| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <inttypes.h> |
| #include <log/log.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <sys/stat.h> |
| |
| #include <algorithm> |
| #include <forward_list> |
| #include <fstream> |
| #include <iostream> |
| #include <limits> |
| #include <memory> |
| #include <sstream> |
| #include <string> |
| #include <type_traits> |
| #include <vector> |
| |
| #if defined(__linux__) |
| #include <sched.h> |
| #if defined(__arm__) |
| #include <sys/personality.h> |
| #include <sys/utsname.h> |
| #endif // __arm__ |
| #endif |
| |
| #include "android-base/parseint.h" |
| #include "android-base/properties.h" |
| #include "android-base/scopeguard.h" |
| #include "android-base/stringprintf.h" |
| #include "android-base/strings.h" |
| #include "android-base/unique_fd.h" |
| #include "aot_class_linker.h" |
| #include "arch/instruction_set_features.h" |
| #include "art_method-inl.h" |
| #include "base/callee_save_type.h" |
| #include "base/dumpable.h" |
| #include "base/fast_exit.h" |
| #include "base/file_utils.h" |
| #include "base/globals.h" |
| #include "base/leb128.h" |
| #include "base/macros.h" |
| #include "base/memory_tool.h" |
| #include "base/mutex.h" |
| #include "base/os.h" |
| #include "base/scoped_flock.h" |
| #include "base/stl_util.h" |
| #include "base/time_utils.h" |
| #include "base/timing_logger.h" |
| #include "base/unix_file/fd_file.h" |
| #include "base/utils.h" |
| #include "base/zip_archive.h" |
| #include "class_linker.h" |
| #include "class_loader_context.h" |
| #include "class_root-inl.h" |
| #include "cmdline_parser.h" |
| #include "compiler.h" |
| #include "compiler_callbacks.h" |
| #include "debug/elf_debug_writer.h" |
| #include "debug/method_debug_info.h" |
| #include "dex/descriptors_names.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_loader.h" |
| #include "dex/quick_compiler_callbacks.h" |
| #include "dex/verification_results.h" |
| #include "dex2oat_options.h" |
| #include "dexlayout.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/compiler_options.h" |
| #include "driver/compiler_options_map-inl.h" |
| #include "elf_file.h" |
| #include "gc/space/image_space.h" |
| #include "gc/space/space-inl.h" |
| #include "gc/verification.h" |
| #include "interpreter/unstarted_runtime.h" |
| #include "jni/java_vm_ext.h" |
| #include "linker/elf_writer.h" |
| #include "linker/elf_writer_quick.h" |
| #include "linker/image_writer.h" |
| #include "linker/multi_oat_relative_patcher.h" |
| #include "linker/oat_writer.h" |
| #include "mirror/class-alloc-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "oat.h" |
| #include "oat_file.h" |
| #include "oat_file_assistant.h" |
| #include "palette/palette.h" |
| #include "profile/profile_compilation_info.h" |
| #include "runtime.h" |
| #include "runtime_intrinsics.h" |
| #include "runtime_options.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stream/buffered_output_stream.h" |
| #include "stream/file_output_stream.h" |
| #include "vdex_file.h" |
| #include "verifier/verifier_deps.h" |
| |
| namespace art { |
| |
| namespace dex2oat { |
| enum class ReturnCode : int { |
| kNoFailure = 0, // No failure, execution completed successfully. |
| kOther = 1, // Some other not closer specified error occurred. |
| kCreateRuntime = 2, // Dex2oat failed creating a runtime. |
| }; |
| } // namespace dex2oat |
| |
| using android::base::StringAppendV; |
| using android::base::StringPrintf; |
| using gc::space::ImageSpace; |
| |
| static constexpr size_t kDefaultMinDexFilesForSwap = 2; |
| static constexpr size_t kDefaultMinDexFileCumulativeSizeForSwap = 20 * MB; |
| |
| // Compiler filter override for very large apps. |
| static constexpr CompilerFilter::Filter kLargeAppFilter = CompilerFilter::kVerify; |
| |
| static int original_argc; |
| static char** original_argv; |
| |
| static std::string CommandLine() { |
| std::vector<std::string> command; |
| command.reserve(original_argc); |
| for (int i = 0; i < original_argc; ++i) { |
| command.push_back(original_argv[i]); |
| } |
| return android::base::Join(command, ' '); |
| } |
| |
| // A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be |
| // even more aggressive. There won't be much reasonable data here for us in that case anyways (the |
| // locations are all staged). |
| static std::string StrippedCommandLine() { |
| std::vector<std::string> command; |
| |
| // Do a pre-pass to look for zip-fd and the compiler filter. |
| bool saw_zip_fd = false; |
| bool saw_compiler_filter = false; |
| for (int i = 0; i < original_argc; ++i) { |
| if (android::base::StartsWith(original_argv[i], "--zip-fd=")) { |
| saw_zip_fd = true; |
| } |
| if (android::base::StartsWith(original_argv[i], "--compiler-filter=")) { |
| saw_compiler_filter = true; |
| } |
| } |
| |
| // Now filter out things. |
| for (int i = 0; i < original_argc; ++i) { |
| // All runtime-arg parameters are dropped. |
| if (strcmp(original_argv[i], "--runtime-arg") == 0) { |
| i++; // Drop the next part, too. |
| continue; |
| } |
| |
| // Any instruction-setXXX is dropped. |
| if (android::base::StartsWith(original_argv[i], "--instruction-set")) { |
| continue; |
| } |
| |
| // The boot image is dropped. |
| if (android::base::StartsWith(original_argv[i], "--boot-image=")) { |
| continue; |
| } |
| |
| // The image format is dropped. |
| if (android::base::StartsWith(original_argv[i], "--image-format=")) { |
| continue; |
| } |
| |
| // This should leave any dex-file and oat-file options, describing what we compiled. |
| |
| // However, we prefer to drop this when we saw --zip-fd. |
| if (saw_zip_fd) { |
| // Drop anything --zip-X, --dex-X, --oat-X, --swap-X, or --app-image-X |
| if (android::base::StartsWith(original_argv[i], "--zip-") || |
| android::base::StartsWith(original_argv[i], "--dex-") || |
| android::base::StartsWith(original_argv[i], "--oat-") || |
| android::base::StartsWith(original_argv[i], "--swap-") || |
| android::base::StartsWith(original_argv[i], "--app-image-")) { |
| continue; |
| } |
| } |
| |
| command.push_back(original_argv[i]); |
| } |
| |
| if (!saw_compiler_filter) { |
| command.push_back("--compiler-filter=" + |
| CompilerFilter::NameOfFilter(CompilerFilter::kDefaultCompilerFilter)); |
| } |
| |
| // Construct the final output. |
| if (command.size() <= 1U) { |
| // It seems only "/apex/com.android.art/bin/dex2oat" is left, or not |
| // even that. Use a pretty line. |
| return "Starting dex2oat."; |
| } |
| return android::base::Join(command, ' '); |
| } |
| |
| static void UsageErrorV(const char* fmt, va_list ap) { |
| std::string error; |
| StringAppendV(&error, fmt, ap); |
| LOG(ERROR) << error; |
| } |
| |
| static void UsageError(const char* fmt, ...) { |
| va_list ap; |
| va_start(ap, fmt); |
| UsageErrorV(fmt, ap); |
| va_end(ap); |
| } |
| |
| NO_RETURN static void Usage(const char* fmt, ...) { |
| va_list ap; |
| va_start(ap, fmt); |
| UsageErrorV(fmt, ap); |
| va_end(ap); |
| |
| UsageError("Command: %s", CommandLine().c_str()); |
| |
| UsageError("Usage: dex2oat [options]..."); |
| UsageError(""); |
| |
| std::stringstream oss; |
