| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_THREAD_H_ |
| #define ART_RUNTIME_THREAD_H_ |
| |
| #include <bitset> |
| #include <deque> |
| #include <iosfwd> |
| #include <list> |
| #include <memory> |
| #include <setjmp.h> |
| #include <string> |
| |
| #include "arch/context.h" |
| #include "arch/instruction_set.h" |
| #include "atomic.h" |
| #include "base/macros.h" |
| #include "base/mutex.h" |
| #include "entrypoints/jni/jni_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "globals.h" |
| #include "handle_scope.h" |
| #include "instrumentation.h" |
| #include "jvalue.h" |
| #include "object_callbacks.h" |
| #include "offsets.h" |
| #include "runtime_stats.h" |
| #include "stack.h" |
| #include "thread_state.h" |
| |
| class BacktraceMap; |
| |
| namespace art { |
| |
| namespace gc { |
| namespace accounting { |
| template<class T> class AtomicStack; |
| } // namespace accounting |
| namespace collector { |
| class SemiSpace; |
| } // namespace collector |
| } // namespace gc |
| |
| namespace mirror { |
| class Array; |
| class Class; |
| class ClassLoader; |
| class Object; |
| template<class T> class ObjectArray; |
| template<class T> class PrimitiveArray; |
| typedef PrimitiveArray<int32_t> IntArray; |
| class StackTraceElement; |
| class String; |
| class Throwable; |
| } // namespace mirror |
| |
| namespace verifier { |
| class MethodVerifier; |
| } // namespace verifier |
| |
| class ArtMethod; |
| class BaseMutex; |
| class ClassLinker; |
| class Closure; |
| class Context; |
| struct DebugInvokeReq; |
| class DeoptimizationContextRecord; |
| class DexFile; |
| class FrameIdToShadowFrame; |
| class JavaVMExt; |
| struct JNIEnvExt; |
| class Monitor; |
| class Runtime; |
| class ScopedObjectAccessAlreadyRunnable; |
| class ShadowFrame; |
| class SingleStepControl; |
| class StackedShadowFrameRecord; |
| class Thread; |
| class ThreadList; |
| |
| // Thread priorities. These must match the Thread.MIN_PRIORITY, |
| // Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY constants. |
| enum ThreadPriority { |
| kMinThreadPriority = 1, |
| kNormThreadPriority = 5, |
| kMaxThreadPriority = 10, |
| }; |
| |
| enum ThreadFlag { |
| kSuspendRequest = 1, // If set implies that suspend_count_ > 0 and the Thread should enter the |
| // safepoint handler. |
| kCheckpointRequest = 2, // Request that the thread do some checkpoint work and then continue. |
| kActiveSuspendBarrier = 4 // Register that at least 1 suspend barrier needs to be passed. |
| }; |
| |
| enum class StackedShadowFrameType { |
| kShadowFrameUnderConstruction, |
| kDeoptimizationShadowFrame, |
| kSingleFrameDeoptimizationShadowFrame |
| }; |
| |
| // This should match RosAlloc::kNumThreadLocalSizeBrackets. |
| static constexpr size_t kNumRosAllocThreadLocalSizeBracketsInThread = 16; |
| |
| // Thread's stack layout for implicit stack overflow checks: |
| // |
| // +---------------------+ <- highest address of stack memory |
| // | | |
| // . . <- SP |
| // | | |
| // | | |
| // +---------------------+ <- stack_end |
| // | | |
| // | Gap | |
| // | | |
| // +---------------------+ <- stack_begin |
| // | | |
| // | Protected region | |
| // | | |
| // +---------------------+ <- lowest address of stack memory |
| // |
| // The stack always grows down in memory. At the lowest address is a region of memory |
| // that is set mprotect(PROT_NONE). Any attempt to read/write to this region will |
| // result in a segmentation fault signal. At any point, the thread's SP will be somewhere |
| // between the stack_end and the highest address in stack memory. An implicit stack |
| // overflow check is a read of memory at a certain offset below the current SP (4K typically). |
| // If the thread's SP is below the stack_end address this will be a read into the protected |
| // region. If the SP is above the stack_end address, the thread is guaranteed to have |
| // at least 4K of space. Because stack overflow checks are only performed in generated code, |
| // if the thread makes a call out to a native function (through JNI), that native function |
| // might only have 4K of memory (if the SP is adjacent to stack_end). |
| |
| class Thread { |
| public: |
| static const size_t kStackOverflowImplicitCheckSize; |
| |
| // Creates a new native thread corresponding to the given managed peer. |
| // Used to implement Thread.start. |
| static void CreateNativeThread(JNIEnv* env, jobject peer, size_t stack_size, bool daemon); |
| |
| // Attaches the calling native thread to the runtime, returning the new native peer. |
| // Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls. |
| static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_group, |
| bool create_peer); |
| |
| // Reset internal state of child thread after fork. |
| void InitAfterFork(); |
| |
| // Get the currently executing thread, frequently referred to as 'self'. This call has reasonably |
| // high cost and so we favor passing self around when possible. |
| // TODO: mark as PURE so the compiler may coalesce and remove? |
| static Thread* Current(); |
| |
| // On a runnable thread, check for pending thread suspension request and handle if pending. |
| void AllowThreadSuspension() SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Process pending thread suspension request and handle if pending. |
| void CheckSuspend() SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, |
| mirror::Object* thread_peer) |
| REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, jobject thread) |
| REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Translates 172 to pAllocArrayFromCode and so on. |
| template<size_t size_of_pointers> |
| static void DumpThreadOffset(std::ostream& os, uint32_t offset); |
| |
| // Dumps a one-line summary of thread state (used for operator<<). |
| void ShortDump(std::ostream& os) const; |
| |
| // Dumps the detailed thread state and the thread stack (used for SIGQUIT). |
| void Dump(std::ostream& os, |
| bool dump_native_stack = true, |
| BacktraceMap* backtrace_map = nullptr) const |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| void DumpJavaStack(std::ostream& os) const |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Dumps the SIGQUIT per-thread header. 'thread' can be null for a non-attached thread, in which |
| // case we use 'tid' to identify the thread, and we'll include as much information as we can. |
| static void DumpState(std::ostream& os, const Thread* thread, pid_t tid) |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| ThreadState GetState() const { |
| DCHECK_GE(tls32_.state_and_flags.as_struct.state, kTerminated); |
| DCHECK_LE(tls32_.state_and_flags.as_struct.state, kSuspended); |
| return static_cast<ThreadState>(tls32_.state_and_flags.as_struct.state); |
| } |
| |
| ThreadState SetState(ThreadState new_state); |
| |
| int GetSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) { |
| return tls32_.suspend_count; |
