blob: 125294655a54ebda8192b5700909d2279f3d8271 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "profile_saver.h"
#include <fcntl.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "android-base/strings.h"
#include "art_method-inl.h"
#include "base/compiler_filter.h"
#include "base/enums.h"
#include "base/logging.h" // For VLOG.
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/unix_file/fd_file.h"
#include "class_table-inl.h"
#include "dex/dex_file_loader.h"
#include "dex_reference_collection.h"
#include "gc/collector_type.h"
#include "gc/gc_cause.h"
#include "jit/jit.h"
#include "jit/profiling_info.h"
#include "oat_file_manager.h"
#include "profile/profile_compilation_info.h"
#include "scoped_thread_state_change-inl.h"
namespace art {
using Hotness = ProfileCompilationInfo::MethodHotness;
ProfileSaver* ProfileSaver::instance_ = nullptr;
pthread_t ProfileSaver::profiler_pthread_ = 0U;
static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize ==
InlineCache::kIndividualCacheSize,
"InlineCache and ProfileCompilationInfo do not agree on kIndividualCacheSize");
// At what priority to schedule the saver threads. 9 is the lowest foreground priority on device.
static constexpr int kProfileSaverPthreadPriority = 9;
static void SetProfileSaverThreadPriority(pthread_t thread, int priority) {
#if defined(ART_TARGET_ANDROID)
int result = setpriority(PRIO_PROCESS, pthread_gettid_np(thread), priority);
if (result != 0) {
LOG(ERROR) << "Failed to setpriority to :" << priority;
}
#else
UNUSED(thread);
UNUSED(priority);
#endif
}
static int GetDefaultThreadPriority() {
#if defined(ART_TARGET_ANDROID)
pthread_attr_t attr;
sched_param param;
pthread_attr_init(&attr);
pthread_attr_getschedparam(&attr, &param);
return param.sched_priority;
#else
return 0;
#endif
}
ProfileSaver::ProfileSaver(const ProfileSaverOptions& options, jit::JitCodeCache* jit_code_cache)
: jit_code_cache_(jit_code_cache),
shutting_down_(false),
last_time_ns_saver_woke_up_(0),
jit_activity_notifications_(0),
wait_lock_("ProfileSaver wait lock"),
period_condition_("ProfileSaver period condition", wait_lock_),
total_bytes_written_(0),
total_number_of_writes_(0),
total_number_of_code_cache_queries_(0),
total_number_of_skipped_writes_(0),
total_number_of_failed_writes_(0),
total_ms_of_sleep_(0),
total_ns_of_work_(0),
total_number_of_hot_spikes_(0),
total_number_of_wake_ups_(0),
options_(options) {
DCHECK(options_.IsEnabled());
}
ProfileSaver::~ProfileSaver() {
for (auto& it : profile_cache_) {
delete it.second;
}
}
void ProfileSaver::NotifyStartupCompleted() {
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::profiler_lock_);
if (instance_ == nullptr || instance_->shutting_down_) {
return;
}
MutexLock mu2(self, instance_->wait_lock_);
instance_->period_condition_.Signal(self);
}
void ProfileSaver::Run() {
Thread* self = Thread::Current();
// For thread annotalysis, the setup is more complicated than it should be. Run needs to start
// under mutex, but should drop it.
Locks::profiler_lock_->ExclusiveUnlock(self);
bool check_for_first_save =
options_.GetMinFirstSaveMs() != ProfileSaverOptions::kMinFirstSaveMsNotSet;
bool force_early_first_save = check_for_first_save && IsFirstSave();
// Fetch the resolved classes for the app images after sleeping for
// options_.GetSaveResolvedClassesDelayMs().
// TODO(calin) This only considers the case of the primary profile file.
// Anything that gets loaded in the same VM will not have their resolved
// classes save (unless they started before the initial saving was done).
{
MutexLock mu(self, wait_lock_);
const uint64_t sleep_time = MsToNs(force_early_first_save
? options_.GetMinFirstSaveMs()
: options_.GetSaveResolvedClassesDelayMs());
const uint64_t start_time = NanoTime();
const uint64_t end_time = start_time + sleep_time;
while (!Runtime::Current()->GetStartupCompleted() || force_early_first_save) {
const uint64_t current_time = NanoTime();
if (current_time >= end_time) {
break;
}
period_condition_.TimedWait(self, NsToMs(end_time - current_time), 0);
}
total_ms_of_sleep_ += NsToMs(NanoTime() - start_time);
}
FetchAndCacheResolvedClassesAndMethods(/*startup=*/ true);
// When we save without waiting for JIT notifications we use a simple
// exponential back off policy bounded by max_wait_without_jit.
uint32_t max_wait_without_jit = options_.GetMinSavePeriodMs() * 16;
uint64_t cur_wait_without_jit = options_.GetMinSavePeriodMs();
// Loop for the profiled methods.
while (!ShuttingDown(self)) {
// Sleep only if we don't have to force an early first save configured
// with GetMinFirstSaveMs().
// If we do have to save early, move directly to the processing part
// since we already slept before fetching and resolving the startup
// classes.
if (!force_early_first_save) {
uint64_t sleep_start = NanoTime();
uint64_t sleep_time = 0;
{
MutexLock mu(self, wait_lock_);
if (options_.GetWaitForJitNotificationsToSave()) {
period_condition_.Wait(self);
} else {
period_condition_.TimedWait(self, cur_wait_without_jit, 0);
if (cur_wait_without_jit < max_wait_without_jit) {
cur_wait_without_jit *= 2;
}
}
sleep_time = NanoTime() - sleep_start;
}
// Check if the thread was woken up for shutdown.
if (ShuttingDown(self)) {
break;
}
total_number_of_wake_ups_++;
// We might have been woken up by a huge number of notifications to guarantee saving.