| VariableIndentationOutputStream vios(&oss); |
| auto parser = CreateDex2oatArgumentParser(); |
| parser.DumpHelp(vios); |
| UsageError(oss.str().c_str()); |
| std::cerr << "See log for usage error information\n"; |
| exit(EXIT_FAILURE); |
| } |
| |
| |
| // Set CPU affinity from a string containing a comma-separated list of numeric CPU identifiers. |
| static void SetCpuAffinity(const std::vector<int32_t>& cpu_list) { |
| #ifdef __linux__ |
| int cpu_count = sysconf(_SC_NPROCESSORS_CONF); |
| cpu_set_t target_cpu_set; |
| CPU_ZERO(&target_cpu_set); |
| |
| for (int32_t cpu : cpu_list) { |
| if (cpu >= 0 && cpu < cpu_count) { |
| CPU_SET(cpu, &target_cpu_set); |
| } else { |
| // Argument error is considered fatal, suggests misconfigured system properties. |
| Usage("Invalid cpu \"d\" specified in --cpu-set argument (nprocessors = %d)", |
| cpu, cpu_count); |
| } |
| } |
| |
| if (sched_setaffinity(getpid(), sizeof(target_cpu_set), &target_cpu_set) == -1) { |
| // Failure to set affinity may be outside control of requestor, log warning rather than |
| // treating as fatal. |
| PLOG(WARNING) << "Failed to set CPU affinity."; |
| } |
| #else |
| LOG(WARNING) << "--cpu-set not supported on this platform."; |
| #endif // __linux__ |
| } |
| |
| |
| |
| // The primary goal of the watchdog is to prevent stuck build servers |
| // during development when fatal aborts lead to a cascade of failures |
| // that result in a deadlock. |
| class WatchDog { |
| // WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks |
| #undef CHECK_PTHREAD_CALL |
| #define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \ |
| do { \ |
| int rc = call args; \ |
| if (rc != 0) { \ |
| errno = rc; \ |
| std::string message(# call); \ |
| message += " failed for "; \ |
| message += reason; \ |
| Fatal(message); \ |
| } \ |
| } while (false) |
| |
| public: |
| explicit WatchDog(int64_t timeout_in_milliseconds) |
| : timeout_in_milliseconds_(timeout_in_milliseconds), |
| shutting_down_(false) { |
| const char* reason = "dex2oat watch dog thread startup"; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason); |
| #ifndef __APPLE__ |
| pthread_condattr_t condattr; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_init, (&condattr), reason); |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_setclock, (&condattr, CLOCK_MONOTONIC), reason); |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, &condattr), reason); |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_destroy, (&condattr), reason); |
| #endif |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason); |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason); |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason); |
| } |
| ~WatchDog() { |
| const char* reason = "dex2oat watch dog thread shutdown"; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); |
| shutting_down_ = true; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason); |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); |
| |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason); |
| |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason); |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason); |
| } |
| |
| static void SetRuntime(Runtime* runtime) { |
| const char* reason = "dex2oat watch dog set runtime"; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason); |
| runtime_ = runtime; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason); |
| } |
| |
| // TODO: tune the multiplier for GC verification, the following is just to make the timeout |
| // large. |
| static constexpr int64_t kWatchdogVerifyMultiplier = |
| kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1; |
| |
| // When setting timeouts, keep in mind that the build server may not be as fast as your |
| // desktop. Debug builds are slower so they have larger timeouts. |
| static constexpr int64_t kWatchdogSlowdownFactor = kIsDebugBuild ? 5U : 1U; |
| |
| // 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager |
| // watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort |
| // itself before that watchdog would take down the system server. |
| static constexpr int64_t kWatchDogTimeoutSeconds = kWatchdogSlowdownFactor * (9 * 60 + 30); |
| |
| static constexpr int64_t kDefaultWatchdogTimeoutInMS = |
| kWatchdogVerifyMultiplier * kWatchDogTimeoutSeconds * 1000; |
| |
| private: |
| static void* CallBack(void* arg) { |
| WatchDog* self = reinterpret_cast<WatchDog*>(arg); |
| ::art::SetThreadName("dex2oat watch dog"); |
| self->Wait(); |
| return nullptr; |
| } |
| |
| NO_RETURN static void Fatal(const std::string& message) { |
| // TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However, |
| // it's rather easy to hang in unwinding. |
| // LogLine also avoids ART logging lock issues, as it's really only a wrapper around |
| // logcat logging or stderr output. |
| LogHelper::LogLineLowStack(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str()); |
| |
| // If we're on the host, try to dump all threads to get a sense of what's going on. This is |
| // restricted to the host as the dump may itself go bad. |
| // TODO: Use a double watchdog timeout, so we can enable this on-device. |
| Runtime* runtime = GetRuntime(); |
| if (!kIsTargetBuild && runtime != nullptr) { |
| runtime->AttachCurrentThread("Watchdog thread attached for dumping", |
| true, |
| nullptr, |
| false); |
| runtime->DumpForSigQuit(std::cerr); |
| } |
| exit(1); |
| } |
| |
| void Wait() { |
| timespec timeout_ts; |
| #if defined(__APPLE__) |
| InitTimeSpec(true, CLOCK_REALTIME, timeout_in_milliseconds_, 0, &timeout_ts); |
| #else |
| InitTimeSpec(true, CLOCK_MONOTONIC, timeout_in_milliseconds_, 0, &timeout_ts); |
| #endif |
| const char* reason = "dex2oat watch dog thread waiting"; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); |
| while (!shutting_down_) { |
| int rc = pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts); |
| if (rc == EINTR) { |
| continue; |
| } else if (rc == ETIMEDOUT) { |
| Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " milliseconds", |
| timeout_in_milliseconds_)); |
| } else if (rc != 0) { |
| std::string message(StringPrintf("pthread_cond_timedwait failed: %s", strerror(rc))); |
| Fatal(message); |
| } |
| } |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); |
| } |
| |
| static Runtime* GetRuntime() { |
| const char* reason = "dex2oat watch dog get runtime"; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason); |
| Runtime* runtime = runtime_; |
| CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason); |
| return runtime; |
| } |
| |
| static pthread_mutex_t runtime_mutex_; |
| static Runtime* runtime_; |
| |
| // TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases. |
| pthread_mutex_t mutex_; |
| pthread_cond_t cond_; |
| pthread_attr_t attr_; |
| pthread_t pthread_; |
| |
| const int64_t timeout_in_milliseconds_; |
| bool shutting_down_; |
| }; |
| |
| pthread_mutex_t WatchDog::runtime_mutex_ = PTHREAD_MUTEX_INITIALIZER; |
| Runtime* WatchDog::runtime_ = nullptr; |
| |
| // Helper class for overriding `java.lang.ThreadLocal.nextHashCode`. |
