| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dex_to_dex_compiler.h" |
| |
| #include <android-base/logging.h> |
| #include <android-base/stringprintf.h> |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/logging.h" // For VLOG |
| #include "base/macros.h" |
| #include "base/mutex.h" |
| #include "compiled_method.h" |
| #include "dex/bytecode_utils.h" |
| #include "dex/class_accessor-inl.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_instruction-inl.h" |
| #include "dex_to_dex_decompiler.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/compiler_options.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "mirror/dex_cache.h" |
| #include "quicken_info.h" |
| #include "thread-current-inl.h" |
| |
| namespace art { |
| namespace optimizer { |
| |
| using android::base::StringPrintf; |
| |
| // Controls quickening activation. |
| const bool kEnableQuickening = true; |
| // Control check-cast elision. |
| const bool kEnableCheckCastEllision = true; |
| |
| // Holds the state for compiling a single method. |
| struct DexToDexCompiler::CompilationState { |
| struct QuickenedInfo { |
| QuickenedInfo(uint32_t pc, uint16_t index) : dex_pc(pc), dex_member_index(index) {} |
| |
| uint32_t dex_pc; |
| uint16_t dex_member_index; |
| }; |
| |
| CompilationState(DexToDexCompiler* compiler, |
| const DexCompilationUnit& unit, |
| const CompilationLevel compilation_level, |
| const std::vector<uint8_t>* quicken_data); |
| |
| const std::vector<QuickenedInfo>& GetQuickenedInfo() const { |
| return quickened_info_; |
| } |
| |
| // Returns the quickening info, or an empty array if it was not quickened. |
| // If already_quickened is true, then don't change anything but still return what the quicken |
| // data would have been. |
| std::vector<uint8_t> Compile(); |
| |
| const DexFile& GetDexFile() const; |
| |
| // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where |
| // a barrier is required. |
| void CompileReturnVoid(Instruction* inst, uint32_t dex_pc); |
| |
| // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In |
| // this case, returns the second NOP instruction pointer. Otherwise, returns |
| // the given "inst". |
| Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc); |
| |
| // Compiles a field access into a quick field access. |
| // The field index is replaced by an offset within an Object where we can read |
| // from / write to this field. Therefore, this does not involve any resolution |
| // at runtime. |
| // Since the field index is encoded with 16 bits, we can replace it only if the |
| // field offset can be encoded with 16 bits too. |
| void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, |
| Instruction::Code new_opcode, bool is_put); |
| |
| // Compiles a virtual method invocation into a quick virtual method invocation. |
| // The method index is replaced by the vtable index where the corresponding |
| // executable can be found. Therefore, this does not involve any resolution |
| // at runtime. |
| // Since the method index is encoded with 16 bits, we can replace it only if the |
| // vtable index can be encoded with 16 bits too. |
| void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, |
| Instruction::Code new_opcode, bool is_range); |
| |
| // Return the next index. |
| uint16_t NextIndex(); |
| |
| // Returns the dequickened index if an instruction is quickened, otherwise return index. |
| uint16_t GetIndexForInstruction(const Instruction* inst, uint32_t index); |
| |
| DexToDexCompiler* const compiler_; |
| CompilerDriver& driver_; |
| const DexCompilationUnit& unit_; |
| const CompilationLevel compilation_level_; |
| |
| // Filled by the compiler when quickening, in order to encode that information |
| // in the .oat file. The runtime will use that information to get to the original |
| // opcodes. |
| std::vector<QuickenedInfo> quickened_info_; |
| |
| // True if we optimized a return void to a return void no barrier. |
| bool optimized_return_void_ = false; |
| |
| // If the code item was already quickened previously. |
