend-all
// in progress while we were starting up.)
Runtime* runtime = Runtime::Current();
runtime->GetThreadList()->WaitForGo();
{
CHECK_EQ(self->GetState(), kRunnable);
SirtRef<String> thread_name(self->GetThreadName());
self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
}
Dbg::PostThreadStart(self);
// Invoke the 'run' method of our java.lang.Thread.
CHECK(self->peer_ != NULL);
Object* receiver = self->peer_;
jmethodID mid = WellKnownClasses::java_lang_Thread_run;
Method* m = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(DecodeMethod(mid));
m->Invoke(self, receiver, NULL, NULL);
// Detach.
runtime->GetThreadList()->Unregister();
return NULL;
}
static void SetVmData(Object* managed_thread, Thread* native_thread) {
Field* f = DecodeField(WellKnownClasses::java_lang_Thread_vmData);
f->SetInt(managed_thread, reinterpret_cast<uintptr_t>(native_thread));
}
Thread* Thread::FromManagedThread(Object* thread_peer) {
Field* f = DecodeField(WellKnownClasses::java_lang_Thread_vmData);
return reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer)));
}
Thread* Thread::FromManagedThread(JNIEnv* env, jobject java_thread) {
return FromManagedThread(Decode<Object*>(env, java_thread));
}
static size_t FixStackSize(size_t stack_size) {
// A stack size of zero means "use the default".
if (stack_size == 0) {
stack_size = Runtime::Current()->GetDefaultStackSize();
}
// Dalvik used the bionic pthread default stack size for native threads,
// so include that here to support apps that expect large native stacks.
stack_size += 1 * MB;
// It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
if (stack_size < PTHREAD_STACK_MIN) {
stack_size = PTHREAD_STACK_MIN;
}
// It's likely that callers are trying to ensure they have at least a certain amount of
// stack space, so we should add our reserved space on top of what they requested, rather
// than implicitly take it away from them.
stack_size += Thread::kStackOverflowReservedBytes;
// Some systems require the stack size to be a multiple of the system page size, so round up.
stack_size = RoundUp(stack_size, kPageSize);
return stack_size;
}
static void SigAltStack(stack_t* new_stack, stack_t* old_stack) {
if (sigaltstack(new_stack, old_stack) == -1) {
PLOG(FATAL) << "sigaltstack failed";
}
}
static void SetUpAlternateSignalStack() {
// Create and set an alternate signal stack.
stack_t ss;
ss.ss_sp = new uint8_t[SIGSTKSZ];
ss.ss_size = SIGSTKSZ;
ss.ss_flags = 0;
CHECK(ss.ss_sp != NULL);
SigAltStack(&ss, NULL);
// Double-check that it worked.
ss.ss_sp = NULL;
SigAltStack(NULL, &ss);
VLOG(threads) << "Alternate signal stack is " << PrettySize(ss.ss_size) << " at " << ss.ss_sp;
}
static void TearDownAlternateSignalStack() {
// Get the pointer so we can free the memory.
stack_t ss;
SigAltStack(NULL, &ss);
uint8_t* allocated_signal_stack = reinterpret_cast<uint8_t*>(ss.ss_sp);
// Tell the kernel to stop using it.
ss.ss_sp = NULL;
ss.ss_flags = SS_DISABLE;
ss.ss_size = SIGSTKSZ; // Avoid ENOMEM failure with Mac OS' buggy libc.
SigAltStack(&ss, NULL);
// Free it.
delete[] allocated_signal_stack;
}
void Thread::Create(Object* peer, size_t stack_size) {
CHECK(peer != NULL);
stack_size = FixStackSize(stack_size);
Thread* native_thread = new Thread;
native_thread->peer_ = peer;
// Thread.start is synchronized, so we know that vmData is 0,
// and know that we're not racing to assign it.
SetVmData(peer, native_thread);
{
ScopedThreadStateChange tsc(Thread::Current(), kVmWait);
pthread_t new_pthread;
pthread_attr_t attr;
CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
CHECK_PTHREAD_CALL(pthread_create, (&new_pthread, &attr, Thread::CreateCallback, native_thread), "new thread");
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
}
// Let the child know when it's safe to start running.
Runtime::Current()->GetThreadList()->SignalGo(native_thread);
}
void Thread::Init() {
// This function does all the initialization that must be run by the native thread it applies to.
// (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
// we can handshake with the corresponding native thread when it's ready.) Check this native
// thread hasn't been through here already...
CHECK(Thread::Current() == NULL);
SetUpAlternateSignalStack();
InitCpu();
InitFunctionPointers();
InitCardTable();
Runtime* runtime = Runtime::Current();
CHECK(runtime != NULL);
thin_lock_id_ = runtime->GetThreadList()->AllocThreadId();
InitTid();
InitStackHwm();
CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach");
jni_env_ = new JNIEnvExt(this, runtime->GetJavaVM());
runtime->GetThreadList()->Register();
}
Thread* Thread::Attach(const char* thread_name, bool as_daemon, Object* thread_group) {
Thread* self = new Thread;
self->Init();
self->SetState(kNative);
// If we're the main thread, ClassLinker won't be created until after we're attached,
// so that thread needs a two-stage attach. Regular threads don't need this hack.
// In the compiler, all threads need this hack, because no-one's going to be getting
// a native peer!
if (self->thin_lock_id_ != ThreadList::kMainId && !Runtime::Current()->IsCompiler()) {
self->CreatePeer(thread_name, as_daemon, thread_group);
} else {
// These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
if (thread_name != NULL) {
self->name_->assign(thread_name);
::art::SetThreadName(thread_name);
}
}
self->GetJniEnv()->locals.AssertEmpty();
return self;
}
static Object* GetWellKnownThreadGroup(jfieldID which) {
Class* c = WellKnownClasses::ToClass(WellKnownClasses::java_lang_ThreadGroup);
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(c, true, true)) {
return NULL;
}
return DecodeField(which)->GetObject(NULL);
}
Object* Thread::GetMainThreadGroup() {
return GetWellKnownThreadGroup(WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup);
}
Object* Thread::GetSystemThreadGroup() {
return GetWellKnownThreadGroup(WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup);
}
void Thread::CreatePeer(const char* name, bool as_daemon, Object* thread_group) {
CHECK(Runtime::Current()->IsStarted());
JNIEnv* env = jni_env_;
if (thread_group == NULL) {
thread_group = Thread::GetMainThreadGroup();
}
ScopedLocalRef<jobject> java_thread_group(env, AddLocalReference<jobject>(env, thread_group));
ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
jint thread_priority = GetNativePriority();
jboolean thread_is_daemon = as_daemon;
ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
peer_ = DecodeJObject(peer.get());
if (peer_ == NULL) {
CHECK(IsExceptionPending());
return;
}
env->CallNonvirtualVoidMethod(peer.get(),
WellKnownClasses::java_lang_Thread,
WellKnownClasses::java_lang_Thread_init,
java_thread_group.get(), thread_name.get(), thread_priority, thread_is_daemon);
CHECK(!IsExceptionPending()) << " " << PrettyTypeOf(GetException());
SetVmData(peer_, Thread::Current());
SirtRef<String> peer_thread_name(GetThreadName());
if (peer_thread_name.get() == NULL) {
// The Thread constructor should have set the Thread.name to a
// non-null value. However, because we can run without code
// available (in the compiler, in tests), we manually assign the
// fields the constructor should have set.
DecodeField(WellKnownClasses::java_lang_Thread_daemon)->SetBoolean(peer_, thread_is_daemon);
DecodeField(WellKnownClasses::java_lang_Thread_group)->SetObject(peer_, thread_group);
DecodeField(WellKnownClasses::java_lang_Thread_name)->SetObject(peer_, Decode<Object*>(env, thread_name.get()));
DecodeField(WellKnownClasses::java_lang_Thread_priority)->SetInt(peer_, thread_priority);
peer_thread_name.reset(GetThreadName());
}
// thread_name may have been null, so don't trust this to be non-null
if (peer_thread_name.get() != NULL) {
SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
}
// Pre-allocate an OutOfMemoryError for the double-OOME case.