| // |
| // The class ThreadLocal has a static field nextHashCode used for assigning hash codes to |
| // new ThreadLocal objects. Since the class and the object referenced by the field are |
| // in the boot image, they cannot be modified under normal rules for AOT compilation. |
| // However, since this is a private detail that's used only for assigning hash codes and |
| // everything should work fine with different hash codes, we override the field for the |
| // compilation, providing another object that the AOT class initialization can modify. |
| class ThreadLocalHashOverride { |
| public: |
| ThreadLocalHashOverride(bool apply, int32_t initial_value) { |
| Thread* self = Thread::Current(); |
| ScopedObjectAccess soa(self); |
| hs_.emplace(self); // While holding the mutator lock. |
| Runtime* runtime = Runtime::Current(); |
| klass_ = hs_->NewHandle(apply |
| ? runtime->GetClassLinker()->LookupClass(self, |
| "Ljava/lang/ThreadLocal;", |
| /*class_loader=*/ nullptr) |
| : nullptr); |
| field_ = ((klass_ != nullptr) && klass_->IsVisiblyInitialized()) |
| ? klass_->FindDeclaredStaticField("nextHashCode", |
| "Ljava/util/concurrent/atomic/AtomicInteger;") |
| : nullptr; |
| old_field_value_ = |
| hs_->NewHandle(field_ != nullptr ? field_->GetObject(klass_.Get()) : nullptr); |
| if (old_field_value_ != nullptr) { |
| gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator(); |
| StackHandleScope<1u> hs2(self); |
| Handle<mirror::Object> new_field_value = hs2.NewHandle( |
| old_field_value_->GetClass()->Alloc(self, allocator_type)); |
| PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); |
| ArtMethod* constructor = old_field_value_->GetClass()->FindConstructor("(I)V", pointer_size); |
| CHECK(constructor != nullptr); |
| uint32_t args[] = { |
| reinterpret_cast32<uint32_t>(new_field_value.Get()), |
| static_cast<uint32_t>(initial_value) |
| }; |
| JValue result; |
| constructor->Invoke(self, args, sizeof(args), &result, /*shorty=*/ "VI"); |
| CHECK(!self->IsExceptionPending()); |
| field_->SetObject</*kTransactionActive=*/ false>(klass_.Get(), new_field_value.Get()); |
| } |
| if (apply && old_field_value_ == nullptr) { |
| if ((klass_ != nullptr) && klass_->IsVisiblyInitialized()) { |
| // This would mean that the implementation of ThreadLocal has changed |
| // and the code above is no longer applicable. |
| LOG(ERROR) << "Failed to override ThreadLocal.nextHashCode"; |
| } else { |
| VLOG(compiler) << "ThreadLocal is not initialized in the primary boot image."; |
| } |
| } |
| } |
| |
| ~ThreadLocalHashOverride() { |
| ScopedObjectAccess soa(hs_->Self()); |
| if (old_field_value_ != nullptr) { |
| // Allow the overriding object to be collected. |
| field_->SetObject</*kTransactionActive=*/ false>(klass_.Get(), old_field_value_.Get()); |
| } |
| hs_.reset(); // While holding the mutator lock. |
| } |
| |
| private: |
| std::optional<StackHandleScope<2u>> hs_; |
| Handle<mirror::Class> klass_; |
| ArtField* field_; |
| Handle<mirror::Object> old_field_value_; |
| }; |
| |
| class OatKeyValueStore : public SafeMap<std::string, std::string> { |
| public: |
| using SafeMap::Put; |
| |
| iterator Put(const std::string& k, bool v) { |
| return SafeMap::Put(k, v ? OatHeader::kTrueValue : OatHeader::kFalseValue); |
| } |
| }; |
| |
| class Dex2Oat final { |
| public: |
| explicit Dex2Oat(TimingLogger* timings) |
| : compiler_kind_(Compiler::kOptimizing), |
| // Take the default set of instruction features from the build. |
| key_value_store_(nullptr), |
| verification_results_(nullptr), |
| runtime_(nullptr), |
| thread_count_(sysconf(_SC_NPROCESSORS_CONF)), |
| start_ns_(NanoTime()), |
| start_cputime_ns_(ProcessCpuNanoTime()), |
| strip_(false), |
| oat_fd_(-1), |
| input_vdex_fd_(-1), |
| output_vdex_fd_(-1), |
| input_vdex_file_(nullptr), |
| dm_fd_(-1), |
| zip_fd_(-1), |
| image_fd_(-1), |
| have_multi_image_arg_(false), |
| image_base_(0U), |
| image_storage_mode_(ImageHeader::kStorageModeUncompressed), |
| passes_to_run_filename_(nullptr), |
| dirty_image_objects_filename_(nullptr), |
| dirty_image_objects_fd_(-1), |
| is_host_(false), |
| elf_writers_(), |
| oat_writers_(), |
| rodata_(), |
| image_writer_(nullptr), |
| driver_(nullptr), |
| opened_dex_files_maps_(), |
| opened_dex_files_(), |
| avoid_storing_invocation_(false), |
| swap_fd_(File::kInvalidFd), |
| app_image_fd_(File::kInvalidFd), |
| timings_(timings), |
| force_determinism_(false), |
| check_linkage_conditions_(false), |
| crash_on_linkage_violation_(false), |
| compile_individually_(false), |
| profile_load_attempted_(false), |
| should_report_dex2oat_compilation_(false) {} |
| |
| ~Dex2Oat() { |
| // Log completion time before deleting the runtime_, because this accesses |
| // the runtime. |
| LogCompletionTime(); |
| |
| if (!kIsDebugBuild && !(kRunningOnMemoryTool && kMemoryToolDetectsLeaks)) { |
| // We want to just exit on non-debug builds, not bringing the runtime down |
| // in an orderly fashion. So release the following fields. |
| if (!compiler_options_->GetDumpStats()) { |
| // The --dump-stats get logged when the optimizing compiler gets destroyed, so we can't |
| // release the driver_. |
| driver_.release(); // NOLINT |
| } |
| image_writer_.release(); // NOLINT |
| for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files_) { |
| dex_file.release(); // NOLINT |
| } |
| new std::vector<MemMap>(std::move(opened_dex_files_maps_)); // Leak MemMaps. |
| for (std::unique_ptr<File>& vdex_file : vdex_files_) { |
| vdex_file.release(); // NOLINT |
| } |
| for (std::unique_ptr<File>& oat_file : oat_files_) { |
| oat_file.release(); // NOLINT |
| } |
| runtime_.release(); // NOLINT |
| verification_results_.release(); // NOLINT |
| key_value_store_.release(); // NOLINT |
| } |
| |
| // Remind the user if they passed testing only flags. |
| if (!kIsTargetBuild && force_allow_oj_inlines_) { |
| LOG(ERROR) << "Inlines allowed from core-oj! FOR TESTING USE ONLY! DO NOT DISTRIBUTE" |
| << " BINARIES BUILT WITH THIS OPTION!"; |
| } |
| } |
| |
| struct ParserOptions { |
| std::vector<std::string> oat_symbols; |
| std::string boot_image_filename; |
| int64_t watch_dog_timeout_in_ms = -1; |
| bool watch_dog_enabled = true; |
| bool requested_specific_compiler = false; |
| std::string error_msg; |
| }; |
| |
| void ParseBase(const std::string& option) { |
| char* end; |
| image_base_ = strtoul(option.c_str(), &end, 16); |
| if (end == option.c_str() || *end != '\0') { |
| Usage("Failed to parse hexadecimal value for option %s", option.data()); |
| } |
| } |
| |
| bool VerifyProfileData() { |
| return profile_compilation_info_->VerifyProfileData(compiler_options_->dex_files_for_oat_file_); |
| } |
| |
| void ParseInstructionSetVariant(const std::string& option, ParserOptions* parser_options) { |
| if (kIsTargetBuild) { |
| compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariantAndHwcap( |
| compiler_options_->instruction_set_, option, &parser_options->error_msg); |
| } else { |
| compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( |
| compiler_options_->instruction_set_, option, &parser_options->error_msg); |