| const bool already_quickened_; |
| const QuickenInfoTable existing_quicken_info_; |
| uint32_t quicken_index_ = 0u; |
| |
| DISALLOW_COPY_AND_ASSIGN(CompilationState); |
| }; |
| |
| DexToDexCompiler::DexToDexCompiler(CompilerDriver* driver) |
| : driver_(driver), |
| lock_("Quicken lock", kDexToDexCompilerLock) { |
| DCHECK(driver != nullptr); |
| } |
| |
| void DexToDexCompiler::ClearState() { |
| MutexLock lock(Thread::Current(), lock_); |
| active_dex_file_ = nullptr; |
| active_bit_vector_ = nullptr; |
| should_quicken_.clear(); |
| shared_code_item_quicken_info_.clear(); |
| } |
| |
| size_t DexToDexCompiler::NumCodeItemsToQuicken(Thread* self) const { |
| MutexLock lock(self, lock_); |
| return num_code_items_; |
| } |
| |
| BitVector* DexToDexCompiler::GetOrAddBitVectorForDex(const DexFile* dex_file) { |
| if (active_dex_file_ != dex_file) { |
| active_dex_file_ = dex_file; |
| auto inserted = should_quicken_.emplace(dex_file, |
| BitVector(dex_file->NumMethodIds(), |
| /*expandable*/ false, |
| Allocator::GetMallocAllocator())); |
| active_bit_vector_ = &inserted.first->second; |
| } |
| return active_bit_vector_; |
| } |
| |
| void DexToDexCompiler::MarkForCompilation(Thread* self, |
| const MethodReference& method_ref) { |
| MutexLock lock(self, lock_); |
| BitVector* const bitmap = GetOrAddBitVectorForDex(method_ref.dex_file); |
| DCHECK(bitmap != nullptr); |
| DCHECK(!bitmap->IsBitSet(method_ref.index)); |
| bitmap->SetBit(method_ref.index); |
| ++num_code_items_; |
| } |
| |
| DexToDexCompiler::CompilationState::CompilationState(DexToDexCompiler* compiler, |
| const DexCompilationUnit& unit, |
| const CompilationLevel compilation_level, |
| const std::vector<uint8_t>* quicken_data) |
| : compiler_(compiler), |
| driver_(*compiler->GetDriver()), |
| unit_(unit), |
| compilation_level_(compilation_level), |
| already_quickened_(quicken_data != nullptr), |
| existing_quicken_info_(already_quickened_ |
| ? ArrayRef<const uint8_t>(*quicken_data) : ArrayRef<const uint8_t>()) {} |
| |
| uint16_t DexToDexCompiler::CompilationState::NextIndex() { |
| DCHECK(already_quickened_); |
| if (kIsDebugBuild && quicken_index_ >= existing_quicken_info_.NumIndices()) { |
| for (const DexInstructionPcPair& pair : unit_.GetCodeItemAccessor()) { |
| LOG(ERROR) << pair->DumpString(nullptr); |
| } |
| LOG(FATAL) << "Mismatched number of quicken slots."; |
| } |
| const uint16_t ret = existing_quicken_info_.GetData(quicken_index_); |
| quicken_index_++; |
| return ret; |
| } |
| |
| uint16_t DexToDexCompiler::CompilationState::GetIndexForInstruction(const Instruction* inst, |
| uint32_t index) { |
| if (UNLIKELY(already_quickened_)) { |
| return inst->IsQuickened() ? NextIndex() : index; |
| } |
| DCHECK(!inst->IsQuickened()); |
| return index; |
| } |
| |
| bool DexToDexCompiler::ShouldCompileMethod(const MethodReference& ref) { |
| // TODO: It's probably safe to avoid the lock here if the active_dex_file_ matches since we only |
| // only call ShouldCompileMethod on one dex at a time. |
| MutexLock lock(Thread::Current(), lock_); |
| return GetOrAddBitVectorForDex(ref.dex_file)->IsBitSet(ref.index); |
| } |
| |
| std::vector<uint8_t> DexToDexCompiler::CompilationState::Compile() { |
| DCHECK_EQ(compilation_level_, CompilationLevel::kOptimize); |
| const CodeItemDataAccessor& instructions = unit_.GetCodeItemAccessor(); |
| for (DexInstructionIterator it = instructions.begin(); it != instructions.end(); ++it) { |
| const uint32_t dex_pc = it.DexPc(); |
| Instruction* inst = const_cast<Instruction*>(&it.Inst()); |
| |
| if (!already_quickened_) { |
| DCHECK(!inst->IsQuickened()); |
| } |
| |
| switch (inst->Opcode()) { |
| case Instruction::RETURN_VOID: |
| CompileReturnVoid(inst, dex_pc); |
| break; |
| |
| case Instruction::CHECK_CAST: |
| inst = CompileCheckCast(inst, dex_pc); |
| if (inst->Opcode() == Instruction::NOP) { |
| // We turned the CHECK_CAST into two NOPs, avoid visiting the second NOP twice since this |
| // would add 2 quickening info entries. |
| ++it; |