// If we didn't meet the minimum saving period go back to sleep (only if missed by
// a reasonable margin).
uint64_t min_save_period_ns = MsToNs(options_.GetMinSavePeriodMs());
while (min_save_period_ns * 0.9 > sleep_time) {
{
MutexLock mu(self, wait_lock_);
period_condition_.TimedWait(self, NsToMs(min_save_period_ns - sleep_time), 0);
sleep_time = NanoTime() - sleep_start;
}
// Check if the thread was woken up for shutdown.
if (ShuttingDown(self)) {
break;
}
total_number_of_wake_ups_++;
}
total_ms_of_sleep_ += NsToMs(NanoTime() - sleep_start);
}
if (ShuttingDown(self)) {
break;
}
uint16_t number_of_new_methods = 0;
uint64_t start_work = NanoTime();
// If we force an early_first_save do not run FetchAndCacheResolvedClassesAndMethods
// again. We just did it. So pass true to skip_class_and_method_fetching.
bool profile_saved_to_disk = ProcessProfilingInfo(
/*force_save=*/ false,
/*skip_class_and_method_fetching=*/ force_early_first_save,
&number_of_new_methods);
// Reset the flag, so we can continue on the normal schedule.
force_early_first_save = false;
// Update the notification counter based on result. Note that there might be contention on this
// but we don't care about to be 100% precise.
if (!profile_saved_to_disk) {
// If we didn't save to disk it may be because we didn't have enough new methods.
// Set the jit activity notifications to number_of_new_methods so we can wake up earlier
// if needed.
jit_activity_notifications_ = number_of_new_methods;
}
total_ns_of_work_ += NanoTime() - start_work;
}
}
// Checks if the profile file is empty.
// Return true if the size of the profile file is 0 or if there were errors when
// trying to open the file.
static bool IsProfileEmpty(const std::string& location) {
if (location.empty()) {
return true;
}
struct stat stat_buffer;
if (stat(location.c_str(), &stat_buffer) != 0) {
if (VLOG_IS_ON(profiler)) {
PLOG(WARNING) << "Failed to stat profile location for IsFirstUse: " << location;
}
return true;
}
VLOG(profiler) << "Profile " << location << " size=" << stat_buffer.st_size;
return stat_buffer.st_size == 0;
}
bool ProfileSaver::IsFirstSave() {
Thread* self = Thread::Current();
SafeMap<std::string, std::string> tracked_locations;
{
// Make a copy so that we don't hold the lock while doing I/O.
MutexLock mu(self, *Locks::profiler_lock_);
tracked_locations = tracked_profiles_;
}
for (const auto& it : tracked_locations) {
if (ShuttingDown(self)) {
return false;
}
const std::string& cur_profile = it.first;
const std::string& ref_profile = it.second;
// Check if any profile is non empty. If so, then this is not the first save.
if (!IsProfileEmpty(cur_profile) || !IsProfileEmpty(ref_profile)) {
return false;
}
}
// All locations are empty. Assume this is the first use.
VLOG(profiler) << "All profile locations are empty. This is considered to be first save";
return true;
}
void ProfileSaver::NotifyJitActivity() {
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
if (instance_ == nullptr || instance_->shutting_down_) {
return;
}
instance_->NotifyJitActivityInternal();
}
void ProfileSaver::WakeUpSaver() {
jit_activity_notifications_ = 0;
last_time_ns_saver_woke_up_ = NanoTime();
period_condition_.Signal(Thread::Current());
}
void ProfileSaver::NotifyJitActivityInternal() {
// Unlikely to overflow but if it happens,
// we would have waken up the saver long before that.
jit_activity_notifications_++;
// Note that we are not as precise as we could be here but we don't want to wake the saver
// every time we see a hot method.
if (jit_activity_notifications_ > options_.GetMinNotificationBeforeWake()) {
MutexLock wait_mutex(Thread::Current(), wait_lock_);
if ((NanoTime() - last_time_ns_saver_woke_up_) > MsToNs(options_.GetMinSavePeriodMs())) {
WakeUpSaver();
} else if (jit_activity_notifications_ > options_.GetMaxNotificationBeforeWake()) {
// Make sure to wake up the saver if we see a spike in the number of notifications.
// This is a precaution to avoid losing a big number of methods in case
// this is a spike with no jit after.
total_number_of_hot_spikes_++;
WakeUpSaver();
}
}
}
class ProfileSaver::ScopedDefaultPriority {
public:
explicit ScopedDefaultPriority(pthread_t thread) : thread_(thread) {
SetProfileSaverThreadPriority(thread_, GetDefaultThreadPriority());
}
~ScopedDefaultPriority() {
SetProfileSaverThreadPriority(thread_, kProfileSaverPthreadPriority);
}
private:
const pthread_t thread_;
};
class ProfileSaver::GetClassesAndMethodsHelper {
public:
GetClassesAndMethodsHelper(bool startup,
const ProfileSaverOptions& options,
const ProfileCompilationInfo::ProfileSampleAnnotation& annotation)
REQUIRES_SHARED(Locks::mutator_lock_)
: startup_(startup),
profile_boot_class_path_(options.GetProfileBootClassPath()),
hot_method_sample_threshold_(CalculateHotMethodSampleThreshold(startup, options)),
extra_flags_(GetExtraMethodHotnessFlags(options)),
annotation_(annotation),
arena_stack_(Runtime::Current()->GetArenaPool()),
allocator_(&arena_stack_),
class_loaders_(std::nullopt),
dex_file_records_map_(allocator_.Adapter(kArenaAllocProfile)),
number_of_hot_methods_(0u),
number_of_sampled_methods_(0u) {
std::fill_n(max_primitive_array_dimensions_.data(), max_primitive_array_dimensions_.size(), 0u);
}
~GetClassesAndMethodsHelper() REQUIRES_SHARED(Locks::mutator_lock_) {
// The `class_loaders_` member destructor needs the mutator lock.
