blob: 9a66f8a8002d7d5192b2ba809c8b4f5931664db5 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <deque>
#include "bump_pointer_space-inl.h"
#include "bump_pointer_space.h"
#include "base/dumpable.h"
#include "base/logging.h"
#include "gc/accounting/read_barrier_table.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "thread_list.h"
namespace art {
namespace gc {
namespace space {
// If a region has live objects whose size is less than this percent
// value of the region size, evaculate the region.
static constexpr uint kEvacuateLivePercentThreshold = 75U;
// Whether we protect the unused and cleared regions.
static constexpr bool kProtectClearedRegions = kIsDebugBuild;
// Wether we poison memory areas occupied by dead objects in unevacuated regions.
static constexpr bool kPoisonDeadObjectsInUnevacuatedRegions = kIsDebugBuild;
// Special 32-bit value used to poison memory areas occupied by dead
// objects in unevacuated regions. Dereferencing this value is expected
// to trigger a memory protection fault, as it is unlikely that it
// points to a valid, non-protected memory area.
static constexpr uint32_t kPoisonDeadObject = 0xBADDB01D; // "BADDROID"
// Whether we check a region's live bytes count against the region bitmap.
static constexpr bool kCheckLiveBytesAgainstRegionBitmap = kIsDebugBuild;
MemMap RegionSpace::CreateMemMap(const std::string& name,
size_t capacity,
uint8_t* requested_begin) {
CHECK_ALIGNED(capacity, kRegionSize);
std::string error_msg;
// Ask for the capacity of an additional kRegionSize so that we can align the map by kRegionSize
// even if we get unaligned base address. This is necessary for the ReadBarrierTable to work.
MemMap mem_map;
while (true) {
mem_map = MemMap::MapAnonymous(name.c_str(),
requested_begin,
capacity + kRegionSize,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
/*reuse=*/ false,
/*reservation=*/ nullptr,
&error_msg);
if (mem_map.IsValid() || requested_begin == nullptr) {
break;
}
// Retry with no specified request begin.
requested_begin = nullptr;
}
if (!mem_map.IsValid()) {
LOG(ERROR) << "Failed to allocate pages for alloc space (" << name << ") of size "
<< PrettySize(capacity) << " with message " << error_msg;
PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
MemMap::DumpMaps(LOG_STREAM(ERROR));
return MemMap::Invalid();
}
CHECK_EQ(mem_map.Size(), capacity + kRegionSize);
CHECK_EQ(mem_map.Begin(), mem_map.BaseBegin());
CHECK_EQ(mem_map.Size(), mem_map.BaseSize());
if (IsAlignedParam(mem_map.Begin(), kRegionSize)) {
// Got an aligned map. Since we requested a map that's kRegionSize larger. Shrink by
// kRegionSize at the end.
mem_map.SetSize(capacity);
} else {
// Got an unaligned map. Align the both ends.
mem_map.AlignBy(kRegionSize);
}
CHECK_ALIGNED(mem_map.Begin(), kRegionSize);
CHECK_ALIGNED(mem_map.End(), kRegionSize);
CHECK_EQ(mem_map.Size(), capacity);
return mem_map;
}
RegionSpace* RegionSpace::Create(
const std::string& name, MemMap&& mem_map, bool use_generational_cc) {
return new RegionSpace(name, std::move(mem_map), use_generational_cc);
}
RegionSpace::RegionSpace(const std::string& name, MemMap&& mem_map, bool use_generational_cc)
: ContinuousMemMapAllocSpace(name,
std::move(mem_map),
mem_map.Begin(),
mem_map.End(),
mem_map.End(),
kGcRetentionPolicyAlwaysCollect),
region_lock_("Region lock", kRegionSpaceRegionLock),
use_generational_cc_(use_generational_cc),
time_(1U),
num_regions_(mem_map_.Size() / kRegionSize),
madvise_time_(0U),
num_non_free_regions_(0U),
num_evac_regions_(0U),
max_peak_num_non_free_regions_(0U),
non_free_region_index_limit_(0U),
current_region_(&full_region_),
evac_region_(nullptr),
cyclic_alloc_region_index_(0U) {
CHECK_ALIGNED(mem_map_.Size(), kRegionSize);
CHECK_ALIGNED(mem_map_.Begin(), kRegionSize);
DCHECK_GT(num_regions_, 0U);
regions_.reset(new Region[num_regions_]);
uint8_t* region_addr = mem_map_.Begin();
for (size_t i = 0; i < num_regions_; ++i, region_addr += kRegionSize) {
regions_[i].Init(i, region_addr, region_addr + kRegionSize);
}
mark_bitmap_ =
accounting::ContinuousSpaceBitmap::Create("region space live bitmap", Begin(), Capacity());
if (kIsDebugBuild) {
CHECK_EQ(regions_[0].Begin(), Begin());
for (size_t i = 0; i < num_regions_; ++i) {
CHECK(regions_[i].IsFree());
CHECK_EQ(static_cast<size_t>(regions_[i].End() - regions_[i].Begin()), kRegionSize);
if (i + 1 < num_regions_) {
CHECK_EQ(regions_[i].End(), regions_[i + 1].Begin());
}
}
CHECK_EQ(regions_[num_regions_ - 1].End(), Limit());
}
DCHECK(!full_region_.IsFree());
DCHECK(full_region_.IsAllocated());
size_t ignored;
DCHECK(full_region_.Alloc(kAlignment, &ignored, nullptr, &ignored) == nullptr);
// Protect the whole region space from the start.
