blob: 5ff31cead589b7b90367c9ec63edfcf7527faa8a [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "graph_visualizer.h"
#include <dlfcn.h>
#include <cctype>
#include <sstream>
#include "art_method.h"
#include "bounds_check_elimination.h"
#include "builder.h"
#include "code_generator.h"
#include "data_type-inl.h"
#include "dead_code_elimination.h"
#include "dex/descriptors_names.h"
#include "disassembler.h"
#include "inliner.h"
#include "licm.h"
#include "nodes.h"
#include "optimization.h"
#include "reference_type_propagation.h"
#include "register_allocator_linear_scan.h"
#include "scoped_thread_state_change-inl.h"
#include "ssa_liveness_analysis.h"
#include "utils/assembler.h"
#include "utils/intrusive_forward_list.h"
namespace art {
static bool HasWhitespace(const char* str) {
DCHECK(str != nullptr);
while (str[0] != 0) {
if (isspace(str[0])) {
return true;
}
str++;
}
return false;
}
class StringList {
public:
enum Format {
kArrayBrackets,
kSetBrackets,
};
// Create an empty list
explicit StringList(Format format = kArrayBrackets) : format_(format), is_empty_(true) {}
// Construct StringList from a linked list. List element class T
// must provide methods `GetNext` and `Dump`.
template<class T>
explicit StringList(T* first_entry, Format format = kArrayBrackets) : StringList(format) {
for (T* current = first_entry; current != nullptr; current = current->GetNext()) {
current->Dump(NewEntryStream());
}
}
// Construct StringList from a list of elements. The value type must provide method `Dump`.
template <typename Container>
explicit StringList(const Container& list, Format format = kArrayBrackets) : StringList(format) {
for (const typename Container::value_type& current : list) {
current.Dump(NewEntryStream());
}
}
std::ostream& NewEntryStream() {
if (is_empty_) {
is_empty_ = false;
} else {
sstream_ << ",";
}
return sstream_;
}
private:
Format format_;
bool is_empty_;
std::ostringstream sstream_;
friend std::ostream& operator<<(std::ostream& os, const StringList& list);
};
std::ostream& operator<<(std::ostream& os, const StringList& list) {
switch (list.format_) {
case StringList::kArrayBrackets: return os << "[" << list.sstream_.str() << "]";
case StringList::kSetBrackets: return os << "{" << list.sstream_.str() << "}";
default:
LOG(FATAL) << "Invalid StringList format";
UNREACHABLE();
}
}
typedef Disassembler* create_disasm_prototype(InstructionSet instruction_set,
DisassemblerOptions* options);
class HGraphVisualizerDisassembler {
public:
HGraphVisualizerDisassembler(InstructionSet instruction_set,
const uint8_t* base_address,
const uint8_t* end_address)
: instruction_set_(instruction_set), disassembler_(nullptr) {
libart_disassembler_handle_ =
dlopen(kIsDebugBuild ? "libartd-disassembler.so" : "libart-disassembler.so", RTLD_NOW);
if (libart_disassembler_handle_ == nullptr) {
LOG(WARNING) << "Failed to dlopen libart-disassembler: " << dlerror();
return;
}
create_disasm_prototype* create_disassembler = reinterpret_cast<create_disasm_prototype*>(
dlsym(libart_disassembler_handle_, "create_disassembler"));
if (create_disassembler == nullptr) {
LOG(WARNING) << "Could not find create_disassembler entry: " << dlerror();
return;
}
// Reading the disassembly from 0x0 is easier, so we print relative
// addresses. We will only disassemble the code once everything has
// been generated, so we can read data in literal pools.
disassembler_ = std::unique_ptr<Disassembler>((*create_disassembler)(
instruction_set,
new DisassemblerOptions(/* absolute_addresses */ false,
base_address,
end_address,
/* can_read_literals */ true,
Is64BitInstructionSet(instruction_set)
? &Thread::DumpThreadOffset<PointerSize::k64>
: &Thread::DumpThreadOffset<PointerSize::k32>)));
}
~HGraphVisualizerDisassembler() {
// We need to call ~Disassembler() before we close the library.