| } |
| break; |
| |
| case Instruction::IGET: |
| case Instruction::IGET_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false); |
| break; |
| |
| case Instruction::IGET_WIDE: |
| case Instruction::IGET_WIDE_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false); |
| break; |
| |
| case Instruction::IGET_OBJECT: |
| case Instruction::IGET_OBJECT_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false); |
| break; |
| |
| case Instruction::IGET_BOOLEAN: |
| case Instruction::IGET_BOOLEAN_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BOOLEAN_QUICK, false); |
| break; |
| |
| case Instruction::IGET_BYTE: |
| case Instruction::IGET_BYTE_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BYTE_QUICK, false); |
| break; |
| |
| case Instruction::IGET_CHAR: |
| case Instruction::IGET_CHAR_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_CHAR_QUICK, false); |
| break; |
| |
| case Instruction::IGET_SHORT: |
| case Instruction::IGET_SHORT_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_SHORT_QUICK, false); |
| break; |
| |
| case Instruction::IPUT: |
| case Instruction::IPUT_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BOOLEAN_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BOOLEAN_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_BYTE_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BYTE_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_CHAR_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_CHAR_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_SHORT: |
| case Instruction::IPUT_SHORT_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_SHORT_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_WIDE_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_OBJECT: |
| case Instruction::IPUT_OBJECT_QUICK: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_QUICK: |
| CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: |
| CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true); |
| break; |
| |
| case Instruction::NOP: |
| if (already_quickened_) { |
| const uint16_t reference_index = NextIndex(); |
| quickened_info_.push_back(QuickenedInfo(dex_pc, reference_index)); |
| if (reference_index == DexFile::kDexNoIndex16) { |
| // This means it was a normal nop and not a check-cast. |
| break; |
| } |
| const uint16_t type_index = NextIndex(); |
| if (driver_.IsSafeCast(&unit_, dex_pc)) { |
| quickened_info_.push_back(QuickenedInfo(dex_pc, type_index)); |
| } |
| ++it; |
| } else { |
| // We need to differentiate between check cast inserted NOP and normal NOP, put an invalid |
| // index in the map for normal nops. This should be rare in real code. |
| quickened_info_.push_back(QuickenedInfo(dex_pc, DexFile::kDexNoIndex16)); |
| } |
| break; |
| |
| default: |
| // Nothing to do. |
| break; |
| } |
| } |
| |
| if (already_quickened_) { |
| DCHECK_EQ(quicken_index_, existing_quicken_info_.NumIndices()); |
| } |
| |
| // Even if there are no indicies, generate an empty quicken info so that we know the method was |
| // quickened. |
| |
| std::vector<uint8_t> quicken_data; |
| if (kIsDebugBuild) { |
| // Double check that the counts line up with the size of the quicken info. |
| size_t quicken_count = 0; |
| for (const DexInstructionPcPair& pair : instructions) { |
| if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) { |
| ++quicken_count; |
| } |
| } |
| CHECK_EQ(quicken_count, GetQuickenedInfo().size()); |
| } |
| |
| QuickenInfoTable::Builder builder(&quicken_data, GetQuickenedInfo().size()); |
| // Length is encoded by the constructor. |
| for (const CompilationState::QuickenedInfo& info : GetQuickenedInfo()) { |
| // Dex pc is not serialized, only used for checking the instructions. Since we access the |
| // array based on the index of the quickened instruction, the indexes must line up perfectly. |
| // The reader side uses the NeedsIndexForInstruction function too. |
| const Instruction& inst = instructions.InstructionAt(info.dex_pc); |
| CHECK(QuickenInfoTable::NeedsIndexForInstruction(&inst)) << inst.Opcode(); |