ThrowNewException("Ljava/lang/OutOfMemoryError;",
"OutOfMemoryError thrown while trying to throw OutOfMemoryError; no stack available");
ScopedLocalRef<jthrowable> exception(env, env->ExceptionOccurred());
env->ExceptionClear();
pre_allocated_OutOfMemoryError_ = Decode<Throwable*>(env, exception.get());
}
void Thread::SetThreadName(const char* name) {
name_->assign(name);
::art::SetThreadName(name);
Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
}
void Thread::InitStackHwm() {
void* stack_base;
size_t stack_size;
GetThreadStack(stack_base, stack_size);
// TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
stack_begin_ = reinterpret_cast<byte*>(stack_base);
stack_size_ = stack_size;
if (stack_size_ <= kStackOverflowReservedBytes) {
LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
}
// TODO: move this into the Linux GetThreadStack implementation.
#if !defined(__APPLE__)
// If we're the main thread, check whether we were run with an unlimited stack. In that case,
// glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
// will be broken because we'll die long before we get close to 2GB.
if (thin_lock_id_ == 1) {
rlimit stack_limit;
if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
}
if (stack_limit.rlim_cur == RLIM_INFINITY) {
// Find the default stack size for new threads...
pthread_attr_t default_attributes;
size_t default_stack_size;
CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
"default stack size query");
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
// ...and use that as our limit.
size_t old_stack_size = stack_size_;
stack_size_ = default_stack_size;
stack_begin_ += (old_stack_size - stack_size_);
VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
<< " to " << PrettySize(stack_size_)
<< " with base " << reinterpret_cast<void*>(stack_begin_);
}
}
#endif
// Set stack_end_ to the bottom of the stack saving space of stack overflows
ResetDefaultStackEnd();
// Sanity check.
int stack_variable;
CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
}
void Thread::Dump(std::ostream& os, bool full) const {
if (full) {
DumpState(os);
DumpStack(os);
} else {
os << "Thread[";
if (GetThinLockId() != 0) {
// If we're in kStarting, we won't have a thin lock id or tid yet.
os << GetThinLockId()
<< ",tid=" << GetTid() << ',';
}
os << GetState()
<< ",Thread*=" << this
<< ",peer=" << peer_
<< ",\"" << *name_ << "\""
<< "]";
}
}
String* Thread::GetThreadName() const {
Field* f = DecodeField(WellKnownClasses::java_lang_Thread_name);
return (peer_ != NULL) ? reinterpret_cast<String*>(f->GetObject(peer_)) : NULL;
}
void Thread::GetThreadName(std::string& name) const {
name.assign(*name_);
}
void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
std::string group_name;
int priority;
bool is_daemon = false;
if (thread != NULL && thread->peer_ != NULL) {
priority = DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->peer_);
is_daemon = DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->peer_);
Object* thread_group = thread->GetThreadGroup();
if (thread_group != NULL) {
Field* group_name_field = DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
String* group_name_string = reinterpret_cast<String*>(group_name_field->GetObject(thread_group));
group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
}
} else {
priority = GetNativePriority();
}
int policy;
sched_param sp;
CHECK_PTHREAD_CALL(pthread_getschedparam, (pthread_self(), &policy, &sp), __FUNCTION__);
std::string scheduler_group_name(GetSchedulerGroupName(tid));
if (scheduler_group_name.empty()) {
scheduler_group_name = "default";
}
if (thread != NULL) {
os << '"' << *thread->name_ << '"';
if (is_daemon) {
os << " daemon";
}
os << " prio=" << priority
<< " tid=" << thread->GetThinLockId()
<< " " << thread->GetState() << "\n";
} else {
std::string thread_name;
if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &thread_name)) {
thread_name.resize(thread_name.size() - 1); // Lose the trailing '\n'.
} else {
thread_name = "<unknown>";
}
os << '"' << thread_name << '"'
<< " prio=" << priority
<< " tid=?"
<< " (not attached)\n";
}
if (thread != NULL) {
os << " | group=\"" << group_name << "\""
<< " sCount=" << thread->suspend_count_
<< " dsCount=" << thread->debug_suspend_count_
<< " obj=" << reinterpret_cast<void*>(thread->peer_)
<< " self=" << reinterpret_cast<const void*>(thread) << "\n";
}
os << " | sysTid=" << tid
<< " nice=" << getpriority(PRIO_PROCESS, tid)
<< " sched=" << policy << "/" << sp.sched_priority
<< " cgrp=" << scheduler_group_name << "\n";
// TODO: fix this; it's never worked in art! << " handle=" << pthread_self() << "\n";
// Grab the scheduler stats for this thread.
std::string scheduler_stats;
if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
} else {
scheduler_stats = "0 0 0";
}
int utime = 0;
int stime = 0;
int task_cpu = 0;
GetTaskStats(tid, utime, stime, task_cpu);
os << " | schedstat=( " << scheduler_stats << " )"
<< " utm=" << utime
<< " stm=" << stime
<< " core=" << task_cpu
<< " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
if (thread != NULL) {
os << " | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
<< " stackSize=" << PrettySize(thread->stack_size_) << "\n";
}
}
void Thread::DumpState(std::ostream& os) const {
Thread::DumpState(os, this, GetTid());
}
#if !defined(ART_USE_LLVM_COMPILER)
void Thread::PushNativeToManagedRecord(NativeToManagedRecord* record) {
Method **sp = top_of_managed_stack_.GetSP();
#ifndef NDEBUG
if (sp != NULL) {
Method* m = *sp;
Runtime::Current()->GetHeap()->VerifyObject(m);
DCHECK((m == NULL) || m->IsMethod());
}
#endif
record->last_top_of_managed_stack_ = reinterpret_cast<void*>(sp);
record->last_top_of_managed_stack_pc_ = top_of_managed_stack_pc_;
record->link_ = native_to_managed_record_;
native_to_managed_record_ = record;
top_of_managed_stack_.SetSP(NULL);
}
#else
void Thread::PushNativeToManagedRecord(NativeToManagedRecord*) {
LOG(FATAL) << "Called non-LLVM method with LLVM";
}
#endif
#if !defined(ART_USE_LLVM_COMPILER)
void Thread::PopNativeToManagedRecord(const NativeToManagedRecord& record) {
native_to_managed_record_ = record.link_;
top_of_managed_stack_.SetSP(reinterpret_cast<Method**>(record.last_top_of_managed_stack_));
top_of_managed_stack_pc_ = record.last_top_of_managed_stack_pc_;
}
#else
void Thread::PopNativeToManagedRecord(const NativeToManagedRecord&) {
LOG(FATAL) << "Called non-LLVM method with LLVM";
}
#endif
struct StackDumpVisitor : public Thread::StackVisitor {
StackDumpVisitor(std::ostream& os, const Thread* thread)
: last_method(NULL), last_line_number(0), repetition_count(0), os(os), thread(thread),
frame_count(0) {
}
virtual ~StackDumpVisitor() {
if (frame_count == 0) {
os << " (no managed stack frames)\n";
}
}
bool VisitFrame(const Frame& frame, uintptr_t pc) {
if (!frame.HasMethod()) {
return true;
}
const int kMaxRepetition = 3;
Method* m = frame.GetMethod();
Class* c = m->GetDeclaringClass();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const DexCache* dex_cache = c->GetDexCache();
int line_number = -1;
if (dex_cache != NULL) { // be tolerant of bad input
const DexFile& dex_file = class_linker->FindDexFile(dex_cache);
line_number = dex_file.GetLineNumFromPC(m, m->ToDexPC(pc));
}
if (line_number == last_line_number && last_method == m) {
repetition_count++;
} else {
if (repetition_count >= kMaxRepetition) {
os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
}
repetition_count = 0;
last_line_number = line_number;
last_method = m;
}
if (repetition_count < kMaxRepetition) {
os << " at " << PrettyMethod(m, false);
if (m->IsNative()) {
os << "(Native method)";
} else {
mh.ChangeMethod(m);
const char* source_file(mh.GetDeclaringClassSourceFile());
os << "(" << (source_file != NULL ? source_file : "unavailable")
<< ":" << line_number << ")";
}
os << "\n";
}
if (frame_count++ == 0) {
Monitor::DescribeWait(os, thread);
}
return true;
}
MethodHelper mh;
Method* last_method;
int last_line_number;
int repetition_count;
std::ostream& os;
const Thread* thread;
int frame_count;
};
void Thread::DumpStack(std::ostream& os) const {
// If we're currently in native code, dump that stack before dumping the managed stack.
