blob: bf69ce40867a67fcb919397206f002f382b9281b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "CompilerInternals.h"
#include "Dataflow.h"
#include "codegen/Ralloc.h"
namespace art {
bool setFp(CompilationUnit* cUnit, int index, bool isFP) {
bool change = false;
if (isFP && !cUnit->regLocation[index].fp) {
cUnit->regLocation[index].fp = true;
cUnit->regLocation[index].defined = true;
change = true;
}
return change;
}
bool setCore(CompilationUnit* cUnit, int index, bool isCore) {
bool change = false;
if (isCore && !cUnit->regLocation[index].defined) {
cUnit->regLocation[index].core = true;
cUnit->regLocation[index].defined = true;
change = true;
}
return change;
}
bool setRef(CompilationUnit* cUnit, int index, bool isRef) {
bool change = false;
if (isRef && !cUnit->regLocation[index].defined) {
cUnit->regLocation[index].ref = true;
cUnit->regLocation[index].defined = true;
change = true;
}
return change;
}
bool setWide(CompilationUnit* cUnit, int index, bool isWide) {
bool change = false;
if (isWide && !cUnit->regLocation[index].wide) {
cUnit->regLocation[index].wide = true;
change = true;
}
return change;
}
bool setHigh(CompilationUnit* cUnit, int index, bool isHigh) {
bool change = false;
if (isHigh && !cUnit->regLocation[index].highWord) {
cUnit->regLocation[index].highWord = true;
change = true;
}
return change;
}
bool remapNames(CompilationUnit* cUnit, BasicBlock* bb)
{
if (bb->blockType != kDalvikByteCode && bb->blockType != kEntryBlock &&
bb->blockType != kExitBlock)
return false;
for (MIR* mir = bb->firstMIRInsn; mir; mir = mir->next) {
SSARepresentation *ssaRep = mir->ssaRep;
if (ssaRep) {
for (int i = 0; i < ssaRep->numUses; i++) {
ssaRep->uses[i] = cUnit->phiAliasMap[ssaRep->uses[i]];
}
for (int i = 0; i < ssaRep->numDefs; i++) {
ssaRep->defs[i] = cUnit->phiAliasMap[ssaRep->defs[i]];
}
}
}
return false;
}
/*
* Infer types and sizes. We don't need to track change on sizes,
* as it doesn't propagate. We're guaranteed at least one pass through
* the cfg.
*/
bool inferTypeAndSize(CompilationUnit* cUnit, BasicBlock* bb)
{
MIR *mir;
bool changed = false; // Did anything change?
if (bb->dataFlowInfo == NULL) return false;
if (bb->blockType != kDalvikByteCode && bb->blockType != kEntryBlock)
return false;
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
SSARepresentation *ssaRep = mir->ssaRep;
if (ssaRep) {
int attrs = oatDataFlowAttributes[mir->dalvikInsn.opcode];
// Handle defs
if (attrs & DF_DA) {
if (attrs & DF_CORE_A) {
changed |= setCore(cUnit, ssaRep->defs[0], true);
}
if (attrs & DF_REF_A) {
changed |= setRef(cUnit, ssaRep->defs[0], true);
}
if (attrs & DF_A_WIDE) {
cUnit->regLocation[ssaRep->defs[0]].wide = true;
cUnit->regLocation[ssaRep->defs[1]].wide = true;
cUnit->regLocation[ssaRep->defs[1]].highWord = true;
DCHECK_EQ(SRegToVReg(cUnit, ssaRep->defs[0])+1,
SRegToVReg(cUnit, ssaRep->defs[1]));
}
}
// Handles uses
int next = 0;
if (attrs & DF_UA) {
if (attrs & DF_CORE_A) {
changed |= setCore(cUnit, ssaRep->uses[next], true);
}
if (attrs & DF_REF_A) {
changed |= setRef(cUnit, ssaRep->uses[next], true);
}
if (attrs & DF_A_WIDE) {
cUnit->regLocation[ssaRep->uses[next]].wide = true;
