blob: 5af1a7801326d7d5d6bd7d530bf6d9b5581e3887 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_id_manager.h"
#include <algorithm>
#include <cstdint>
#include <type_traits>
#include "android-base/macros.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/globals.h"
#include "base/locks.h"
#include "base/mutex.h"
#include "class_root-inl.h"
#include "gc/allocation_listener.h"
#include "gc/heap.h"
#include "jni/jni_internal.h"
#include "jni_id_type.h"
#include "mirror/array-inl.h"
#include "mirror/array.h"
#include "mirror/class-alloc-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class.h"
#include "mirror/class_ext-inl.h"
#include "mirror/object-inl.h"
#include "obj_ptr-inl.h"
#include "reflective_handle_scope-inl.h"
#include "reflective_handle_scope.h"
#include "reflective_value_visitor.h"
#include "thread-inl.h"
#include "thread.h"
namespace art {
namespace jni {
constexpr bool kTraceIds = false;
// TODO This whole thing could be done lock & wait free (since we never remove anything from the
// ids list). It's not clear this would be worthwile though.
namespace {
static constexpr size_t IdToIndex(uintptr_t id) {
return id >> 1;
}
static constexpr uintptr_t IndexToId(size_t index) {
return (index << 1) + 1;
}
static bool CanUseIdArrays(ArtMethod* t) {
// We cannot use ID arrays from the ClassExt object for obsolete and default conflict methods. The
// ID arrays hold an ID corresponding to the methods in the methods_list. Obsolete methods aren't
// in the method list. For default conflicting methods it is difficult to find the class that
// contains the copied method, so we omit using ID arrays. For Default conflicting methods we
// cannot use the canonical method because canonicalizing would return a method from one of the
// interface classes. If we use that method ID and invoke it via the CallNonVirtual JNI interface,
// it wouldn't throw the expected ICCE.
return !(t->IsObsolete() || t->IsDefaultConflicting());
}
template <typename ArtType>
ObjPtr<mirror::PointerArray> GetIds(ObjPtr<mirror::Class> k, ArtType* t)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> ret;
if constexpr (std::is_same_v<ArtType, ArtField>) {
ret = t->IsStatic() ? k->GetStaticFieldIds() : k->GetInstanceFieldIds();
} else {
ret = CanUseIdArrays(t) ? k->GetMethodIds() : nullptr;
}
DCHECK(ret.IsNull() || ret->IsArrayInstance()) << "Should have bailed out early!";
if (kIsDebugBuild && !ret.IsNull()) {
if (kRuntimePointerSize == PointerSize::k32) {
CHECK(ret->IsIntArray());
} else {
CHECK(ret->IsLongArray());
}
}
return down_cast<mirror::PointerArray*>(ret.Ptr());
}
template <typename ArtType>
bool ShouldReturnPointer(ObjPtr<mirror::Class> klass, ArtType* t)
REQUIRES_SHARED(Locks::mutator_lock_);
template <>
bool ShouldReturnPointer(ObjPtr<mirror::Class> klass, [[maybe_unused]] ArtMethod* t) {
ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
if (ext.IsNull()) {
return true;
}
ObjPtr<mirror::Object> arr = ext->GetJMethodIDs();
return arr.IsNull() || !arr->IsArrayInstance();
}
template<>
bool ShouldReturnPointer(ObjPtr<mirror::Class> klass, ArtField* t) {
ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
if (ext.IsNull()) {
return true;
}
ObjPtr<mirror::Object> arr = t->IsStatic() ? ext->GetStaticJFieldIDs()
: ext->GetInstanceJFieldIDs();
return arr.IsNull() || !arr->IsArrayInstance();
}
// Forces the appropriate id array to be present if possible. Returns true if allocation was
// attempted but failed.
template <typename ArtType>
bool EnsureIdsArray(Thread* self, ObjPtr<mirror::Class> k, ArtType* t)
REQUIRES_SHARED(Locks::mutator_lock_);
template <>
bool EnsureIdsArray(Thread* self, ObjPtr<mirror::Class> k, ArtField* field) {
ScopedExceptionStorage ses(self);
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_k(hs.NewHandle(k));
if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
return false;
} else {
// NB This modifies the class to allocate the ClassExt and the ids array.