| } |
| if (compiler_options_->instruction_set_features_ == nullptr) { |
| Usage("%s", parser_options->error_msg.c_str()); |
| } |
| } |
| |
| void ParseInstructionSetFeatures(const std::string& option, ParserOptions* parser_options) { |
| if (compiler_options_->instruction_set_features_ == nullptr) { |
| compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( |
| compiler_options_->instruction_set_, "default", &parser_options->error_msg); |
| if (compiler_options_->instruction_set_features_ == nullptr) { |
| Usage("Problem initializing default instruction set features variant: %s", |
| parser_options->error_msg.c_str()); |
| } |
| } |
| compiler_options_->instruction_set_features_ = |
| compiler_options_->instruction_set_features_->AddFeaturesFromString( |
| option, &parser_options->error_msg); |
| if (compiler_options_->instruction_set_features_ == nullptr) { |
| Usage("Error parsing '%s': %s", option.c_str(), parser_options->error_msg.c_str()); |
| } |
| } |
| |
| void ProcessOptions(ParserOptions* parser_options) { |
| compiler_options_->compiler_type_ = CompilerOptions::CompilerType::kAotCompiler; |
| compiler_options_->compile_pic_ = true; // All AOT compilation is PIC. |
| |
| if (android_root_.empty()) { |
| const char* android_root_env_var = getenv("ANDROID_ROOT"); |
| if (android_root_env_var == nullptr) { |
| Usage("--android-root unspecified and ANDROID_ROOT not set"); |
| } |
| android_root_ += android_root_env_var; |
| } |
| |
| if (!parser_options->boot_image_filename.empty()) { |
| boot_image_filename_ = parser_options->boot_image_filename; |
| } |
| |
| DCHECK(compiler_options_->image_type_ == CompilerOptions::ImageType::kNone); |
| if (!image_filenames_.empty() || image_fd_ != -1) { |
| // If no boot image is provided, then dex2oat is compiling the primary boot image, |
| // otherwise it is compiling the boot image extension. |
| compiler_options_->image_type_ = boot_image_filename_.empty() |
| ? CompilerOptions::ImageType::kBootImage |
| : CompilerOptions::ImageType::kBootImageExtension; |
| } |
| if (app_image_fd_ != -1 || !app_image_file_name_.empty()) { |
| if (compiler_options_->IsBootImage() || compiler_options_->IsBootImageExtension()) { |
| Usage("Can't have both (--image or --image-fd) and (--app-image-fd or --app-image-file)"); |
| } |
| compiler_options_->image_type_ = CompilerOptions::ImageType::kAppImage; |
| } |
| |
| if (!image_filenames_.empty() && image_fd_ != -1) { |
| Usage("Can't have both --image and --image-fd"); |
| } |
| |
| if (oat_filenames_.empty() && oat_fd_ == -1) { |
| Usage("Output must be supplied with either --oat-file or --oat-fd"); |
| } |
| |
| if (input_vdex_fd_ != -1 && !input_vdex_.empty()) { |
| Usage("Can't have both --input-vdex-fd and --input-vdex"); |
| } |
| |
| if (output_vdex_fd_ != -1 && !output_vdex_.empty()) { |
| Usage("Can't have both --output-vdex-fd and --output-vdex"); |
| } |
| |
| if (!oat_filenames_.empty() && oat_fd_ != -1) { |
| Usage("--oat-file should not be used with --oat-fd"); |
| } |
| |
| if ((output_vdex_fd_ == -1) != (oat_fd_ == -1)) { |
| Usage("VDEX and OAT output must be specified either with one --oat-file " |
| "or with --oat-fd and --output-vdex-fd file descriptors"); |
| } |
| |
| if ((image_fd_ != -1) && (oat_fd_ == -1)) { |
| Usage("--image-fd must be used with --oat_fd and --output_vdex_fd"); |
| } |
| |
| if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) { |
| Usage("--oat-symbols should not be used with --oat-fd"); |
| } |
| |
| if (!parser_options->oat_symbols.empty() && is_host_) { |
| Usage("--oat-symbols should not be used with --host"); |
| } |
| |
| if (output_vdex_fd_ != -1 && !image_filenames_.empty()) { |
| Usage("--output-vdex-fd should not be used with --image"); |
| } |
| |
| if (oat_fd_ != -1 && !image_filenames_.empty()) { |
| Usage("--oat-fd should not be used with --image"); |
| } |
| |
| if (!parser_options->oat_symbols.empty() && |
| parser_options->oat_symbols.size() != oat_filenames_.size()) { |
| Usage("--oat-file arguments do not match --oat-symbols arguments"); |
| } |
| |
| if (!image_filenames_.empty() && image_filenames_.size() != oat_filenames_.size()) { |
| Usage("--oat-file arguments do not match --image arguments"); |
| } |
| |
| if (!IsBootImage() && boot_image_filename_.empty()) { |
| DCHECK(!IsBootImageExtension()); |
| if (std::any_of(runtime_args_.begin(), runtime_args_.end(), [](const char* arg) { |
| return android::base::StartsWith(arg, "-Xbootclasspath:"); |
| })) { |
| LOG(WARNING) << "--boot-image is not specified while -Xbootclasspath is specified. Running " |
| "dex2oat in imageless mode"; |
| } else { |
| boot_image_filename_ = |
| GetDefaultBootImageLocation(android_root_, /*deny_art_apex_data_files=*/false); |
| } |
| } |
| |
| if (dex_filenames_.empty() && zip_fd_ == -1) { |
| Usage("Input must be supplied with either --dex-file or --zip-fd"); |
| } |
| |
| if (!dex_filenames_.empty() && zip_fd_ != -1) { |
| Usage("--dex-file should not be used with --zip-fd"); |
| } |
| |
| if (!dex_filenames_.empty() && !zip_location_.empty()) { |
| Usage("--dex-file should not be used with --zip-location"); |
| } |
| |
| if (dex_locations_.empty()) { |
| dex_locations_ = dex_filenames_; |
| } else if (dex_locations_.size() != dex_filenames_.size()) { |
| Usage("--dex-location arguments do not match --dex-file arguments"); |
| } |
| |
| if (!dex_filenames_.empty() && !oat_filenames_.empty()) { |
| if (oat_filenames_.size() != 1 && oat_filenames_.size() != dex_filenames_.size()) { |
| Usage("--oat-file arguments must be singular or match --dex-file arguments"); |
| } |
| } |
| |
| if (!dex_fds_.empty() && dex_fds_.size() != dex_filenames_.size()) { |
| Usage("--dex-fd arguments do not match --dex-file arguments"); |
| } |
| |
| if (zip_fd_ != -1 && zip_location_.empty()) { |
| Usage("--zip-location should be supplied with --zip-fd"); |
| } |
| |
| if (boot_image_filename_.empty()) { |
| if (image_base_ == 0) { |
| Usage("Non-zero --base not specified for boot image"); |
| } |
| } else { |
| if (image_base_ != 0) { |
| Usage("Non-zero --base specified for app image or boot image extension"); |
| } |
| } |
| |
| if (have_multi_image_arg_) { |
| if (!IsImage()) { |
| Usage("--multi-image or --single-image specified for non-image compilation"); |
| } |
| } else { |
| // Use the default, i.e. multi-image for boot image and boot image extension. |
| // This shall pass the checks below. |
| compiler_options_->multi_image_ = IsBootImage() || IsBootImageExtension(); |
| } |
| // On target we support generating a single image for the primary boot image. |
| if (!kIsTargetBuild && !force_allow_oj_inlines_) { |
| if (IsBootImage() && !compiler_options_->multi_image_) { |
| Usage( |
| "--single-image specified for primary boot image on host. Please " |
| "use the flag --force-allow-oj-inlines and do not distribute " |
| "binaries."); |
| } |
| } |
| if (IsAppImage() && compiler_options_->multi_image_) { |
| Usage("--multi-image specified for app image"); |
| } |
| |
| if (image_fd_ != -1 && compiler_options_->multi_image_) { |
| Usage("--single-image not specified for --image-fd"); |