// We need to destroy arena-allocated dex file records.
for (const auto& entry : dex_file_records_map_) {
delete entry.second;
}
}
void CollectClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
void UpdateProfile(const std::set<std::string>& locations, ProfileCompilationInfo* profile_info);
uint32_t GetHotMethodSampleThreshold() const {
return hot_method_sample_threshold_;
}
size_t GetNumberOfHotMethods() const {
return number_of_hot_methods_;
}
size_t GetNumberOfSampledMethods() const {
return number_of_sampled_methods_;
}
private:
// GetClassLoadersVisitor collects visited class loaders.
class GetClassLoadersVisitor : public ClassLoaderVisitor {
public:
explicit GetClassLoadersVisitor(VariableSizedHandleScope* class_loaders)
: class_loaders_(class_loaders) {}
void Visit(ObjPtr<mirror::ClassLoader> class_loader)
REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override {
DCHECK(class_loader != nullptr);
class_loaders_->NewHandle(class_loader);
}
private:
VariableSizedHandleScope* const class_loaders_;
};
class CollectInternalVisitor {
public:
explicit CollectInternalVisitor(GetClassesAndMethodsHelper* helper)
: helper_(helper) {}
void VisitRootIfNonNull(StackReference<mirror::Object>* ref)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!ref->IsNull()) {
helper_->CollectInternal</*kBootClassLoader=*/ false>(ref->AsMirrorPtr()->AsClassLoader());
}
}
private:
GetClassesAndMethodsHelper* helper_;
};
struct ClassRecord {
dex::TypeIndex type_index;
uint16_t array_dimension;
uint32_t copied_methods_start;
LengthPrefixedArray<ArtMethod>* methods;
};
struct DexFileRecords : public DeletableArenaObject<kArenaAllocProfile> {
explicit DexFileRecords(ScopedArenaAllocator* allocator)
: class_records(allocator->Adapter(kArenaAllocProfile)),
copied_methods(allocator->Adapter(kArenaAllocProfile)) {
class_records.reserve(kInitialClassRecordsReservation);
}
static constexpr size_t kInitialClassRecordsReservation = 512;
ScopedArenaVector<ClassRecord> class_records;
ScopedArenaVector<ArtMethod*> copied_methods;
};
using DexFileRecordsMap = ScopedArenaHashMap<const DexFile*, DexFileRecords*>;
static uint32_t CalculateHotMethodSampleThreshold(bool startup,
const ProfileSaverOptions& options) {
Runtime* runtime = Runtime::Current();
if (startup) {
const bool is_low_ram = runtime->GetHeap()->IsLowMemoryMode();
return options.GetHotStartupMethodSamples(is_low_ram);
} else if (runtime->GetJit() != nullptr) {
return runtime->GetJit()->WarmMethodThreshold();
} else {
return std::numeric_limits<uint32_t>::max();
}
}
ALWAYS_INLINE static bool ShouldCollectClasses(bool startup) {
// We only record classes for the startup case. This may change in the future.
return startup;
}
// Collect classes and methods from one class loader.
template <bool kBootClassLoader>
void CollectInternal(ObjPtr<mirror::ClassLoader> class_loader) NO_INLINE
REQUIRES_SHARED(Locks::mutator_lock_);
const bool startup_;
const bool profile_boot_class_path_;
const uint32_t hot_method_sample_threshold_;
const uint32_t extra_flags_;
const ProfileCompilationInfo::ProfileSampleAnnotation annotation_;
ArenaStack arena_stack_;
ScopedArenaAllocator allocator_;
std::optional<VariableSizedHandleScope> class_loaders_;
DexFileRecordsMap dex_file_records_map_;
static_assert(Primitive::kPrimLast == Primitive::kPrimVoid); // There are no arrays of void.
std::array<uint8_t, static_cast<size_t>(Primitive::kPrimLast)> max_primitive_array_dimensions_;
size_t number_of_hot_methods_;
size_t number_of_sampled_methods_;
};
template <bool kBootClassLoader>
void ProfileSaver::GetClassesAndMethodsHelper::CollectInternal(
ObjPtr<mirror::ClassLoader> class_loader) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_EQ(kBootClassLoader, class_loader == nullptr);
// If the class loader has not loaded any classes, it may have a null table.
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
ClassTable* const table =
class_linker->ClassTableForClassLoader(kBootClassLoader ? nullptr : class_loader);
if (table == nullptr) {
return;
}
// Move members to local variables to allow the compiler to optimize this properly.
const bool startup = startup_;
table->Visit([&](ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
if (kBootClassLoader ? (!klass->IsBootStrapClassLoaded())
: (klass->GetClassLoader() != class_loader)) {
// To avoid processing a class more than once, we process each class only
// when we encounter it in the defining class loader's class table.
// This class has a different defining class loader, skip it.
return true;
}
uint16_t dim = 0u;
ObjPtr<mirror::Class> k = klass;
if (klass->IsArrayClass()) {
DCHECK_EQ(klass->NumMethods(), 0u); // No methods to collect.
if (!ShouldCollectClasses(startup)) {
return true;
}
do {
DCHECK(k->IsResolved()); // Array classes are always resolved.
++dim;
// At the time of array class creation, the element type is already either
// resolved or erroneous unresoved and either shall remain an invariant.
// Similarly, the access flag indicating a proxy class is an invariant.
// Read barrier is unnecessary for reading a chain of constant references
// in order to read primitive fields to check such invariants, or to read
// other constant primitive fields (dex file, primitive type) below.
k = k->GetComponentType<kDefaultVerifyFlags, kWithoutReadBarrier>();
} while (k->IsArrayClass());
DCHECK(kBootClassLoader || !k->IsPrimitive());
if (kBootClassLoader && UNLIKELY(k->IsPrimitive())) {
size_t index = enum_cast<size_t>(k->GetPrimitiveType());
DCHECK_LT(index, max_primitive_array_dimensions_.size());
if (dim > max_primitive_array_dimensions_[index]) {
// Enforce an upper limit of 255 for primitive array dimensions.
max_primitive_array_dimensions_[index] =
std::min<size_t>(dim, std::numeric_limits<uint8_t>::max());
}
return true;
}
// Attribute the array class to the defining dex file of the element class.
DCHECK_EQ(klass->GetCopiedMethodsStartOffset(), 0u);
DCHECK(klass->GetMethodsPtr() == nullptr);
} else {
// Non-array class. There is no need to collect primitive types.