Protect();
}
size_t RegionSpace::FromSpaceSize() {
uint64_t num_regions = 0;
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0; i < num_regions_; ++i) {
Region* r = &regions_[i];
if (r->IsInFromSpace()) {
++num_regions;
}
}
return num_regions * kRegionSize;
}
size_t RegionSpace::UnevacFromSpaceSize() {
uint64_t num_regions = 0;
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0; i < num_regions_; ++i) {
Region* r = &regions_[i];
if (r->IsInUnevacFromSpace()) {
++num_regions;
}
}
return num_regions * kRegionSize;
}
size_t RegionSpace::ToSpaceSize() {
uint64_t num_regions = 0;
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0; i < num_regions_; ++i) {
Region* r = &regions_[i];
if (r->IsInToSpace()) {
++num_regions;
}
}
return num_regions * kRegionSize;
}
void RegionSpace::Region::SetAsUnevacFromSpace(bool clear_live_bytes) {
// Live bytes are only preserved (i.e. not cleared) during sticky-bit CC collections.
DCHECK(GetUseGenerationalCC() || clear_live_bytes);
DCHECK(!IsFree() && IsInToSpace());
type_ = RegionType::kRegionTypeUnevacFromSpace;
if (IsNewlyAllocated()) {
// A newly allocated region set as unevac from-space must be
// a large or large tail region.
DCHECK(IsLarge() || IsLargeTail()) << static_cast<uint>(state_);
// Always clear the live bytes of a newly allocated (large or
// large tail) region.
clear_live_bytes = true;
// Clear the "newly allocated" status here, as we do not want the
// GC to see it when encountering (and processing) references in the
// from-space.
//
// Invariant: There should be no newly-allocated region in the
// from-space (when the from-space exists, which is between the calls
// to RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace).
is_newly_allocated_ = false;
}
if (clear_live_bytes) {
// Reset the live bytes, as we have made a non-evacuation
// decision (possibly based on the percentage of live bytes).
live_bytes_ = 0;
}
}
bool RegionSpace::Region::GetUseGenerationalCC() {
// We are retrieving the info from Heap, instead of the cached version in
// RegionSpace, because accessing the Heap from a Region object is easier
// than accessing the RegionSpace.
return art::Runtime::Current()->GetHeap()->GetUseGenerationalCC();
}
inline bool RegionSpace::Region::ShouldBeEvacuated(EvacMode evac_mode) {
// Evacuation mode `kEvacModeNewlyAllocated` is only used during sticky-bit CC collections.
DCHECK(GetUseGenerationalCC() || (evac_mode != kEvacModeNewlyAllocated));
DCHECK((IsAllocated() || IsLarge()) && IsInToSpace());
// The region should be evacuated if:
// - the evacuation is forced (!large && `evac_mode == kEvacModeForceAll`); or
// - the region was allocated after the start of the previous GC (newly allocated region); or
// - !large and the live ratio is below threshold (`kEvacuateLivePercentThreshold`).
if (IsLarge()) {
// It makes no sense to evacuate in the large case, since the region only contains zero or
// one object. If the regions is completely empty, we'll reclaim it anyhow. If its one object
// is live, we would just be moving around region-aligned memory.
return false;
}
if (UNLIKELY(evac_mode == kEvacModeForceAll)) {
return true;
}
DCHECK(IsAllocated());
if (is_newly_allocated_) {
// Invariant: newly allocated regions have an undefined live bytes count.
DCHECK_EQ(live_bytes_, static_cast<size_t>(-1));
// We always evacuate newly-allocated non-large regions as we
// believe they contain many dead objects (a very simple form of
// the generational hypothesis, even before the Sticky-Bit CC
// approach).
//
// TODO: Verify that assertion by collecting statistics on the
// number/proportion of live objects in newly allocated regions
// in RegionSpace::ClearFromSpace.
//
// Note that a side effect of evacuating a newly-allocated
// non-large region is that the "newly allocated" status will
// later be removed, as its live objects will be copied to an
// evacuation region, which won't be marked as "newly
// allocated" (see RegionSpace::AllocateRegion).
return true;
} else if (evac_mode == kEvacModeLivePercentNewlyAllocated) {
bool is_live_percent_valid = (live_bytes_ != static_cast<size_t>(-1));
if (is_live_percent_valid) {
DCHECK(IsInToSpace());
DCHECK_NE(live_bytes_, static_cast<size_t>(-1));
DCHECK_LE(live_bytes_, BytesAllocated());
const size_t bytes_allocated = RoundUp(BytesAllocated(), kRegionSize);
DCHECK_LE(live_bytes_, bytes_allocated);
// Side node: live_percent == 0 does not necessarily mean
// there's no live objects due to rounding (there may be a
// few).
return live_bytes_ * 100U < kEvacuateLivePercentThreshold * bytes_allocated;
}
}
return false;
}
void RegionSpace::ZeroLiveBytesForLargeObject(mirror::Object* obj) {
// This method is only used when Generational CC collection is enabled.
DCHECK(use_generational_cc_);
// This code uses a logic similar to the one used in RegionSpace::FreeLarge
// to traverse the regions supporting `obj`.
// TODO: Refactor.
DCHECK(IsLargeObject(obj));
DCHECK_ALIGNED(obj, kRegionSize);
size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
DCHECK_GT(obj_size, space::RegionSpace::kRegionSize);
// Size of the memory area allocated for `obj`.
size_t obj_alloc_size = RoundUp(obj_size, space::RegionSpace::kRegionSize);
uint8_t* begin_addr = reinterpret_cast<uint8_t*>(obj);
uint8_t* end_addr = begin_addr + obj_alloc_size;
DCHECK_ALIGNED(end_addr, kRegionSize);
// Zero the live bytes of the large region and large tail regions containing the object.