| } |
| |
| int GetDebugSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) { |
| return tls32_.debug_suspend_count; |
| } |
| |
| bool IsSuspended() const { |
| union StateAndFlags state_and_flags; |
| state_and_flags.as_int = tls32_.state_and_flags.as_int; |
| return state_and_flags.as_struct.state != kRunnable && |
| (state_and_flags.as_struct.flags & kSuspendRequest) != 0; |
| } |
| |
| bool ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier, bool for_debugger) |
| REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| bool RequestCheckpoint(Closure* function) |
| REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| void SetFlipFunction(Closure* function); |
| Closure* GetFlipFunction(); |
| |
| gc::accounting::AtomicStack<mirror::Object>* GetThreadLocalMarkStack() { |
| CHECK(kUseReadBarrier); |
| return tlsPtr_.thread_local_mark_stack; |
| } |
| void SetThreadLocalMarkStack(gc::accounting::AtomicStack<mirror::Object>* stack) { |
| CHECK(kUseReadBarrier); |
| tlsPtr_.thread_local_mark_stack = stack; |
| } |
| |
| // Called when thread detected that the thread_suspend_count_ was non-zero. Gives up share of |
| // mutator_lock_ and waits until it is resumed and thread_suspend_count_ is zero. |
| void FullSuspendCheck() |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Transition from non-runnable to runnable state acquiring share on mutator_lock_. |
| ALWAYS_INLINE ThreadState TransitionFromSuspendedToRunnable() |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| SHARED_LOCK_FUNCTION(Locks::mutator_lock_); |
| |
| // Transition from runnable into a state where mutator privileges are denied. Releases share of |
| // mutator lock. |
| ALWAYS_INLINE void TransitionFromRunnableToSuspended(ThreadState new_state) |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_) |
| UNLOCK_FUNCTION(Locks::mutator_lock_); |
| |
| // Once called thread suspension will cause an assertion failure. |
| const char* StartAssertNoThreadSuspension(const char* cause) ACQUIRE(Roles::uninterruptible_) { |
| Roles::uninterruptible_.Acquire(); // No-op. |
| if (kIsDebugBuild) { |
| CHECK(cause != nullptr); |
| const char* previous_cause = tlsPtr_.last_no_thread_suspension_cause; |
| tls32_.no_thread_suspension++; |
| tlsPtr_.last_no_thread_suspension_cause = cause; |
| return previous_cause; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // End region where no thread suspension is expected. |
| void EndAssertNoThreadSuspension(const char* old_cause) RELEASE(Roles::uninterruptible_) { |
| if (kIsDebugBuild) { |
| CHECK(old_cause != nullptr || tls32_.no_thread_suspension == 1); |
| CHECK_GT(tls32_.no_thread_suspension, 0U); |
| tls32_.no_thread_suspension--; |
| tlsPtr_.last_no_thread_suspension_cause = old_cause; |
| } |
| Roles::uninterruptible_.Release(); // No-op. |
| } |
| |
| void AssertThreadSuspensionIsAllowable(bool check_locks = true) const; |
| |
| bool IsDaemon() const { |
| return tls32_.daemon; |
| } |
| |
| size_t NumberOfHeldMutexes() const; |
| |
| bool HoldsLock(mirror::Object*) const SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| /* |
| * Changes the priority of this thread to match that of the java.lang.Thread object. |
| * |
| * We map a priority value from 1-10 to Linux "nice" values, where lower |
| * numbers indicate higher priority. |
| */ |
| void SetNativePriority(int newPriority); |
| |
| /* |
| * Returns the thread priority for the current thread by querying the system. |
| * This is useful when attaching a thread through JNI. |
| * |
| * Returns a value from 1 to 10 (compatible with java.lang.Thread values). |
| */ |
| static int GetNativePriority(); |
| |
| uint32_t GetThreadId() const { |
| return tls32_.thin_lock_thread_id; |
| } |
| |
| pid_t GetTid() const { |
| return tls32_.tid; |
| } |
| |
| // Returns the java.lang.Thread's name, or null if this Thread* doesn't have a peer. |
| mirror::String* GetThreadName(const ScopedObjectAccessAlreadyRunnable& ts) const |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Sets 'name' to the java.lang.Thread's name. This requires no transition to managed code, |
| // allocation, or locking. |
| void GetThreadName(std::string& name) const; |
| |
| // Sets the thread's name. |
| void SetThreadName(const char* name) SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Returns the thread-specific CPU-time clock in microseconds or -1 if unavailable. |
| uint64_t GetCpuMicroTime() const; |
| |
| mirror::Object* GetPeer() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| CHECK(tlsPtr_.jpeer == nullptr); |
| return tlsPtr_.opeer; |
| } |
| |
| bool HasPeer() const { |
| return tlsPtr_.jpeer != nullptr || tlsPtr_.opeer != nullptr; |
| } |
| |
| RuntimeStats* GetStats() { |
| return &tls64_.stats; |
| } |
| |
| bool IsStillStarting() const; |
| |
| bool IsExceptionPending() const { |
| return tlsPtr_.exception != nullptr; |
| } |
| |
| mirror::Throwable* GetException() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| return tlsPtr_.exception; |
| } |
| |
| void AssertPendingException() const; |
| void AssertPendingOOMException() const SHARED_REQUIRES(Locks::mutator_lock_); |
| void AssertNoPendingException() const; |
| void AssertNoPendingExceptionForNewException(const char* msg) const; |
| |
| void SetException(mirror::Throwable* new_exception) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| CHECK(new_exception != nullptr); |
| // TODO: DCHECK(!IsExceptionPending()); |
| tlsPtr_.exception = new_exception; |
| } |
| |
| void ClearException() SHARED_REQUIRES(Locks::mutator_lock_) { |
| tlsPtr_.exception = nullptr; |
| } |
| |
| // Find catch block and perform long jump to appropriate exception handle |
| NO_RETURN void QuickDeliverException() SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| Context* GetLongJumpContext(); |
| void ReleaseLongJumpContext(Context* context) { |
| if (tlsPtr_.long_jump_context != nullptr) { |
| // Each QuickExceptionHandler gets a long jump context and uses |
| // it for doing the long jump, after finding catch blocks/doing deoptimization. |
| // Both finding catch blocks and deoptimization can trigger another |
| // exception such as a result of class loading. So there can be nested |
| // cases of exception handling and multiple contexts being used. |
| // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context |
| // for reuse so there is no need to always allocate a new one each time when |
| // getting a context. Since we only keep one context for reuse, delete the |
| // existing one since the passed in context is yet to be used for longjump. |
| delete tlsPtr_.long_jump_context; |
| } |
| tlsPtr_.long_jump_context = context; |
| } |
| |
| // Get the current method and dex pc. If there are errors in retrieving the dex pc, this will |
| // abort the runtime iff abort_on_error is true. |