| builder.AddIndex(info.dex_member_index); |
| } |
| DCHECK(!quicken_data.empty()); |
| return quicken_data; |
| } |
| |
| void DexToDexCompiler::CompilationState::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) { |
| DCHECK_EQ(inst->Opcode(), Instruction::RETURN_VOID); |
| if (unit_.IsConstructor()) { |
| // Are we compiling a non clinit constructor which needs a barrier ? |
| if (!unit_.IsStatic() && |
| driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(), |
| unit_.GetClassDefIndex())) { |
| return; |
| } |
| } |
| // Replace RETURN_VOID by RETURN_VOID_NO_BARRIER. |
| VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode()) |
| << " by " << Instruction::Name(Instruction::RETURN_VOID_NO_BARRIER) |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| inst->SetOpcode(Instruction::RETURN_VOID_NO_BARRIER); |
| optimized_return_void_ = true; |
| } |
| |
| Instruction* DexToDexCompiler::CompilationState::CompileCheckCast(Instruction* inst, |
| uint32_t dex_pc) { |
| if (!kEnableCheckCastEllision) { |
| return inst; |
| } |
| if (!driver_.IsSafeCast(&unit_, dex_pc)) { |
| return inst; |
| } |
| // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code |
| // units and a "nop" instruction size is 1 code unit, we need to replace it by |
| // 2 consecutive NOP instructions. |
| // Because the caller loops over instructions by calling Instruction::Next onto |
| // the current instruction, we need to return the 2nd NOP instruction. Indeed, |
| // its next instruction is the former check-cast's next instruction. |
| VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode()) |
| << " by replacing it with 2 NOPs at dex pc " |
| << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| if (!already_quickened_) { |
| quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegA_21c())); |
| quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegB_21c())); |
| |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(Instruction::NOP); |
| inst->SetVRegA_10x(0u); // keep compliant with verifier. |
| // Get to next instruction which is the second half of check-cast and replace |
| // it by a NOP. |
| inst = const_cast<Instruction*>(inst->Next()); |
| inst->SetOpcode(Instruction::NOP); |
| inst->SetVRegA_10x(0u); // keep compliant with verifier. |
| } |
| return inst; |
| } |
| |
| void DexToDexCompiler::CompilationState::CompileInstanceFieldAccess(Instruction* inst, |
| uint32_t dex_pc, |
| Instruction::Code new_opcode, |
| bool is_put) { |
| if (!kEnableQuickening) { |
| return; |
| } |
| uint32_t field_idx = GetIndexForInstruction(inst, inst->VRegC_22c()); |
| MemberOffset field_offset(0u); |
| bool is_volatile; |
| bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, is_put, |
| &field_offset, &is_volatile); |
| if (fast_path && !is_volatile && IsUint<16>(field_offset.Int32Value())) { |
| VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) |
| << " to " << Instruction::Name(new_opcode) |
| << " by replacing field index " << field_idx |
| << " by field offset " << field_offset.Int32Value() |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| if (!already_quickened_) { |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(new_opcode); |
| // Replace field index by field offset. |
| inst->SetVRegC_22c(static_cast<uint16_t>(field_offset.Int32Value())); |
| } |
| quickened_info_.push_back(QuickenedInfo(dex_pc, field_idx)); |
| } |
| } |
| |
| const DexFile& DexToDexCompiler::CompilationState::GetDexFile() const { |
| return *unit_.GetDexFile(); |
| } |
| |
| void DexToDexCompiler::CompilationState::CompileInvokeVirtual(Instruction* inst, |
| uint32_t dex_pc, |
| Instruction::Code new_opcode, |
| bool is_range) { |
| if (!kEnableQuickening) { |
| return; |
| } |
| uint32_t method_idx = GetIndexForInstruction(inst, |
| is_range ? inst->VRegB_3rc() : inst->VRegB_35c()); |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| ClassLinker* class_linker = unit_.GetClassLinker(); |
| ArtMethod* resolved_method = |
| class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>( |