field->IsStatic() ? mirror::Class::EnsureStaticFieldIds(h_k)
: mirror::Class::EnsureInstanceFieldIds(h_k);
}
if (self->IsExceptionPending()) {
self->AssertPendingOOMException();
ses.SuppressOldException("Failed to allocate maps for jmethodIDs. ");
return true;
}
return false;
}
template <>
bool EnsureIdsArray(Thread* self, ObjPtr<mirror::Class> k, ArtMethod* method) {
if (!CanUseIdArrays(method)) {
if (kTraceIds) {
LOG(INFO) << "jmethodID for Obsolete / Default conflicting method " << method->PrettyMethod()
<< " requested!";
}
// No ids array for obsolete / default conflicting methods. Just do a linear scan.
return false;
}
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_k(hs.NewHandle(k));
if (Locks::mutator_lock_->IsExclusiveHeld(self) || !Locks::mutator_lock_->IsSharedHeld(self)) {
return false;
} else {
// NB This modifies the class to allocate the ClassExt and the ids array.
mirror::Class::EnsureMethodIds(h_k);
}
if (self->IsExceptionPending()) {
self->AssertPendingOOMException();
return true;
}
return false;
}
template <typename ArtType>
size_t GetIdOffset(ObjPtr<mirror::Class> k, ArtType* t, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_);
template <>
size_t GetIdOffset(ObjPtr<mirror::Class> k, ArtField* f, [[maybe_unused]] PointerSize ptr_size) {
return f->IsStatic() ? k->GetStaticFieldIdOffset(f) : k->GetInstanceFieldIdOffset(f);
}
template <>
size_t GetIdOffset(ObjPtr<mirror::Class> k, ArtMethod* method, PointerSize pointer_size) {
return CanUseIdArrays(method) ? k->GetMethodIdOffset(method, pointer_size) : -1;
}
// Calls the relevant PrettyMethod/PrettyField on the input.
template <typename ArtType>
std::string PrettyGeneric(ArtType t) REQUIRES_SHARED(Locks::mutator_lock_);
template <>
std::string PrettyGeneric(ArtMethod* f) {
return f->PrettyMethod();
}
template <>
std::string PrettyGeneric(ReflectiveHandle<ArtMethod> f) {
return f->PrettyMethod();
}
template <>
std::string PrettyGeneric(ArtField* f) {
return f->PrettyField();
}
template <>
std::string PrettyGeneric(ReflectiveHandle<ArtField> f) {
return f->PrettyField();
}
// Checks if the field or method can use the ID array from class extension.
template <typename ArtType>
bool CanUseIdArrays(ReflectiveHandle<ArtType> t) REQUIRES_SHARED(Locks::mutator_lock_);
template <>
bool CanUseIdArrays([[maybe_unused]] ReflectiveHandle<ArtField> t) {
return true;
}
template <>
bool CanUseIdArrays(ReflectiveHandle<ArtMethod> t) {
return CanUseIdArrays(t.Get());
}
// Get the canonical (non-copied) version of the field or method. Only relevant for methods.
template <typename ArtType>
ArtType* Canonicalize(ReflectiveHandle<ArtType> t) REQUIRES_SHARED(Locks::mutator_lock_);
template <>
ArtField* Canonicalize(ReflectiveHandle<ArtField> t) {
return t.Get();
}
template <>
ArtMethod* Canonicalize(ReflectiveHandle<ArtMethod> t) {
if (UNLIKELY(t->IsCopied())) {
return t->GetCanonicalMethod();
}
return t.Get();
}
}; // namespace
// We increment the id by 2 each time to allow us to use the LSB as a flag that the ID is an index
// and not a pointer. This gives us 2**31 unique methods that can be addressed on 32-bit art, which
// should be more than enough.
template <>
uintptr_t JniIdManager::GetNextId<ArtField>(JniIdType type) {
DCHECK_EQ(type, JniIdType::kIndices);
uintptr_t res = next_field_id_;
next_field_id_ += 2;
CHECK_GT(next_field_id_, res) << "jfieldID Overflow";
return res;
}
template <>
uintptr_t JniIdManager::GetNextId<ArtMethod>(JniIdType type) {
DCHECK_EQ(type, JniIdType::kIndices);
uintptr_t res = next_method_id_;
next_method_id_ += 2;
CHECK_GT(next_method_id_, res) << "jmethodID Overflow";
return res;
}
template <>
std::vector<ArtField*>& JniIdManager::GetGenericMap<ArtField>() {
return field_id_map_;
}
template <>
std::vector<ArtMethod*>& JniIdManager::GetGenericMap<ArtMethod>() {
return method_id_map_;
}
template <>
size_t JniIdManager::GetLinearSearchStartId<ArtField>(
[[maybe_unused]] ReflectiveHandle<ArtField> t) {
return deferred_allocation_field_id_start_;
}
template <>
size_t JniIdManager::GetLinearSearchStartId<ArtMethod>(ReflectiveHandle<ArtMethod> m) {
if (CanUseIdArrays(m)) {
// If we are searching because we couldn't allocate because of defer allocate scope, then we
// should only look from deferred_allocation_method_id_start_. Once we exit the deferred scope
// all these method ids will be updated to the id arrays in the respective ClassExt objects.