disassembler_.reset();
if (libart_disassembler_handle_ != nullptr) {
dlclose(libart_disassembler_handle_);
}
}
void Disassemble(std::ostream& output, size_t start, size_t end) const {
if (disassembler_ == nullptr) {
return;
}
const uint8_t* base = disassembler_->GetDisassemblerOptions()->base_address_;
if (instruction_set_ == InstructionSet::kThumb2) {
// ARM and Thumb-2 use the same disassembler. The bottom bit of the
// address is used to distinguish between the two.
base += 1;
}
disassembler_->Dump(output, base + start, base + end);
}
private:
InstructionSet instruction_set_;
std::unique_ptr<Disassembler> disassembler_;
void* libart_disassembler_handle_;
};
/**
* HGraph visitor to generate a file suitable for the c1visualizer tool and IRHydra.
*/
class HGraphVisualizerPrinter : public HGraphDelegateVisitor {
public:
HGraphVisualizerPrinter(HGraph* graph,
std::ostream& output,
const char* pass_name,
bool is_after_pass,
bool graph_in_bad_state,
const CodeGenerator& codegen,
const DisassemblyInformation* disasm_info = nullptr)
: HGraphDelegateVisitor(graph),
output_(output),
pass_name_(pass_name),
is_after_pass_(is_after_pass),
graph_in_bad_state_(graph_in_bad_state),
codegen_(codegen),
disasm_info_(disasm_info),
disassembler_(disasm_info_ != nullptr
? new HGraphVisualizerDisassembler(
codegen_.GetInstructionSet(),
codegen_.GetAssembler().CodeBufferBaseAddress(),
codegen_.GetAssembler().CodeBufferBaseAddress()
+ codegen_.GetAssembler().CodeSize())
: nullptr),
indent_(0) {}
void Flush() {
// We use "\n" instead of std::endl to avoid implicit flushing which
// generates too many syscalls during debug-GC tests (b/27826765).
output_ << std::flush;
}
void StartTag(const char* name) {
AddIndent();
output_ << "begin_" << name << "\n";
indent_++;
}
void EndTag(const char* name) {
indent_--;
AddIndent();
output_ << "end_" << name << "\n";
}
void PrintProperty(const char* name, const char* property) {
AddIndent();
output_ << name << " \"" << property << "\"\n";
}
void PrintProperty(const char* name, const char* property, int id) {
AddIndent();
output_ << name << " \"" << property << id << "\"\n";
}
void PrintEmptyProperty(const char* name) {
AddIndent();
output_ << name << "\n";
}
void PrintTime(const char* name) {
AddIndent();
output_ << name << " " << time(nullptr) << "\n";
}
void PrintInt(const char* name, int value) {
AddIndent();
output_ << name << " " << value << "\n";
}
void AddIndent() {
for (size_t i = 0; i < indent_; ++i) {
output_ << " ";
}
}
void PrintPredecessors(HBasicBlock* block) {
AddIndent();
output_ << "predecessors";
for (HBasicBlock* predecessor : block->GetPredecessors()) {
output_ << " \"B" << predecessor->GetBlockId() << "\" ";
}
if (block->IsEntryBlock() && (disasm_info_ != nullptr)) {
output_ << " \"" << kDisassemblyBlockFrameEntry << "\" ";
}
output_<< "\n";
}
void PrintSuccessors(HBasicBlock* block) {
AddIndent();
output_ << "successors";
for (HBasicBlock* successor : block->GetNormalSuccessors()) {
output_ << " \"B" << successor->GetBlockId() << "\" ";
}
output_<< "\n";
}
void PrintExceptionHandlers(HBasicBlock* block) {