cUnit->regLocation[ssaRep->uses[next + 1]].wide = true;
cUnit->regLocation[ssaRep->uses[next + 1]].highWord = true;
DCHECK_EQ(SRegToVReg(cUnit, ssaRep->uses[next])+1,
SRegToVReg(cUnit, ssaRep->uses[next + 1]));
next += 2;
} else {
next++;
}
}
if (attrs & DF_UB) {
if (attrs & DF_CORE_B) {
changed |= setCore(cUnit, ssaRep->uses[next], true);
}
if (attrs & DF_REF_B) {
changed |= setRef(cUnit, ssaRep->uses[next], true);
}
if (attrs & DF_B_WIDE) {
cUnit->regLocation[ssaRep->uses[next]].wide = true;
cUnit->regLocation[ssaRep->uses[next + 1]].wide = true;
cUnit->regLocation[ssaRep->uses[next + 1]].highWord = true;
DCHECK_EQ(SRegToVReg(cUnit, ssaRep->uses[next])+1,
SRegToVReg(cUnit, ssaRep->uses[next + 1]));
next += 2;
} else {
next++;
}
}
if (attrs & DF_UC) {
if (attrs & DF_CORE_C) {
changed |= setCore(cUnit, ssaRep->uses[next], true);
}
if (attrs & DF_REF_C) {
changed |= setRef(cUnit, ssaRep->uses[next], true);
}
if (attrs & DF_C_WIDE) {
cUnit->regLocation[ssaRep->uses[next]].wide = true;
cUnit->regLocation[ssaRep->uses[next + 1]].wide = true;
cUnit->regLocation[ssaRep->uses[next + 1]].highWord = true;
DCHECK_EQ(SRegToVReg(cUnit, ssaRep->uses[next])+1,
SRegToVReg(cUnit, ssaRep->uses[next + 1]));
}
}
// Special-case return handling
if ((mir->dalvikInsn.opcode == Instruction::RETURN) ||
(mir->dalvikInsn.opcode == Instruction::RETURN_WIDE) ||
(mir->dalvikInsn.opcode == Instruction::RETURN_OBJECT)) {
switch(cUnit->shorty[0]) {
case 'I':
changed |= setCore(cUnit, ssaRep->uses[0], true);
break;
case 'J':
changed |= setCore(cUnit, ssaRep->uses[0], true);
changed |= setCore(cUnit, ssaRep->uses[1], true);
cUnit->regLocation[ssaRep->uses[0]].wide = true;
cUnit->regLocation[ssaRep->uses[1]].wide = true;
cUnit->regLocation[ssaRep->uses[1]].highWord = true;
break;
case 'F':
changed |= setFp(cUnit, ssaRep->uses[0], true);
break;
case 'D':
changed |= setFp(cUnit, ssaRep->uses[0], true);
changed |= setFp(cUnit, ssaRep->uses[1], true);
cUnit->regLocation[ssaRep->uses[0]].wide = true;
cUnit->regLocation[ssaRep->uses[1]].wide = true;
cUnit->regLocation[ssaRep->uses[1]].highWord = true;
break;
case 'L':
changed |= setRef(cUnit, ssaRep->uses[0], true);
break;
default: break;
}
}
// Special-case handling for format 35c/3rc invokes
Instruction::Code opcode = mir->dalvikInsn.opcode;
int flags = (static_cast<int>(opcode) >= kNumPackedOpcodes)
? 0 : Instruction::FlagsOf(mir->dalvikInsn.opcode);
if ((flags & Instruction::kInvoke) &&
(attrs & (DF_FORMAT_35C | DF_FORMAT_3RC))) {
DCHECK_EQ(next, 0);
int target_idx = mir->dalvikInsn.vB;
const char* shorty = oatGetShortyFromTargetIdx(cUnit, target_idx);
// Handle result type if floating point
if ((shorty[0] == 'F') || (shorty[0] == 'D')) {
MIR* moveResultMIR = oatFindMoveResult(cUnit, bb, mir);
// Result might not be used at all, so no move-result
if (moveResultMIR && (moveResultMIR->dalvikInsn.opcode !=
Instruction::MOVE_RESULT_OBJECT)) {
SSARepresentation* tgtRep = moveResultMIR->ssaRep;
DCHECK(tgtRep != NULL);
tgtRep->fpDef[0] = true;
changed |= setFp(cUnit, tgtRep->defs[0], true);
if (shorty[0] == 'D') {
tgtRep->fpDef[1] = true;
changed |= setFp(cUnit, tgtRep->defs[1], true);
}
}
}