return deferred_allocation_method_id_start_;
} else {
// If we cannot use ID arrays, then the method can be anywhere in the list.
return 1;
}
}
// TODO need to fix races in here with visitors
template <typename ArtType>
uintptr_t JniIdManager::EncodeGenericId(ReflectiveHandle<ArtType> t) {
static_assert(std::is_same_v<ArtType, ArtField> || std::is_same_v<ArtType, ArtMethod>,
"Expected ArtField or ArtMethod");
Runtime* runtime = Runtime::Current();
JniIdType id_type = runtime->GetJniIdType();
if (id_type == JniIdType::kPointer || t == nullptr) {
return reinterpret_cast<uintptr_t>(t.Get());
}
Thread* self = Thread::Current();
ScopedExceptionStorage ses(self);
DCHECK(!t->GetDeclaringClass().IsNull()) << "Null declaring class " << PrettyGeneric(t);
size_t off = -1;
bool allocation_failure = false;
// When we cannot use ID arrays, we just fallback to looking through the list to obtain the ID.
// These are rare cases so shouldn't be a problem for performance. See CanUseIdArrays for more
// information.
if (CanUseIdArrays(t)) {
off = GetIdOffset(t->GetDeclaringClass(), Canonicalize(t), kRuntimePointerSize);
// Here is the earliest point we can suspend.
allocation_failure = EnsureIdsArray(self, t->GetDeclaringClass(), t.Get());
}
if (allocation_failure) {
self->AssertPendingOOMException();
ses.SuppressOldException("OOM exception while trying to allocate JNI ids.");
return 0u;
} else if (ShouldReturnPointer(t->GetDeclaringClass(), t.Get())) {
// TODO(mythria): Check why we return a pointer here instead of falling back
// to the slow path of finding the ID by looping through the ID -> method
// map. This seem incorrect. For example, if we are in ScopedEnableSuspendAllJniIdQueries
// scope, we don't allocate ID arrays. We would then incorrectly return a
// pointer here.
return reinterpret_cast<uintptr_t>(t.Get());
}
ObjPtr<mirror::Class> klass = t->GetDeclaringClass();
ObjPtr<mirror::PointerArray> ids(GetIds(klass, t.Get()));
uintptr_t cur_id = 0;
if (!ids.IsNull()) {
DCHECK_GT(ids->GetLength(), static_cast<int32_t>(off)) << " is " << PrettyGeneric(t);
DCHECK_LE(0, static_cast<int32_t>(off)) << " is " << PrettyGeneric(t);
cur_id = ids->GetElementPtrSize<uintptr_t>(off, kRuntimePointerSize);
}
if (cur_id != 0) {
return cur_id;
}
WriterMutexLock mu(self, *Locks::jni_id_lock_);
ScopedAssertNoThreadSuspension sants("EncodeJniId critical section.");
// Check the ids array for a racing id.
constexpr std::pair<size_t, size_t> counts {
std::is_same_v<ArtType, ArtField> ? 1 : 0,
std::is_same_v<ArtType, ArtField> ? 0 : 1,
};
StackReflectiveHandleScope<counts.first, counts.second> hs(self);
t = hs.NewHandle(Canonicalize(t));
if (!ids.IsNull()) {
// It's possible we got suspended and structurally redefined during the EnsureIdsArray. We need
// to get the information again.
ids = GetIds(klass, t.Get());
off = GetIdOffset(klass, Canonicalize(t), kRuntimePointerSize);
CHECK(!ids.IsNull());
cur_id = ids->GetElementPtrSize<uintptr_t>(off, kRuntimePointerSize);
if (cur_id != 0) {
// We were racing some other thread and lost.
return cur_id;
}
} else {
// We cannot allocate anything here or don't have an ids array (we might be an obsolete method).