AddIndent();
output_ << "xhandlers";
for (HBasicBlock* handler : block->GetExceptionalSuccessors()) {
output_ << " \"B" << handler->GetBlockId() << "\" ";
}
if (block->IsExitBlock() &&
(disasm_info_ != nullptr) &&
!disasm_info_->GetSlowPathIntervals().empty()) {
output_ << " \"" << kDisassemblyBlockSlowPaths << "\" ";
}
output_<< "\n";
}
void DumpLocation(std::ostream& stream, const Location& location) {
if (location.IsRegister()) {
codegen_.DumpCoreRegister(stream, location.reg());
} else if (location.IsFpuRegister()) {
codegen_.DumpFloatingPointRegister(stream, location.reg());
} else if (location.IsConstant()) {
stream << "#";
HConstant* constant = location.GetConstant();
if (constant->IsIntConstant()) {
stream << constant->AsIntConstant()->GetValue();
} else if (constant->IsLongConstant()) {
stream << constant->AsLongConstant()->GetValue();
} else if (constant->IsFloatConstant()) {
stream << constant->AsFloatConstant()->GetValue();
} else if (constant->IsDoubleConstant()) {
stream << constant->AsDoubleConstant()->GetValue();
} else if (constant->IsNullConstant()) {
stream << "null";
}
} else if (location.IsInvalid()) {
stream << "invalid";
} else if (location.IsStackSlot()) {
stream << location.GetStackIndex() << "(sp)";
} else if (location.IsFpuRegisterPair()) {
codegen_.DumpFloatingPointRegister(stream, location.low());
stream << "|";
codegen_.DumpFloatingPointRegister(stream, location.high());
} else if (location.IsRegisterPair()) {
codegen_.DumpCoreRegister(stream, location.low());
stream << "|";
codegen_.DumpCoreRegister(stream, location.high());
} else if (location.IsUnallocated()) {
stream << "unallocated";
} else if (location.IsDoubleStackSlot()) {
stream << "2x" << location.GetStackIndex() << "(sp)";
} else {
DCHECK(location.IsSIMDStackSlot());
stream << "4x" << location.GetStackIndex() << "(sp)";
}
}
std::ostream& StartAttributeStream(const char* name = nullptr) {
if (name == nullptr) {
output_ << " ";
} else {
DCHECK(!HasWhitespace(name)) << "Checker does not allow spaces in attributes";
output_ << " " << name << ":";
}
return output_;
}
void VisitParallelMove(HParallelMove* instruction) OVERRIDE {
StartAttributeStream("liveness") << instruction->GetLifetimePosition();
StringList moves;
for (size_t i = 0, e = instruction->NumMoves(); i < e; ++i) {
MoveOperands* move = instruction->MoveOperandsAt(i);
std::ostream& str = moves.NewEntryStream();
DumpLocation(str, move->GetSource());
str << "->";
DumpLocation(str, move->GetDestination());
}
StartAttributeStream("moves") << moves;
}
void VisitIntConstant(HIntConstant* instruction) OVERRIDE {
StartAttributeStream() << instruction->GetValue();
}
void VisitLongConstant(HLongConstant* instruction) OVERRIDE {
StartAttributeStream() << instruction->GetValue();
}
void VisitFloatConstant(HFloatConstant* instruction) OVERRIDE {
StartAttributeStream() << instruction->GetValue();
}
void VisitDoubleConstant(HDoubleConstant* instruction) OVERRIDE {
StartAttributeStream() << instruction->GetValue();
}
void VisitPhi(HPhi* phi) OVERRIDE {
StartAttributeStream("reg") << phi->GetRegNumber();