DCHECK(kBootClassLoader || !k->IsPrimitive());
if (kBootClassLoader && UNLIKELY(klass->IsPrimitive())) {
DCHECK(profile_boot_class_path_);
DCHECK_EQ(klass->NumMethods(), 0u); // No methods to collect.
return true;
}
}
if (!k->IsResolved() || k->IsProxyClass()) {
return true;
}
const DexFile& dex_file = k->GetDexFile();
dex::TypeIndex type_index = k->GetDexTypeIndex();
uint32_t copied_methods_start = klass->GetCopiedMethodsStartOffset();
LengthPrefixedArray<ArtMethod>* methods = klass->GetMethodsPtr();
if (methods != nullptr) {
CHECK_LE(copied_methods_start, methods->size()) << k->PrettyClass();
}
DexFileRecords* dex_file_records;
auto it = dex_file_records_map_.find(&dex_file);
if (it != dex_file_records_map_.end()) {
dex_file_records = it->second;
} else {
dex_file_records = new (&allocator_) DexFileRecords(&allocator_);
dex_file_records_map_.insert(std::make_pair(&dex_file, dex_file_records));
}
dex_file_records->class_records.push_back(
ClassRecord{type_index, dim, copied_methods_start, methods});
return true;
});
}
void ProfileSaver::GetClassesAndMethodsHelper::CollectClasses(Thread* self) {
ScopedTrace trace(__PRETTY_FUNCTION__);
// Collect class loaders into a `VariableSizedHandleScope` to prevent contention
// problems on the class_linker_classes_lock. Hold those class loaders in
// a member variable to keep them alive and prevent unloading their classes,
// so that methods referenced in collected `DexFileRecords` remain valid.
class_loaders_.emplace(self);
{
GetClassLoadersVisitor class_loader_visitor(&class_loaders_.value());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
class_linker->VisitClassLoaders(&class_loader_visitor);
}
// Collect classes and their method array pointers.
if (profile_boot_class_path_) {
// Collect classes from the boot class loader since visit classloaders doesn't visit it.
CollectInternal</*kBootClassLoader=*/ true>(/*class_loader=*/ nullptr);
}
{
CollectInternalVisitor visitor(this);
class_loaders_->VisitRoots(visitor);
}
// Attribute copied methods to defining dex files while holding the mutator lock.
for (const auto& entry : dex_file_records_map_) {
const DexFile* dex_file = entry.first;
DexFileRecords* dex_file_records = entry.second;
for (const ClassRecord& class_record : dex_file_records->class_records) {
LengthPrefixedArray<ArtMethod>* methods = class_record.methods;
if (methods == nullptr) {
continue;
}
const size_t methods_size = methods->size();
CHECK_LE(class_record.copied_methods_start, methods_size)
<< dex_file->PrettyType(class_record.type_index);
for (size_t index = class_record.copied_methods_start; index != methods_size; ++index) {
// Note: Using `ArtMethod` array with implicit `kRuntimePointerSize`.
ArtMethod& method = methods->At(index);
CHECK(method.IsCopied()) << dex_file->PrettyType(class_record.type_index);
CHECK(!method.IsNative()) << dex_file->PrettyType(class_record.type_index);
if (method.IsInvokable()) {
const DexFile* method_dex_file = method.GetDexFile();
DexFileRecords* method_dex_file_records = dex_file_records;
if (method_dex_file != dex_file) {
auto it = dex_file_records_map_.find(method_dex_file);
if (it == dex_file_records_map_.end()) {
// We have not seen any class in the dex file that defines the interface with this
// copied method. This can happen if the interface is in the boot class path and
// we are not profiling boot class path; or when we first visit classes for the
// interface's defining class loader before it has any resolved classes and then
// the interface is resolved and an implementing class is defined in a child class
// loader before we visit that child class loader's classes.
continue;
}
method_dex_file_records = it->second;
}
method_dex_file_records->copied_methods.push_back(&method);
}
}
}
}
}
void ProfileSaver::GetClassesAndMethodsHelper::UpdateProfile(const std::set<std::string>& locations,
ProfileCompilationInfo* profile_info) {
// Move members to local variables to allow the compiler to optimize this properly.
const bool startup = startup_;
const uint32_t hot_method_sample_threshold = hot_method_sample_threshold_;
const uint32_t base_flags =
(startup ? Hotness::kFlagStartup : Hotness::kFlagPostStartup) | extra_flags_;
// Collect the number of hot and sampled methods.
size_t number_of_hot_methods = 0u;
size_t number_of_sampled_methods = 0u;
uint16_t initial_value = Runtime::Current()->GetJITOptions()->GetWarmupThreshold();
auto get_method_flags = [&](ArtMethod& method) {
// Mark methods as hot if they have more than hot_method_sample_threshold
// samples. This means they will get compiled by the compiler driver.
if (method.PreviouslyWarm() ||
method.CounterHasReached(hot_method_sample_threshold, initial_value)) {
++number_of_hot_methods;
return enum_cast<ProfileCompilationInfo::MethodHotness::Flag>(base_flags | Hotness::kFlagHot);
} else if (method.CounterHasChanged(initial_value)) {
++number_of_sampled_methods;
return enum_cast<ProfileCompilationInfo::MethodHotness::Flag>(base_flags);
} else {
return enum_cast<ProfileCompilationInfo::MethodHotness::Flag>(0u);
}
};
// Use a single string for array descriptors to avoid too many reallocations.
std::string array_class_descriptor;
// Process classes and methods.
for (const auto& entry : dex_file_records_map_) {
const DexFile* dex_file = entry.first;
const DexFileRecords* dex_file_records = entry.second;
// Check if this is a profiled dex file.
const std::string base_location = DexFileLoader::GetBaseLocation(dex_file->GetLocation());
if (locations.find(base_location) == locations.end()) {
continue;
}
// Get the profile index.
ProfileCompilationInfo::ProfileIndexType profile_index =
profile_info->FindOrAddDexFile(*dex_file, annotation_);
if (profile_index == ProfileCompilationInfo::MaxProfileIndex()) {
// Error adding dex file to the `profile_info`.
continue;
}
for (const ClassRecord& class_record : dex_file_records->class_records) {
if (class_record.array_dimension != 0u) {
DCHECK(ShouldCollectClasses(startup));
DCHECK(class_record.methods == nullptr); // No methods to process.
array_class_descriptor.assign(class_record.array_dimension, '[');
array_class_descriptor += dex_file->StringByTypeIdx(class_record.type_index);
dex::TypeIndex type_index =
profile_info->FindOrCreateTypeIndex(*dex_file, array_class_descriptor.c_str());
if (type_index.IsValid()) {
profile_info->AddClass(profile_index, type_index);
}
} else {
// Non-array class.
if (ShouldCollectClasses(startup)) {
profile_info->AddClass(profile_index, class_record.type_index);
}
const size_t num_declared_methods = class_record.copied_methods_start;
LengthPrefixedArray<ArtMethod>* methods = class_record.methods;
for (size_t index = 0; index != num_declared_methods; ++index) {
// Note: Using `ArtMethod` array with implicit `kRuntimePointerSize`.