DCHECK(!CanUseIdArrays(t) || deferred_allocation_refcount_ > 0u)
<< "deferred_allocation_refcount_: " << deferred_allocation_refcount_
<< " t: " << PrettyGeneric(t);
// Check to see if we raced and lost to another thread.
const std::vector<ArtType*>& vec = GetGenericMap<ArtType>();
bool found = false;
// simple count-while.
size_t search_start_index = IdToIndex(GetLinearSearchStartId(t));
size_t index = std::count_if(vec.cbegin() + search_start_index,
vec.cend(),
[&found, &self, t](const ArtType* candidate) {
Locks::mutator_lock_->AssertSharedHeld(self);
found = found || candidate == t.Get();
return !found;
}) +
search_start_index;
if (found) {
// We were either racing some other thread and lost or this thread was asked to encode the
// same method multiple times while holding the mutator lock.
DCHECK_EQ(vec[index], t.Get())
<< "Expected: " << PrettyGeneric(vec[index]) << " got " << PrettyGeneric(t)
<< " at index " << index << " (id: " << IndexToId(index) << ").";
return IndexToId(index);
}
}
cur_id = GetNextId<ArtType>(id_type);
DCHECK_EQ(cur_id % 2, 1u);
size_t cur_index = IdToIndex(cur_id);
std::vector<ArtType*>& vec = GetGenericMap<ArtType>();
vec.reserve(cur_index + 1);
vec.resize(std::max(vec.size(), cur_index + 1), nullptr);
vec[cur_index] = t.Get();
if (ids.IsNull()) {
if (kIsDebugBuild && CanUseIdArrays(t)) {
CHECK_NE(deferred_allocation_refcount_, 0u)
<< "Failed to allocate ids array despite not being forbidden from doing so!";
Locks::mutator_lock_->AssertExclusiveHeld(self);
}
} else {
ids->SetElementPtrSize(off, reinterpret_cast<void*>(cur_id), kRuntimePointerSize);
}
return cur_id;
}
jfieldID JniIdManager::EncodeFieldId(ArtField* field) {
StackArtFieldHandleScope<1> rhs(Thread::Current());
return EncodeFieldId(rhs.NewHandle(field));
}
jfieldID JniIdManager::EncodeFieldId(ReflectiveHandle<ArtField> field) {
auto* res = reinterpret_cast<jfieldID>(EncodeGenericId(field));
if (kTraceIds && field != nullptr) {
LOG(INFO) << "Returning " << res << " for field " << field->PrettyField();
}
return res;
}
jmethodID JniIdManager::EncodeMethodId(ArtMethod* method) {
StackArtMethodHandleScope<1> rhs(Thread::Current());
return EncodeMethodId(rhs.NewHandle(method));
}
jmethodID JniIdManager::EncodeMethodId(ReflectiveHandle<ArtMethod> method) {
auto* res = reinterpret_cast<jmethodID>(EncodeGenericId(method));
if (kTraceIds && method != nullptr) {
LOG(INFO) << "Returning " << res << " for method " << method->PrettyMethod();
}
return res;
}
void JniIdManager::VisitRoots(RootVisitor *visitor) {
pointer_marker_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
}
void JniIdManager::Init(Thread* self) {
// When compiling we don't want to have anything to do with any of this, which is fine since JNI
// ids won't be created during AOT compilation. This also means we don't need to do any
// complicated stuff with the image-writer.
if (!Runtime::Current()->IsAotCompiler()) {
// Allocate the marker
StackHandleScope<3> hs(self);
Handle<mirror::Object> marker_obj(
hs.NewHandle(GetClassRoot<mirror::Object>()->AllocObject(self)));
CHECK(!marker_obj.IsNull());
pointer_marker_ = GcRoot<mirror::Object>(marker_obj.Get());
// Manually mark class-ext as having all pointer-ids to avoid any annoying loops.