StartAttributeStream("is_catch_phi") << std::boolalpha << phi->IsCatchPhi() << std::noboolalpha;
}
void VisitMemoryBarrier(HMemoryBarrier* barrier) OVERRIDE {
StartAttributeStream("kind") << barrier->GetBarrierKind();
}
void VisitMonitorOperation(HMonitorOperation* monitor) OVERRIDE {
StartAttributeStream("kind") << (monitor->IsEnter() ? "enter" : "exit");
}
void VisitLoadClass(HLoadClass* load_class) OVERRIDE {
StartAttributeStream("load_kind") << load_class->GetLoadKind();
const char* descriptor = load_class->GetDexFile().GetTypeDescriptor(
load_class->GetDexFile().GetTypeId(load_class->GetTypeIndex()));
StartAttributeStream("class_name") << PrettyDescriptor(descriptor);
StartAttributeStream("gen_clinit_check") << std::boolalpha
<< load_class->MustGenerateClinitCheck() << std::noboolalpha;
StartAttributeStream("needs_access_check") << std::boolalpha
<< load_class->NeedsAccessCheck() << std::noboolalpha;
}
void VisitLoadString(HLoadString* load_string) OVERRIDE {
StartAttributeStream("load_kind") << load_string->GetLoadKind();
}
void VisitCheckCast(HCheckCast* check_cast) OVERRIDE {
StartAttributeStream("check_kind") << check_cast->GetTypeCheckKind();
StartAttributeStream("must_do_null_check") << std::boolalpha
<< check_cast->MustDoNullCheck() << std::noboolalpha;
}
void VisitInstanceOf(HInstanceOf* instance_of) OVERRIDE {
StartAttributeStream("check_kind") << instance_of->GetTypeCheckKind();
StartAttributeStream("must_do_null_check") << std::boolalpha
<< instance_of->MustDoNullCheck() << std::noboolalpha;
}
void VisitArrayLength(HArrayLength* array_length) OVERRIDE {
StartAttributeStream("is_string_length") << std::boolalpha
<< array_length->IsStringLength() << std::noboolalpha;
if (array_length->IsEmittedAtUseSite()) {
StartAttributeStream("emitted_at_use") << "true";
}
}
void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE {
StartAttributeStream("is_string_char_at") << std::boolalpha
<< bounds_check->IsStringCharAt() << std::noboolalpha;
}
void VisitArrayGet(HArrayGet* array_get) OVERRIDE {
StartAttributeStream("is_string_char_at") << std::boolalpha
<< array_get->IsStringCharAt() << std::noboolalpha;
}
void VisitArraySet(HArraySet* array_set) OVERRIDE {
StartAttributeStream("value_can_be_null") << std::boolalpha
<< array_set->GetValueCanBeNull() << std::noboolalpha;
StartAttributeStream("needs_type_check") << std::boolalpha
<< array_set->NeedsTypeCheck() << std::noboolalpha;
}
void VisitCompare(HCompare* compare) OVERRIDE {
ComparisonBias bias = compare->GetBias();
StartAttributeStream("bias") << (bias == ComparisonBias::kGtBias
? "gt"
: (bias == ComparisonBias::kLtBias ? "lt" : "none"));
}
void VisitInvoke(HInvoke* invoke) OVERRIDE {
StartAttributeStream("dex_file_index") << invoke->GetDexMethodIndex();
ArtMethod* method = invoke->GetResolvedMethod();
// We don't print signatures, which conflict with c1visualizer format.
static constexpr bool kWithSignature = false;
// Note that we can only use the graph's dex file for the unresolved case. The
// other invokes might be coming from inlined methods.