ArtMethod& method = methods->At(index);
DCHECK(!method.IsCopied());
// We do not record native methods. Once we AOT-compile the app,
// all native methods shall have their JNI stubs compiled.
if (method.IsInvokable() && !method.IsNative()) {
ProfileCompilationInfo::MethodHotness::Flag flags = get_method_flags(method);
if (flags != 0u) {
profile_info->AddMethod(profile_index, method.GetDexMethodIndex(), flags);
}
}
}
}
}
for (ArtMethod* method : dex_file_records->copied_methods) {
DCHECK(method->IsCopied());
DCHECK(method->IsInvokable());
DCHECK(!method->IsNative());
ProfileCompilationInfo::MethodHotness::Flag flags = get_method_flags(*method);
if (flags != 0u) {
profile_info->AddMethod(profile_index, method->GetDexMethodIndex(), flags);
}
}
}
if (profile_boot_class_path_) {
// Attribute primitive arrays to the first dex file in the boot class path (should
// be core-oj). We collect primitive array types to know the needed dimensions.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
DCHECK(!class_linker->GetBootClassPath().empty());
const DexFile* dex_file = class_linker->GetBootClassPath().front();
ProfileCompilationInfo::ProfileIndexType profile_index =
profile_info->FindOrAddDexFile(*dex_file, annotation_);
if (profile_index != ProfileCompilationInfo::MaxProfileIndex()) {
for (size_t i = 0; i != max_primitive_array_dimensions_.size(); ++i) {
size_t max_dim = max_primitive_array_dimensions_[i];
// Insert descriptors for all dimensions up to `max_dim`.
for (size_t dim = 1; dim <= max_dim; ++dim) {
array_class_descriptor.assign(dim, '[');
array_class_descriptor += Primitive::Descriptor(enum_cast<Primitive::Type>(i));
dex::TypeIndex type_index =
profile_info->FindOrCreateTypeIndex(*dex_file, array_class_descriptor.c_str());
if (type_index.IsValid()) {
profile_info->AddClass(profile_index, type_index);
}
}
}
} else {
// Error adding dex file to the `profile_info`.
}
} else {
DCHECK(std::all_of(max_primitive_array_dimensions_.begin(),
max_primitive_array_dimensions_.end(),
[](uint8_t dim) { return dim == 0u; }));
}
// Store the number of hot and sampled methods.
number_of_hot_methods_ = number_of_hot_methods;
number_of_sampled_methods_ = number_of_sampled_methods;
}
void ProfileSaver::FetchAndCacheResolvedClassesAndMethods(bool startup) {
ScopedTrace trace(__PRETTY_FUNCTION__);
const uint64_t start_time = NanoTime();
// Resolve any new registered locations.
ResolveTrackedLocations();
Thread* const self = Thread::Current();
pthread_t profiler_pthread;
{
MutexLock mu(self, *Locks::profiler_lock_);
profiler_pthread = profiler_pthread_;
}
uint32_t hot_method_sample_threshold = 0u;
size_t number_of_hot_methods = 0u;
size_t number_of_sampled_methods = 0u;
{
// Restore profile saver thread priority while holding the mutator lock. This helps
// prevent priority inversions blocking the GC for long periods of time.
// Only restore default priority if we are the profile saver thread. Other threads
// that call this are threads calling Stop and the signal catcher (for SIGUSR1).
std::optional<ScopedDefaultPriority> sdp = std::nullopt;
if (pthread_self() == profiler_pthread) {
sdp.emplace(profiler_pthread);
}
ScopedObjectAccess soa(self);
GetClassesAndMethodsHelper helper(startup, options_, GetProfileSampleAnnotation());
hot_method_sample_threshold = helper.GetHotMethodSampleThreshold();
helper.CollectClasses(self);
// Release the mutator lock. We shall need to re-acquire the lock for a moment to
// destroy the `VariableSizedHandleScope` inside the `helper` which shall be
// conveniently handled by destroying `sts`, then `helper` and then `soa`.
ScopedThreadSuspension sts(self, ThreadState::kNative);
// Get back to the previous thread priority. We shall not increase the priority
// for the short time we need to re-acquire mutator lock for `helper` destructor.
sdp.reset();
MutexLock mu(self, *Locks::profiler_lock_);
for (const auto& it : tracked_dex_base_locations_) {
const std::string& filename = it.first;
auto info_it = profile_cache_.find(filename);
if (info_it == profile_cache_.end()) {
info_it = profile_cache_.Put(
filename,
new ProfileCompilationInfo(
Runtime::Current()->GetArenaPool(), options_.GetProfileBootClassPath()));
}
ProfileCompilationInfo* cached_info = info_it->second;
const std::set<std::string>& locations = it.second;
VLOG(profiler) << "Locations for " << it.first << " " << android::base::Join(locations, ':');
helper.UpdateProfile(locations, cached_info);
// Update statistics. Note that a method shall be counted for each
// tracked location that covers the dex file where it is defined.
number_of_hot_methods += helper.GetNumberOfHotMethods();
number_of_sampled_methods += helper.GetNumberOfSampledMethods();
}
}
VLOG(profiler) << "Profile saver recorded " << number_of_hot_methods
<< " hot methods and " << number_of_sampled_methods
<< " sampled methods with threshold " << hot_method_sample_threshold
<< " in " << PrettyDuration(NanoTime() - start_time);
}
bool ProfileSaver::ProcessProfilingInfo(
bool force_save,
bool skip_class_and_method_fetching,
/*out*/uint16_t* number_of_new_methods) {
ScopedTrace trace(__PRETTY_FUNCTION__);
// Resolve any new registered locations.
ResolveTrackedLocations();
SafeMap<std::string, std::set<std::string>> tracked_locations;
{
// Make a copy so that we don't hold the lock while doing I/O.