if (GetState() == kNative || GetState() == kVmWait) {
DumpKernelStack(os, GetTid(), " kernel: ", false);
DumpNativeStack(os, GetTid(), " native: ", false);
}
StackDumpVisitor dumper(os, this);
WalkStack(&dumper);
}
void Thread::SetStateWithoutSuspendCheck(ThreadState new_state) {
volatile void* raw = reinterpret_cast<volatile void*>(&state_);
volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
android_atomic_release_store(new_state, addr);
}
ThreadState Thread::SetState(ThreadState new_state) {
ThreadState old_state = state_;
if (old_state == new_state) {
return old_state;
}
volatile void* raw = reinterpret_cast<volatile void*>(&state_);
volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
if (new_state == kRunnable) {
/*
* Change our status to kRunnable. The transition requires
* that we check for pending suspension, because the runtime considers
* us to be "asleep" in all other states, and another thread could
* be performing a GC now.
*
* The order of operations is very significant here. One way to
* do this wrong is:
*
* GCing thread Our thread (in kNative)
* ------------ ----------------------
* check suspend count (== 0)
* SuspendAllThreads()
* grab suspend-count lock
* increment all suspend counts
* release suspend-count lock
* check thread state (== kNative)
* all are suspended, begin GC
* set state to kRunnable
* (continue executing)
*
* We can correct this by grabbing the suspend-count lock and
* performing both of our operations (check suspend count, set
* state) while holding it, now we need to grab a mutex on every
* transition to kRunnable.
*
* What we do instead is change the order of operations so that
* the transition to kRunnable happens first. If we then detect
* that the suspend count is nonzero, we switch to kSuspended.
*
* Appropriate compiler and memory barriers are required to ensure
* that the operations are observed in the expected order.
*
* This does create a small window of opportunity where a GC in
* progress could observe what appears to be a running thread (if
* it happens to look between when we set to kRunnable and when we
* switch to kSuspended). At worst this only affects assertions
* and thread logging. (We could work around it with some sort
* of intermediate "pre-running" state that is generally treated
* as equivalent to running, but that doesn't seem worthwhile.)
*
* We can also solve this by combining the "status" and "suspend
* count" fields into a single 32-bit value. This trades the
* store/load barrier on transition to kRunnable for an atomic RMW
* op on all transitions and all suspend count updates (also, all
* accesses to status or the thread count require bit-fiddling).
* It also eliminates the brief transition through kRunnable when
* the thread is supposed to be suspended. This is possibly faster
* on SMP and slightly more correct, but less convenient.
*/
android_atomic_acquire_store(new_state, addr);
ANNOTATE_IGNORE_READS_BEGIN();
int suspend_count = suspend_count_;
ANNOTATE_IGNORE_READS_END();
if (suspend_count != 0) {
Runtime::Current()->GetThreadList()->FullSuspendCheck(this);
}
} else {
/*
* Not changing to kRunnable. No additional work required.
*
* We use a releasing store to ensure that, if we were runnable,
* any updates we previously made to objects on the managed heap
* will be observed before the state change.
*/
android_atomic_release_store(new_state, addr);
}
return old_state;
}
bool Thread::IsSuspended() {
ANNOTATE_IGNORE_READS_BEGIN();
int suspend_count = suspend_count_;
ANNOTATE_IGNORE_READS_END();
return suspend_count != 0 && GetState() != kRunnable;
}
static void ReportThreadSuspendTimeout(Thread* waiting_thread) {
Runtime* runtime = Runtime::Current();
std::ostringstream ss;
ss << "Thread suspend timeout waiting for thread " << *waiting_thread << "\n";
runtime->DumpLockHolders(ss);
ss << "\n";
runtime->GetThreadList()->DumpLocked(ss);
LOG(FATAL) << ss.str();
}
void Thread::WaitUntilSuspended() {
static const useconds_t kTimeoutUs = 30 * 1000000; // 30s.
useconds_t total_delay = 0;
useconds_t delay = 0;
while (GetState() == kRunnable) {
if (total_delay >= kTimeoutUs) {
ReportThreadSuspendTimeout(this);
}
useconds_t new_delay = delay * 2;
CHECK_GE(new_delay, delay);
delay = new_delay;
if (delay == 0) {
sched_yield();
delay = 10000;
} else {
usleep(delay);
total_delay += delay;
}
}
}
void Thread::ThreadExitCallback(void* arg) {
Thread* self = reinterpret_cast<Thread*>(arg);
LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
}
void Thread::Startup() {
// Allocate a TLS slot.
CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
// Double-check the TLS slot allocation.
if (pthread_getspecific(pthread_key_self_) != NULL) {
LOG(FATAL) << "Newly-created pthread TLS slot is not NULL";
}
}
void Thread::FinishStartup() {
CHECK(Runtime::Current()->IsStarted());
Thread* self = Thread::Current();
// Finish attaching the main thread.
ScopedThreadStateChange tsc(self, kRunnable);
Thread::Current()->CreatePeer("main", false, Thread::GetMainThreadGroup());
InitBoxingMethods();
Runtime::Current()->GetClassLinker()->RunRootClinits();
}
void Thread::Shutdown() {
CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
}
uint32_t Thread::LockOwnerFromThreadLock(Object* thread_lock) {
if (thread_lock == NULL || thread_lock->GetClass() != WellKnownClasses::ToClass(WellKnownClasses::java_lang_ThreadLock)) {
return ThreadList::kInvalidId;
}
Field* thread_field = DecodeField(WellKnownClasses::java_lang_ThreadLock_thread);
Object* managed_thread = thread_field->GetObject(thread_lock);
if (managed_thread == NULL) {
return ThreadList::kInvalidId;
}
Field* vmData_field = DecodeField(WellKnownClasses::java_lang_Thread_vmData);
uintptr_t vmData = static_cast<uintptr_t>(vmData_field->GetInt(managed_thread));
Thread* thread = reinterpret_cast<Thread*>(vmData);
if (thread == NULL) {
return ThreadList::kInvalidId;
}
return thread->GetThinLockId();
}
Thread::Thread()
: thin_lock_id_(0),
tid_(0),
peer_(NULL),
top_of_managed_stack_(),
top_of_managed_stack_pc_(0),
wait_mutex_(new Mutex("a thread wait mutex")),
wait_cond_(new ConditionVariable("a thread wait condition variable")),
wait_monitor_(NULL),
interrupted_(false),
wait_next_(NULL),
monitor_enter_object_(NULL),
card_table_(0),
stack_end_(NULL),
native_to_managed_record_(NULL),
top_sirt_(NULL),
top_shadow_frame_(NULL),
jni_env_(NULL),
state_(kNative),
self_(NULL),
runtime_(NULL),
exception_(NULL),
suspend_count_(0),
debug_suspend_count_(0),
class_loader_override_(NULL),
long_jump_context_(NULL),
throwing_OutOfMemoryError_(false),
pre_allocated_OutOfMemoryError_(NULL),
debug_invoke_req_(new DebugInvokeReq),
trace_stack_(new std::vector<TraceStackFrame>),
name_(new std::string(kThreadNameDuringStartup)) {
CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
}
bool Thread::IsStillStarting() const {
// You might think you can check whether the state is kStarting, but for much of thread startup,
// the thread might also be in kVmWait.