Handle<mirror::Class> class_ext_class(hs.NewHandle(GetClassRoot<mirror::ClassExt>()));
mirror::Class::EnsureExtDataPresent(class_ext_class, self);
Handle<mirror::ClassExt> class_ext_ext(hs.NewHandle(class_ext_class->GetExtData()));
class_ext_ext->SetIdsArraysForClassExtExtData(marker_obj.Get());
}
}
void JniIdManager::VisitReflectiveTargets(ReflectiveValueVisitor* rvv) {
art::WriterMutexLock mu(Thread::Current(), *Locks::jni_id_lock_);
for (auto it = field_id_map_.begin(); it != field_id_map_.end(); ++it) {
ArtField* old_field = *it;
uintptr_t id = IndexToId(std::distance(field_id_map_.begin(), it));
ArtField* new_field =
rvv->VisitField(old_field, JniIdReflectiveSourceInfo(reinterpret_cast<jfieldID>(id)));
if (old_field != new_field) {
*it = new_field;
ObjPtr<mirror::Class> old_class(old_field->GetDeclaringClass());
ObjPtr<mirror::Class> new_class(new_field->GetDeclaringClass());
ObjPtr<mirror::ClassExt> old_ext_data(old_class->GetExtData());
ObjPtr<mirror::ClassExt> new_ext_data(new_class->GetExtData());
if (!old_ext_data.IsNull()) {
CHECK(!old_ext_data->HasInstanceFieldPointerIdMarker() &&
!old_ext_data->HasStaticFieldPointerIdMarker())
<< old_class->PrettyClass();
// Clear the old field mapping.
if (old_field->IsStatic()) {
size_t old_off = ArraySlice<ArtField>(old_class->GetSFieldsPtr()).OffsetOf(old_field);
ObjPtr<mirror::PointerArray> old_statics(old_ext_data->GetStaticJFieldIDsPointerArray());
if (!old_statics.IsNull()) {
old_statics->SetElementPtrSize(old_off, 0, kRuntimePointerSize);
}
} else {
size_t old_off = ArraySlice<ArtField>(old_class->GetIFieldsPtr()).OffsetOf(old_field);
ObjPtr<mirror::PointerArray> old_instances(
old_ext_data->GetInstanceJFieldIDsPointerArray());
if (!old_instances.IsNull()) {
old_instances->SetElementPtrSize(old_off, 0, kRuntimePointerSize);
}
}
}
if (!new_ext_data.IsNull()) {
CHECK(!new_ext_data->HasInstanceFieldPointerIdMarker() &&
!new_ext_data->HasStaticFieldPointerIdMarker())
<< new_class->PrettyClass();
// Set the new field mapping.
if (new_field->IsStatic()) {
size_t new_off = ArraySlice<ArtField>(new_class->GetSFieldsPtr()).OffsetOf(new_field);
ObjPtr<mirror::PointerArray> new_statics(new_ext_data->GetStaticJFieldIDsPointerArray());
if (!new_statics.IsNull()) {
new_statics->SetElementPtrSize(new_off, id, kRuntimePointerSize);
}
} else {
size_t new_off = ArraySlice<ArtField>(new_class->GetIFieldsPtr()).OffsetOf(new_field);
ObjPtr<mirror::PointerArray> new_instances(
new_ext_data->GetInstanceJFieldIDsPointerArray());
if (!new_instances.IsNull()) {
new_instances->SetElementPtrSize(new_off, id, kRuntimePointerSize);
}
}
}
}
}
for (auto it = method_id_map_.begin(); it != method_id_map_.end(); ++it) {
ArtMethod* old_method = *it;
uintptr_t id = IndexToId(std::distance(method_id_map_.begin(), it));
ArtMethod* new_method =
rvv->VisitMethod(old_method, JniIdReflectiveSourceInfo(reinterpret_cast<jmethodID>(id)));
if (old_method != new_method) {
*it = new_method;
ObjPtr<mirror::Class> old_class(old_method->GetDeclaringClass());
ObjPtr<mirror::Class> new_class(new_method->GetDeclaringClass());
ObjPtr<mirror::ClassExt> old_ext_data(old_class->GetExtData());
ObjPtr<mirror::ClassExt> new_ext_data(new_class->GetExtData());
if (!old_ext_data.IsNull()) {
CHECK(!old_ext_data->HasMethodPointerIdMarker()) << old_class->PrettyClass();
// Clear the old method mapping.
size_t old_off = ArraySlice<ArtMethod>(old_class->GetMethodsPtr()).OffsetOf(old_method);
ObjPtr<mirror::PointerArray> old_methods(old_ext_data->GetJMethodIDsPointerArray());
if (!old_methods.IsNull()) {
old_methods->SetElementPtrSize(old_off, 0, kRuntimePointerSize);
}
}
if (!new_ext_data.IsNull()) {
CHECK(!new_ext_data->HasMethodPointerIdMarker()) << new_class->PrettyClass();
// Set the new method mapping.