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
tracked_locations = tracked_dex_base_locations_;
}
bool profile_file_saved = false;
if (number_of_new_methods != nullptr) {
*number_of_new_methods = 0;
}
if (!skip_class_and_method_fetching) {
// We only need to do this once, not once per dex location.
// TODO: Figure out a way to only do it when stuff has changed? It takes 30-50ms.
FetchAndCacheResolvedClassesAndMethods(/*startup=*/ false);
}
for (const auto& it : tracked_locations) {
if (!force_save && ShuttingDown(Thread::Current())) {
// The ProfileSaver is in shutdown mode, meaning a stop request was made and
// we need to exit cleanly (by waiting for the saver thread to finish). Unless
// we have a request for a forced save, do not do any processing so that we
// speed up the exit.
return true;
}
const std::string& filename = it.first;
const std::set<std::string>& locations = it.second;
VLOG(profiler) << "Tracked filename " << filename << " locations "
<< android::base::Join(locations, ":");
std::vector<ProfileMethodInfo> profile_methods;
{
ScopedObjectAccess soa(Thread::Current());
jit_code_cache_->GetProfiledMethods(locations, profile_methods);
total_number_of_code_cache_queries_++;
}
{
ProfileCompilationInfo info(Runtime::Current()->GetArenaPool(),
/*for_boot_image=*/options_.GetProfileBootClassPath());
// Load the existing profile before saving.
// If the file is updated between `Load` and `Save`, the update will be lost. This is
// acceptable. The main reason is that the lost entries will eventually come back if the user
// keeps using the same methods, or they won't be needed if the user doesn't use the same
// methods again.
if (!info.Load(filename, /*clear_if_invalid=*/true)) {
LOG(WARNING) << "Could not forcefully load profile " << filename;
continue;
}
uint64_t last_save_number_of_methods = info.GetNumberOfMethods();
uint64_t last_save_number_of_classes = info.GetNumberOfResolvedClasses();
VLOG(profiler) << "last_save_number_of_methods=" << last_save_number_of_methods
<< " last_save_number_of_classes=" << last_save_number_of_classes
<< " number of profiled methods=" << profile_methods.size();
// Try to add the method data. Note this may fail is the profile loaded from disk contains
// outdated data (e.g. the previous profiled dex files might have been updated).
// If this happens we clear the profile data and for the save to ensure the file is cleared.
if (!info.AddMethods(
profile_methods,
AnnotateSampleFlags(Hotness::kFlagHot | Hotness::kFlagPostStartup),
GetProfileSampleAnnotation())) {
LOG(WARNING) << "Could not add methods to the existing profiler. "
<< "Clearing the profile data.";
info.ClearData();
force_save = true;
}
{
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
auto profile_cache_it = profile_cache_.find(filename);
if (profile_cache_it != profile_cache_.end()) {
if (!info.MergeWith(*(profile_cache_it->second))) {
LOG(WARNING) << "Could not merge the profile. Clearing the profile data.";
info.ClearData();
force_save = true;
}
} else if (VLOG_IS_ON(profiler)) {
LOG(INFO) << "Failed to find cached profile for " << filename;
for (auto&& pair : profile_cache_) {
LOG(INFO) << "Cached profile " << pair.first;
}
}
int64_t delta_number_of_methods =
info.GetNumberOfMethods() - last_save_number_of_methods;
int64_t delta_number_of_classes =
info.GetNumberOfResolvedClasses() - last_save_number_of_classes;
if (!force_save &&
delta_number_of_methods < options_.GetMinMethodsToSave() &&
delta_number_of_classes < options_.GetMinClassesToSave()) {
VLOG(profiler) << "Not enough information to save to: " << filename
<< " Number of methods: " << delta_number_of_methods
<< " Number of classes: " << delta_number_of_classes;
total_number_of_skipped_writes_++;
continue;
}
if (number_of_new_methods != nullptr) {
*number_of_new_methods =
std::max(static_cast<uint16_t>(delta_number_of_methods),
*number_of_new_methods);
}
uint64_t bytes_written;
// Force the save. In case the profile data is corrupted or the profile
// has the wrong version this will "fix" the file to the correct format.
if (info.Save(filename, &bytes_written)) {
// We managed to save the profile. Clear the cache stored during startup.
if (profile_cache_it != profile_cache_.end()) {
ProfileCompilationInfo *cached_info = profile_cache_it->second;
profile_cache_.erase(profile_cache_it);
delete cached_info;
}
if (bytes_written > 0) {
total_number_of_writes_++;
total_bytes_written_ += bytes_written;
profile_file_saved = true;
} else {
// At this point we could still have avoided the write.
// We load and merge the data from the file lazily at its first ever
// save attempt. So, whatever we are trying to save could already be
// in the file.
total_number_of_skipped_writes_++;
}
} else {
LOG(WARNING) << "Could not save profiling info to " << filename;
total_number_of_failed_writes_++;
}
}
}
}
// Trim the maps to madvise the pages used for profile info.
// It is unlikely we will need them again in the near feature.
Runtime::Current()->GetArenaPool()->TrimMaps();
return profile_file_saved;
}
void* ProfileSaver::RunProfileSaverThread(void* arg) {
Runtime* runtime = Runtime::Current();
bool attached = runtime->AttachCurrentThread("Profile Saver",
/*as_daemon=*/true,
runtime->GetSystemThreadGroup(),
/*create_peer=*/true);
if (!attached) {
CHECK(runtime->IsShuttingDown(Thread::Current()));
return nullptr;
}
{
Locks::profiler_lock_->ExclusiveLock(Thread::Current());
CHECK_EQ(reinterpret_cast<ProfileSaver*>(arg), instance_);
instance_->Run();
}
runtime->DetachCurrentThread();
VLOG(profiler) << "Profile saver shutdown";
return nullptr;
}
static bool ShouldProfileLocation(const std::string& location, bool profile_aot_code) {
if (profile_aot_code) {
// If we have to profile all the code, irrespective of its compilation state, return true
// right away.
return true;
}
OatFileManager& oat_manager = Runtime::Current()->GetOatFileManager();
const OatFile* oat_file = oat_manager.FindOpenedOatFileFromDexLocation(location);
if (oat_file == nullptr) {
// This can happen if we fallback to run code directly from the APK.