int numUses = mir->dalvikInsn.vA;
// If this is a non-static invoke, mark implicit "this"
if (((mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC) &&
(mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC_RANGE))) {
cUnit->regLocation[ssaRep->uses[next]].defined = true;
cUnit->regLocation[ssaRep->uses[next]].ref = true;
next++;
}
uint32_t cpos = 1;
if (strlen(shorty) > 1) {
for (int i = next; i < numUses;) {
DCHECK_LT(cpos, strlen(shorty));
switch (shorty[cpos++]) {
case 'D':
ssaRep->fpUse[i] = true;
ssaRep->fpUse[i+1] = true;
cUnit->regLocation[ssaRep->uses[i]].wide = true;
cUnit->regLocation[ssaRep->uses[i+1]].wide = true;
cUnit->regLocation[ssaRep->uses[i+1]].highWord = true;
DCHECK_EQ(SRegToVReg(cUnit, ssaRep->uses[i])+1,
SRegToVReg(cUnit, ssaRep->uses[i+1]));
i++;
break;
case 'J':
cUnit->regLocation[ssaRep->uses[i]].wide = true;
cUnit->regLocation[ssaRep->uses[i+1]].wide = true;
cUnit->regLocation[ssaRep->uses[i+1]].highWord = true;
DCHECK_EQ(SRegToVReg(cUnit, ssaRep->uses[i])+1,
SRegToVReg(cUnit, ssaRep->uses[i+1]));
changed |= setCore(cUnit, ssaRep->uses[i],true);
i++;
break;
case 'F':
ssaRep->fpUse[i] = true;
break;
case 'L':
changed |= setRef(cUnit,ssaRep->uses[i], true);
break;
default:
changed |= setCore(cUnit,ssaRep->uses[i], true);
break;
}
i++;
}
}
}
for (int i=0; ssaRep->fpUse && i< ssaRep->numUses; i++) {
if (ssaRep->fpUse[i])
changed |= setFp(cUnit, ssaRep->uses[i], true);
}
for (int i=0; ssaRep->fpDef && i< ssaRep->numDefs; i++) {
if (ssaRep->fpDef[i])
changed |= setFp(cUnit, ssaRep->defs[i], true);
}
// Special-case handling for moves & Phi
if (attrs & (DF_IS_MOVE | DF_NULL_TRANSFER_N)) {
/*
* If any of our inputs or outputs is defined, set all.
* Some ugliness related to Phi nodes and wide values.
* The Phi set will include all low words or all high
* words, so we have to treat them specially.
*/
bool isPhi = (static_cast<int>(mir->dalvikInsn.opcode) ==
kMirOpPhi);
RegLocation rlTemp = cUnit->regLocation[ssaRep->defs[0]];
bool definedFP = rlTemp.defined && rlTemp.fp;
bool definedCore = rlTemp.defined && rlTemp.core;
bool definedRef = rlTemp.defined && rlTemp.ref;
bool isWide = rlTemp.wide || ((attrs & DF_A_WIDE) != 0);
bool isHigh = isPhi && rlTemp.wide && rlTemp.highWord;
for (int i = 0; i < ssaRep->numUses;i++) {
rlTemp = cUnit->regLocation[ssaRep->uses[i]];
definedFP |= rlTemp.defined && rlTemp.fp;
definedCore |= rlTemp.defined && rlTemp.core;
definedRef |= rlTemp.defined && rlTemp.ref;
isWide |= rlTemp.wide;
isHigh |= isPhi && rlTemp.wide && rlTemp.highWord;
}
/*
* TODO: cleaner fix
* We don't normally expect to see a Dalvik register
* definition used both as a floating point and core
* value. However, the instruction rewriting that occurs
* during verification can eliminate some type information,
* leaving us confused. The real fix here is either to
* add explicit type information to Dalvik byte codes,
* or to recognize THROW_VERIFICATION_ERROR as
* an unconditional branch and support dead code elimination.
* As a workaround we can detect this situation and
* disable register promotion (which is the only thing that
* relies on distinctions between core and fp usages.