MutexLock mu(Thread::Current(), region_lock_);
for (uint8_t* addr = begin_addr; addr < end_addr; addr += kRegionSize) {
Region* region = RefToRegionLocked(reinterpret_cast<mirror::Object*>(addr));
if (addr == begin_addr) {
DCHECK(region->IsLarge());
} else {
DCHECK(region->IsLargeTail());
}
region->ZeroLiveBytes();
}
if (kIsDebugBuild && end_addr < Limit()) {
// If we aren't at the end of the space, check that the next region is not a large tail.
Region* following_region = RefToRegionLocked(reinterpret_cast<mirror::Object*>(end_addr));
DCHECK(!following_region->IsLargeTail());
}
}
// Determine which regions to evacuate and mark them as
// from-space. Mark the rest as unevacuated from-space.
void RegionSpace::SetFromSpace(accounting::ReadBarrierTable* rb_table,
EvacMode evac_mode,
bool clear_live_bytes) {
// Live bytes are only preserved (i.e. not cleared) during sticky-bit CC collections.
DCHECK(use_generational_cc_ || clear_live_bytes);
++time_;
if (kUseTableLookupReadBarrier) {
DCHECK(rb_table->IsAllCleared());
rb_table->SetAll();
}
MutexLock mu(Thread::Current(), region_lock_);
// We cannot use the partially utilized TLABs across a GC. Therefore, revoke
// them during the thread-flip.
partial_tlabs_.clear();
// Counter for the number of expected large tail regions following a large region.
size_t num_expected_large_tails = 0U;
// Flag to store whether the previously seen large region has been evacuated.
// This is used to apply the same evacuation policy to related large tail regions.
bool prev_large_evacuated = false;
VerifyNonFreeRegionLimit();
const size_t iter_limit = kUseTableLookupReadBarrier
? num_regions_
: std::min(num_regions_, non_free_region_index_limit_);
for (size_t i = 0; i < iter_limit; ++i) {
Region* r = &regions_[i];
RegionState state = r->State();
RegionType type = r->Type();
if (!r->IsFree()) {
DCHECK(r->IsInToSpace());
if (LIKELY(num_expected_large_tails == 0U)) {
DCHECK((state == RegionState::kRegionStateAllocated ||
state == RegionState::kRegionStateLarge) &&
type == RegionType::kRegionTypeToSpace);
bool should_evacuate = r->ShouldBeEvacuated(evac_mode);
bool is_newly_allocated = r->IsNewlyAllocated();
if (should_evacuate) {
r->SetAsFromSpace();
DCHECK(r->IsInFromSpace());
} else {
r->SetAsUnevacFromSpace(clear_live_bytes);
DCHECK(r->IsInUnevacFromSpace());
}
if (UNLIKELY(state == RegionState::kRegionStateLarge &&
type == RegionType::kRegionTypeToSpace)) {
prev_large_evacuated = should_evacuate;
// In 2-phase full heap GC, this function is called after marking is
// done. So, it is possible that some newly allocated large object is
// marked but its live_bytes is still -1. We need to clear the
// mark-bit otherwise the live_bytes will not be updated in
// ConcurrentCopying::ProcessMarkStackRef() and hence will break the
// logic.
if (use_generational_cc_ && !should_evacuate && is_newly_allocated) {
GetMarkBitmap()->Clear(reinterpret_cast<mirror::Object*>(r->Begin()));
}
num_expected_large_tails = RoundUp(r->BytesAllocated(), kRegionSize) / kRegionSize - 1;
DCHECK_GT(num_expected_large_tails, 0U);
}
} else {
DCHECK(state == RegionState::kRegionStateLargeTail &&
type == RegionType::kRegionTypeToSpace);
if (prev_large_evacuated) {
r->SetAsFromSpace();
DCHECK(r->IsInFromSpace());
} else {
r->SetAsUnevacFromSpace(clear_live_bytes);
DCHECK(r->IsInUnevacFromSpace());
}
--num_expected_large_tails;
}
} else {
DCHECK_EQ(num_expected_large_tails, 0U);
if (kUseTableLookupReadBarrier) {
// Clear the rb table for to-space regions.
rb_table->Clear(r->Begin(), r->End());
}
}
// Invariant: There should be no newly-allocated region in the from-space.
DCHECK(!r->is_newly_allocated_);
}
DCHECK_EQ(num_expected_large_tails, 0U);
current_region_ = &full_region_;
evac_region_ = &full_region_;
}
static void ZeroAndProtectRegion(uint8_t* begin, uint8_t* end, bool release_eagerly) {
ZeroMemory(begin, end - begin, release_eagerly);
if (kProtectClearedRegions) {
CheckedCall(mprotect, __FUNCTION__, begin, end - begin, PROT_NONE);
}
}
void RegionSpace::ReleaseFreeRegions() {
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0u; i < num_regions_; ++i) {
if (regions_[i].IsFree()) {
uint8_t* begin = regions_[i].Begin();
DCHECK_ALIGNED(begin, kPageSize);
DCHECK_ALIGNED(regions_[i].End(), kPageSize);
bool res = madvise(begin, regions_[i].End() - begin, MADV_DONTNEED);
CHECK_NE(res, -1) << "madvise failed";
}
}
}
void RegionSpace::ClearFromSpace(/* out */ uint64_t* cleared_bytes,
/* out */ uint64_t* cleared_objects,
const bool clear_bitmap,
const bool release_eagerly) {
DCHECK(cleared_bytes != nullptr);
DCHECK(cleared_objects != nullptr);
*cleared_bytes = 0;
*cleared_objects = 0;
size_t new_non_free_region_index_limit = 0;
// We should avoid calling madvise syscalls while holding region_lock_.