// You might think you can check whether the peer is NULL, but the peer is actually created and
// assigned fairly early on, and needs to be.
// It turns out that the last thing to change is the thread name; that's a good proxy for "has
// this thread _ever_ entered kRunnable".
return (*name_ == kThreadNameDuringStartup);
}
static void MonitorExitVisitor(const Object* object, void*) {
Object* entered_monitor = const_cast<Object*>(object);
LOG(WARNING) << "Calling MonitorExit on object " << object << " (" << PrettyTypeOf(object) << ")"
<< " left locked by native thread " << *Thread::Current() << " which is detaching";
entered_monitor->MonitorExit(Thread::Current());
}
void Thread::Destroy() {
// On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
if (jni_env_ != NULL) {
jni_env_->monitors.VisitRoots(MonitorExitVisitor, NULL);
}
if (peer_ != NULL) {
Thread* self = this;
// We may need to call user-supplied managed code.
SetState(kRunnable);
HandleUncaughtExceptions();
RemoveFromThreadGroup();
// this.vmData = 0;
SetVmData(peer_, NULL);
Dbg::PostThreadDeath(self);
// Thread.join() is implemented as an Object.wait() on the Thread.lock
// object. Signal anyone who is waiting.
Object* lock = DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(peer_);
// (This conditional is only needed for tests, where Thread.lock won't have been set.)
if (lock != NULL) {
lock->MonitorEnter(self);
lock->NotifyAll();
lock->MonitorExit(self);
}
}
}
Thread::~Thread() {
delete jni_env_;
jni_env_ = NULL;
SetState(kTerminated);
delete wait_cond_;
delete wait_mutex_;
#if !defined(ART_USE_LLVM_COMPILER)
delete long_jump_context_;
#endif
delete debug_invoke_req_;
delete trace_stack_;
delete name_;
TearDownAlternateSignalStack();
}
void Thread::HandleUncaughtExceptions() {
if (!IsExceptionPending()) {
return;
}
// Get and clear the exception.
Object* exception = GetException();
ClearException();
// If the thread has its own handler, use that.
Object* handler = DecodeField(WellKnownClasses::java_lang_Thread_uncaughtHandler)->GetObject(peer_);
if (handler == NULL) {
// Otherwise use the thread group's default handler.
handler = GetThreadGroup();
}
// Call the handler.
jmethodID mid = WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException;
Method* m = handler->GetClass()->FindVirtualMethodForVirtualOrInterface(DecodeMethod(mid));
JValue args[2];
args[0].SetL(peer_);
args[1].SetL(exception);
m->Invoke(this, handler, args, NULL);
// If the handler threw, clear that exception too.
ClearException();
}
Object* Thread::GetThreadGroup() const {
return DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(peer_);
}
void Thread::RemoveFromThreadGroup() {
// this.group.removeThread(this);
// group can be null if we're in the compiler or a test.
Object* group = GetThreadGroup();
if (group != NULL) {
jmethodID mid = WellKnownClasses::java_lang_ThreadGroup_removeThread;
Method* m = group->GetClass()->FindVirtualMethodForVirtualOrInterface(DecodeMethod(mid));
JValue args[1];
args[0].SetL(peer_);
m->Invoke(this, group, args, NULL);
}
}
size_t Thread::NumSirtReferences() {
size_t count = 0;
for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
count += cur->NumberOfReferences();
}
return count;
}
size_t Thread::NumShadowFrameReferences() {
size_t count = 0;
for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
count += cur->NumberOfReferences();
}
return count;
}
bool Thread::SirtContains(jobject obj) {
Object** sirt_entry = reinterpret_cast<Object**>(obj);
for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
if (cur->Contains(sirt_entry)) {
return true;
}
}
return false;
}
bool Thread::ShadowFrameContains(jobject obj) {
Object** shadow_frame_entry = reinterpret_cast<Object**>(obj);
for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
if (cur->Contains(shadow_frame_entry)) {
return true;
}
}
return false;
}
bool Thread::StackReferencesContain(jobject obj) {
return SirtContains(obj) || ShadowFrameContains(obj);
}
void Thread::SirtVisitRoots(Heap::RootVisitor* visitor, void* arg) {
for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
size_t num_refs = cur->NumberOfReferences();
for (size_t j = 0; j < num_refs; j++) {
Object* object = cur->GetReference(j);
if (object != NULL) {
visitor(object, arg);
}
}
}
}
void Thread::ShadowFrameVisitRoots(Heap::RootVisitor* visitor, void* arg) {
for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
size_t num_refs = cur->NumberOfReferences();
for (size_t j = 0; j < num_refs; j++) {
Object* object = cur->GetReference(j);
if (object != NULL) {
visitor(object, arg);
}
}
}
}
Object* Thread::DecodeJObject(jobject obj) {
DCHECK(CanAccessDirectReferences());
if (obj == NULL) {
return NULL;
}
IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
IndirectRefKind kind = GetIndirectRefKind(ref);
Object* result;
switch (kind) {
case kLocal:
{
IndirectReferenceTable& locals = jni_env_->locals;
result = const_cast<Object*>(locals.Get(ref));
break;
}
case kGlobal:
{
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
IndirectReferenceTable& globals = vm->globals;
MutexLock mu(vm->globals_lock);
result = const_cast<Object*>(globals.Get(ref));
break;
}
case kWeakGlobal:
{
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
IndirectReferenceTable& weak_globals = vm->weak_globals;
MutexLock mu(vm->weak_globals_lock);
result = const_cast<Object*>(weak_globals.Get(ref));
if (result == kClearedJniWeakGlobal) {
// This is a special case where it's okay to return NULL.
return NULL;
}
break;
}
case kSirtOrInvalid:
default:
// TODO: make stack indirect reference table lookup more efficient
// Check if this is a local reference in the SIRT
if (StackReferencesContain(obj)) {
result = *reinterpret_cast<Object**>(obj); // Read from SIRT
} else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
// Assume an invalid local reference is actually a direct pointer.
result = reinterpret_cast<Object*>(obj);
} else {
result = kInvalidIndirectRefObject;
}
}
if (result == NULL) {
LOG(ERROR) << "JNI ERROR (app bug): use of deleted " << kind << ": " << obj;
JniAbort(NULL);
} else {
if (result != kInvalidIndirectRefObject) {
Runtime::Current()->GetHeap()->VerifyObject(result);
}
}
return result;
}
class CountStackDepthVisitor : public Thread::StackVisitor {
public:
CountStackDepthVisitor() : depth_(0), skip_depth_(0), skipping_(true) {}
bool VisitFrame(const Frame& frame, uintptr_t /*pc*/) {
// We want to skip frames up to and including the exception's constructor.