| } |
| |
| const bool have_profile_file = !profile_files_.empty(); |
| const bool have_profile_fd = !profile_file_fds_.empty(); |
| if (have_profile_file && have_profile_fd) { |
| Usage("Profile files should not be specified with both --profile-file-fd and --profile-file"); |
| } |
| |
| if (!parser_options->oat_symbols.empty()) { |
| oat_unstripped_ = std::move(parser_options->oat_symbols); |
| } |
| |
| if (compiler_options_->instruction_set_features_ == nullptr) { |
| // '--instruction-set-features/--instruction-set-variant' were not used. |
| // Use features for the 'default' variant. |
| compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( |
| compiler_options_->instruction_set_, "default", &parser_options->error_msg); |
| if (compiler_options_->instruction_set_features_ == nullptr) { |
| Usage("Problem initializing default instruction set features variant: %s", |
| parser_options->error_msg.c_str()); |
| } |
| } |
| |
| if (compiler_options_->instruction_set_ == kRuntimeISA) { |
| std::unique_ptr<const InstructionSetFeatures> runtime_features( |
| InstructionSetFeatures::FromCppDefines()); |
| if (!compiler_options_->GetInstructionSetFeatures()->Equals(runtime_features.get())) { |
| LOG(WARNING) << "Mismatch between dex2oat instruction set features to use (" |
| << *compiler_options_->GetInstructionSetFeatures() |
| << ") and those from CPP defines (" << *runtime_features |
| << ") for the command line:\n" << CommandLine(); |
| } |
| } |
| |
| if (dirty_image_objects_filename_ != nullptr && dirty_image_objects_fd_ != -1) { |
| Usage("--dirty-image-objects and --dirty-image-objects-fd should not be both specified"); |
| } |
| |
| if (!preloaded_classes_files_.empty() && !preloaded_classes_fds_.empty()) { |
| Usage("--preloaded-classes and --preloaded-classes-fds should not be both specified"); |
| } |
| |
| if (!cpu_set_.empty()) { |
| SetCpuAffinity(cpu_set_); |
| } |
| |
| if (compiler_options_->inline_max_code_units_ == CompilerOptions::kUnsetInlineMaxCodeUnits) { |
| compiler_options_->inline_max_code_units_ = CompilerOptions::kDefaultInlineMaxCodeUnits; |
| } |
| |
| // Checks are all explicit until we know the architecture. |
| // Set the compilation target's implicit checks options. |
| switch (compiler_options_->GetInstructionSet()) { |
| case InstructionSet::kArm64: |
| compiler_options_->implicit_suspend_checks_ = true; |
| FALLTHROUGH_INTENDED; |
| case InstructionSet::kArm: |
| case InstructionSet::kThumb2: |
| case InstructionSet::kRiscv64: |
| case InstructionSet::kX86: |
| case InstructionSet::kX86_64: |
| compiler_options_->implicit_null_checks_ = true; |
| compiler_options_->implicit_so_checks_ = true; |
| break; |
| |
| default: |
| // Defaults are correct. |
| break; |
| } |
| |
| // Done with usage checks, enable watchdog if requested |
| if (parser_options->watch_dog_enabled) { |
| int64_t timeout = parser_options->watch_dog_timeout_in_ms > 0 |
| ? parser_options->watch_dog_timeout_in_ms |
| : WatchDog::kDefaultWatchdogTimeoutInMS; |
| watchdog_.reset(new WatchDog(timeout)); |
| } |
| |
| // Fill some values into the key-value store for the oat header. |
| key_value_store_.reset(new OatKeyValueStore()); |
| |
| // Automatically force determinism for the boot image and boot image extensions in a host build. |
| if (!kIsTargetBuild && (IsBootImage() || IsBootImageExtension())) { |
| force_determinism_ = true; |
| } |
| compiler_options_->force_determinism_ = force_determinism_; |
| |
| compiler_options_->check_linkage_conditions_ = check_linkage_conditions_; |
| compiler_options_->crash_on_linkage_violation_ = crash_on_linkage_violation_; |
| |
| if (passes_to_run_filename_ != nullptr) { |
| passes_to_run_ = ReadCommentedInputFromFile<std::vector<std::string>>( |
| passes_to_run_filename_, |
| nullptr); // No post-processing. |
| if (passes_to_run_.get() == nullptr) { |
| Usage("Failed to read list of passes to run."); |
| } |
| } |
| |
| // Prune profile specifications of the boot image location. |
| std::vector<std::string> boot_images = |
| android::base::Split(boot_image_filename_, {ImageSpace::kComponentSeparator}); |
| bool boot_image_filename_pruned = false; |
| for (std::string& boot_image : boot_images) { |
| size_t profile_separator_pos = boot_image.find(ImageSpace::kProfileSeparator); |
| if (profile_separator_pos != std::string::npos) { |
| boot_image.resize(profile_separator_pos); |
| boot_image_filename_pruned = true; |
| } |
| } |
| if (boot_image_filename_pruned) { |
| std::string new_boot_image_filename = |
| android::base::Join(boot_images, ImageSpace::kComponentSeparator); |
| VLOG(compiler) << "Pruning profile specifications of the boot image location. Before: " |
| << boot_image_filename_ << ", After: " << new_boot_image_filename; |
| boot_image_filename_ = std::move(new_boot_image_filename); |
| } |
| |
| compiler_options_->passes_to_run_ = passes_to_run_.get(); |
| } |
| |
| void ExpandOatAndImageFilenames() { |
| ArrayRef<const std::string> locations(dex_locations_); |
| if (!compiler_options_->multi_image_) { |
| locations = locations.SubArray(/*pos=*/ 0u, /*length=*/ 1u); |
| } |
| if (image_fd_ == -1) { |
| if (image_filenames_[0].rfind('/') == std::string::npos) { |
| Usage("Unusable boot image filename %s", image_filenames_[0].c_str()); |
| } |
| image_filenames_ = ImageSpace::ExpandMultiImageLocations( |
| locations, image_filenames_[0], IsBootImageExtension()); |
| |
| if (oat_filenames_[0].rfind('/') == std::string::npos) { |
| Usage("Unusable boot image oat filename %s", oat_filenames_[0].c_str()); |
| } |
| oat_filenames_ = ImageSpace::ExpandMultiImageLocations( |
| locations, oat_filenames_[0], IsBootImageExtension()); |
| } else { |
| DCHECK(!compiler_options_->multi_image_); |
| std::vector<std::string> oat_locations = ImageSpace::ExpandMultiImageLocations( |
| locations, oat_location_, IsBootImageExtension()); |
| DCHECK_EQ(1u, oat_locations.size()); |
| oat_location_ = oat_locations[0]; |
| } |
| |
| if (!oat_unstripped_.empty()) { |
| if (oat_unstripped_[0].rfind('/') == std::string::npos) { |
| Usage("Unusable boot image symbol filename %s", oat_unstripped_[0].c_str()); |
| } |
| oat_unstripped_ = ImageSpace::ExpandMultiImageLocations( |
| locations, oat_unstripped_[0], IsBootImageExtension()); |
| } |
| } |
| |
| void InsertCompileOptions(int argc, char** argv) { |
| if (!avoid_storing_invocation_) { |
| std::ostringstream oss; |
| for (int i = 0; i < argc; ++i) { |
| if (i > 0) { |
| oss << ' '; |
| } |
| oss << argv[i]; |
| } |
| key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str()); |
| } |
| key_value_store_->Put(OatHeader::kDebuggableKey, compiler_options_->debuggable_); |
| key_value_store_->Put(OatHeader::kNativeDebuggableKey, |
| compiler_options_->GetNativeDebuggable()); |
| key_value_store_->Put(OatHeader::kCompilerFilter, |
| CompilerFilter::NameOfFilter(compiler_options_->GetCompilerFilter())); |
| key_value_store_->Put(OatHeader::kConcurrentCopying, gUseReadBarrier); |
| if (invocation_file_.get() != -1) { |
| std::ostringstream oss; |
| for (int i = 0; i < argc; ++i) { |
| if (i > 0) { |