// Therefore, we split the working of this function into 2 loops. The first
// loop gathers memory ranges that must be madvised. Then we release the lock
// and perform madvise on the gathered memory ranges. Finally, we reacquire
// the lock and loop over the regions to clear the from-space regions and make
// them availabe for allocation.
std::deque<std::pair<uint8_t*, uint8_t*>> madvise_list;
// Gather memory ranges that need to be madvised.
{
MutexLock mu(Thread::Current(), region_lock_);
// Lambda expression `expand_madvise_range` adds a region to the "clear block".
//
// As we iterate over from-space regions, we maintain a "clear block", composed of
// adjacent to-be-cleared regions and whose bounds are `clear_block_begin` and
// `clear_block_end`. When processing a new region which is not adjacent to
// the clear block (discontinuity in cleared regions), the clear block
// is added to madvise_list and the clear block is reset (to the most recent
// to-be-cleared region).
//
// This is done in order to combine zeroing and releasing pages to reduce how
// often madvise is called. This helps reduce contention on the mmap semaphore
// (see b/62194020).
uint8_t* clear_block_begin = nullptr;
uint8_t* clear_block_end = nullptr;
auto expand_madvise_range = [&madvise_list, &clear_block_begin, &clear_block_end] (Region* r) {
if (clear_block_end != r->Begin()) {
if (clear_block_begin != nullptr) {
DCHECK(clear_block_end != nullptr);
madvise_list.push_back(std::pair(clear_block_begin, clear_block_end));
}
clear_block_begin = r->Begin();
}
clear_block_end = r->End();
};
for (size_t i = 0; i < std::min(num_regions_, non_free_region_index_limit_); ++i) {
Region* r = &regions_[i];
// The following check goes through objects in the region, therefore it
// must be performed before madvising the region. Therefore, it can't be
// executed in the following loop.
if (kCheckLiveBytesAgainstRegionBitmap) {
CheckLiveBytesAgainstRegionBitmap(r);
}
if (r->IsInFromSpace()) {
expand_madvise_range(r);
} else if (r->IsInUnevacFromSpace()) {
// We must skip tails of live large objects.
if (r->LiveBytes() == 0 && !r->IsLargeTail()) {
// Special case for 0 live bytes, this means all of the objects in the region are
// dead and we can to clear it. This is important for large objects since we must
// not visit dead ones in RegionSpace::Walk because they may contain dangling
// references to invalid objects. It is also better to clear these regions now
// instead of at the end of the next GC to save RAM. If we don't clear the regions
// here, they will be cleared in next GC by the normal live percent evacuation logic.
expand_madvise_range(r);
// Also release RAM for large tails.
while (i + 1 < num_regions_ && regions_[i + 1].IsLargeTail()) {
expand_madvise_range(&regions_[i + 1]);
i++;
}
}
}
}
// There is a small probability that we may reach here with
// clear_block_{begin, end} = nullptr. If all the regions allocated since
// last GC have been for large objects and all of them survive till this GC
// cycle, then there will be no regions in from-space.
if (LIKELY(clear_block_begin != nullptr)) {
DCHECK(clear_block_end != nullptr);
madvise_list.push_back(std::pair(clear_block_begin, clear_block_end));
}
}
// Madvise the memory ranges.
uint64_t start_time = NanoTime();
for (const auto &iter : madvise_list) {
ZeroAndProtectRegion(iter.first, iter.second, release_eagerly);
}
madvise_time_ += NanoTime() - start_time;
for (const auto &iter : madvise_list) {
if (clear_bitmap) {
GetLiveBitmap()->ClearRange(
reinterpret_cast<mirror::Object*>(iter.first),
reinterpret_cast<mirror::Object*>(iter.second));
}
}
madvise_list.clear();
// Iterate over regions again and actually make the from space regions
// available for allocation.
MutexLock mu(Thread::Current(), region_lock_);
VerifyNonFreeRegionLimit();
// Update max of peak non free region count before reclaiming evacuated regions.
max_peak_num_non_free_regions_ = std::max(max_peak_num_non_free_regions_,
num_non_free_regions_);
for (size_t i = 0; i < std::min(num_regions_, non_free_region_index_limit_); ++i) {
Region* r = &regions_[i];
if (r->IsInFromSpace()) {
DCHECK(!r->IsTlab());
*cleared_bytes += r->BytesAllocated();
*cleared_objects += r->ObjectsAllocated();
--num_non_free_regions_;
r->Clear(/*zero_and_release_pages=*/false);
} else if (r->IsInUnevacFromSpace()) {
if (r->LiveBytes() == 0) {
DCHECK(!r->IsLargeTail());
*cleared_bytes += r->BytesAllocated();
*cleared_objects += r->ObjectsAllocated();
r->Clear(/*zero_and_release_pages=*/false);
size_t free_regions = 1;
// Also release RAM for large tails.
while (i + free_regions < num_regions_ && regions_[i + free_regions].IsLargeTail()) {
regions_[i + free_regions].Clear(/*zero_and_release_pages=*/false);
++free_regions;
}
num_non_free_regions_ -= free_regions;
// When clear_bitmap is true, this clearing of bitmap is taken care in
// clear_region().
if (!clear_bitmap) {
GetLiveBitmap()->ClearRange(
reinterpret_cast<mirror::Object*>(r->Begin()),
reinterpret_cast<mirror::Object*>(r->Begin() + free_regions * kRegionSize));
}
continue;
}
r->SetUnevacFromSpaceAsToSpace();
if (r->AllAllocatedBytesAreLive()) {
// Try to optimize the number of ClearRange calls by checking whether the next regions
// can also be cleared.