// Profile it with the hope that the background dexopt will get us back into
// a good state.
VLOG(profiler) << "Asked to profile a location without an oat file:" << location;
return true;
}
CompilerFilter::Filter filter = oat_file->GetCompilerFilter();
if ((filter == CompilerFilter::kSpeed) || (filter == CompilerFilter::kEverything)) {
VLOG(profiler)
<< "Skip profiling oat file because it's already speed|everything compiled: "
<< location << " oat location: " << oat_file->GetLocation();
return false;
}
return true;
}
void ProfileSaver::Start(const ProfileSaverOptions& options,
const std::string& output_filename,
jit::JitCodeCache* jit_code_cache,
const std::vector<std::string>& code_paths,
const std::string& ref_profile_filename) {
Runtime* const runtime = Runtime::Current();
DCHECK(options.IsEnabled());
DCHECK(runtime->GetJit() != nullptr);
DCHECK(!output_filename.empty());
DCHECK(jit_code_cache != nullptr);
std::vector<std::string> code_paths_to_profile;
for (const std::string& location : code_paths) {
if (ShouldProfileLocation(location, options.GetProfileAOTCode())) {
VLOG(profiler) << "Code path to profile " << location;
code_paths_to_profile.push_back(location);
}
}
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
// Support getting profile samples for the boot class path. This will be used to generate the boot
// image profile. The intention is to use this code to generate to boot image but not use it in
// production. b/37966211
if (options.GetProfileBootClassPath()) {
std::set<std::string> code_paths_keys;
for (const std::string& location : code_paths) {
// Use the profile base key for checking file uniqueness (as it is constructed solely based
// on the location and ignores other metadata like origin package).
code_paths_keys.insert(ProfileCompilationInfo::GetProfileDexFileBaseKey(location));
}
for (const DexFile* dex_file : runtime->GetClassLinker()->GetBootClassPath()) {
// Don't check ShouldProfileLocation since the boot class path may be speed compiled.
const std::string& location = dex_file->GetLocation();
const std::string key = ProfileCompilationInfo::GetProfileDexFileBaseKey(location);
VLOG(profiler) << "Registering boot dex file " << location;
if (code_paths_keys.find(key) != code_paths_keys.end()) {
LOG(WARNING) << "Boot class path location key conflicts with code path " << location;
} else if (instance_ == nullptr) {
// Only add the boot class path once since Start may be called multiple times for secondary
// dexes.
// We still do the collision check above. This handles any secondary dexes that conflict
// with the boot class path dex files.
code_paths_to_profile.push_back(location);
}
}
}
if (code_paths_to_profile.empty()) {
VLOG(profiler) << "No code paths should be profiled.";
return;
}
if (instance_ != nullptr) {
// If we already have an instance, make sure it uses the same jit_code_cache.
// This may be called multiple times via Runtime::registerAppInfo (e.g. for
// apps which share the same runtime).
DCHECK_EQ(instance_->jit_code_cache_, jit_code_cache);
// Add the code_paths to the tracked locations.
instance_->AddTrackedLocations(output_filename, code_paths_to_profile, ref_profile_filename);
return;
}
VLOG(profiler) << "Starting profile saver using output file: " << output_filename
<< ". Tracking: " << android::base::Join(code_paths_to_profile, ':')
<< ". With reference profile: " << ref_profile_filename;
instance_ = new ProfileSaver(options, jit_code_cache);
instance_->AddTrackedLocations(output_filename, code_paths_to_profile, ref_profile_filename);
// Create a new thread which does the saving.
CHECK_PTHREAD_CALL(
pthread_create,
(&profiler_pthread_, nullptr, &RunProfileSaverThread, reinterpret_cast<void*>(instance_)),
"Profile saver thread");
SetProfileSaverThreadPriority(profiler_pthread_, kProfileSaverPthreadPriority);
}
void ProfileSaver::Stop(bool dump_info) {
ProfileSaver* profile_saver = nullptr;
pthread_t profiler_pthread = 0U;
{
MutexLock profiler_mutex(Thread::Current(), *Locks::profiler_lock_);
VLOG(profiler) << "Stopping profile saver thread";
profile_saver = instance_;
profiler_pthread = profiler_pthread_;
if (instance_ == nullptr) {
DCHECK(false) << "Tried to stop a profile saver which was not started";
return;
}
if (instance_->shutting_down_) {
DCHECK(false) << "Tried to stop the profile saver twice";
return;
}
instance_->shutting_down_ = true;
}
{
// Wake up the saver thread if it is sleeping to allow for a clean exit.
MutexLock wait_mutex(Thread::Current(), profile_saver->wait_lock_);
profile_saver->period_condition_.Signal(Thread::Current());
}
// Force save everything before destroying the thread since we want profiler_pthread_ to remain
// valid.
profile_saver->ProcessProfilingInfo(
/*force_ save=*/ true,
/*skip_class_and_method_fetching=*/ false,
/*number_of_new_methods=*/ nullptr);
// Wait for the saver thread to stop.
CHECK_PTHREAD_CALL(pthread_join, (profiler_pthread, nullptr), "profile saver thread shutdown");
{
MutexLock profiler_mutex(Thread::Current(), *Locks::profiler_lock_);
if (dump_info) {
instance_->DumpInfo(LOG_STREAM(INFO));
}
instance_ = nullptr;
profiler_pthread_ = 0U;
}
delete profile_saver;
}
bool ProfileSaver::ShuttingDown(Thread* self) {
MutexLock mu(self, *Locks::profiler_lock_);
return shutting_down_;
}
bool ProfileSaver::IsStarted() {
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
return instance_ != nullptr;
}
static void AddTrackedLocationsToMap(const std::string& output_filename,
const std::vector<std::string>& code_paths,
SafeMap<std::string, std::set<std::string>>* map) {
std::vector<std::string> code_paths_and_filenames;
// The dex locations are sometimes set to the filename instead of the full path.
// So make sure we have both "locations" when tracking what needs to be profiled.
// - apps + system server have filenames
// - boot classpath elements have full paths
// TODO(calin, ngeoffray, vmarko) This is an workaround for using filanames as
// dex locations - needed to prebuilt with a partial boot image
// (commit: c4a924d8c74241057d957d360bf31cd5cd0e4f9c).