| ArtMethod* GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error = true) const |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Returns whether the given exception was thrown by the current Java method being executed |
| // (Note that this includes native Java methods). |
| bool IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| void SetTopOfStack(ArtMethod** top_method) { |
| tlsPtr_.managed_stack.SetTopQuickFrame(top_method); |
| } |
| |
| void SetTopOfShadowStack(ShadowFrame* top) { |
| tlsPtr_.managed_stack.SetTopShadowFrame(top); |
| } |
| |
| bool HasManagedStack() const { |
| return (tlsPtr_.managed_stack.GetTopQuickFrame() != nullptr) || |
| (tlsPtr_.managed_stack.GetTopShadowFrame() != nullptr); |
| } |
| |
| // If 'msg' is null, no detail message is set. |
| void ThrowNewException(const char* exception_class_descriptor, const char* msg) |
| SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| // If 'msg' is null, no detail message is set. An exception must be pending, and will be |
| // used as the new exception's cause. |
| void ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) |
| SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| void ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) |
| __attribute__((format(printf, 3, 4))) |
| SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| void ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) |
| SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| // OutOfMemoryError is special, because we need to pre-allocate an instance. |
| // Only the GC should call this. |
| void ThrowOutOfMemoryError(const char* msg) SHARED_REQUIRES(Locks::mutator_lock_) |
| REQUIRES(!Roles::uninterruptible_); |
| |
| static void Startup(); |
| static void FinishStartup(); |
| static void Shutdown(); |
| |
| // JNI methods |
| JNIEnvExt* GetJniEnv() const { |
| return tlsPtr_.jni_env; |
| } |
| |
| // Convert a jobject into a Object* |
| mirror::Object* DecodeJObject(jobject obj) const SHARED_REQUIRES(Locks::mutator_lock_); |
| // Checks if the weak global ref has been cleared by the GC without decoding it. |
| bool IsJWeakCleared(jweak obj) const SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| mirror::Object* GetMonitorEnterObject() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| return tlsPtr_.monitor_enter_object; |
| } |
| |
| void SetMonitorEnterObject(mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_) { |
| tlsPtr_.monitor_enter_object = obj; |
| } |
| |
| // Implements java.lang.Thread.interrupted. |
| bool Interrupted() REQUIRES(!*wait_mutex_); |
| // Implements java.lang.Thread.isInterrupted. |
| bool IsInterrupted() REQUIRES(!*wait_mutex_); |
| bool IsInterruptedLocked() REQUIRES(wait_mutex_) { |
| return interrupted_; |
| } |
| void Interrupt(Thread* self) REQUIRES(!*wait_mutex_); |
| void SetInterruptedLocked(bool i) REQUIRES(wait_mutex_) { |
| interrupted_ = i; |
| } |
| void Notify() REQUIRES(!*wait_mutex_); |
| |
| private: |
| void NotifyLocked(Thread* self) REQUIRES(wait_mutex_); |
| |
| public: |
| Mutex* GetWaitMutex() const LOCK_RETURNED(wait_mutex_) { |
| return wait_mutex_; |
| } |
| |
| ConditionVariable* GetWaitConditionVariable() const REQUIRES(wait_mutex_) { |
| return wait_cond_; |
| } |
| |
| Monitor* GetWaitMonitor() const REQUIRES(wait_mutex_) { |
| return wait_monitor_; |
| } |
| |
| void SetWaitMonitor(Monitor* mon) REQUIRES(wait_mutex_) { |
| wait_monitor_ = mon; |
| } |
| |
| // Waiter link-list support. |
| Thread* GetWaitNext() const { |
| return tlsPtr_.wait_next; |
| } |
| |
| void SetWaitNext(Thread* next) { |
| tlsPtr_.wait_next = next; |
| } |
| |
| jobject GetClassLoaderOverride() { |
| return tlsPtr_.class_loader_override; |
| } |
| |
| void SetClassLoaderOverride(jobject class_loader_override); |
| |
| // Create the internal representation of a stack trace, that is more time |
| // and space efficient to compute than the StackTraceElement[]. |
| template<bool kTransactionActive> |
| jobject CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a |
| // StackTraceElement[]. If output_array is null, a new array is created, otherwise as many |
| // frames as will fit are written into the given array. If stack_depth is non-null, it's updated |
| // with the number of valid frames in the returned array. |
| static jobjectArray InternalStackTraceToStackTraceElementArray( |
| const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, |
| jobjectArray output_array = nullptr, int* stack_depth = nullptr) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| bool HasDebuggerShadowFrames() const { |
| return tlsPtr_.frame_id_to_shadow_frame != nullptr; |
| } |
| |
| void VisitRoots(RootVisitor* visitor) SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| ALWAYS_INLINE void VerifyStack() SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // |
| // Offsets of various members of native Thread class, used by compiled code. |
| // |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThinLockIdOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, thin_lock_thread_id)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadFlagsOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, state_and_flags)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> IsGcMarkingOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, is_gc_marking)); |
| } |
| |
| // Deoptimize the Java stack. |
| void DeoptimizeWithDeoptimizationException(JValue* result) SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| private: |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadOffsetFromTlsPtr(size_t tls_ptr_offset) { |
| size_t base = OFFSETOF_MEMBER(Thread, tlsPtr_); |
| size_t scale; |
| size_t shrink; |
| if (pointer_size == sizeof(void*)) { |
| scale = 1; |
| shrink = 1; |
| } else if (pointer_size > sizeof(void*)) { |
| scale = pointer_size / sizeof(void*); |
| shrink = 1; |
| } else { |
| DCHECK_GT(sizeof(void*), pointer_size); |
| scale = 1; |
| shrink = sizeof(void*) / pointer_size; |
| } |
| return ThreadOffset<pointer_size>(base + ((tls_ptr_offset * scale) / shrink)); |
| } |
| |
| public: |
| static uint32_t QuickEntryPointOffsetWithSize(size_t quick_entrypoint_offset, |
| size_t pointer_size) { |
| DCHECK(pointer_size == 4 || pointer_size == 8) << pointer_size; |
| if (pointer_size == 4) { |
| return QuickEntryPointOffset<4>(quick_entrypoint_offset).Uint32Value(); |
| } else { |
| return QuickEntryPointOffset<8>(quick_entrypoint_offset).Uint32Value(); |