*/
if ((definedFP && (definedCore | definedRef)) &&
((cUnit->disableOpt & (1 << kPromoteRegs)) == 0)) {
LOG(WARNING) << PrettyMethod(cUnit->method_idx, *cUnit->dex_file)
<< " op at block " << bb->id
<< " has both fp and core/ref uses for same def.";
cUnit->disableOpt |= (1 << kPromoteRegs);
}
changed |= setFp(cUnit, ssaRep->defs[0], definedFP);
changed |= setCore(cUnit, ssaRep->defs[0], definedCore);
changed |= setRef(cUnit, ssaRep->defs[0], definedRef);
changed |= setWide(cUnit, ssaRep->defs[0], isWide);
changed |= setHigh(cUnit, ssaRep->defs[0], isHigh);
if (attrs & DF_A_WIDE) {
changed |= setWide(cUnit, ssaRep->defs[1], true);
changed |= setHigh(cUnit, ssaRep->defs[1], true);
}
for (int i = 0; i < ssaRep->numUses; i++) {
changed |= setFp(cUnit, ssaRep->uses[i], definedFP);
changed |= setCore(cUnit, ssaRep->uses[i], definedCore);
changed |= setRef(cUnit, ssaRep->uses[i], definedRef);
changed |= setWide(cUnit, ssaRep->uses[i], isWide);
changed |= setHigh(cUnit, ssaRep->uses[i], isHigh);
}
if (attrs & DF_A_WIDE) {
DCHECK_EQ(ssaRep->numUses, 2);
changed |= setWide(cUnit, ssaRep->uses[1], true);
changed |= setHigh(cUnit, ssaRep->uses[1], true);
}
}
}
}
return changed;
}
static const char* storageName[] = {" Frame ", "PhysReg", " Spill "};
void oatDumpRegLocTable(RegLocation* table, int count)
{
for (int i = 0; i < count; i++) {
LOG(INFO) << StringPrintf("Loc[%02d] : %s, %c %c %c %c %c %c%d %c%d S%d",
table[i].origSReg, storageName[table[i].location],
table[i].wide ? 'W' : 'N', table[i].defined ? 'D' : 'U',
table[i].fp ? 'F' : table[i].ref ? 'R' :'C',
table[i].highWord ? 'H' : 'L', table[i].home ? 'h' : 't',
oatIsFpReg(table[i].lowReg) ? 's' : 'r',
table[i].lowReg & oatFpRegMask(),
oatIsFpReg(table[i].highReg) ? 's' : 'r',
table[i].highReg & oatFpRegMask(), table[i].sRegLow);
}
}
void oatDumpRegLoc(RegLocation loc) {
oatDumpRegLocTable(&loc, 1);
}
static const RegLocation freshLoc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0,
INVALID_REG, INVALID_REG, INVALID_SREG,
INVALID_SREG};
int oatComputeFrameSize(CompilationUnit* cUnit) {
/* Figure out the frame size */
static const uint32_t kAlignMask = kStackAlignment - 1;
uint32_t size = (cUnit->numCoreSpills + cUnit->numFPSpills +
1 /* filler word */ + cUnit->numRegs + cUnit->numOuts +
cUnit->numCompilerTemps + 1 /* curMethod* */)
* sizeof(uint32_t);
/* Align and set */
return (size + kAlignMask) & ~(kAlignMask);
}
/*
* Simple register allocation. Some Dalvik virtual registers may
* be promoted to physical registers. Most of the work for temp
* allocation is done on the fly. We also do some initialization and
* type inference here.