// Note we also skip the frame if it doesn't have a method (namely the callee
// save frame)
if (skipping_ && frame.HasMethod() &&
!Throwable::GetJavaLangThrowable()->IsAssignableFrom(frame.GetMethod()->GetDeclaringClass())) {
skipping_ = false;
}
if (!skipping_) {
if (frame.HasMethod()) { // ignore callee save frames
++depth_;
}
} else {
++skip_depth_;
}
return true;
}
int GetDepth() const {
return depth_;
}
int GetSkipDepth() const {
return skip_depth_;
}
private:
uint32_t depth_;
uint32_t skip_depth_;
bool skipping_;
};
class BuildInternalStackTraceVisitor : public Thread::StackVisitor {
public:
explicit BuildInternalStackTraceVisitor(int skip_depth)
: skip_depth_(skip_depth), count_(0), pc_trace_(NULL), method_trace_(NULL), local_ref_(NULL) {
}
bool Init(int depth, ScopedJniThreadState& ts) {
// Allocate method trace with an extra slot that will hold the PC trace
method_trace_ = Runtime::Current()->GetClassLinker()->AllocObjectArray<Object>(depth + 1);
if (method_trace_ == NULL) {
return false;
}
// Register a local reference as IntArray::Alloc may trigger GC
local_ref_ = AddLocalReference<jobject>(ts.Env(), method_trace_);
pc_trace_ = IntArray::Alloc(depth);
if (pc_trace_ == NULL) {
return false;
}
#ifdef MOVING_GARBAGE_COLLECTOR
// Re-read after potential GC
method_trace_ = Decode<ObjectArray<Object>*>(ts.Env(), local_ref_);
#endif
// Save PC trace in last element of method trace, also places it into the
// object graph.
method_trace_->Set(depth, pc_trace_);
return true;
}
virtual ~BuildInternalStackTraceVisitor() {}
bool VisitFrame(const Frame& frame, uintptr_t pc) {
if (method_trace_ == NULL || pc_trace_ == NULL) {
return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
}
if (skip_depth_ > 0) {
skip_depth_--;
return true;
}
if (!frame.HasMethod()) {
return true; // ignore callee save frames
}
method_trace_->Set(count_, frame.GetMethod());
pc_trace_->Set(count_, pc);
++count_;
return true;
}
jobject GetInternalStackTrace() const {
return local_ref_;
}
private:
// How many more frames to skip.
int32_t skip_depth_;
// Current position down stack trace
uint32_t count_;
// Array of return PC values
IntArray* pc_trace_;
// An array of the methods on the stack, the last entry is a reference to the
// PC trace
ObjectArray<Object>* method_trace_;
// Local indirect reference table entry for method trace
jobject local_ref_;
};
#if !defined(ART_USE_LLVM_COMPILER)
// TODO: remove this.
static uintptr_t ManglePc(uintptr_t pc) {
// Move the PC back 2 bytes as a call will frequently terminate the
// decoding of a particular instruction and we want to make sure we
// get the Dex PC of the instruction with the call and not the
// instruction following.
if (pc > 0) { pc -= 2; }
return pc;
}
#endif
// TODO: remove this.
static uintptr_t DemanglePc(uintptr_t pc) {
// Revert mangling for the case where we need the PC to return to the upcall
if (pc > 0) { pc += 2; }
return pc;
}
void Thread::PushSirt(StackIndirectReferenceTable* sirt) {
sirt->SetLink(top_sirt_);
top_sirt_ = sirt;
}
StackIndirectReferenceTable* Thread::PopSirt() {
CHECK(top_sirt_ != NULL);
StackIndirectReferenceTable* sirt = top_sirt_;
top_sirt_ = top_sirt_->GetLink();
return sirt;
}
#if !defined(ART_USE_LLVM_COMPILER) // LLVM use ShadowFrame
void Thread::WalkStack(StackVisitor* visitor, bool include_upcalls) const {
Frame frame = GetTopOfStack();
uintptr_t pc = ManglePc(top_of_managed_stack_pc_);
uint32_t trace_stack_depth = 0;
// TODO: enable this CHECK after native_to_managed_record_ is initialized during startup.
// CHECK(native_to_managed_record_ != NULL);
NativeToManagedRecord* record = native_to_managed_record_;
bool method_tracing_active = Runtime::Current()->IsMethodTracingActive();
while (frame.GetSP() != NULL) {
for ( ; frame.GetMethod() != NULL; frame.Next()) {
frame.GetMethod()->AssertPcIsWithinCode(pc);
bool should_continue = visitor->VisitFrame(frame, pc);
if (UNLIKELY(!should_continue)) {
return;
}
uintptr_t return_pc = frame.GetReturnPC();
if (LIKELY(!method_tracing_active)) {
pc = ManglePc(return_pc);
} else {
// While profiling, the return pc is restored from the side stack, except when walking
// the stack for an exception where the side stack will be unwound in VisitFrame.
if (IsTraceExitPc(return_pc) && !include_upcalls) {
TraceStackFrame trace_frame = GetTraceStackFrame(trace_stack_depth++);
CHECK(trace_frame.method_ == frame.GetMethod());
pc = ManglePc(trace_frame.return_pc_);
} else {
pc = ManglePc(return_pc);
}
}
}
if (include_upcalls) {
bool should_continue = visitor->VisitFrame(frame, pc);
if (!should_continue) {
return;
}
}
if (record == NULL) {
return;
}
// last_tos should return Frame instead of sp?
frame.SetSP(reinterpret_cast<Method**>(record->last_top_of_managed_stack_));
pc = ManglePc(record->last_top_of_managed_stack_pc_);
record = record->link_;
}
}
#else // defined(ART_USE_LLVM_COMPILER) // LLVM uses ShadowFrame
void Thread::WalkStack(StackVisitor* visitor, bool /*include_upcalls*/) const {
for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
Frame frame;
frame.SetSP(reinterpret_cast<Method**>(reinterpret_cast<byte*>(cur) +
ShadowFrame::MethodOffset()));
bool should_continue = visitor->VisitFrame(frame, cur->GetDexPC());
if (!should_continue) {
return;
}
}
}
/*
* | |
* | |
* | |
* | . |
* | . |
* | . |
* | . |
* | Method* |
* | . |
* | . | <-- top_shadow_frame_ (ShadowFrame*)
* / +------------------------+
* ->| . |
* . | . |
* . | . |
* /+------------------------+
* / | . |
* / | . |
* --- | | . |
* | | | . |
* | | Method* | <-- frame.GetSP() (Method**)
* ShadowFrame \ | . |
* | ->| . | <-- cur (ShadowFrame*)
* --- /+------------------------+
* / | . |
* / | . |
* --- | | . |
* | cur->GetLink() | | . |
* | | Method* |
* ShadowFrame \ | . |
* | ->| . |
* --- +------------------------+
* | . |
* | . |
* | . |
* +========================+
*/
#endif
jobject Thread::CreateInternalStackTrace(JNIEnv* env) const {
// Compute depth of stack
CountStackDepthVisitor count_visitor;
WalkStack(&count_visitor);
int32_t depth = count_visitor.GetDepth();
int32_t skip_depth = count_visitor.GetSkipDepth();
// Transition into runnable state to work on Object*/Array*
ScopedJniThreadState ts(env);
// Build internal stack trace
BuildInternalStackTraceVisitor build_trace_visitor(skip_depth);
if (!build_trace_visitor.Init(depth, ts)) {
return NULL; // Allocation failed
}
WalkStack(&build_trace_visitor);
return build_trace_visitor.GetInternalStackTrace();
}
jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
jobjectArray output_array, int* stack_depth) {
// Transition into runnable state to work on Object*/Array*
ScopedJniThreadState ts(env);
// Decode the internal stack trace into the depth, method trace and PC trace
ObjectArray<Object>* method_trace =
down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal));
int32_t depth = method_trace->GetLength() - 1;
IntArray* pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
jobjectArray result;
ObjectArray<StackTraceElement>* java_traces;
if (output_array != NULL) {
// Reuse the array we were given.
result = output_array;
java_traces = reinterpret_cast<ObjectArray<StackTraceElement>*>(Decode<Array*>(env,
output_array));
// ...adjusting the number of frames we'll write to not exceed the array length.