size_t regions_to_clear_bitmap = 1;
while (i + regions_to_clear_bitmap < num_regions_) {
Region* const cur = &regions_[i + regions_to_clear_bitmap];
if (!cur->AllAllocatedBytesAreLive()) {
DCHECK(!cur->IsLargeTail());
break;
}
CHECK(cur->IsInUnevacFromSpace());
cur->SetUnevacFromSpaceAsToSpace();
++regions_to_clear_bitmap;
}
// Optimization (for full CC only): If the live bytes are *all* live
// in a region then the live-bit information for these objects is
// superfluous:
// - We can determine that these objects are all live by using
// Region::AllAllocatedBytesAreLive (which just checks whether
// `LiveBytes() == static_cast<size_t>(Top() - Begin())`.
// - We can visit the objects in this region using
// RegionSpace::GetNextObject, i.e. without resorting to the
// live bits (see RegionSpace::WalkInternal).
// Therefore, we can clear the bits for these objects in the
// (live) region space bitmap (and release the corresponding pages).
//
// This optimization is incompatible with Generational CC, because:
// - minor (young-generation) collections need to know which objects
// where marked during the previous GC cycle, meaning all mark bitmaps
// (this includes the region space bitmap) need to be preserved
// between a (minor or major) collection N and a following minor
// collection N+1;
// - at this stage (in the current GC cycle), we cannot determine
// whether the next collection will be a minor or a major one;
// This means that we need to be conservative and always preserve the
// region space bitmap when using Generational CC.
// Note that major collections do not require the previous mark bitmaps
// to be preserved, and as matter of fact they do clear the region space
// bitmap. But they cannot do so before we know the next GC cycle will
// be a major one, so this operation happens at the beginning of such a
// major collection, before marking starts.
if (!use_generational_cc_) {
GetLiveBitmap()->ClearRange(
reinterpret_cast<mirror::Object*>(r->Begin()),
reinterpret_cast<mirror::Object*>(r->Begin()
+ regions_to_clear_bitmap * kRegionSize));
}
// Skip over extra regions for which we cleared the bitmaps: we shall not clear them,
// as they are unevac regions that are live.
// Subtract one for the for-loop.
i += regions_to_clear_bitmap - 1;
} else {
// TODO: Explain why we do not poison dead objects in region
// `r` when it has an undefined live bytes count (i.e. when
// `r->LiveBytes() == static_cast<size_t>(-1)`) with
// Generational CC.
if (!use_generational_cc_ || (r->LiveBytes() != static_cast<size_t>(-1))) {
// Only some allocated bytes are live in this unevac region.
// This should only happen for an allocated non-large region.
DCHECK(r->IsAllocated()) << r->State();
if (kPoisonDeadObjectsInUnevacuatedRegions) {
PoisonDeadObjectsInUnevacuatedRegion(r);
}
}
}
}
// Note r != last_checked_region if r->IsInUnevacFromSpace() was true above.
Region* last_checked_region = &regions_[i];
if (!last_checked_region->IsFree()) {
new_non_free_region_index_limit = std::max(new_non_free_region_index_limit,
last_checked_region->Idx() + 1);
}
}
// Update non_free_region_index_limit_.
SetNonFreeRegionLimit(new_non_free_region_index_limit);
evac_region_ = nullptr;
num_non_free_regions_ += num_evac_regions_;
num_evac_regions_ = 0;
}
void RegionSpace::CheckLiveBytesAgainstRegionBitmap(Region* r) {
if (r->LiveBytes() == static_cast<size_t>(-1)) {
// Live bytes count is undefined for `r`; nothing to check here.
return;
}
// Functor walking the region space bitmap for the range corresponding
// to region `r` and calculating the sum of live bytes.
size_t live_bytes_recount = 0u;
auto recount_live_bytes =
[&r, &live_bytes_recount](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_ALIGNED(obj, kAlignment);
if (r->IsLarge()) {
// If `r` is a large region, then it contains at most one
// object, which must start at the beginning of the
// region. The live byte count in that case is equal to the
// allocated regions (large region + large tails regions).
DCHECK_EQ(reinterpret_cast<uint8_t*>(obj), r->Begin());
DCHECK_EQ(live_bytes_recount, 0u);
live_bytes_recount = r->Top() - r->Begin();
} else {
DCHECK(r->IsAllocated())
<< "r->State()=" << r->State() << " r->LiveBytes()=" << r->LiveBytes();
size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
live_bytes_recount += alloc_size;
}
};
// Visit live objects in `r` and recount the live bytes.
GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(r->Begin()),
reinterpret_cast<uintptr_t>(r->Top()),
recount_live_bytes);
// Check that this recount matches the region's current live bytes count.
DCHECK_EQ(live_bytes_recount, r->LiveBytes());
}
// Poison the memory area in range [`begin`, `end`) with value `kPoisonDeadObject`.
static void PoisonUnevacuatedRange(uint8_t* begin, uint8_t* end) {
static constexpr size_t kPoisonDeadObjectSize = sizeof(kPoisonDeadObject);
static_assert(IsPowerOfTwo(kPoisonDeadObjectSize) &&
IsPowerOfTwo(RegionSpace::kAlignment) &&
(kPoisonDeadObjectSize < RegionSpace::kAlignment),
"RegionSpace::kAlignment should be a multiple of kPoisonDeadObjectSize"
" and both should be powers of 2");
DCHECK_ALIGNED(begin, kPoisonDeadObjectSize);
DCHECK_ALIGNED(end, kPoisonDeadObjectSize);
uint32_t* begin_addr = reinterpret_cast<uint32_t*>(begin);
uint32_t* end_addr = reinterpret_cast<uint32_t*>(end);
std::fill(begin_addr, end_addr, kPoisonDeadObject);
}
void RegionSpace::PoisonDeadObjectsInUnevacuatedRegion(Region* r) {
// The live byte count of `r` should be different from -1, as this
// region should neither be a newly allocated region nor an
// evacuated region.