| } |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> QuickEntryPointOffset(size_t quick_entrypoint_offset) { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, quick_entrypoints) + quick_entrypoint_offset); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> JniEntryPointOffset(size_t jni_entrypoint_offset) { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, jni_entrypoints) + jni_entrypoint_offset); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> SelfOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, self)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> MterpCurrentIBaseOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_current_ibase)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> MterpDefaultIBaseOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_default_ibase)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> MterpAltIBaseOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_alt_ibase)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ExceptionOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, exception)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> PeerOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, opeer)); |
| } |
| |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> CardTableOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, card_table)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadSuspendTriggerOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, suspend_trigger)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadLocalPosOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_pos)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadLocalEndOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_end)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadLocalObjectsOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_objects)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> RosAllocRunsOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| rosalloc_runs)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadLocalAllocStackTopOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| thread_local_alloc_stack_top)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> ThreadLocalAllocStackEndOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| thread_local_alloc_stack_end)); |
| } |
| |
| // Size of stack less any space reserved for stack overflow |
| size_t GetStackSize() const { |
| return tlsPtr_.stack_size - (tlsPtr_.stack_end - tlsPtr_.stack_begin); |
| } |
| |
| uint8_t* GetStackEndForInterpreter(bool implicit_overflow_check) const { |
| if (implicit_overflow_check) { |
| // The interpreter needs the extra overflow bytes that stack_end does |
| // not include. |
| return tlsPtr_.stack_end + GetStackOverflowReservedBytes(kRuntimeISA); |
| } else { |
| return tlsPtr_.stack_end; |
| } |
| } |
| |
| uint8_t* GetStackEnd() const { |
| return tlsPtr_.stack_end; |
| } |
| |
| // Set the stack end to that to be used during a stack overflow |
| void SetStackEndForStackOverflow() SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Set the stack end to that to be used during regular execution |
| void ResetDefaultStackEnd() { |
| // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room |
| // to throw a StackOverflowError. |
| tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA); |
| } |
| |
| // Install the protected region for implicit stack checks. |
| void InstallImplicitProtection(); |
| |
| bool IsHandlingStackOverflow() const { |
| return tlsPtr_.stack_end == tlsPtr_.stack_begin; |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> StackEndOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, stack_end)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> JniEnvOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, jni_env)); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> TopOfManagedStackOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + |
| ManagedStack::TopQuickFrameOffset()); |
| } |
| |
| const ManagedStack* GetManagedStack() const { |
| return &tlsPtr_.managed_stack; |
| } |
| |
| // Linked list recording fragments of managed stack. |
| void PushManagedStackFragment(ManagedStack* fragment) { |
| tlsPtr_.managed_stack.PushManagedStackFragment(fragment); |
| } |
| void PopManagedStackFragment(const ManagedStack& fragment) { |
| tlsPtr_.managed_stack.PopManagedStackFragment(fragment); |
| } |
| |
| ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) { |
| return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame); |
| } |
| |
| ShadowFrame* PopShadowFrame() { |
| return tlsPtr_.managed_stack.PopShadowFrame(); |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> TopShadowFrameOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + |
| ManagedStack::TopShadowFrameOffset()); |
| } |
| |
| // Number of references allocated in JNI ShadowFrames on this thread. |
| size_t NumJniShadowFrameReferences() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| return tlsPtr_.managed_stack.NumJniShadowFrameReferences(); |
| } |
| |
| // Number of references in handle scope on this thread. |
| size_t NumHandleReferences(); |
| |
| // Number of references allocated in handle scopes & JNI shadow frames on this thread. |
| size_t NumStackReferences() SHARED_REQUIRES(Locks::mutator_lock_) { |
| return NumHandleReferences() + NumJniShadowFrameReferences(); |
| } |
| |
| // Is the given obj in this thread's stack indirect reference table? |
| bool HandleScopeContains(jobject obj) const; |
| |
| void HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| HandleScope* GetTopHandleScope() { |
| return tlsPtr_.top_handle_scope; |
| } |
| |
| void PushHandleScope(HandleScope* handle_scope) { |
| DCHECK_EQ(handle_scope->GetLink(), tlsPtr_.top_handle_scope); |
| tlsPtr_.top_handle_scope = handle_scope; |
| } |
| |
| HandleScope* PopHandleScope() { |
| HandleScope* handle_scope = tlsPtr_.top_handle_scope; |
| DCHECK(handle_scope != nullptr); |
| tlsPtr_.top_handle_scope = tlsPtr_.top_handle_scope->GetLink(); |
| return handle_scope; |
| } |
| |
| template<size_t pointer_size> |
| static ThreadOffset<pointer_size> TopHandleScopeOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| top_handle_scope)); |
| } |
| |
| DebugInvokeReq* GetInvokeReq() const { |
| return tlsPtr_.debug_invoke_req; |
| } |
| |
| SingleStepControl* GetSingleStepControl() const { |
| return tlsPtr_.single_step_control; |
| } |
| |
| // Indicates whether this thread is ready to invoke a method for debugging. This |
| // is only true if the thread has been suspended by a debug event. |
| bool IsReadyForDebugInvoke() const { |
| return tls32_.ready_for_debug_invoke; |
| } |
| |
| void SetReadyForDebugInvoke(bool ready) { |
| tls32_.ready_for_debug_invoke = ready; |
| } |
| |
| bool IsDebugMethodEntry() const { |
| return tls32_.debug_method_entry_; |
| } |
| |
| void SetDebugMethodEntry() { |
| tls32_.debug_method_entry_ = true; |
| } |
| |
| void ClearDebugMethodEntry() { |
| tls32_.debug_method_entry_ = false; |
| } |
| |
| bool GetIsGcMarking() const { |
| CHECK(kUseReadBarrier); |
| return tls32_.is_gc_marking; |
| } |
| |
| void SetIsGcMarking(bool is_marking) { |
| CHECK(kUseReadBarrier); |
| tls32_.is_gc_marking = is_marking; |
| } |
| |
| bool GetWeakRefAccessEnabled() const { |
| CHECK(kUseReadBarrier); |
| return tls32_.weak_ref_access_enabled; |
| } |
| |
| void SetWeakRefAccessEnabled(bool enabled) { |