// We should find a better way which allows us to do the tracking based on full paths.
for (const std::string& path : code_paths) {
size_t last_sep_index = path.find_last_of('/');
if (last_sep_index == path.size() - 1) {
// Should not happen, but anyone can register code paths so better be prepared and ignore
// such locations.
continue;
}
std::string filename = last_sep_index == std::string::npos
? path
: path.substr(last_sep_index + 1);
code_paths_and_filenames.push_back(path);
code_paths_and_filenames.push_back(filename);
}
auto it = map->find(output_filename);
if (it == map->end()) {
map->Put(
output_filename,
std::set<std::string>(code_paths_and_filenames.begin(), code_paths_and_filenames.end()));
} else {
it->second.insert(code_paths_and_filenames.begin(), code_paths_and_filenames.end());
}
}
void ProfileSaver::AddTrackedLocations(const std::string& output_filename,
const std::vector<std::string>& code_paths,
const std::string& ref_profile_filename) {
// Register the output profile and its reference profile.
auto it = tracked_profiles_.find(output_filename);
if (it == tracked_profiles_.end()) {
tracked_profiles_.Put(output_filename, ref_profile_filename);
}
// Add the code paths to the list of tracked location.
AddTrackedLocationsToMap(output_filename, code_paths, &tracked_dex_base_locations_);
// The code paths may contain symlinks which could fool the profiler.
// If the dex file is compiled with an absolute location but loaded with symlink
// the profiler could skip the dex due to location mismatch.
// To avoid this, we add the code paths to the temporary cache of 'to_be_resolved'
// locations. When the profiler thread executes we will resolve the paths to their
// real paths.
// Note that we delay taking the realpath to avoid spending more time than needed
// when registering location (as it is done during app launch).
AddTrackedLocationsToMap(output_filename,
code_paths,
&tracked_dex_base_locations_to_be_resolved_);
}
void ProfileSaver::DumpInstanceInfo(std::ostream& os) {
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
if (instance_ != nullptr) {
instance_->DumpInfo(os);
}
}
void ProfileSaver::DumpInfo(std::ostream& os) {
os << "ProfileSaver total_bytes_written=" << total_bytes_written_ << '\n'
<< "ProfileSaver total_number_of_writes=" << total_number_of_writes_ << '\n'
<< "ProfileSaver total_number_of_code_cache_queries="
<< total_number_of_code_cache_queries_ << '\n'
<< "ProfileSaver total_number_of_skipped_writes=" << total_number_of_skipped_writes_ << '\n'
<< "ProfileSaver total_number_of_failed_writes=" << total_number_of_failed_writes_ << '\n'
<< "ProfileSaver total_ms_of_sleep=" << total_ms_of_sleep_ << '\n'
<< "ProfileSaver total_ms_of_work=" << NsToMs(total_ns_of_work_) << '\n'
<< "ProfileSaver total_number_of_hot_spikes=" << total_number_of_hot_spikes_ << '\n'
<< "ProfileSaver total_number_of_wake_ups=" << total_number_of_wake_ups_ << '\n';
}
void ProfileSaver::ForceProcessProfiles() {
ProfileSaver* saver = nullptr;
{
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
saver = instance_;
}
// TODO(calin): this is not actually thread safe as the instance_ may have been deleted,
// but we only use this in testing when we now this won't happen.
// Refactor the way we handle the instance so that we don't end up in this situation.
if (saver != nullptr) {
saver->ProcessProfilingInfo(
/*force_save=*/ true,
/*skip_class_and_method_fetching=*/ false,
/*number_of_new_methods=*/ nullptr);
}
}
void ProfileSaver::ResolveTrackedLocations() {
SafeMap<std::string, std::set<std::string>> locations_to_be_resolved;
{
// Make a copy so that we don't hold the lock while doing I/O.
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
locations_to_be_resolved = tracked_dex_base_locations_to_be_resolved_;
tracked_dex_base_locations_to_be_resolved_.clear();
}
// Resolve the locations.
SafeMap<std::string, std::vector<std::string>> resolved_locations_map;
for (const auto& it : locations_to_be_resolved) {
const std::string& filename = it.first;
const std::set<std::string>& locations = it.second;
auto resolved_locations_it = resolved_locations_map.Put(
filename,
std::vector<std::string>(locations.size()));
for (const auto& location : locations) {
UniqueCPtr<const char[]> location_real(realpath(location.c_str(), nullptr));
// Note that it's ok if we cannot get the real path.
if (location_real != nullptr) {
resolved_locations_it->second.emplace_back(location_real.get());
}
}
}
// Add the resolved locations to the tracked collection.
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
for (const auto& it : resolved_locations_map) {
AddTrackedLocationsToMap(it.first, it.second, &tracked_dex_base_locations_);
}
}
ProfileCompilationInfo::ProfileSampleAnnotation ProfileSaver::GetProfileSampleAnnotation() {
// Ideally, this would be cached in the ProfileSaver class, when we start the thread.
// However the profile is initialized before the process package name is set and fixing this
// would require unnecessary complex synchronizations.
std::string package_name = Runtime::Current()->GetProcessPackageName();
if (package_name.empty()) {
package_name = "unknown";
}
// We only use annotation for the boot image profiles. Regular apps do not use the extra
// metadata and as such there is no need to pay the cost (storage and computational)
// that comes with the annotations.
return options_.GetProfileBootClassPath()
? ProfileCompilationInfo::ProfileSampleAnnotation(package_name)
: ProfileCompilationInfo::ProfileSampleAnnotation::kNone;
}
uint32_t ProfileSaver::GetExtraMethodHotnessFlags(const ProfileSaverOptions& options) {
// We only add the extra flags for the boot image profile because individual apps do not use
// this information.
if (options.GetProfileBootClassPath()) {
return Is64BitInstructionSet(Runtime::Current()->GetInstructionSet())
? Hotness::kFlag64bit
: Hotness::kFlag32bit;
} else {
return 0u;
}
}
Hotness::Flag ProfileSaver::AnnotateSampleFlags(uint32_t flags) {
uint32_t extra_flags = GetExtraMethodHotnessFlags(options_);
return static_cast<Hotness::Flag>(flags | extra_flags);
}
} // namespace art