| oss << std::endl; |
| } |
| oss << argv[i]; |
| } |
| std::string invocation(oss.str()); |
| if (TEMP_FAILURE_RETRY(write(invocation_file_.get(), |
| invocation.c_str(), |
| invocation.size())) == -1) { |
| Usage("Unable to write invocation file"); |
| } |
| } |
| } |
| |
| // This simple forward is here so the string specializations below don't look out of place. |
| template <typename T, typename U> |
| void AssignIfExists(Dex2oatArgumentMap& map, |
| const Dex2oatArgumentMap::Key<T>& key, |
| U* out) { |
| map.AssignIfExists(key, out); |
| } |
| |
| // Specializations to handle const char* vs std::string. |
| void AssignIfExists(Dex2oatArgumentMap& map, |
| const Dex2oatArgumentMap::Key<std::string>& key, |
| const char** out) { |
| if (map.Exists(key)) { |
| char_backing_storage_.push_front(std::move(*map.Get(key))); |
| *out = char_backing_storage_.front().c_str(); |
| } |
| } |
| void AssignIfExists(Dex2oatArgumentMap& map, |
| const Dex2oatArgumentMap::Key<std::vector<std::string>>& key, |
| std::vector<const char*>* out) { |
| if (map.Exists(key)) { |
| for (auto& val : *map.Get(key)) { |
| char_backing_storage_.push_front(std::move(val)); |
| out->push_back(char_backing_storage_.front().c_str()); |
| } |
| } |
| } |
| |
| template <typename T> |
| void AssignTrueIfExists(Dex2oatArgumentMap& map, |
| const Dex2oatArgumentMap::Key<T>& key, |
| bool* out) { |
| if (map.Exists(key)) { |
| *out = true; |
| } |
| } |
| |
| void AssignIfExists(Dex2oatArgumentMap& map, |
| const Dex2oatArgumentMap::Key<std::string>& key, |
| std::vector<std::string>* out) { |
| DCHECK(out->empty()); |
| if (map.Exists(key)) { |
| out->push_back(*map.Get(key)); |
| } |
| } |
| |
| // Parse the arguments from the command line. In case of an unrecognized option or impossible |
| // values/combinations, a usage error will be displayed and exit() is called. Thus, if the method |
| // returns, arguments have been successfully parsed. |
| void ParseArgs(int argc, char** argv) { |
| original_argc = argc; |
| original_argv = argv; |
| |
| Locks::Init(); |
| InitLogging(argv, Runtime::Abort); |
| |
| compiler_options_.reset(new CompilerOptions()); |
| |
| using M = Dex2oatArgumentMap; |
| std::string error_msg; |
| std::unique_ptr<M> args_uptr = M::Parse(argc, const_cast<const char**>(argv), &error_msg); |
| if (args_uptr == nullptr) { |
| Usage("Failed to parse command line: %s", error_msg.c_str()); |
| UNREACHABLE(); |
| } |
| |
| M& args = *args_uptr; |
| |
| std::unique_ptr<ParserOptions> parser_options(new ParserOptions()); |
| |
| AssignIfExists(args, M::CompactDexLevel, &compact_dex_level_); |
| AssignIfExists(args, M::DexFiles, &dex_filenames_); |
| AssignIfExists(args, M::DexLocations, &dex_locations_); |
| AssignIfExists(args, M::DexFds, &dex_fds_); |
| AssignIfExists(args, M::OatFile, &oat_filenames_); |
| AssignIfExists(args, M::OatSymbols, &parser_options->oat_symbols); |
| AssignTrueIfExists(args, M::Strip, &strip_); |
| AssignIfExists(args, M::ImageFilename, &image_filenames_); |
| AssignIfExists(args, M::ImageFd, &image_fd_); |
| AssignIfExists(args, M::ZipFd, &zip_fd_); |
| AssignIfExists(args, M::ZipLocation, &zip_location_); |
| AssignIfExists(args, M::InputVdexFd, &input_vdex_fd_); |
| AssignIfExists(args, M::OutputVdexFd, &output_vdex_fd_); |
| AssignIfExists(args, M::InputVdex, &input_vdex_); |
| AssignIfExists(args, M::OutputVdex, &output_vdex_); |
| AssignIfExists(args, M::DmFd, &dm_fd_); |
| AssignIfExists(args, M::DmFile, &dm_file_location_); |
| AssignIfExists(args, M::OatFd, &oat_fd_); |
| AssignIfExists(args, M::OatLocation, &oat_location_); |
| AssignIfExists(args, M::Watchdog, &parser_options->watch_dog_enabled); |
| AssignIfExists(args, M::WatchdogTimeout, &parser_options->watch_dog_timeout_in_ms); |
| AssignIfExists(args, M::Threads, &thread_count_); |
| AssignIfExists(args, M::CpuSet, &cpu_set_); |
| AssignIfExists(args, M::Passes, &passes_to_run_filename_); |
| AssignIfExists(args, M::BootImage, &parser_options->boot_image_filename); |
| AssignIfExists(args, M::AndroidRoot, &android_root_); |
| AssignIfExists(args, M::Profile, &profile_files_); |
| AssignIfExists(args, M::ProfileFd, &profile_file_fds_); |
| AssignIfExists(args, M::PreloadedClasses, &preloaded_classes_files_); |
| AssignIfExists(args, M::PreloadedClassesFds, &preloaded_classes_fds_); |
| AssignIfExists(args, M::RuntimeOptions, &runtime_args_); |
| AssignIfExists(args, M::SwapFile, &swap_file_name_); |
| AssignIfExists(args, M::SwapFileFd, &swap_fd_); |
| AssignIfExists(args, M::SwapDexSizeThreshold, &min_dex_file_cumulative_size_for_swap_); |
| AssignIfExists(args, M::SwapDexCountThreshold, &min_dex_files_for_swap_); |
| AssignIfExists(args, M::VeryLargeAppThreshold, &very_large_threshold_); |
| AssignIfExists(args, M::AppImageFile, &app_image_file_name_); |
| AssignIfExists(args, M::AppImageFileFd, &app_image_fd_); |
| AssignIfExists(args, M::NoInlineFrom, &no_inline_from_string_); |
| AssignIfExists(args, M::ClasspathDir, &classpath_dir_); |
| AssignIfExists(args, M::DirtyImageObjects, &dirty_image_objects_filename_); |
| AssignIfExists(args, M::DirtyImageObjectsFd, &dirty_image_objects_fd_); |
| AssignIfExists(args, M::ImageFormat, &image_storage_mode_); |
| AssignIfExists(args, M::CompilationReason, &compilation_reason_); |
| AssignTrueIfExists(args, M::CheckLinkageConditions, &check_linkage_conditions_); |
| AssignTrueIfExists(args, M::CrashOnLinkageViolation, &crash_on_linkage_violation_); |
| AssignTrueIfExists(args, M::ForceAllowOjInlines, &force_allow_oj_inlines_); |
| AssignIfExists(args, M::PublicSdk, &public_sdk_); |
| AssignIfExists(args, M::ApexVersions, &apex_versions_argument_); |
| |
| if (compact_dex_level_ != CompactDexLevel::kCompactDexLevelNone) { |
| LOG(WARNING) << "Obsolete flag --compact-dex-level ignored"; |
| compact_dex_level_ = CompactDexLevel::kCompactDexLevelNone; |
| } |
| |
| AssignIfExists(args, M::Backend, &compiler_kind_); |
| parser_options->requested_specific_compiler = args.Exists(M::Backend); |
| |
| AssignIfExists(args, M::TargetInstructionSet, &compiler_options_->instruction_set_); |
| // arm actually means thumb2. |
| if (compiler_options_->instruction_set_ == InstructionSet::kArm) { |
| compiler_options_->instruction_set_ = InstructionSet::kThumb2; |
| } |
| |
| AssignTrueIfExists(args, M::Host, &is_host_); |
| AssignTrueIfExists(args, M::AvoidStoringInvocation, &avoid_storing_invocation_); |
| if (args.Exists(M::InvocationFile)) { |
| invocation_file_.reset(open(args.Get(M::InvocationFile)->c_str(), |
| O_CREAT|O_WRONLY|O_TRUNC|O_CLOEXEC, |
| S_IRUSR|S_IWUSR)); |
| if (invocation_file_.get() == -1) { |
| int err = errno; |
| Usage("Unable to open invocation file '%s' for writing due to %s.", |
| args.Get(M::InvocationFile)->c_str(), strerror(err)); |
| } |
| } |
| AssignIfExists(args, M::CopyDexFiles, ©_dex_files_); |
| |
| AssignTrueIfExists(args, M::MultiImage, &have_multi_image_arg_); |
| AssignIfExists(args, M::MultiImage, &compiler_options_->multi_image_); |
| |
| if (args.Exists(M::ForceDeterminism)) { |
| force_determinism_ = true; |
| } |