| CHECK(kUseReadBarrier); |
| tls32_.weak_ref_access_enabled = enabled; |
| } |
| |
| uint32_t GetDisableThreadFlipCount() const { |
| CHECK(kUseReadBarrier); |
| return tls32_.disable_thread_flip_count; |
| } |
| |
| void IncrementDisableThreadFlipCount() { |
| CHECK(kUseReadBarrier); |
| ++tls32_.disable_thread_flip_count; |
| } |
| |
| void DecrementDisableThreadFlipCount() { |
| CHECK(kUseReadBarrier); |
| DCHECK_GT(tls32_.disable_thread_flip_count, 0U); |
| --tls32_.disable_thread_flip_count; |
| } |
| |
| // Activates single step control for debugging. The thread takes the |
| // ownership of the given SingleStepControl*. It is deleted by a call |
| // to DeactivateSingleStepControl or upon thread destruction. |
| void ActivateSingleStepControl(SingleStepControl* ssc); |
| |
| // Deactivates single step control for debugging. |
| void DeactivateSingleStepControl(); |
| |
| // Sets debug invoke request for debugging. When the thread is resumed, |
| // it executes the method described by this request then sends the reply |
| // before suspending itself. The thread takes the ownership of the given |
| // DebugInvokeReq*. It is deleted by a call to ClearDebugInvokeReq. |
| void SetDebugInvokeReq(DebugInvokeReq* req); |
| |
| // Clears debug invoke request for debugging. When the thread completes |
| // method invocation, it deletes its debug invoke request and suspends |
| // itself. |
| void ClearDebugInvokeReq(); |
| |
| // Returns the fake exception used to activate deoptimization. |
| static mirror::Throwable* GetDeoptimizationException() { |
| return reinterpret_cast<mirror::Throwable*>(-1); |
| } |
| |
| // Currently deoptimization invokes verifier which can trigger class loading |
| // and execute Java code, so there might be nested deoptimizations happening. |
| // We need to save the ongoing deoptimization shadow frames and return |
| // values on stacks. |
| // 'from_code' denotes whether the deoptimization was explicitly made from |
| // compiled code. |
| void PushDeoptimizationContext(const JValue& return_value, |
| bool is_reference, |
| bool from_code, |
| mirror::Throwable* exception) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| void PopDeoptimizationContext(JValue* result, mirror::Throwable** exception, bool* from_code) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| void AssertHasDeoptimizationContext() |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| void PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type); |
| ShadowFrame* PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present = true); |
| |
| // For debugger, find the shadow frame that corresponds to a frame id. |
| // Or return null if there is none. |
| ShadowFrame* FindDebuggerShadowFrame(size_t frame_id) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| // For debugger, find the bool array that keeps track of the updated vreg set |
| // for a frame id. |
| bool* GetUpdatedVRegFlags(size_t frame_id) SHARED_REQUIRES(Locks::mutator_lock_); |
| // For debugger, find the shadow frame that corresponds to a frame id. If |
| // one doesn't exist yet, create one and track it in frame_id_to_shadow_frame. |
| ShadowFrame* FindOrCreateDebuggerShadowFrame(size_t frame_id, |
| uint32_t num_vregs, |
| ArtMethod* method, |
| uint32_t dex_pc) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Delete the entry that maps from frame_id to shadow_frame. |
| void RemoveDebuggerShadowFrameMapping(size_t frame_id) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| std::deque<instrumentation::InstrumentationStackFrame>* GetInstrumentationStack() { |
| return tlsPtr_.instrumentation_stack; |
| } |
| |
| std::vector<ArtMethod*>* GetStackTraceSample() const { |
| return tlsPtr_.stack_trace_sample; |
| } |
| |
| void SetStackTraceSample(std::vector<ArtMethod*>* sample) { |
| tlsPtr_.stack_trace_sample = sample; |
| } |
| |
| uint64_t GetTraceClockBase() const { |
| return tls64_.trace_clock_base; |
| } |
| |
| void SetTraceClockBase(uint64_t clock_base) { |
| tls64_.trace_clock_base = clock_base; |
| } |
| |
| BaseMutex* GetHeldMutex(LockLevel level) const { |
| return tlsPtr_.held_mutexes[level]; |
| } |
| |
| void SetHeldMutex(LockLevel level, BaseMutex* mutex) { |
| tlsPtr_.held_mutexes[level] = mutex; |
| } |
| |
| void RunCheckpointFunction(); |
| |
| bool PassActiveSuspendBarriers(Thread* self) |
| REQUIRES(!Locks::thread_suspend_count_lock_); |
| |
| void ClearSuspendBarrier(AtomicInteger* target) |
| REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| bool ReadFlag(ThreadFlag flag) const { |
| return (tls32_.state_and_flags.as_struct.flags & flag) != 0; |
| } |
| |
| bool TestAllFlags() const { |
| return (tls32_.state_and_flags.as_struct.flags != 0); |
| } |
| |
| void AtomicSetFlag(ThreadFlag flag) { |
| tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flag); |
| } |
| |
| void AtomicClearFlag(ThreadFlag flag) { |
| tls32_.state_and_flags.as_atomic_int.FetchAndAndSequentiallyConsistent(-1 ^ flag); |
| } |
| |
| void ResetQuickAllocEntryPointsForThread(); |
| |
| // Returns the remaining space in the TLAB. |
| size_t TlabSize() const; |
| // Doesn't check that there is room. |
| mirror::Object* AllocTlab(size_t bytes); |
| void SetTlab(uint8_t* start, uint8_t* end); |
| bool HasTlab() const; |
| uint8_t* GetTlabStart() { |
| return tlsPtr_.thread_local_start; |
| } |
| uint8_t* GetTlabPos() { |
| return tlsPtr_.thread_local_pos; |
| } |
| |
| // Remove the suspend trigger for this thread by making the suspend_trigger_ TLS value |
| // equal to a valid pointer. |
| // TODO: does this need to atomic? I don't think so. |
| void RemoveSuspendTrigger() { |
| tlsPtr_.suspend_trigger = reinterpret_cast<uintptr_t*>(&tlsPtr_.suspend_trigger); |
| } |
| |
| // Trigger a suspend check by making the suspend_trigger_ TLS value an invalid pointer. |
| // The next time a suspend check is done, it will load from the value at this address |
| // and trigger a SIGSEGV. |
| void TriggerSuspend() { |
| tlsPtr_.suspend_trigger = nullptr; |
| } |
| |
| |
| // Push an object onto the allocation stack. |
| bool PushOnThreadLocalAllocationStack(mirror::Object* obj) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Set the thread local allocation pointers to the given pointers. |
| void SetThreadLocalAllocationStack(StackReference<mirror::Object>* start, |
| StackReference<mirror::Object>* end); |
| |
| // Resets the thread local allocation pointers. |
| void RevokeThreadLocalAllocationStack(); |
| |
| size_t GetThreadLocalBytesAllocated() const { |
| return tlsPtr_.thread_local_end - tlsPtr_.thread_local_start; |
| } |
| |
| size_t GetThreadLocalObjectsAllocated() const { |
| return tlsPtr_.thread_local_objects; |
| } |
| |
| void* GetRosAllocRun(size_t index) const { |
| return tlsPtr_.rosalloc_runs[index]; |
| } |
| |
| void SetRosAllocRun(size_t index, void* run) { |