depth = std::min(depth, java_traces->GetLength());
} else {
// Create java_trace array and place in local reference table
java_traces = class_linker->AllocStackTraceElementArray(depth);
if (java_traces == NULL) {
return NULL;
}
result = AddLocalReference<jobjectArray>(ts.Env(), java_traces);
}
if (stack_depth != NULL) {
*stack_depth = depth;
}
MethodHelper mh;
for (int32_t i = 0; i < depth; ++i) {
// Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
Method* method = down_cast<Method*>(method_trace->Get(i));
mh.ChangeMethod(method);
uint32_t native_pc = pc_trace->Get(i);
int32_t line_number = mh.GetLineNumFromNativePC(native_pc);
// Allocate element, potentially triggering GC
// TODO: reuse class_name_object via Class::name_?
const char* descriptor = mh.GetDeclaringClassDescriptor();
CHECK(descriptor != NULL);
std::string class_name(PrettyDescriptor(descriptor));
SirtRef<String> class_name_object(String::AllocFromModifiedUtf8(class_name.c_str()));
if (class_name_object.get() == NULL) {
return NULL;
}
const char* method_name = mh.GetName();
CHECK(method_name != NULL);
SirtRef<String> method_name_object(String::AllocFromModifiedUtf8(method_name));
if (method_name_object.get() == NULL) {
return NULL;
}
const char* source_file = mh.GetDeclaringClassSourceFile();
SirtRef<String> source_name_object(String::AllocFromModifiedUtf8(source_file));
StackTraceElement* obj = StackTraceElement::Alloc(class_name_object.get(),
method_name_object.get(),
source_name_object.get(),
line_number);
if (obj == NULL) {
return NULL;
}
#ifdef MOVING_GARBAGE_COLLECTOR
// Re-read after potential GC
java_traces = Decode<ObjectArray<Object>*>(ts.Env(), result);
method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal));
pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
#endif
java_traces->Set(i, obj);
}
return result;
}
void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
ThrowNewExceptionV(exception_class_descriptor, fmt, args);
va_end(args);
}
void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) {
std::string msg;
StringAppendV(&msg, fmt, ap);
ThrowNewException(exception_class_descriptor, msg.c_str());
}
void Thread::ThrowNewException(const char* exception_class_descriptor, const char* msg) {
CHECK(!IsExceptionPending()); // Callers should either clear or call ThrowNewWrappedException.
ThrowNewWrappedException(exception_class_descriptor, msg);
}
void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) {
// Convert "Ljava/lang/Exception;" into JNI-style "java/lang/Exception".
CHECK_EQ('L', exception_class_descriptor[0]);
std::string descriptor(exception_class_descriptor + 1);
CHECK_EQ(';', descriptor[descriptor.length() - 1]);
descriptor.erase(descriptor.length() - 1);
JNIEnv* env = GetJniEnv();
jobject cause = env->ExceptionOccurred();
env->ExceptionClear();
ScopedLocalRef<jclass> exception_class(env, env->FindClass(descriptor.c_str()));
if (exception_class.get() == NULL) {
LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI FindClass failed: "
<< PrettyTypeOf(GetException());
CHECK(IsExceptionPending());
return;
}
if (!Runtime::Current()->IsStarted()) {
// Something is trying to throw an exception without a started
// runtime, which is the common case in the compiler. We won't be
// able to invoke the constructor of the exception, so use
// AllocObject which will not invoke a constructor.
ScopedLocalRef<jthrowable> exception(
env, reinterpret_cast<jthrowable>(env->AllocObject(exception_class.get())));
if (exception.get() != NULL) {
ScopedJniThreadState ts(env);
Throwable* t = reinterpret_cast<Throwable*>(ts.Self()->DecodeJObject(exception.get()));
t->SetDetailMessage(String::AllocFromModifiedUtf8(msg));
ts.Self()->SetException(t);
} else {
LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI AllocObject failed: "
<< PrettyTypeOf(GetException());
CHECK(IsExceptionPending());
}
return;
}
int rc = ::art::ThrowNewException(env, exception_class.get(), msg, cause);
if (rc != JNI_OK) {
LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI ThrowNew failed: "
<< PrettyTypeOf(GetException());
CHECK(IsExceptionPending());
}
}
void Thread::ThrowOutOfMemoryError(const char* msg) {
LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
if (!throwing_OutOfMemoryError_) {
throwing_OutOfMemoryError_ = true;
ThrowNewException("Ljava/lang/OutOfMemoryError;", NULL);
} else {
SetException(pre_allocated_OutOfMemoryError_);
}
throwing_OutOfMemoryError_ = false;
}
Thread* Thread::CurrentFromGdb() {
return Thread::Current();
}
void Thread::DumpFromGdb() const {
std::ostringstream ss;
Dump(ss);
std::string str(ss.str());
// log to stderr for debugging command line processes
std::cerr << str;
#ifdef HAVE_ANDROID_OS
// log to logcat for debugging frameworks processes
LOG(INFO) << str;
#endif
}
struct EntryPointInfo {
uint32_t offset;
const char* name;
};
#define ENTRY_POINT_INFO(x) { ENTRYPOINT_OFFSET(x), #x }
static const EntryPointInfo gThreadEntryPointInfo[] = {
ENTRY_POINT_INFO(pAllocArrayFromCode),
ENTRY_POINT_INFO(pAllocArrayFromCodeWithAccessCheck),
ENTRY_POINT_INFO(pAllocObjectFromCode),
ENTRY_POINT_INFO(pAllocObjectFromCodeWithAccessCheck),
ENTRY_POINT_INFO(pCheckAndAllocArrayFromCode),
ENTRY_POINT_INFO(pCheckAndAllocArrayFromCodeWithAccessCheck),
ENTRY_POINT_INFO(pInstanceofNonTrivialFromCode),
ENTRY_POINT_INFO(pCanPutArrayElementFromCode),
ENTRY_POINT_INFO(pCheckCastFromCode),
ENTRY_POINT_INFO(pDebugMe),
ENTRY_POINT_INFO(pUpdateDebuggerFromCode),
ENTRY_POINT_INFO(pInitializeStaticStorage),
ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccessFromCode),
ENTRY_POINT_INFO(pInitializeTypeFromCode),
ENTRY_POINT_INFO(pResolveStringFromCode),
ENTRY_POINT_INFO(pSet32Instance),
ENTRY_POINT_INFO(pSet32Static),
ENTRY_POINT_INFO(pSet64Instance),
ENTRY_POINT_INFO(pSet64Static),
ENTRY_POINT_INFO(pSetObjInstance),
ENTRY_POINT_INFO(pSetObjStatic),
ENTRY_POINT_INFO(pGet32Instance),
ENTRY_POINT_INFO(pGet32Static),
ENTRY_POINT_INFO(pGet64Instance),
ENTRY_POINT_INFO(pGet64Static),
ENTRY_POINT_INFO(pGetObjInstance),
ENTRY_POINT_INFO(pGetObjStatic),
ENTRY_POINT_INFO(pHandleFillArrayDataFromCode),
ENTRY_POINT_INFO(pDecodeJObjectInThread),
ENTRY_POINT_INFO(pFindNativeMethod),
ENTRY_POINT_INFO(pLockObjectFromCode),
ENTRY_POINT_INFO(pUnlockObjectFromCode),
ENTRY_POINT_INFO(pCmpgDouble),
ENTRY_POINT_INFO(pCmpgFloat),
ENTRY_POINT_INFO(pCmplDouble),
ENTRY_POINT_INFO(pCmplFloat),
ENTRY_POINT_INFO(pDadd),
ENTRY_POINT_INFO(pDdiv),
ENTRY_POINT_INFO(pDmul),
ENTRY_POINT_INFO(pDsub),
ENTRY_POINT_INFO(pF2d),
ENTRY_POINT_INFO(pFmod),
ENTRY_POINT_INFO(pI2d),
ENTRY_POINT_INFO(pL2d),
ENTRY_POINT_INFO(pD2f),
ENTRY_POINT_INFO(pFadd),
ENTRY_POINT_INFO(pFdiv),
ENTRY_POINT_INFO(pFmodf),
ENTRY_POINT_INFO(pFmul),
ENTRY_POINT_INFO(pFsub),