ScopedObjectAccess soa(Thread::Current());
std::string method_name = (method == nullptr)
? GetGraph()->GetDexFile().PrettyMethod(invoke->GetDexMethodIndex(), kWithSignature)
: method->PrettyMethod(kWithSignature);
StartAttributeStream("method_name") << method_name;
StartAttributeStream("always_throws") << std::boolalpha
<< invoke->AlwaysThrows()
<< std::noboolalpha;
}
void VisitInvokeUnresolved(HInvokeUnresolved* invoke) OVERRIDE {
VisitInvoke(invoke);
StartAttributeStream("invoke_type") << invoke->GetInvokeType();
}
void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE {
VisitInvoke(invoke);
StartAttributeStream("method_load_kind") << invoke->GetMethodLoadKind();
StartAttributeStream("intrinsic") << invoke->GetIntrinsic();
if (invoke->IsStatic()) {
StartAttributeStream("clinit_check") << invoke->GetClinitCheckRequirement();
}
}
void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE {
VisitInvoke(invoke);
StartAttributeStream("intrinsic") << invoke->GetIntrinsic();
}
void VisitInvokePolymorphic(HInvokePolymorphic* invoke) OVERRIDE {
VisitInvoke(invoke);
StartAttributeStream("invoke_type") << "InvokePolymorphic";
}
void VisitInstanceFieldGet(HInstanceFieldGet* iget) OVERRIDE {
StartAttributeStream("field_name") <<
iget->GetFieldInfo().GetDexFile().PrettyField(iget->GetFieldInfo().GetFieldIndex(),
/* with type */ false);
StartAttributeStream("field_type") << iget->GetFieldType();
}
void VisitInstanceFieldSet(HInstanceFieldSet* iset) OVERRIDE {
StartAttributeStream("field_name") <<
iset->GetFieldInfo().GetDexFile().PrettyField(iset->GetFieldInfo().GetFieldIndex(),
/* with type */ false);
StartAttributeStream("field_type") << iset->GetFieldType();
}
void VisitStaticFieldGet(HStaticFieldGet* sget) OVERRIDE {
StartAttributeStream("field_name") <<
sget->GetFieldInfo().GetDexFile().PrettyField(sget->GetFieldInfo().GetFieldIndex(),
/* with type */ false);
StartAttributeStream("field_type") << sget->GetFieldType();
}
void VisitStaticFieldSet(HStaticFieldSet* sset) OVERRIDE {
StartAttributeStream("field_name") <<
sset->GetFieldInfo().GetDexFile().PrettyField(sset->GetFieldInfo().GetFieldIndex(),
/* with type */ false);
StartAttributeStream("field_type") << sset->GetFieldType();
}
void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* field_access) OVERRIDE {
StartAttributeStream("field_type") << field_access->GetFieldType();
}
void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* field_access) OVERRIDE {
StartAttributeStream("field_type") << field_access->GetFieldType();
}
void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* field_access) OVERRIDE {
StartAttributeStream("field_type") << field_access->GetFieldType();
}
void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* field_access) OVERRIDE {
StartAttributeStream("field_type") << field_access->GetFieldType();
}
void VisitTryBoundary(HTryBoundary* try_boundary) OVERRIDE {
StartAttributeStream("kind") << (try_boundary->IsEntry() ? "entry" : "exit");
}
void VisitDeoptimize(HDeoptimize* deoptimize) OVERRIDE {
StartAttributeStream("kind") << deoptimize->GetKind();
}
void VisitVecOperation(HVecOperation* vec_operation) OVERRIDE {
StartAttributeStream("packed_type") << vec_operation->GetPackedType();
}
void VisitVecMemoryOperation(HVecMemoryOperation* vec_mem_operation) OVERRIDE {
StartAttributeStream("alignment") << vec_mem_operation->GetAlignment().ToString();
}
void VisitVecHalvingAdd(HVecHalvingAdd* hadd) OVERRIDE {
VisitVecBinaryOperation(hadd);
StartAttributeStream("rounded") << std::boolalpha << hadd->IsRounded() << std::noboolalpha;
}
void VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) OVERRIDE {
VisitVecOperation(instruction);
StartAttributeStream("kind") << instruction->GetOpKind();
}
#if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
void VisitMultiplyAccumulate(HMultiplyAccumulate* instruction) OVERRIDE {
StartAttributeStream("kind") << instruction->GetOpKind();
}
void VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) OVERRIDE {
StartAttributeStream("kind") << instruction->GetOpKind();
}