| tlsPtr_.rosalloc_runs[index] = run; |
| } |
| |
| void ProtectStack(); |
| bool UnprotectStack(); |
| |
| void SetMterpDefaultIBase(void* ibase) { |
| tlsPtr_.mterp_default_ibase = ibase; |
| } |
| |
| void SetMterpCurrentIBase(void* ibase) { |
| tlsPtr_.mterp_current_ibase = ibase; |
| } |
| |
| void SetMterpAltIBase(void* ibase) { |
| tlsPtr_.mterp_alt_ibase = ibase; |
| } |
| |
| const void* GetMterpDefaultIBase() const { |
| return tlsPtr_.mterp_default_ibase; |
| } |
| |
| const void* GetMterpCurrentIBase() const { |
| return tlsPtr_.mterp_current_ibase; |
| } |
| |
| const void* GetMterpAltIBase() const { |
| return tlsPtr_.mterp_alt_ibase; |
| } |
| |
| void NoteSignalBeingHandled() { |
| if (tls32_.handling_signal_) { |
| LOG(FATAL) << "Detected signal while processing a signal"; |
| } |
| tls32_.handling_signal_ = true; |
| } |
| |
| void NoteSignalHandlerDone() { |
| tls32_.handling_signal_ = false; |
| } |
| |
| jmp_buf* GetNestedSignalState() { |
| return tlsPtr_.nested_signal_state; |
| } |
| |
| bool IsSuspendedAtSuspendCheck() const { |
| return tls32_.suspended_at_suspend_check; |
| } |
| |
| void PushVerifier(verifier::MethodVerifier* verifier); |
| void PopVerifier(verifier::MethodVerifier* verifier); |
| |
| void InitStringEntryPoints(); |
| |
| void ModifyDebugDisallowReadBarrier(int8_t delta) { |
| debug_disallow_read_barrier_ += delta; |
| } |
| |
| uint8_t GetDebugDisallowReadBarrierCount() const { |
| return debug_disallow_read_barrier_; |
| } |
| |
| private: |
| explicit Thread(bool daemon); |
| ~Thread() REQUIRES(!Locks::mutator_lock_, !Locks::thread_suspend_count_lock_); |
| void Destroy(); |
| |
| void CreatePeer(const char* name, bool as_daemon, jobject thread_group); |
| |
| template<bool kTransactionActive> |
| void InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group, |
| jobject thread_name, jint thread_priority) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Avoid use, callers should use SetState. Used only by SignalCatcher::HandleSigQuit, ~Thread and |
| // Dbg::Disconnected. |
| ThreadState SetStateUnsafe(ThreadState new_state) { |
| ThreadState old_state = GetState(); |
| if (old_state == kRunnable && new_state != kRunnable) { |
| // Need to run pending checkpoint and suspend barriers. Run checkpoints in runnable state in |
| // case they need to use a ScopedObjectAccess. If we are holding the mutator lock and a SOA |
| // attempts to TransitionFromSuspendedToRunnable, it results in a deadlock. |
| TransitionToSuspendedAndRunCheckpoints(new_state); |
| // Since we transitioned to a suspended state, check the pass barrier requests. |
| PassActiveSuspendBarriers(); |
| } else { |
| tls32_.state_and_flags.as_struct.state = new_state; |
| } |
| return old_state; |
| } |
| |
| void VerifyStackImpl() SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| void DumpState(std::ostream& os) const SHARED_REQUIRES(Locks::mutator_lock_); |
| void DumpStack(std::ostream& os, |
| bool dump_native_stack = true, |
| BacktraceMap* backtrace_map = nullptr) const |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Out-of-line conveniences for debugging in gdb. |
| static Thread* CurrentFromGdb(); // Like Thread::Current. |
| // Like Thread::Dump(std::cerr). |
| void DumpFromGdb() const SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| static void* CreateCallback(void* arg); |
| |
| void HandleUncaughtExceptions(ScopedObjectAccess& soa) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| void RemoveFromThreadGroup(ScopedObjectAccess& soa) SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Initialize a thread. |
| // |
| // The third parameter is not mandatory. If given, the thread will use this JNIEnvExt. In case |
| // Init succeeds, this means the thread takes ownership of it. If Init fails, it is the caller's |
| // responsibility to destroy the given JNIEnvExt. If the parameter is null, Init will try to |
| // create a JNIEnvExt on its own (and potentially fail at that stage, indicated by a return value |
| // of false). |
| bool Init(ThreadList*, JavaVMExt*, JNIEnvExt* jni_env_ext = nullptr) |
| REQUIRES(Locks::runtime_shutdown_lock_); |
| void InitCardTable(); |
| void InitCpu(); |
| void CleanupCpu(); |
| void InitTlsEntryPoints(); |
| void InitTid(); |
| void InitPthreadKeySelf(); |
| bool InitStackHwm(); |
| |
| void SetUpAlternateSignalStack(); |
| void TearDownAlternateSignalStack(); |
| |
| ALWAYS_INLINE void TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_); |
| |
| ALWAYS_INLINE void PassActiveSuspendBarriers() |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_); |
| |
| // 32 bits of atomically changed state and flags. Keeping as 32 bits allows and atomic CAS to |
| // change from being Suspended to Runnable without a suspend request occurring. |
| union PACKED(4) StateAndFlags { |
| StateAndFlags() {} |
| struct PACKED(4) { |
| // Bitfield of flag values. Must be changed atomically so that flag values aren't lost. See |
| // ThreadFlags for bit field meanings. |
| volatile uint16_t flags; |
| // Holds the ThreadState. May be changed non-atomically between Suspended (ie not Runnable) |
| // transitions. Changing to Runnable requires that the suspend_request be part of the atomic |
| // operation. If a thread is suspended and a suspend_request is present, a thread may not |
| // change to Runnable as a GC or other operation is in progress. |
| volatile uint16_t state; |
| } as_struct; |
| AtomicInteger as_atomic_int; |
| volatile int32_t as_int; |
| |
| private: |
| // gcc does not handle struct with volatile member assignments correctly. |
| // See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47409 |
| DISALLOW_COPY_AND_ASSIGN(StateAndFlags); |
| }; |
| static_assert(sizeof(StateAndFlags) == sizeof(int32_t), "Weird state_and_flags size"); |
| |
| static void ThreadExitCallback(void* arg); |
| |
| // Maximum number of checkpoint functions. |
| static constexpr uint32_t kMaxCheckpoints = 3; |
| |
| // Maximum number of suspend barriers. |
| static constexpr uint32_t kMaxSuspendBarriers = 3; |
| |
| // Has Thread::Startup been called? |
| static bool is_started_; |
| |
| // TLS key used to retrieve the Thread*. |
| static pthread_key_t pthread_key_self_; |
| |
| // Used to notify threads that they should attempt to resume, they will suspend again if |
| // their suspend count is > 0. |
| static ConditionVariable* resume_cond_ GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| /***********************************************************************************************/ |
| // Thread local storage. Fields are grouped by size to enable 32 <-> 64 searching to account for |
| // pointer size differences. To encourage shorter encoding, more frequently used values appear |
| // first if possible. |
| /***********************************************************************************************/ |
| |
| struct PACKED(4) tls_32bit_sized_values { |