DCHECK_NE(r->LiveBytes(), static_cast<size_t>(-1))
<< "Unexpected live bytes count of -1 in " << Dumpable<Region>(*r);
// Past-the-end address of the previously visited (live) object (or
// the beginning of the region, if `maybe_poison` has not run yet).
uint8_t* prev_obj_end = reinterpret_cast<uint8_t*>(r->Begin());
// Functor poisoning the space between `obj` and the previously
// visited (live) object (or the beginng of the region), if any.
auto maybe_poison = [&prev_obj_end](mirror::Object* obj) REQUIRES(Locks::mutator_lock_) {
DCHECK_ALIGNED(obj, kAlignment);
uint8_t* cur_obj_begin = reinterpret_cast<uint8_t*>(obj);
if (cur_obj_begin != prev_obj_end) {
// There is a gap (dead object(s)) between the previously
// visited (live) object (or the beginning of the region) and
// `obj`; poison that space.
PoisonUnevacuatedRange(prev_obj_end, cur_obj_begin);
}
prev_obj_end = reinterpret_cast<uint8_t*>(GetNextObject(obj));
};
// Visit live objects in `r` and poison gaps (dead objects) between them.
GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(r->Begin()),
reinterpret_cast<uintptr_t>(r->Top()),
maybe_poison);
// Poison memory between the last live object and the end of the region, if any.
if (prev_obj_end < r->Top()) {
PoisonUnevacuatedRange(prev_obj_end, r->Top());
}
}
bool RegionSpace::LogFragmentationAllocFailure(std::ostream& os,
size_t failed_alloc_bytes) {
size_t max_contiguous_allocation = 0;
MutexLock mu(Thread::Current(), region_lock_);
if (current_region_->End() - current_region_->Top() > 0) {
max_contiguous_allocation = current_region_->End() - current_region_->Top();
}
size_t max_contiguous_free_regions = 0;
size_t num_contiguous_free_regions = 0;
bool prev_free_region = false;
for (size_t i = 0; i < num_regions_; ++i) {
Region* r = &regions_[i];
if (r->IsFree()) {
if (!prev_free_region) {
CHECK_EQ(num_contiguous_free_regions, 0U);
prev_free_region = true;
}
++num_contiguous_free_regions;
} else if (prev_free_region) {
CHECK_NE(num_contiguous_free_regions, 0U);
max_contiguous_free_regions = std::max(max_contiguous_free_regions,
num_contiguous_free_regions);
num_contiguous_free_regions = 0U;
prev_free_region = false;
}
}
max_contiguous_allocation = std::max(max_contiguous_allocation,
max_contiguous_free_regions * kRegionSize);
// Calculate how many regions are available for allocations as we have to ensure
// that enough regions are left for evacuation.
size_t regions_free_for_alloc = num_regions_ / 2 - num_non_free_regions_;
max_contiguous_allocation = std::min(max_contiguous_allocation,
regions_free_for_alloc * kRegionSize);
if (failed_alloc_bytes > max_contiguous_allocation) {
// Region space does not normally fragment in the conventional sense. However we can run out
// of region space prematurely if we have many threads, each with a partially committed TLAB.
// The whole TLAB uses up region address space, but we only count the section that was
// actually given to the thread so far as allocated. For unlikely allocation request sequences
// involving largish objects that don't qualify for large objects space, we may also be unable
// to fully utilize entire TLABs, and thus generate enough actual fragmentation to get
// here. This appears less likely, since we usually reuse sufficiently large TLAB "tails"
// that are no longer needed.
os << "; failed due to fragmentation (largest possible contiguous allocation "
<< max_contiguous_allocation << " bytes). Number of " << PrettySize(kRegionSize)
<< " sized free regions are: " << regions_free_for_alloc
<< ". Likely cause: (1) Too much memory in use, and "
<< "(2) many threads or many larger objects of the wrong kind";
return true;
}
// Caller's job to print failed_alloc_bytes.