*/
void oatSimpleRegAlloc(CompilationUnit* cUnit)
{
int i;
RegLocation* loc;
/* Allocate the location map */
loc = (RegLocation*)oatNew(cUnit, cUnit->numSSARegs * sizeof(*loc), true,
kAllocRegAlloc);
for (i=0; i< cUnit->numSSARegs; i++) {
loc[i] = freshLoc;
loc[i].sRegLow = i;
loc[i].isConst = oatIsBitSet(cUnit->isConstantV, i);
}
/* Patch up the locations for Method* and the compiler temps */
loc[cUnit->methodSReg].location = kLocCompilerTemp;
loc[cUnit->methodSReg].defined = true;
for (i = 0; i < cUnit->numCompilerTemps; i++) {
CompilerTemp* ct = (CompilerTemp*)cUnit->compilerTemps.elemList[i];
loc[ct->sReg].location = kLocCompilerTemp;
loc[ct->sReg].defined = true;
}
cUnit->regLocation = loc;
/* Allocation the promotion map */
int numRegs = cUnit->numDalvikRegisters;
cUnit->promotionMap =
(PromotionMap*)oatNew(cUnit, (numRegs + cUnit->numCompilerTemps + 1) *
sizeof(cUnit->promotionMap[0]), true,
kAllocRegAlloc);
/* Add types of incoming arguments based on signature */
int numIns = cUnit->numIns;
if (numIns > 0) {
int sReg = numRegs - numIns;
if ((cUnit->access_flags & kAccStatic) == 0) {
// For non-static, skip past "this"
cUnit->regLocation[sReg].defined = true;
cUnit->regLocation[sReg].ref = true;
sReg++;
}
const char* shorty = cUnit->shorty;
int shorty_len = strlen(shorty);
for (int i = 1; i < shorty_len; i++) {
switch (shorty[i]) {
case 'D':
cUnit->regLocation[sReg].wide = true;
cUnit->regLocation[sReg+1].highWord = true;
cUnit->regLocation[sReg+1].fp = true;
DCHECK_EQ(SRegToVReg(cUnit, sReg)+1, SRegToVReg(cUnit, sReg+1));
cUnit->regLocation[sReg].fp = true;
cUnit->regLocation[sReg].defined = true;
sReg++;
break;
case 'J':
cUnit->regLocation[sReg].wide = true;
cUnit->regLocation[sReg+1].highWord = true;
DCHECK_EQ(SRegToVReg(cUnit, sReg)+1, SRegToVReg(cUnit, sReg+1));
cUnit->regLocation[sReg].core = true;
cUnit->regLocation[sReg].defined = true;
sReg++;
break;
case 'F':
cUnit->regLocation[sReg].fp = true;
cUnit->regLocation[sReg].defined = true;
break;
case 'L':
cUnit->regLocation[sReg].ref = true;
cUnit->regLocation[sReg].defined = true;
break;
default:
cUnit->regLocation[sReg].core = true;
cUnit->regLocation[sReg].defined = true;
break;
}
sReg++;
}
}
#if defined(ART_USE_QUICK_COMPILER)
if (!cUnit->genBitcode) {
/* Remap names */
oatDataFlowAnalysisDispatcher(cUnit, remapNames,
kPreOrderDFSTraversal,
false /* isIterative */);
}
#else
/* Remap names */
oatDataFlowAnalysisDispatcher(cUnit, remapNames,
kPreOrderDFSTraversal,
false /* isIterative */);
#endif
/* Do type & size inference pass */
oatDataFlowAnalysisDispatcher(cUnit, inferTypeAndSize,
kPreOrderDFSTraversal,
true /* isIterative */);
/*
* Set the sRegLow field to refer to the pre-SSA name of the
* base Dalvik virtual register. Once we add a better register
* allocator, remove this remapping.
*/
for (i=0; i < cUnit->numSSARegs; i++) {
if (cUnit->regLocation[i].location != kLocCompilerTemp) {
int origSReg = cUnit->regLocation[i].sRegLow;
cUnit->regLocation[i].origSReg = origSReg;
cUnit->regLocation[i].sRegLow = SRegToVReg(cUnit, origSReg);
}
}
cUnit->coreSpillMask = 0;
cUnit->fpSpillMask = 0;
cUnit->numCoreSpills = 0;
oatDoPromotion(cUnit);
/* Get easily-accessable post-promotion copy of RegLocation for Method* */
cUnit->methodLoc = cUnit->regLocation[cUnit->methodSReg];
if (cUnit->printMe && !(cUnit->disableOpt & (1 << kPromoteRegs))) {
LOG(INFO) << "After Promotion";
oatDumpRegLocTable(cUnit->regLocation, cUnit->numSSARegs);
}
/* Set the frame size */
cUnit->frameSize = oatComputeFrameSize(cUnit);
}
} // namespace art