| AssignTrueIfExists(args, M::CompileIndividually, &compile_individually_); |
| |
| if (args.Exists(M::Base)) { |
| ParseBase(*args.Get(M::Base)); |
| } |
| if (args.Exists(M::TargetInstructionSetVariant)) { |
| ParseInstructionSetVariant(*args.Get(M::TargetInstructionSetVariant), parser_options.get()); |
| } |
| if (args.Exists(M::TargetInstructionSetFeatures)) { |
| ParseInstructionSetFeatures(*args.Get(M::TargetInstructionSetFeatures), parser_options.get()); |
| } |
| if (args.Exists(M::ClassLoaderContext)) { |
| std::string class_loader_context_arg = *args.Get(M::ClassLoaderContext); |
| class_loader_context_ = ClassLoaderContext::Create(class_loader_context_arg); |
| if (class_loader_context_ == nullptr) { |
| Usage("Option --class-loader-context has an incorrect format: %s", |
| class_loader_context_arg.c_str()); |
| } |
| if (args.Exists(M::ClassLoaderContextFds)) { |
| std::string str_fds_arg = *args.Get(M::ClassLoaderContextFds); |
| std::vector<std::string> str_fds = android::base::Split(str_fds_arg, ":"); |
| for (const std::string& str_fd : str_fds) { |
| class_loader_context_fds_.push_back(std::stoi(str_fd, nullptr, 0)); |
| if (class_loader_context_fds_.back() < 0) { |
| Usage("Option --class-loader-context-fds has incorrect format: %s", |
| str_fds_arg.c_str()); |
| } |
| } |
| } |
| if (args.Exists(M::StoredClassLoaderContext)) { |
| const std::string stored_context_arg = *args.Get(M::StoredClassLoaderContext); |
| stored_class_loader_context_ = ClassLoaderContext::Create(stored_context_arg); |
| if (stored_class_loader_context_ == nullptr) { |
| Usage("Option --stored-class-loader-context has an incorrect format: %s", |
| stored_context_arg.c_str()); |
| } else if (class_loader_context_->VerifyClassLoaderContextMatch( |
| stored_context_arg, |
| /*verify_names*/ false, |
| /*verify_checksums*/ false) != ClassLoaderContext::VerificationResult::kVerifies) { |
| Usage( |
| "Option --stored-class-loader-context '%s' mismatches --class-loader-context '%s'", |
| stored_context_arg.c_str(), |
| class_loader_context_arg.c_str()); |
| } |
| } |
| } else if (args.Exists(M::StoredClassLoaderContext)) { |
| Usage("Option --stored-class-loader-context should only be used if " |
| "--class-loader-context is also specified"); |
| } |
| |
| if (args.Exists(M::UpdatableBcpPackagesFile)) { |
| LOG(WARNING) |
| << "Option --updatable-bcp-packages-file is deprecated and no longer takes effect"; |
| } |
| |
| if (args.Exists(M::UpdatableBcpPackagesFd)) { |
| LOG(WARNING) << "Option --updatable-bcp-packages-fd is deprecated and no longer takes effect"; |
| } |
| |
| if (args.Exists(M::ForceJitZygote)) { |
| if (!parser_options->boot_image_filename.empty()) { |
| Usage("Option --boot-image and --force-jit-zygote cannot be specified together"); |
| } |
| parser_options->boot_image_filename = GetJitZygoteBootImageLocation(); |
| } |
| |
| // If we have a profile, change the default compiler filter to speed-profile |
| // before reading compiler options. |
| static_assert(CompilerFilter::kDefaultCompilerFilter == CompilerFilter::kSpeed); |
| DCHECK_EQ(compiler_options_->GetCompilerFilter(), CompilerFilter::kSpeed); |
| if (HasProfileInput()) { |
| compiler_options_->SetCompilerFilter(CompilerFilter::kSpeedProfile); |
| } |
| |
| if (!ReadCompilerOptions(args, compiler_options_.get(), &error_msg)) { |
| Usage(error_msg.c_str()); |
| } |
| |
| if (!compiler_options_->GetDumpCfgFileName().empty() && thread_count_ != 1) { |
| LOG(INFO) << "Since we are dumping the CFG to " << compiler_options_->GetDumpCfgFileName() |
| << ", we override thread number to 1 to have determinism. It was " << thread_count_ |
| << "."; |
| thread_count_ = 1; |
| } |
| |
| // For debuggable apps, we do not want to generate compact dex as class |
| // redefinition will want a proper dex file. |
| if (compiler_options_->GetDebuggable()) { |
| compact_dex_level_ = CompactDexLevel::kCompactDexLevelNone; |
| } |
| |
| PaletteShouldReportDex2oatCompilation(&should_report_dex2oat_compilation_); |
| AssignTrueIfExists(args, M::ForcePaletteCompilationHooks, &should_report_dex2oat_compilation_); |
| |
| ProcessOptions(parser_options.get()); |
| } |
| |
| // Check whether the oat output files are writable, and open them for later. Also open a swap |
| // file, if a name is given. |
| bool OpenFile() { |
| // Prune non-existent dex files now so that we don't create empty oat files for multi-image. |
| PruneNonExistentDexFiles(); |
| |
| // Expand oat and image filenames for boot image and boot image extension. |
| // This is mostly for multi-image but single-image also needs some processing. |
| if (IsBootImage() || IsBootImageExtension()) { |
| ExpandOatAndImageFilenames(); |
| } |
| |
| // OAT and VDEX file handling |
| if (oat_fd_ == -1) { |
| DCHECK(!oat_filenames_.empty()); |
| for (const std::string& oat_filename : oat_filenames_) { |
| std::unique_ptr<File> oat_file(OS::CreateEmptyFile(oat_filename.c_str())); |
| if (oat_file == nullptr) { |
| PLOG(ERROR) << "Failed to create oat file: " << oat_filename; |
| return false; |
| } |
| if (fchmod(oat_file->Fd(), 0644) != 0) { |
| PLOG(ERROR) << "Failed to make oat file world readable: " << oat_filename; |
| oat_file->Erase(); |
| return false; |
| } |
| oat_files_.push_back(std::move(oat_file)); |
| DCHECK_EQ(input_vdex_fd_, -1); |
| if (!input_vdex_.empty()) { |
| std::string error_msg; |
| input_vdex_file_ = VdexFile::Open(input_vdex_, |
| /* writable */ false, |
| /* low_4gb */ false, |
| &error_msg); |
| } |
| |
| DCHECK_EQ(output_vdex_fd_, -1); |
| std::string vdex_filename = output_vdex_.empty() |
| ? ReplaceFileExtension(oat_filename, "vdex") |
| : output_vdex_; |
| if (vdex_filename == input_vdex_ && output_vdex_.empty()) { |
| use_existing_vdex_ = true; |
| std::unique_ptr<File> vdex_file(OS::OpenFileForReading(vdex_filename.c_str())); |
| vdex_files_.push_back(std::move(vdex_file)); |
| } else { |
| std::unique_ptr<File> vdex_file(OS::CreateEmptyFile(vdex_filename.c_str())); |
| if (vdex_file == nullptr) { |
| PLOG(ERROR) << "Failed to open vdex file: " << vdex_filename; |
| return false; |
| } |
| if (fchmod(vdex_file->Fd(), 0644) != 0) { |
| PLOG(ERROR) << "Failed to make vdex file world readable: " << vdex_filename; |
| vdex_file->Erase(); |
| return false; |
| } |
| vdex_files_.push_back(std::move(vdex_file)); |
| } |
| } |
| } else { |
| std::unique_ptr<File> oat_file( |
| new File(DupCloexec(oat_fd_), oat_location_, /* check_usage */ true)); |
| if (!oat_file->IsOpened()) { |
| PLOG(ERROR) << "Failed to create oat file: " << oat_location_; |
| return false; |
| } |
| if (oat_file->SetLength(0) != 0) { |
| PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed."; |
| oat_file->Erase(); |
| return false; |
| } |
| oat_files_.push_back(std::move(oat_file)); |
| |
| if (input_vdex_fd_ != -1) { |
| struct stat s; |
| int rc = TEMP_FAILURE_RETRY(fstat(input_vdex_fd_, &s)); |
| if (rc == -1) { |
| PLOG(WARNING) << "Failed getting length of vdex file"; |
| } else { |
| std::string error_msg; |
| input_vdex_file_ = VdexFile::Open(input_vdex_fd_, |
| s.st_size, |
| "vdex", |
| /* writable */ false, |
| /* low_4gb */ false, |