void VisitDataProcWithShifterOp(HDataProcWithShifterOp* instruction) OVERRIDE {
StartAttributeStream("kind") << instruction->GetInstrKind() << "+" << instruction->GetOpKind();
if (HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind())) {
StartAttributeStream("shift") << instruction->GetShiftAmount();
}
}
#endif
bool IsPass(const char* name) {
return strcmp(pass_name_, name) == 0;
}
void PrintInstruction(HInstruction* instruction) {
output_ << instruction->DebugName();
HConstInputsRef inputs = instruction->GetInputs();
if (!inputs.empty()) {
StringList input_list;
for (const HInstruction* input : inputs) {
input_list.NewEntryStream() << DataType::TypeId(input->GetType()) << input->GetId();
}
StartAttributeStream() << input_list;
}
instruction->Accept(this);
if (instruction->HasEnvironment()) {
StringList envs;
for (HEnvironment* environment = instruction->GetEnvironment();
environment != nullptr;
environment = environment->GetParent()) {
StringList vregs;
for (size_t i = 0, e = environment->Size(); i < e; ++i) {
HInstruction* insn = environment->GetInstructionAt(i);
if (insn != nullptr) {
vregs.NewEntryStream() << DataType::TypeId(insn->GetType()) << insn->GetId();
} else {
vregs.NewEntryStream() << "_";
}
}
envs.NewEntryStream() << vregs;
}
StartAttributeStream("env") << envs;
}
if (IsPass(SsaLivenessAnalysis::kLivenessPassName)
&& is_after_pass_
&& instruction->GetLifetimePosition() != kNoLifetime) {
StartAttributeStream("liveness") << instruction->GetLifetimePosition();
if (instruction->HasLiveInterval()) {
LiveInterval* interval = instruction->GetLiveInterval();
StartAttributeStream("ranges")
<< StringList(interval->GetFirstRange(), StringList::kSetBrackets);
StartAttributeStream("uses") << StringList(interval->GetUses());
StartAttributeStream("env_uses") << StringList(interval->GetEnvironmentUses());
StartAttributeStream("is_fixed") << interval->IsFixed();
StartAttributeStream("is_split") << interval->IsSplit();
StartAttributeStream("is_low") << interval->IsLowInterval();
StartAttributeStream("is_high") << interval->IsHighInterval();
}
}
if (IsPass(RegisterAllocator::kRegisterAllocatorPassName) && is_after_pass_) {
StartAttributeStream("liveness") << instruction->GetLifetimePosition();
LocationSummary* locations = instruction->GetLocations();
if (locations != nullptr) {
StringList input_list;
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
DumpLocation(input_list.NewEntryStream(), locations->InAt(i));
}
std::ostream& attr = StartAttributeStream("locations");
attr << input_list << "->";
DumpLocation(attr, locations->Out());
}
}
HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation();
if (loop_info == nullptr) {
StartAttributeStream("loop") << "none";
} else {
StartAttributeStream("loop") << "B" << loop_info->GetHeader()->GetBlockId();
HLoopInformation* outer = loop_info->GetPreHeader()->GetLoopInformation();
if (outer != nullptr) {
StartAttributeStream("outer_loop") << "B" << outer->GetHeader()->GetBlockId();
} else {
StartAttributeStream("outer_loop") << "none";
}
StartAttributeStream("irreducible")
<< std::boolalpha << loop_info->IsIrreducible() << std::noboolalpha;
}
if ((IsPass(HGraphBuilder::kBuilderPassName)
|| IsPass(HInliner::kInlinerPassName))
&& (instruction->GetType() == DataType::Type::kReference)) {
ReferenceTypeInfo info = instruction->IsLoadClass()
? instruction->AsLoadClass()->GetLoadedClassRTI()
: instruction->GetReferenceTypeInfo();
ScopedObjectAccess soa(Thread::Current());
if (info.IsValid()) {
StartAttributeStream("klass")
<< mirror::Class::PrettyDescriptor(info.GetTypeHandle().Get());
StartAttributeStream("can_be_null")
<< std::boolalpha << instruction->CanBeNull() << std::noboolalpha;
StartAttributeStream("exact") << std::boolalpha << info.IsExact() << std::noboolalpha;
} else if (instruction->IsLoadClass()) {
StartAttributeStream("klass") << "unresolved";
} else {
// The NullConstant may be added to the graph during other passes that happen between
// ReferenceTypePropagation and Inliner (e.g. InstructionSimplifier). If the inliner
// doesn't run or doesn't inline anything, the NullConstant remains untyped.