| // We have no control over the size of 'bool', but want our boolean fields |
| // to be 4-byte quantities. |
| typedef uint32_t bool32_t; |
| |
| explicit tls_32bit_sized_values(bool is_daemon) : |
| suspend_count(0), debug_suspend_count(0), thin_lock_thread_id(0), tid(0), |
| daemon(is_daemon), throwing_OutOfMemoryError(false), no_thread_suspension(0), |
| thread_exit_check_count(0), handling_signal_(false), |
| suspended_at_suspend_check(false), ready_for_debug_invoke(false), |
| debug_method_entry_(false), is_gc_marking(false), weak_ref_access_enabled(true), |
| disable_thread_flip_count(0) { |
| } |
| |
| union StateAndFlags state_and_flags; |
| static_assert(sizeof(union StateAndFlags) == sizeof(int32_t), |
| "Size of state_and_flags and int32 are different"); |
| |
| // A non-zero value is used to tell the current thread to enter a safe point |
| // at the next poll. |
| int suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // How much of 'suspend_count_' is by request of the debugger, used to set things right |
| // when the debugger detaches. Must be <= suspend_count_. |
| int debug_suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // Thin lock thread id. This is a small integer used by the thin lock implementation. |
| // This is not to be confused with the native thread's tid, nor is it the value returned |
| // by java.lang.Thread.getId --- this is a distinct value, used only for locking. One |
| // important difference between this id and the ids visible to managed code is that these |
| // ones get reused (to ensure that they fit in the number of bits available). |
| uint32_t thin_lock_thread_id; |
| |
| // System thread id. |
| uint32_t tid; |
| |
| // Is the thread a daemon? |
| const bool32_t daemon; |
| |
| // A boolean telling us whether we're recursively throwing OOME. |
| bool32_t throwing_OutOfMemoryError; |
| |
| // A positive value implies we're in a region where thread suspension isn't expected. |
| uint32_t no_thread_suspension; |
| |
| // How many times has our pthread key's destructor been called? |
| uint32_t thread_exit_check_count; |
| |
| // True if signal is being handled by this thread. |
| bool32_t handling_signal_; |
| |
| // True if the thread is suspended in FullSuspendCheck(). This is |
| // used to distinguish runnable threads that are suspended due to |
| // a normal suspend check from other threads. |
| bool32_t suspended_at_suspend_check; |
| |
| // True if the thread has been suspended by a debugger event. This is |
| // used to invoke method from the debugger which is only allowed when |
| // the thread is suspended by an event. |
| bool32_t ready_for_debug_invoke; |
| |
| // True if the thread enters a method. This is used to detect method entry |
| // event for the debugger. |
| bool32_t debug_method_entry_; |
| |
| // True if the GC is in the marking phase. This is used for the CC collector only. This is |
| // thread local so that we can simplify the logic to check for the fast path of read barriers of |
| // GC roots. |
| bool32_t is_gc_marking; |
| |
| // True if the thread is allowed to access a weak ref (Reference::GetReferent() and system |
| // weaks) and to potentially mark an object alive/gray. This is used for concurrent reference |
| // processing of the CC collector only. This is thread local so that we can enable/disable weak |
| // ref access by using a checkpoint and avoid a race around the time weak ref access gets |
| // disabled and concurrent reference processing begins (if weak ref access is disabled during a |
| // pause, this is not an issue.) Other collectors use Runtime::DisallowNewSystemWeaks() and |
| // ReferenceProcessor::EnableSlowPath(). |
| bool32_t weak_ref_access_enabled; |
| |
| // A thread local version of Heap::disable_thread_flip_count_. This keeps track of how many |
| // levels of (nested) JNI critical sections the thread is in and is used to detect a nested JNI |
| // critical section enter. |
| uint32_t disable_thread_flip_count; |
| } tls32_; |
| |
| struct PACKED(8) tls_64bit_sized_values { |
| tls_64bit_sized_values() : trace_clock_base(0) { |
| } |
| |
| // The clock base used for tracing. |
| uint64_t trace_clock_base; |
| |
| RuntimeStats stats; |
| } tls64_; |
| |
| struct PACKED(sizeof(void*)) tls_ptr_sized_values { |
| tls_ptr_sized_values() : card_table(nullptr), exception(nullptr), stack_end(nullptr), |
| managed_stack(), suspend_trigger(nullptr), jni_env(nullptr), tmp_jni_env(nullptr), |
| self(nullptr), opeer(nullptr), jpeer(nullptr), stack_begin(nullptr), stack_size(0), |
| stack_trace_sample(nullptr), wait_next(nullptr), monitor_enter_object(nullptr), |
| top_handle_scope(nullptr), class_loader_override(nullptr), long_jump_context(nullptr), |
| instrumentation_stack(nullptr), debug_invoke_req(nullptr), single_step_control(nullptr), |
| stacked_shadow_frame_record(nullptr), deoptimization_context_stack(nullptr), |
| frame_id_to_shadow_frame(nullptr), name(nullptr), pthread_self(0), |
| last_no_thread_suspension_cause(nullptr), thread_local_start(nullptr), |
| thread_local_pos(nullptr), thread_local_end(nullptr), thread_local_objects(0), |
| mterp_current_ibase(nullptr), mterp_default_ibase(nullptr), mterp_alt_ibase(nullptr), |
| thread_local_alloc_stack_top(nullptr), thread_local_alloc_stack_end(nullptr), |
| nested_signal_state(nullptr), flip_function(nullptr), method_verifier(nullptr), |
| thread_local_mark_stack(nullptr) { |
| std::fill(held_mutexes, held_mutexes + kLockLevelCount, nullptr); |
| } |
| |
| // The biased card table, see CardTable for details. |
| uint8_t* card_table; |
| |
| // The pending exception or null. |
| mirror::Throwable* exception; |
| |
| // The end of this thread's stack. This is the lowest safely-addressable address on the stack. |
| // We leave extra space so there's room for the code that throws StackOverflowError. |
| uint8_t* stack_end; |
| |
| // The top of the managed stack often manipulated directly by compiler generated code. |
| ManagedStack managed_stack; |
| |
| // In certain modes, setting this to 0 will trigger a SEGV and thus a suspend check. It is |
| // normally set to the address of itself. |
| uintptr_t* suspend_trigger; |
| |
| // Every thread may have an associated JNI environment |
| JNIEnvExt* jni_env; |
| |
| // Temporary storage to transfer a pre-allocated JNIEnvExt from the creating thread to the |
| // created thread. |
| JNIEnvExt* tmp_jni_env; |
| |
| // Initialized to "this". On certain architectures (such as x86) reading off of Thread::Current |
| // is easy but getting the address of Thread::Current is hard. This field can be read off of |
| // Thread::Current to give the address. |
| Thread* self; |
| |
| // Our managed peer (an instance of java.lang.Thread). The jobject version is used during thread |
| // start up, until the thread is registered and the local opeer_ is used. |
| mirror::Object* opeer; |