return false;
}
void RegionSpace::Clear() {
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0; i < num_regions_; ++i) {
Region* r = &regions_[i];
if (!r->IsFree()) {
--num_non_free_regions_;
}
r->Clear(/*zero_and_release_pages=*/true);
}
SetNonFreeRegionLimit(0);
DCHECK_EQ(num_non_free_regions_, 0u);
current_region_ = &full_region_;
evac_region_ = &full_region_;
}
void RegionSpace::Protect() {
if (kProtectClearedRegions) {
CheckedCall(mprotect, __FUNCTION__, Begin(), Size(), PROT_NONE);
}
}
void RegionSpace::Unprotect() {
if (kProtectClearedRegions) {
CheckedCall(mprotect, __FUNCTION__, Begin(), Size(), PROT_READ | PROT_WRITE);
}
}
void RegionSpace::ClampGrowthLimit(size_t new_capacity) {
MutexLock mu(Thread::Current(), region_lock_);
CHECK_LE(new_capacity, NonGrowthLimitCapacity());
size_t new_num_regions = new_capacity / kRegionSize;
if (non_free_region_index_limit_ > new_num_regions) {
LOG(WARNING) << "Couldn't clamp region space as there are regions in use beyond growth limit.";
return;
}
num_regions_ = new_num_regions;
if (kCyclicRegionAllocation && cyclic_alloc_region_index_ >= num_regions_) {
cyclic_alloc_region_index_ = 0u;
}
SetLimit(Begin() + new_capacity);
if (Size() > new_capacity) {
SetEnd(Limit());
}
GetMarkBitmap()->SetHeapSize(new_capacity);
GetMemMap()->SetSize(new_capacity);
}
void RegionSpace::Dump(std::ostream& os) const {
os << GetName() << " "
<< reinterpret_cast<void*>(Begin()) << "-" << reinterpret_cast<void*>(Limit());
}
void RegionSpace::DumpRegionForObject(std::ostream& os, mirror::Object* obj) {
CHECK(HasAddress(obj));
MutexLock mu(Thread::Current(), region_lock_);
RefToRegionUnlocked(obj)->Dump(os);
}
void RegionSpace::DumpRegions(std::ostream& os) {
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0; i < num_regions_; ++i) {
regions_[i].Dump(os);
}
}
void RegionSpace::DumpNonFreeRegions(std::ostream& os) {
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0; i < num_regions_; ++i) {
Region* reg = &regions_[i];
if (!reg->IsFree()) {
reg->Dump(os);
}
}
}
void RegionSpace::RecordAlloc(mirror::Object* ref) {
CHECK(ref != nullptr);
Region* r = RefToRegion(ref);
r->objects_allocated_.fetch_add(1, std::memory_order_relaxed);
}
bool RegionSpace::AllocNewTlab(Thread* self,
const size_t tlab_size,
size_t* bytes_tl_bulk_allocated) {
MutexLock mu(self, region_lock_);
RevokeThreadLocalBuffersLocked(self, /*reuse=*/ gc::Heap::kUsePartialTlabs);
Region* r = nullptr;
uint8_t* pos = nullptr;
*bytes_tl_bulk_allocated = tlab_size;
// First attempt to get a partially used TLAB, if available.
if (tlab_size < kRegionSize) {
// Fetch the largest partial TLAB. The multimap is ordered in decreasing
// size.
auto largest_partial_tlab = partial_tlabs_.begin();
if (largest_partial_tlab != partial_tlabs_.end() && largest_partial_tlab->first >= tlab_size) {
r = largest_partial_tlab->second;
pos = r->End() - largest_partial_tlab->first;
partial_tlabs_.erase(largest_partial_tlab);
DCHECK_GT(r->End(), pos);
DCHECK_LE(r->Begin(), pos);
DCHECK_GE(r->Top(), pos);
*bytes_tl_bulk_allocated -= r->Top() - pos;
}
}
if (r == nullptr) {
// Fallback to allocating an entire region as TLAB.
r = AllocateRegion(/*for_evac=*/ false);
}
if (r != nullptr) {
uint8_t* start = pos != nullptr ? pos : r->Begin();
DCHECK_ALIGNED(start, kObjectAlignment);
r->is_a_tlab_ = true;
r->thread_ = self;
r->SetTop(r->End());
self->SetTlab(start, start + tlab_size, r->End());
return true;
}
return false;
}
size_t RegionSpace::RevokeThreadLocalBuffers(Thread* thread) {
MutexLock mu(Thread::Current(), region_lock_);
RevokeThreadLocalBuffersLocked(thread, /*reuse=*/ gc::Heap::kUsePartialTlabs);
return 0U;
}
size_t RegionSpace::RevokeThreadLocalBuffers(Thread* thread, const bool reuse) {
MutexLock mu(Thread::Current(), region_lock_);
RevokeThreadLocalBuffersLocked(thread, reuse);
return 0U;
}
void RegionSpace::RevokeThreadLocalBuffersLocked(Thread* thread, bool reuse) {
uint8_t* tlab_start = thread->GetTlabStart();
DCHECK_EQ(thread->HasTlab(), tlab_start != nullptr);
if (tlab_start != nullptr) {
Region* r = RefToRegionLocked(reinterpret_cast<mirror::Object*>(tlab_start));
r->is_a_tlab_ = false;
r->thread_ = nullptr;
DCHECK(r->IsAllocated());
DCHECK_LE(thread->GetThreadLocalBytesAllocated(), kRegionSize);
r->RecordThreadLocalAllocations(thread->GetThreadLocalObjectsAllocated(),
thread->GetTlabEnd() - r->Begin());
DCHECK_GE(r->End(), thread->GetTlabPos());
DCHECK_LE(r->Begin(), thread->GetTlabPos());
size_t remaining_bytes = r->End() - thread->GetTlabPos();
if (reuse && remaining_bytes >= gc::Heap::kPartialTlabSize) {
partial_tlabs_.insert(std::make_pair(remaining_bytes, r));
}
}
thread->ResetTlab();
}
size_t RegionSpace::RevokeAllThreadLocalBuffers() {
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
MutexLock mu2(self, *Locks::thread_list_lock_);
std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
for (Thread* thread : thread_list) {
RevokeThreadLocalBuffers(thread);
}
return 0U;
}
void RegionSpace::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
if (kIsDebugBuild) {
DCHECK(!thread->HasTlab());
}
}
void RegionSpace::AssertAllThreadLocalBuffersAreRevoked() {
if (kIsDebugBuild) {
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
MutexLock mu2(self, *Locks::thread_list_lock_);
std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
for (Thread* thread : thread_list) {
AssertThreadLocalBuffersAreRevoked(thread);
}
}
}
void RegionSpace::Region::Dump(std::ostream& os) const {
os << "Region[" << idx_ << "]="
<< reinterpret_cast<void*>(begin_)
<< "-" << reinterpret_cast<void*>(Top())
<< "-" << reinterpret_cast<void*>(end_)
<< " state=" << state_
<< " type=" << type_
<< " objects_allocated=" << objects_allocated_
<< " alloc_time=" << alloc_time_
<< " live_bytes=" << live_bytes_;
if (live_bytes_ != static_cast<size_t>(-1)) {
os << " ratio over allocated bytes="
<< (static_cast<float>(live_bytes_) / RoundUp(BytesAllocated(), kRegionSize));
uint64_t longest_consecutive_free_bytes = GetLongestConsecutiveFreeBytes();
os << " longest_consecutive_free_bytes=" << longest_consecutive_free_bytes
<< " (" << PrettySize(longest_consecutive_free_bytes) << ")";
}
os << " is_newly_allocated=" << std::boolalpha << is_newly_allocated_ << std::noboolalpha
<< " is_a_tlab=" << std::boolalpha << is_a_tlab_ << std::noboolalpha
<< " thread=" << thread_ << '\n';
}
uint64_t RegionSpace::Region::GetLongestConsecutiveFreeBytes() const {
if (IsFree()) {
return kRegionSize;
}
if (IsLarge() || IsLargeTail()) {
return 0u;
}
uintptr_t max_gap = 0u;
uintptr_t prev_object_end = reinterpret_cast<uintptr_t>(Begin());
// Iterate through all live objects and find the largest free gap.