ENTRY_POINT_INFO(pI2f),
ENTRY_POINT_INFO(pL2f),
ENTRY_POINT_INFO(pD2iz),
ENTRY_POINT_INFO(pF2iz),
ENTRY_POINT_INFO(pIdivmod),
ENTRY_POINT_INFO(pD2l),
ENTRY_POINT_INFO(pF2l),
ENTRY_POINT_INFO(pLdiv),
ENTRY_POINT_INFO(pLdivmod),
ENTRY_POINT_INFO(pLmul),
ENTRY_POINT_INFO(pShlLong),
ENTRY_POINT_INFO(pShrLong),
ENTRY_POINT_INFO(pUshrLong),
ENTRY_POINT_INFO(pIndexOf),
ENTRY_POINT_INFO(pMemcmp16),
ENTRY_POINT_INFO(pStringCompareTo),
ENTRY_POINT_INFO(pMemcpy),
ENTRY_POINT_INFO(pUnresolvedDirectMethodTrampolineFromCode),
ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
ENTRY_POINT_INFO(pInvokeInterfaceTrampoline),
ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
ENTRY_POINT_INFO(pCheckSuspendFromCode),
ENTRY_POINT_INFO(pTestSuspendFromCode),
ENTRY_POINT_INFO(pDeliverException),
ENTRY_POINT_INFO(pThrowAbstractMethodErrorFromCode),
ENTRY_POINT_INFO(pThrowArrayBoundsFromCode),
ENTRY_POINT_INFO(pThrowDivZeroFromCode),
ENTRY_POINT_INFO(pThrowNoSuchMethodFromCode),
ENTRY_POINT_INFO(pThrowNullPointerFromCode),
ENTRY_POINT_INFO(pThrowStackOverflowFromCode),
ENTRY_POINT_INFO(pThrowVerificationErrorFromCode),
};
#undef ENTRY_POINT_INFO
void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets.
#define DO_THREAD_OFFSET(x) if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { os << # x; return; }
DO_THREAD_OFFSET(card_table_);
DO_THREAD_OFFSET(exception_);
DO_THREAD_OFFSET(jni_env_);
DO_THREAD_OFFSET(self_);
DO_THREAD_OFFSET(stack_end_);
DO_THREAD_OFFSET(state_);
DO_THREAD_OFFSET(suspend_count_);
DO_THREAD_OFFSET(thin_lock_id_);
DO_THREAD_OFFSET(top_of_managed_stack_);
DO_THREAD_OFFSET(top_of_managed_stack_pc_);
DO_THREAD_OFFSET(top_sirt_);
#undef DO_THREAD_OFFSET
size_t entry_point_count = arraysize(gThreadEntryPointInfo);
CHECK_EQ(entry_point_count * size_of_pointers, sizeof(EntryPoints));
uint32_t expected_offset = OFFSETOF_MEMBER(Thread, entrypoints_);
for (size_t i = 0; i < entry_point_count; ++i) {
CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset);
expected_offset += size_of_pointers;
if (gThreadEntryPointInfo[i].offset == offset) {
os << gThreadEntryPointInfo[i].name;
return;
}
}
os << offset;
}
class CatchBlockStackVisitor : public Thread::StackVisitor {
public:
CatchBlockStackVisitor(Class* to_find, Context* ljc)
: to_find_(to_find), long_jump_context_(ljc), native_method_count_(0),
method_tracing_active_(Runtime::Current()->IsMethodTracingActive()) {
#ifndef NDEBUG
handler_pc_ = 0xEBADC0DE;
handler_frame_.SetSP(reinterpret_cast<Method**>(0xEBADF00D));
#endif
}
bool VisitFrame(const Frame& fr, uintptr_t pc) {
Method* method = fr.GetMethod();
if (method == NULL) {
// This is the upcall, we remember the frame and last_pc so that we may
// long jump to them
handler_pc_ = DemanglePc(pc);
handler_frame_ = fr;
return false; // End stack walk.
}
uint32_t dex_pc = DexFile::kDexNoIndex;
if (method->IsRuntimeMethod()) {
// ignore callee save method
DCHECK(method->IsCalleeSaveMethod());
} else if (method->IsNative()) {
native_method_count_++;
} else {
// Unwind stack when an exception occurs during method tracing
if (UNLIKELY(method_tracing_active_)) {
#if !defined(ART_USE_LLVM_COMPILER)
if (IsTraceExitPc(DemanglePc(pc))) {
pc = ManglePc(TraceMethodUnwindFromCode(Thread::Current()));
}
#else
UNIMPLEMENTED(FATAL);
#endif
}
dex_pc = method->ToDexPC(pc);
}
if (dex_pc != DexFile::kDexNoIndex) {
uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc);
if (found_dex_pc != DexFile::kDexNoIndex) {
handler_pc_ = method->ToNativePC(found_dex_pc);
handler_frame_ = fr;
return false; // End stack walk.
}
}
#if !defined(ART_USE_LLVM_COMPILER)
// Caller may be handler, fill in callee saves in context
long_jump_context_->FillCalleeSaves(fr);
#endif
return true; // Continue stack walk.
}
// The type of the exception catch block to find
Class* to_find_;
// Frame with found handler or last frame if no handler found
Frame handler_frame_;
// PC to branch to for the handler
uintptr_t handler_pc_;
// Context that will be the target of the long jump
Context* long_jump_context_;
// Number of native methods passed in crawl (equates to number of SIRTs to pop)
uint32_t native_method_count_;
// Is method tracing active?
const bool method_tracing_active_;
};
void Thread::DeliverException() {
#if !defined(ART_USE_LLVM_COMPILER)
const bool kDebugExceptionDelivery = false;
Throwable* exception = GetException(); // Get exception from thread
CHECK(exception != NULL);
// Don't leave exception visible while we try to find the handler, which may cause class
// resolution.
ClearException();
if (kDebugExceptionDelivery) {
String* msg = exception->GetDetailMessage();
std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : "");
DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
<< ": " << str_msg << "\n");
}
Context* long_jump_context = GetLongJumpContext();
CatchBlockStackVisitor catch_finder(exception->GetClass(), long_jump_context);
WalkStack(&catch_finder, true);
Method** sp;
uintptr_t throw_native_pc;
Method* throw_method = GetCurrentMethod(&throw_native_pc, &sp);
uintptr_t catch_native_pc = catch_finder.handler_pc_;
Method* catch_method = catch_finder.handler_frame_.GetMethod();
Dbg::PostException(sp, throw_method, throw_native_pc, catch_method, catch_native_pc, exception);
if (kDebugExceptionDelivery) {
if (catch_method == NULL) {
LOG(INFO) << "Handler is upcall";
} else {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const DexFile& dex_file =
class_linker->FindDexFile(catch_method->GetDeclaringClass()->GetDexCache());
int line_number = dex_file.GetLineNumFromPC(catch_method,
catch_method->ToDexPC(catch_finder.handler_pc_));
LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
}
}
SetException(exception);
CHECK_NE(catch_native_pc, 0u);
long_jump_context->SetSP(reinterpret_cast<uintptr_t>(catch_finder.handler_frame_.GetSP()));
long_jump_context->SetPC(catch_native_pc);
long_jump_context->SmashCallerSaves();
long_jump_context->DoLongJump();
#endif
LOG(FATAL) << "UNREACHABLE";
}
Context* Thread::GetLongJumpContext() {
Context* result = long_jump_context_;
#if !defined(ART_USE_LLVM_COMPILER)
if (result == NULL) {
result = Context::Create();
long_jump_context_ = result;
}
#endif
return result;
}
#if !defined(ART_USE_LLVM_COMPILER)
Method* Thread::GetCurrentMethod(uintptr_t* pc, Method*** sp) const {
Frame f = top_of_managed_stack_;
Method* m = f.GetMethod();
uintptr_t native_pc = top_of_managed_stack_pc_;
// We use JNI internally for exception throwing, so it's possible to arrive
// here via a "FromCode" function, in which case there's a synthetic
// callee-save method at the top of the stack. These shouldn't be user-visible,
// so if we find one, skip it and return the compiled method underneath.