| jobject jpeer; |
| |
| // The "lowest addressable byte" of the stack. |
| uint8_t* stack_begin; |
| |
| // Size of the stack. |
| size_t stack_size; |
| |
| // Pointer to previous stack trace captured by sampling profiler. |
| std::vector<ArtMethod*>* stack_trace_sample; |
| |
| // The next thread in the wait set this thread is part of or null if not waiting. |
| Thread* wait_next; |
| |
| // If we're blocked in MonitorEnter, this is the object we're trying to lock. |
| mirror::Object* monitor_enter_object; |
| |
| // Top of linked list of handle scopes or null for none. |
| HandleScope* top_handle_scope; |
| |
| // Needed to get the right ClassLoader in JNI_OnLoad, but also |
| // useful for testing. |
| jobject class_loader_override; |
| |
| // Thread local, lazily allocated, long jump context. Used to deliver exceptions. |
| Context* long_jump_context; |
| |
| // Additional stack used by method instrumentation to store method and return pc values. |
| // Stored as a pointer since std::deque is not PACKED. |
| std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack; |
| |
| // JDWP invoke-during-breakpoint support. |
| DebugInvokeReq* debug_invoke_req; |
| |
| // JDWP single-stepping support. |
| SingleStepControl* single_step_control; |
| |
| // For gc purpose, a shadow frame record stack that keeps track of: |
| // 1) shadow frames under construction. |
| // 2) deoptimization shadow frames. |
| StackedShadowFrameRecord* stacked_shadow_frame_record; |
| |
| // Deoptimization return value record stack. |
| DeoptimizationContextRecord* deoptimization_context_stack; |
| |
| // For debugger, a linked list that keeps the mapping from frame_id to shadow frame. |
| // Shadow frames may be created before deoptimization happens so that the debugger can |
| // set local values there first. |
| FrameIdToShadowFrame* frame_id_to_shadow_frame; |
| |
| // A cached copy of the java.lang.Thread's name. |
| std::string* name; |
| |
| // A cached pthread_t for the pthread underlying this Thread*. |
| pthread_t pthread_self; |
| |
| // If no_thread_suspension_ is > 0, what is causing that assertion. |
| const char* last_no_thread_suspension_cause; |
| |
| // Pending checkpoint function or null if non-pending. Installation guarding by |
| // Locks::thread_suspend_count_lock_. |
| Closure* checkpoint_functions[kMaxCheckpoints]; |
| |
| // Pending barriers that require passing or NULL if non-pending. Installation guarding by |
| // Locks::thread_suspend_count_lock_. |
| // They work effectively as art::Barrier, but implemented directly using AtomicInteger and futex |
| // to avoid additional cost of a mutex and a condition variable, as used in art::Barrier. |
| AtomicInteger* active_suspend_barriers[kMaxSuspendBarriers]; |
| |
| // Entrypoint function pointers. |
| // TODO: move this to more of a global offset table model to avoid per-thread duplication. |
| JniEntryPoints jni_entrypoints; |
| QuickEntryPoints quick_entrypoints; |
| |
| // Thread-local allocation pointer. |
| uint8_t* thread_local_start; |
| uint8_t* thread_local_pos; |
| uint8_t* thread_local_end; |
| size_t thread_local_objects; |
| |
| // Mterp jump table bases. |
| void* mterp_current_ibase; |
| void* mterp_default_ibase; |
| void* mterp_alt_ibase; |
| |
| // There are RosAlloc::kNumThreadLocalSizeBrackets thread-local size brackets per thread. |
| void* rosalloc_runs[kNumRosAllocThreadLocalSizeBracketsInThread]; |
| |
| // Thread-local allocation stack data/routines. |
| StackReference<mirror::Object>* thread_local_alloc_stack_top; |
| StackReference<mirror::Object>* thread_local_alloc_stack_end; |
| |
| // Support for Mutex lock hierarchy bug detection. |
| BaseMutex* held_mutexes[kLockLevelCount]; |
| |
| // Recorded thread state for nested signals. |
| jmp_buf* nested_signal_state; |
| |
| // The function used for thread flip. |
| Closure* flip_function; |
| |
| // Current method verifier, used for root marking. |
| verifier::MethodVerifier* method_verifier; |
| |
| // Thread-local mark stack for the concurrent copying collector. |
| gc::accounting::AtomicStack<mirror::Object>* thread_local_mark_stack; |
| } tlsPtr_; |
| |
| // Guards the 'interrupted_' and 'wait_monitor_' members. |
| Mutex* wait_mutex_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| |
| // Condition variable waited upon during a wait. |
| ConditionVariable* wait_cond_ GUARDED_BY(wait_mutex_); |
| // Pointer to the monitor lock we're currently waiting on or null if not waiting. |
| Monitor* wait_monitor_ GUARDED_BY(wait_mutex_); |
| |
| // Thread "interrupted" status; stays raised until queried or thrown. |
| bool interrupted_ GUARDED_BY(wait_mutex_); |
| |
| // Debug disable read barrier count, only is checked for debug builds and only in the runtime. |
| uint8_t debug_disallow_read_barrier_ = 0; |
| |
| friend class Dbg; // For SetStateUnsafe. |
| friend class gc::collector::SemiSpace; // For getting stack traces. |
| friend class Runtime; // For CreatePeer. |
| friend class QuickExceptionHandler; // For dumping the stack. |
| friend class ScopedThreadStateChange; |
| friend class StubTest; // For accessing entrypoints. |
| friend class ThreadList; // For ~Thread and Destroy. |
| |
| friend class EntrypointsOrderTest; // To test the order of tls entries. |
| |
| DISALLOW_COPY_AND_ASSIGN(Thread); |
| }; |
| |
| class SCOPED_CAPABILITY ScopedAssertNoThreadSuspension { |
| public: |
| ScopedAssertNoThreadSuspension(Thread* self, const char* cause) ACQUIRE(Roles::uninterruptible_) |
| : self_(self), old_cause_(self->StartAssertNoThreadSuspension(cause)) { |
| } |
| ~ScopedAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) { |
| self_->EndAssertNoThreadSuspension(old_cause_); |
| } |
| Thread* Self() { |
| return self_; |
| } |
| |
| private: |
| Thread* const self_; |
| const char* const old_cause_; |
| }; |
| |
| class ScopedStackedShadowFramePusher { |
| public: |
| ScopedStackedShadowFramePusher(Thread* self, ShadowFrame* sf, StackedShadowFrameType type) |
| : self_(self), type_(type) { |
| self_->PushStackedShadowFrame(sf, type); |
| } |
| ~ScopedStackedShadowFramePusher() { |
| self_->PopStackedShadowFrame(type_); |
| } |
| |
| private: |
| Thread* const self_; |
| const StackedShadowFrameType type_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ScopedStackedShadowFramePusher); |
| }; |
| |
| // Only works for debug builds. |
| class ScopedDebugDisallowReadBarriers { |
| public: |
| explicit ScopedDebugDisallowReadBarriers(Thread* self) : self_(self) { |
| self_->ModifyDebugDisallowReadBarrier(1); |
| } |
| ~ScopedDebugDisallowReadBarriers() { |
| self_->ModifyDebugDisallowReadBarrier(-1); |
| } |
| |
| private: |
| Thread* const self_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const Thread& thread); |
| std::ostream& operator<<(std::ostream& os, const StackedShadowFrameType& thread); |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_THREAD_H_ |