| method_idx, |
| unit_.GetDexCache(), |
| unit_.GetClassLoader(), |
| /* referrer */ nullptr, |
| kVirtual); |
| |
| if (UNLIKELY(resolved_method == nullptr)) { |
| // Clean up any exception left by type resolution. |
| soa.Self()->ClearException(); |
| return; |
| } |
| |
| uint32_t vtable_idx = resolved_method->GetMethodIndex(); |
| DCHECK(IsUint<16>(vtable_idx)); |
| VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) |
| << "(" << GetDexFile().PrettyMethod(method_idx, true) << ")" |
| << " to " << Instruction::Name(new_opcode) |
| << " by replacing method index " << method_idx |
| << " by vtable index " << vtable_idx |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| if (!already_quickened_) { |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(new_opcode); |
| // Replace method index by vtable index. |
| if (is_range) { |
| inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx)); |
| } else { |
| inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx)); |
| } |
| } |
| quickened_info_.push_back(QuickenedInfo(dex_pc, method_idx)); |
| } |
| |
| CompiledMethod* DexToDexCompiler::CompileMethod( |
| const DexFile::CodeItem* code_item, |
| uint32_t access_flags, |
| InvokeType invoke_type ATTRIBUTE_UNUSED, |
| uint16_t class_def_idx, |
| uint32_t method_idx, |
| Handle<mirror::ClassLoader> class_loader, |
| const DexFile& dex_file, |
| CompilationLevel compilation_level) { |
| if (compilation_level == CompilationLevel::kDontDexToDexCompile) { |
| return nullptr; |
| } |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<1> hs(soa.Self()); |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| art::DexCompilationUnit unit( |
| class_loader, |
| class_linker, |
| dex_file, |
| code_item, |
| class_def_idx, |
| method_idx, |
| access_flags, |
| driver_->GetVerifiedMethod(&dex_file, method_idx), |
| hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file))); |
| |
| std::vector<uint8_t> quicken_data; |
| // If the code item is shared with multiple different method ids, make sure that we quicken only |
| // once and verify that all the dequicken maps match. |
| if (UNLIKELY(shared_code_items_.find(code_item) != shared_code_items_.end())) { |
| // Avoid quickening the shared code items for now because the existing conflict detection logic |
| // does not currently handle cases where the code item is quickened in one place but |
| // compiled in another. |
| static constexpr bool kAvoidQuickeningSharedCodeItems = true; |
| if (kAvoidQuickeningSharedCodeItems) { |
| return nullptr; |
| } |
| // For shared code items, use a lock to prevent races. |
| MutexLock mu(soa.Self(), lock_); |
| auto existing = shared_code_item_quicken_info_.find(code_item); |
| QuickenState* existing_data = nullptr; |
| std::vector<uint8_t>* existing_quicken_data = nullptr; |
| if (existing != shared_code_item_quicken_info_.end()) { |
| existing_data = &existing->second; |
| if (existing_data->conflict_) { |
| return nullptr; |
| } |
| existing_quicken_data = &existing_data->quicken_data_; |
| } |
| bool optimized_return_void; |
| { |
| CompilationState state(this, unit, compilation_level, existing_quicken_data); |
| quicken_data = state.Compile(); |
| optimized_return_void = state.optimized_return_void_; |
| } |
| |
| // Already quickened, check that the data matches what was previously seen. |
| MethodReference method_ref(&dex_file, method_idx); |
| if (existing_data != nullptr) { |
| if (*existing_quicken_data != quicken_data || |
| existing_data->optimized_return_void_ != optimized_return_void) { |
| VLOG(compiler) << "Quicken data mismatch, for method " |
| << dex_file.PrettyMethod(method_idx); |
| // Mark the method as a conflict to never attempt to quicken it in the future. |
| existing_data->conflict_ = true; |
| } |
| existing_data->methods_.push_back(method_ref); |
| } else { |
| QuickenState new_state; |
| new_state.methods_.push_back(method_ref); |
| new_state.quicken_data_ = quicken_data; |
| new_state.optimized_return_void_ = optimized_return_void; |