size_t new_off = ArraySlice<ArtMethod>(new_class->GetMethodsPtr()).OffsetOf(new_method);
ObjPtr<mirror::PointerArray> new_methods(new_ext_data->GetJMethodIDsPointerArray());
if (!new_methods.IsNull()) {
new_methods->SetElementPtrSize(new_off, id, kRuntimePointerSize);
}
}
}
}
}
template <typename ArtType> ArtType* JniIdManager::DecodeGenericId(uintptr_t t) {
if (Runtime::Current()->GetJniIdType() == JniIdType::kIndices && (t % 2) == 1) {
ReaderMutexLock mu(Thread::Current(), *Locks::jni_id_lock_);
size_t index = IdToIndex(t);
DCHECK_GT(GetGenericMap<ArtType>().size(), index);
return GetGenericMap<ArtType>().at(index);
} else {
DCHECK_EQ((t % 2), 0u) << "id: " << t;
return reinterpret_cast<ArtType*>(t);
}
}
ArtMethod* JniIdManager::DecodeMethodId(jmethodID method) {
return DecodeGenericId<ArtMethod>(reinterpret_cast<uintptr_t>(method));
}
ArtField* JniIdManager::DecodeFieldId(jfieldID field) {
return DecodeGenericId<ArtField>(reinterpret_cast<uintptr_t>(field));
}
ObjPtr<mirror::Object> JniIdManager::GetPointerMarker() {
return pointer_marker_.Read();
}
// This whole defer system is an annoying requirement to allow us to generate IDs during heap-walks
// such as those required for instrumentation tooling.
//
// The defer system works with the normal id-assignment routine to ensure that all the class-ext
// data structures are eventually created and filled in. Basically how it works is the id-assignment
// function will check to see if it has a strong mutator-lock. If it does not then it will try to
// allocate the class-ext data structures normally and fail if it is unable to do so. In the case
// where mutator-lock is being held exclusive no attempt to allocate will be made and the thread
// will CHECK that allocations are being deferred (or that the method is obsolete, in which case
// there is no class-ext to store the method->id map in).
//
// Once the thread is done holding the exclusive mutator-lock it will go back and fill-in the
// class-ext data of all the methods that were added. We do this without the exclusive mutator-lock
// on a copy of the maps before we decrement the deferred refcount. This ensures that any other
// threads running at the same time know they need to perform a linear scan of the id-map. Since we
// don't have the mutator-lock anymore other threads can allocate the class-ext data, meaning our
// copy is fine. The only way additional methods could end up on the id-maps after our copy without
// having class-ext data is if another thread picked up the exclusive mutator-lock and added another
// defer, in which case that thread would fix-up the remaining ids. In this way we maintain eventual
// consistency between the class-ext method/field->id maps and the JniIdManager id->method/field
// maps.
//
// TODO It is possible that another thread to gain the mutator-lock and allocate new ids without
// calling StartDefer. This is basically a race that we should try to catch but doing so is
// rather difficult and since this defer system is only used in very rare circumstances unlikely to
// be worth the trouble.
void JniIdManager::StartDefer() {
Thread* self = Thread::Current();
WriterMutexLock mu(self, *Locks::jni_id_lock_);
if (deferred_allocation_refcount_++ == 0) {
deferred_allocation_field_id_start_ = next_field_id_;
deferred_allocation_method_id_start_ = next_method_id_;
}
}
class JniIdDeferStackReflectiveScope : public BaseReflectiveHandleScope {
public:
JniIdDeferStackReflectiveScope() REQUIRES_SHARED(art::Locks::mutator_lock_)
: BaseReflectiveHandleScope(), methods_(), fields_() {
PushScope(Thread::Current());
}
void Initialize(const std::vector<ArtMethod*>& methods, const std::vector<ArtField*>& fields)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Roles::uninterruptible_) {
methods_ = methods;
fields_ = fields;
}
~JniIdDeferStackReflectiveScope() REQUIRES_SHARED(Locks::mutator_lock_) {
PopScope();
}
void VisitTargets(ReflectiveValueVisitor* visitor) override
REQUIRES_SHARED(Locks::mutator_lock_) {
for (auto it = methods_.begin(); it != methods_.end(); ++it) {
if (*it == nullptr) {
continue;
}
*it = visitor->VisitMethod(*it, ReflectiveHandleScopeSourceInfo(this));
}
for (auto it = fields_.begin(); it != fields_.end(); ++it) {
if (*it == nullptr) {
continue;
}
*it = visitor->VisitField(*it, ReflectiveHandleScopeSourceInfo(this));
}
}
ArtField** GetFieldPtr(size_t idx) REQUIRES_SHARED(Locks::mutator_lock_) {
return &fields_[idx];
}
ArtMethod** GetMethodPtr(size_t idx) REQUIRES_SHARED(Locks::mutator_lock_) {
return &methods_[idx];
}
size_t NumFields() const {
return fields_.size();
}
size_t NumMethods() const {
return methods_.size();
}
private:
std::vector<ArtMethod*> methods_;
std::vector<ArtField*> fields_;
};
void JniIdManager::EndDefer() {
// Fixup the method->id map.