auto visitor = [&max_gap, &prev_object_end](mirror::Object* obj)
REQUIRES_SHARED(Locks::mutator_lock_) {
uintptr_t current = reinterpret_cast<uintptr_t>(obj);
uintptr_t diff = current - prev_object_end;
max_gap = std::max(diff, max_gap);
uintptr_t object_end = reinterpret_cast<uintptr_t>(obj) + obj->SizeOf();
prev_object_end = RoundUp(object_end, kAlignment);
};
space::RegionSpace* region_space = art::Runtime::Current()->GetHeap()->GetRegionSpace();
region_space->WalkNonLargeRegion(visitor, this);
return static_cast<uint64_t>(max_gap);
}
size_t RegionSpace::AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size) {
size_t num_bytes = obj->SizeOf();
if (usable_size != nullptr) {
if (LIKELY(num_bytes <= kRegionSize)) {
DCHECK(RefToRegion(obj)->IsAllocated());
*usable_size = RoundUp(num_bytes, kAlignment);
} else {
DCHECK(RefToRegion(obj)->IsLarge());
*usable_size = RoundUp(num_bytes, kRegionSize);
}
}
return num_bytes;
}
void RegionSpace::Region::Clear(bool zero_and_release_pages) {
top_.store(begin_, std::memory_order_relaxed);
state_ = RegionState::kRegionStateFree;
type_ = RegionType::kRegionTypeNone;
objects_allocated_.store(0, std::memory_order_relaxed);
alloc_time_ = 0;
live_bytes_ = static_cast<size_t>(-1);
if (zero_and_release_pages) {
ZeroAndProtectRegion(begin_, end_, /* release_eagerly= */ true);
}
is_newly_allocated_ = false;
is_a_tlab_ = false;
thread_ = nullptr;
}
void RegionSpace::TraceHeapSize() {
Heap* heap = Runtime::Current()->GetHeap();
heap->TraceHeapSize(heap->GetBytesAllocated() + EvacBytes());
}
RegionSpace::Region* RegionSpace::AllocateRegion(bool for_evac) {
if (!for_evac && (num_non_free_regions_ + 1) * 2 > num_regions_) {
return nullptr;
}
for (size_t i = 0; i < num_regions_; ++i) {
// When using the cyclic region allocation strategy, try to
// allocate a region starting from the last cyclic allocated
// region marker. Otherwise, try to allocate a region starting
// from the beginning of the region space.
size_t region_index = kCyclicRegionAllocation
? ((cyclic_alloc_region_index_ + i) % num_regions_)
: i;
Region* r = &regions_[region_index];
if (r->IsFree()) {
r->Unfree(this, time_);
if (use_generational_cc_) {
// TODO: Add an explanation for this assertion.
DCHECK_IMPLIES(for_evac, !r->is_newly_allocated_);
}
if (for_evac) {
++num_evac_regions_;
TraceHeapSize();
// Evac doesn't count as newly allocated.
} else {
r->SetNewlyAllocated();
++num_non_free_regions_;
}
if (kCyclicRegionAllocation) {
// Move the cyclic allocation region marker to the region
// following the one that was just allocated.
cyclic_alloc_region_index_ = (region_index + 1) % num_regions_;
}
return r;
}
}
return nullptr;
}
void RegionSpace::Region::MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time) {
DCHECK(IsFree());
alloc_time_ = alloc_time;
region_space->AdjustNonFreeRegionLimit(idx_);
type_ = RegionType::kRegionTypeToSpace;
if (kProtectClearedRegions) {
CheckedCall(mprotect, __FUNCTION__, Begin(), kRegionSize, PROT_READ | PROT_WRITE);
}
}
void RegionSpace::Region::Unfree(RegionSpace* region_space, uint32_t alloc_time) {
MarkAsAllocated(region_space, alloc_time);
state_ = RegionState::kRegionStateAllocated;
}
void RegionSpace::Region::UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time) {
MarkAsAllocated(region_space, alloc_time);
state_ = RegionState::kRegionStateLarge;
}
void RegionSpace::Region::UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time) {
MarkAsAllocated(region_space, alloc_time);
state_ = RegionState::kRegionStateLargeTail;
}
} // namespace space
} // namespace gc
} // namespace art