// So we should check NullConstants for validity only after reference type propagation.
DCHECK(graph_in_bad_state_ ||
(!is_after_pass_ && IsPass(HGraphBuilder::kBuilderPassName)))
<< instruction->DebugName() << instruction->GetId() << " has invalid rti "
<< (is_after_pass_ ? "after" : "before") << " pass " << pass_name_;
}
}
if (disasm_info_ != nullptr) {
DCHECK(disassembler_ != nullptr);
// If the information is available, disassemble the code generated for
// this instruction.
auto it = disasm_info_->GetInstructionIntervals().find(instruction);
if (it != disasm_info_->GetInstructionIntervals().end()
&& it->second.start != it->second.end) {
output_ << "\n";
disassembler_->Disassemble(output_, it->second.start, it->second.end);
}
}
}
void PrintInstructions(const HInstructionList& list) {
for (HInstructionIterator it(list); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
int bci = 0;
size_t num_uses = instruction->GetUses().SizeSlow();
AddIndent();
output_ << bci << " " << num_uses << " "
<< DataType::TypeId(instruction->GetType()) << instruction->GetId() << " ";
PrintInstruction(instruction);
output_ << " " << kEndInstructionMarker << "\n";
}
}
void DumpStartOfDisassemblyBlock(const char* block_name,
int predecessor_index,
int successor_index) {
StartTag("block");
PrintProperty("name", block_name);
PrintInt("from_bci", -1);
PrintInt("to_bci", -1);
if (predecessor_index != -1) {
PrintProperty("predecessors", "B", predecessor_index);
} else {
PrintEmptyProperty("predecessors");
}
if (successor_index != -1) {
PrintProperty("successors", "B", successor_index);
} else {
PrintEmptyProperty("successors");
}
PrintEmptyProperty("xhandlers");
PrintEmptyProperty("flags");
StartTag("states");
StartTag("locals");
PrintInt("size", 0);
PrintProperty("method", "None");
EndTag("locals");
EndTag("states");
StartTag("HIR");
}
void DumpEndOfDisassemblyBlock() {
EndTag("HIR");
EndTag("block");
}
void DumpDisassemblyBlockForFrameEntry() {
DumpStartOfDisassemblyBlock(kDisassemblyBlockFrameEntry,
-1,
GetGraph()->GetEntryBlock()->GetBlockId());
output_ << " 0 0 disasm " << kDisassemblyBlockFrameEntry << " ";
GeneratedCodeInterval frame_entry = disasm_info_->GetFrameEntryInterval();
if (frame_entry.start != frame_entry.end) {
output_ << "\n";
disassembler_->Disassemble(output_, frame_entry.start, frame_entry.end);
}
output_ << kEndInstructionMarker << "\n";
DumpEndOfDisassemblyBlock();
}
void DumpDisassemblyBlockForSlowPaths() {
if (disasm_info_->GetSlowPathIntervals().empty()) {
return;
}
// If the graph has an exit block we attach the block for the slow paths
// after it. Else we just add the block to the graph without linking it to
// any other.