Thread* self = Thread::Current();
auto set_id = [&](auto** t, uintptr_t id) REQUIRES_SHARED(Locks::mutator_lock_) {
if (t == nullptr) {
return;
}
bool alloc_failure = EnsureIdsArray(self, (*t)->GetDeclaringClass(), *t);
ObjPtr<mirror::Class> klass((*t)->GetDeclaringClass());
size_t off = GetIdOffset(klass, (*t), kRuntimePointerSize);
ObjPtr<mirror::PointerArray> ids = GetIds(klass, (*t));
CHECK(!alloc_failure) << "Could not allocate jni ids array!";
if (ids.IsNull()) {
return;
}
if (kIsDebugBuild) {
uintptr_t old_id = ids->GetElementPtrSize<uintptr_t, kRuntimePointerSize>(off);
if (old_id != 0) {
DCHECK_EQ(old_id, id);
}
}
ids->SetElementPtrSize(off, reinterpret_cast<void*>(id), kRuntimePointerSize);
};
// To ensure eventual consistency this depends on the fact that the method_id_map_ and
// field_id_map_ are the ultimate source of truth and no id is ever reused to be valid. It also
// relies on all threads always getting calling StartDefer if they are going to be allocating jni
// ids while suspended. If a thread tries to do so while it doesn't have a scope we could miss
// ids.
// TODO We should use roles or something to verify that this requirement is not broken.
//
// If another thread comes along and adds more methods to the list after
// copying either (1) the id-maps are already present for the method and everything is fine, (2)
// the thread is not suspended and so can create the ext-data and id lists or, (3) the thread also
// suspended everything and incremented the deferred_allocation_refcount_ so it will fix up new
// ids when it finishes.
Locks::mutator_lock_->AssertNotExclusiveHeld(self);
Locks::mutator_lock_->AssertSharedHeld(self);
JniIdDeferStackReflectiveScope jidsrs;
uintptr_t method_start_id;
uintptr_t field_start_id;
{
ReaderMutexLock mu(self, *Locks::jni_id_lock_);
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
jidsrs.Initialize(method_id_map_, field_id_map_);
method_start_id = deferred_allocation_method_id_start_;
field_start_id = deferred_allocation_field_id_start_;
}
for (size_t index = kIsDebugBuild ? 0 : IdToIndex(method_start_id); index < jidsrs.NumMethods();
++index) {
set_id(jidsrs.GetMethodPtr(index), IndexToId(index));
}
for (size_t index = kIsDebugBuild ? 0 : IdToIndex(field_start_id); index < jidsrs.NumFields();
++index) {
set_id(jidsrs.GetFieldPtr(index), IndexToId(index));
}
WriterMutexLock mu(self, *Locks::jni_id_lock_);
DCHECK_GE(deferred_allocation_refcount_, 1u);
if (--deferred_allocation_refcount_ == 0) {
deferred_allocation_field_id_start_ = 0;
deferred_allocation_method_id_start_ = 0;
}
}
ScopedEnableSuspendAllJniIdQueries::ScopedEnableSuspendAllJniIdQueries()
: manager_(Runtime::Current()->GetJniIdManager()) {
manager_->StartDefer();
}
ScopedEnableSuspendAllJniIdQueries::~ScopedEnableSuspendAllJniIdQueries() {
manager_->EndDefer();
}
}; // namespace jni
}; // namespace art