| bool inserted = shared_code_item_quicken_info_.emplace(code_item, new_state).second; |
| CHECK(inserted) << "Failed to insert " << dex_file.PrettyMethod(method_idx); |
| } |
| |
| // Easy sanity check is to check that the existing stuff matches by re-quickening using the |
| // newly produced quicken data. |
| // Note that this needs to be behind the lock for this case since we may unquicken in another |
| // thread. |
| if (kIsDebugBuild) { |
| CompilationState state2(this, unit, compilation_level, &quicken_data); |
| std::vector<uint8_t> new_data = state2.Compile(); |
| CHECK(new_data == quicken_data) << "Mismatch producing new quicken data"; |
| } |
| } else { |
| CompilationState state(this, unit, compilation_level, /*quicken_data*/ nullptr); |
| quicken_data = state.Compile(); |
| |
| // Easy sanity check is to check that the existing stuff matches by re-quickening using the |
| // newly produced quicken data. |
| if (kIsDebugBuild) { |
| CompilationState state2(this, unit, compilation_level, &quicken_data); |
| std::vector<uint8_t> new_data = state2.Compile(); |
| CHECK(new_data == quicken_data) << "Mismatch producing new quicken data"; |
| } |
| } |
| |
| if (quicken_data.empty()) { |
| return nullptr; |
| } |
| |
| // Create a `CompiledMethod`, with the quickened information in the vmap table. |
| InstructionSet instruction_set = driver_->GetCompilerOptions().GetInstructionSet(); |
| if (instruction_set == InstructionSet::kThumb2) { |
| // Don't use the thumb2 instruction set to avoid the one off code delta. |
| instruction_set = InstructionSet::kArm; |
| } |
| CompiledMethod* ret = CompiledMethod::SwapAllocCompiledMethod( |
| driver_, |
| instruction_set, |
| ArrayRef<const uint8_t>(), // no code |
| 0, |
| 0, |
| 0, |
| ArrayRef<const uint8_t>(), // method_info |
| ArrayRef<const uint8_t>(quicken_data), // vmap_table |
| ArrayRef<const uint8_t>(), // cfi data |
| ArrayRef<const linker::LinkerPatch>()); |
| DCHECK(ret != nullptr); |
| return ret; |
| } |
| |
| void DexToDexCompiler::SetDexFiles(const std::vector<const DexFile*>& dex_files) { |
| // Record what code items are already seen to detect when multiple methods have the same code |
| // item. |
| std::unordered_set<const DexFile::CodeItem*> seen_code_items; |
| for (const DexFile* dex_file : dex_files) { |
| for (ClassAccessor accessor : dex_file->GetClasses()) { |
| for (const ClassAccessor::Method& method : accessor.GetMethods()) { |
| const DexFile::CodeItem* code_item = method.GetCodeItem(); |
| // Detect the shared code items. |
| if (!seen_code_items.insert(code_item).second) { |
| shared_code_items_.insert(code_item); |
| } |
| } |
| } |
| } |
| VLOG(compiler) << "Shared code items " << shared_code_items_.size(); |
| } |
| |
| void DexToDexCompiler::UnquickenConflictingMethods() { |
| MutexLock mu(Thread::Current(), lock_); |
| size_t unquicken_count = 0; |
| for (const auto& pair : shared_code_item_quicken_info_) { |
| const DexFile::CodeItem* code_item = pair.first; |
| const QuickenState& state = pair.second; |
| CHECK_GE(state.methods_.size(), 1u); |
| if (state.conflict_) { |
| // Unquicken using the existing quicken data. |
| // TODO: Do we really need to pass a dex file in? |
| optimizer::ArtDecompileDEX(*state.methods_[0].dex_file, |
| *code_item, |
| ArrayRef<const uint8_t>(state.quicken_data_), |
| /* decompile_return_instruction*/ true); |
| ++unquicken_count; |
| // Go clear the vmaps for all the methods that were already quickened to avoid writing them |
| // out during oat writing. |
| for (const MethodReference& ref : state.methods_) { |
| CompiledMethod* method = driver_->RemoveCompiledMethod(ref); |
| if (method != nullptr) { |
| // There is up to one compiled method for each method ref. Releasing it leaves the |
| // deduped data intact, this means its safe to do even when other threads might be |
| // compiling. |
| CompiledMethod::ReleaseSwapAllocatedCompiledMethod(driver_, method); |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace optimizer |
| |
| } // namespace art |