DumpStartOfDisassemblyBlock(
kDisassemblyBlockSlowPaths,
GetGraph()->HasExitBlock() ? GetGraph()->GetExitBlock()->GetBlockId() : -1,
-1);
for (SlowPathCodeInfo info : disasm_info_->GetSlowPathIntervals()) {
output_ << " 0 0 disasm " << info.slow_path->GetDescription() << "\n";
disassembler_->Disassemble(output_, info.code_interval.start, info.code_interval.end);
output_ << kEndInstructionMarker << "\n";
}
DumpEndOfDisassemblyBlock();
}
void Run() {
StartTag("cfg");
std::string pass_desc = std::string(pass_name_)
+ " ("
+ (is_after_pass_ ? "after" : "before")
+ (graph_in_bad_state_ ? ", bad_state" : "")
+ ")";
PrintProperty("name", pass_desc.c_str());
if (disasm_info_ != nullptr) {
DumpDisassemblyBlockForFrameEntry();
}
VisitInsertionOrder();
if (disasm_info_ != nullptr) {
DumpDisassemblyBlockForSlowPaths();
}
EndTag("cfg");
Flush();
}
void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
StartTag("block");
PrintProperty("name", "B", block->GetBlockId());
if (block->GetLifetimeStart() != kNoLifetime) {
// Piggy back on these fields to show the lifetime of the block.
PrintInt("from_bci", block->GetLifetimeStart());
PrintInt("to_bci", block->GetLifetimeEnd());
} else {
PrintInt("from_bci", -1);
PrintInt("to_bci", -1);
}
PrintPredecessors(block);
PrintSuccessors(block);
PrintExceptionHandlers(block);
if (block->IsCatchBlock()) {
PrintProperty("flags", "catch_block");
} else {
PrintEmptyProperty("flags");
}
if (block->GetDominator() != nullptr) {
PrintProperty("dominator", "B", block->GetDominator()->GetBlockId());
}
StartTag("states");
StartTag("locals");
PrintInt("size", 0);
PrintProperty("method", "None");
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
AddIndent();
HInstruction* instruction = it.Current();
output_ << instruction->GetId() << " " << DataType::TypeId(instruction->GetType())
<< instruction->GetId() << "[ ";
for (const HInstruction* input : instruction->GetInputs()) {
output_ << input->GetId() << " ";
}
output_ << "]\n";
}
EndTag("locals");
EndTag("states");
StartTag("HIR");
PrintInstructions(block->GetPhis());
PrintInstructions(block->GetInstructions());
EndTag("HIR");
EndTag("block");
}
static constexpr const char* const kEndInstructionMarker = "<|@";
static constexpr const char* const kDisassemblyBlockFrameEntry = "FrameEntry";
static constexpr const char* const kDisassemblyBlockSlowPaths = "SlowPaths";
private:
std::ostream& output_;
const char* pass_name_;
const bool is_after_pass_;
const bool graph_in_bad_state_;
const CodeGenerator& codegen_;
const DisassemblyInformation* disasm_info_;
std::unique_ptr<HGraphVisualizerDisassembler> disassembler_;
size_t indent_;
DISALLOW_COPY_AND_ASSIGN(HGraphVisualizerPrinter);
};
HGraphVisualizer::HGraphVisualizer(std::ostream* output,
HGraph* graph,
const CodeGenerator& codegen)
: output_(output), graph_(graph), codegen_(codegen) {}
void HGraphVisualizer::PrintHeader(const char* method_name) const {
DCHECK(output_ != nullptr);
HGraphVisualizerPrinter printer(graph_, *output_, "", true, false, codegen_);
printer.StartTag("compilation");
printer.PrintProperty("name", method_name);
printer.PrintProperty("method", method_name);
printer.PrintTime("date");
printer.EndTag("compilation");
printer.Flush();
}
void HGraphVisualizer::DumpGraph(const char* pass_name,
bool is_after_pass,
bool graph_in_bad_state) const {
DCHECK(output_ != nullptr);
if (!graph_->GetBlocks().empty()) {
HGraphVisualizerPrinter printer(graph_,
*output_,
pass_name,
is_after_pass,
graph_in_bad_state,
codegen_);
printer.Run();
}
}
void HGraphVisualizer::DumpGraphWithDisassembly() const {
DCHECK(output_ != nullptr);
if (!graph_->GetBlocks().empty()) {
HGraphVisualizerPrinter printer(graph_,
*output_,
"disassembly",
/* is_after_pass */ true,
/* graph_in_bad_state */ false,
codegen_,
codegen_.GetDisassemblyInformation());
printer.Run();
}
}
} // namespace art