if (m != NULL && m->IsCalleeSaveMethod()) {
native_pc = f.GetReturnPC();
f.Next();
m = f.GetMethod();
}
if (pc != NULL) {
*pc = (m != NULL) ? ManglePc(native_pc) : 0;
}
if (sp != NULL) {
*sp = f.GetSP();
}
return m;
}
#else
Method* Thread::GetCurrentMethod(uintptr_t*, Method***) const {
ShadowFrame* frame = top_shadow_frame_;
if (frame == NULL) {
return NULL;
}
return frame->GetMethod();
}
#endif
bool Thread::HoldsLock(Object* object) {
if (object == NULL) {
return false;
}
return object->GetThinLockId() == thin_lock_id_;
}
bool Thread::IsDaemon() {
return DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(peer_);
}
#if !defined(ART_USE_LLVM_COMPILER)
class ReferenceMapVisitor : public Thread::StackVisitor {
public:
ReferenceMapVisitor(Context* context, Heap::RootVisitor* root_visitor, void* arg) :
context_(context), root_visitor_(root_visitor), arg_(arg) {
}
bool VisitFrame(const Frame& frame, uintptr_t pc) {
Method* m = frame.GetMethod();
if (false) {
LOG(INFO) << "Visiting stack roots in " << PrettyMethod(m)
<< StringPrintf("@ PC:%04x", m->ToDexPC(pc));
}
// Process register map (which native and callee save methods don't have)
if (!m->IsNative() && !m->IsCalleeSaveMethod() && !m->IsProxyMethod()) {
CHECK(m->GetGcMap() != NULL) << PrettyMethod(m);
CHECK_NE(0U, m->GetGcMapLength()) << PrettyMethod(m);
verifier::PcToReferenceMap map(m->GetGcMap(), m->GetGcMapLength());
const uint8_t* reg_bitmap = map.FindBitMap(m->ToDexPC(pc));
CHECK(reg_bitmap != NULL);
const VmapTable vmap_table(m->GetVmapTableRaw());
const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem();
DCHECK(code_item != NULL); // can't be NULL or how would we compile its instructions?
uint32_t core_spills = m->GetCoreSpillMask();
uint32_t fp_spills = m->GetFpSpillMask();
size_t frame_size = m->GetFrameSizeInBytes();
// For all dex registers in the bitmap
size_t num_regs = std::min(map.RegWidth() * 8,
static_cast<size_t>(code_item->registers_size_));
for (size_t reg = 0; reg < num_regs; ++reg) {
// Does this register hold a reference?
if (TestBitmap(reg, reg_bitmap)) {
uint32_t vmap_offset;
Object* ref;
if (vmap_table.IsInContext(reg, vmap_offset)) {
// Compute the register we need to load from the context
uint32_t spill_mask = m->GetCoreSpillMask();
CHECK_LT(vmap_offset, static_cast<uint32_t>(__builtin_popcount(spill_mask)));
uint32_t matches = 0;
uint32_t spill_shifts = 0;
while (matches != (vmap_offset + 1)) {
DCHECK_NE(spill_mask, 0u);
matches += spill_mask & 1; // Add 1 if the low bit is set
spill_mask >>= 1;
spill_shifts++;
}
spill_shifts--; // wind back one as we want the last match
ref = reinterpret_cast<Object*>(context_->GetGPR(spill_shifts));
} else {
ref = reinterpret_cast<Object*>(frame.GetVReg(code_item, core_spills, fp_spills,
frame_size, reg));
}
if (ref != NULL) {
root_visitor_(ref, arg_);
}
}
}
}
context_->FillCalleeSaves(frame);
return true;
}
private:
bool TestBitmap(int reg, const uint8_t* reg_vector) {
return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
}
// Context used to build up picture of callee saves
Context* context_;
// Call-back when we visit a root
Heap::RootVisitor* root_visitor_;
// Argument to call-back
void* arg_;
};
#endif
void Thread::VisitRoots(Heap::RootVisitor* visitor, void* arg) {
if (exception_ != NULL) {
visitor(exception_, arg);
}
if (peer_ != NULL) {
visitor(peer_, arg);
}
if (pre_allocated_OutOfMemoryError_ != NULL) {
visitor(pre_allocated_OutOfMemoryError_, arg);
}
if (class_loader_override_ != NULL) {
visitor(class_loader_override_, arg);
}
jni_env_->locals.VisitRoots(visitor, arg);
jni_env_->monitors.VisitRoots(visitor, arg);
SirtVisitRoots(visitor, arg);
ShadowFrameVisitRoots(visitor, arg);
#if !defined(ART_USE_LLVM_COMPILER)
// Cheat and steal the long jump context. Assume that we are not doing a GC during exception
// delivery.
Context* context = GetLongJumpContext();
// Visit roots on this thread's stack
ReferenceMapVisitor mapper(context, visitor, arg);
WalkStack(&mapper);
#endif
}
#if VERIFY_OBJECT_ENABLED
static void VerifyObject(const Object* obj, void*) {
Runtime::Current()->GetHeap()->VerifyObject(obj);
}
void Thread::VerifyStack() {
#if !defined(ART_USE_LLVM_COMPILER)
UniquePtr<Context> context(Context::Create());
ReferenceMapVisitor mapper(context.get(), VerifyObject, NULL);
WalkStack(&mapper);
#endif
}
#endif
std::ostream& operator<<(std::ostream& os, const Thread& thread) {
thread.Dump(os, false);
return os;
}
void Thread::CheckSafeToLockOrUnlock(MutexRank rank, bool is_locking) {
if (this == NULL) {
CHECK(Runtime::Current()->IsShuttingDown());
return;
}
if (is_locking) {
if (held_mutexes_[rank] == 0) {
bool bad_mutexes_held = false;
for (int i = kMaxMutexRank; i > rank; --i) {
if (held_mutexes_[i] != 0) {
LOG(ERROR) << "holding " << static_cast<MutexRank>(i) << " while " << (is_locking ? "locking" : "unlocking") << " " << rank;
bad_mutexes_held = true;
}
}
CHECK(!bad_mutexes_held) << rank;
}
++held_mutexes_[rank];
} else {
CHECK_GT(held_mutexes_[rank], 0U) << rank;
--held_mutexes_[rank];
}
}
void Thread::CheckSafeToWait(MutexRank rank) {
if (this == NULL) {
CHECK(Runtime::Current()->IsShuttingDown());
return;
}
bool bad_mutexes_held = false;
for (int i = kMaxMutexRank; i >= 0; --i) {
if (i != rank && held_mutexes_[i] != 0) {
LOG(ERROR) << "holding " << static_cast<MutexRank>(i) << " while doing condition variable wait on " << rank;
bad_mutexes_held = true;
}
}
if (held_mutexes_[rank] == 0) {
LOG(ERROR) << "*not* holding " << rank << " while doing condition variable wait on it";
bad_mutexes_held = true;
}
CHECK(!bad_mutexes_held);
}
} // namespace art