| &error_msg); |
| // If there's any problem with the passed vdex, just warn and proceed |
| // without it. |
| if (input_vdex_file_ == nullptr) { |
| PLOG(WARNING) << "Failed opening vdex file: " << error_msg; |
| } |
| } |
| } |
| |
| DCHECK_NE(output_vdex_fd_, -1); |
| std::string vdex_location = ReplaceFileExtension(oat_location_, "vdex"); |
| if (input_vdex_file_ != nullptr && output_vdex_fd_ == input_vdex_fd_) { |
| use_existing_vdex_ = true; |
| } |
| |
| std::unique_ptr<File> vdex_file(new File(DupCloexec(output_vdex_fd_), |
| vdex_location, |
| /* check_usage= */ true, |
| /* read_only_mode= */ use_existing_vdex_)); |
| if (!vdex_file->IsOpened()) { |
| PLOG(ERROR) << "Failed to create vdex file: " << vdex_location; |
| return false; |
| } |
| |
| if (!use_existing_vdex_) { |
| if (vdex_file->SetLength(0) != 0) { |
| PLOG(ERROR) << "Truncating vdex file " << vdex_location << " failed."; |
| vdex_file->Erase(); |
| return false; |
| } |
| } |
| vdex_files_.push_back(std::move(vdex_file)); |
| |
| oat_filenames_.push_back(oat_location_); |
| } |
| |
| if (dm_fd_ != -1 || !dm_file_location_.empty()) { |
| std::string error_msg; |
| if (dm_fd_ != -1) { |
| dm_file_.reset(ZipArchive::OpenFromFd(dm_fd_, "DexMetadata", &error_msg)); |
| } else { |
| dm_file_.reset(ZipArchive::Open(dm_file_location_.c_str(), &error_msg)); |
| } |
| if (dm_file_ == nullptr) { |
| LOG(WARNING) << "Could not open DexMetadata archive " << error_msg; |
| } |
| } |
| |
| // If we have a dm file and a vdex file, we (arbitrarily) pick the vdex file. |
| // In theory the files should be the same. |
| if (dm_file_ != nullptr) { |
| if (input_vdex_file_ == nullptr) { |
| input_vdex_file_ = VdexFile::OpenFromDm(dm_file_location_, *dm_file_); |
| if (input_vdex_file_ != nullptr) { |
| VLOG(verifier) << "Doing fast verification with vdex from DexMetadata archive"; |
| } |
| } else { |
| LOG(INFO) << "Ignoring vdex file in dex metadata due to vdex file already being passed"; |
| } |
| } |
| |
| // Swap file handling |
| // |
| // If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file |
| // that we can use for swap. |
| // |
| // If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We |
| // will immediately unlink to satisfy the swap fd assumption. |
| if (swap_fd_ == -1 && !swap_file_name_.empty()) { |
| std::unique_ptr<File> swap_file(OS::CreateEmptyFile(swap_file_name_.c_str())); |
| if (swap_file.get() == nullptr) { |
| PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_; |
| return false; |
| } |
| swap_fd_ = swap_file->Release(); |
| unlink(swap_file_name_.c_str()); |
| } |
| |
| return true; |
| } |
| |
| void EraseOutputFiles() { |
| for (auto& files : { &vdex_files_, &oat_files_ }) { |
| for (size_t i = 0; i < files->size(); ++i) { |
| auto& file = (*files)[i]; |
| if (file != nullptr) { |
| if (!file->ReadOnlyMode()) { |
| file->Erase(); |
| } |
| file.reset(); |
| } |
| } |
| } |
| } |
| |
| void LoadImageClassDescriptors() { |
| if (!IsImage()) { |
| return; |
| } |
| HashSet<std::string> image_classes; |
| if (DoProfileGuidedOptimizations()) { |
| // TODO: The following comment looks outdated or misplaced. |
| // Filter out class path classes since we don't want to include these in the image. |
| image_classes = profile_compilation_info_->GetClassDescriptors( |
| compiler_options_->dex_files_for_oat_file_); |
| VLOG(compiler) << "Loaded " << image_classes.size() |
| << " image class descriptors from profile"; |
| } else if (compiler_options_->IsBootImage() || compiler_options_->IsBootImageExtension()) { |
| // If we are compiling a boot image but no profile is provided, include all classes in the |
| // image. This is to match pre-boot image extension work where we would load all boot image |
| // extension classes at startup. |
| for (const DexFile* dex_file : compiler_options_->dex_files_for_oat_file_) { |
| for (uint32_t i = 0; i < dex_file->NumClassDefs(); i++) { |
| const dex::ClassDef& class_def = dex_file->GetClassDef(i); |
| const char* descriptor = dex_file->GetClassDescriptor(class_def); |
| image_classes.insert(descriptor); |
| } |
| } |
| } |
| if (VLOG_IS_ON(compiler)) { |
| for (const std::string& s : image_classes) { |
| LOG(INFO) << "Image class " << s; |
| } |
| } |
| compiler_options_->image_classes_ = std::move(image_classes); |
| } |
| |
| // Set up the environment for compilation. Includes starting the runtime and loading/opening the |
| // boot class path. |
| dex2oat::ReturnCode Setup() { |
| TimingLogger::ScopedTiming t("dex2oat Setup", timings_); |
| |
| if (!PrepareDirtyObjects()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| if (!PreparePreloadedClasses()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| callbacks_.reset(new QuickCompilerCallbacks( |
| // For class verification purposes, boot image extension is the same as boot image. |
| (IsBootImage() || IsBootImageExtension()) |
| ? CompilerCallbacks::CallbackMode::kCompileBootImage |
| : CompilerCallbacks::CallbackMode::kCompileApp)); |
| |
| RuntimeArgumentMap runtime_options; |
| if (!PrepareRuntimeOptions(&runtime_options, callbacks_.get())) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| CreateOatWriters(); |
| if (!AddDexFileSources()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| { |
| TimingLogger::ScopedTiming t_dex("Writing and opening dex files", timings_); |
| for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { |
| // Unzip or copy dex files straight to the oat file. |
| std::vector<MemMap> opened_dex_files_map; |
| std::vector<std::unique_ptr<const DexFile>> opened_dex_files; |
| // No need to verify the dex file when we have a vdex file, which means it was already |
| // verified. |
| const bool verify = |
| (input_vdex_file_ == nullptr) && !compiler_options_->AssumeDexFilesAreVerified(); |
| if (!oat_writers_[i]->WriteAndOpenDexFiles( |
| vdex_files_[i].get(), |
| verify, |
| use_existing_vdex_, |
| copy_dex_files_, |
| &opened_dex_files_map, |
| &opened_dex_files)) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| dex_files_per_oat_file_.push_back(MakeNonOwningPointerVector(opened_dex_files)); |
| for (MemMap& map : opened_dex_files_map) { |
| opened_dex_files_maps_.push_back(std::move(map)); |
| } |
| for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files) { |
| dex_file_oat_index_map_.insert(std::make_pair(dex_file.get(), i)); |
| opened_dex_files_.push_back(std::move(dex_file)); |
| } |
| } |
| } |
| |
| compiler_options_->dex_files_for_oat_file_ = MakeNonOwningPointerVector(opened_dex_files_); |
| const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_; |
| |
| if (!ValidateInputVdexChecksums()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| // Check if we need to downgrade the compiler-filter for size reasons. |
| // Note: This does not affect the compiler filter already stored in the key-value |
| // store which is used for determining whether the oat file is up to date, |
| // together with the boot class path locations and checksums stored below. |
| CompilerFilter::Filter original_compiler_filter = compiler_options_->GetCompilerFilter(); |
| if (!IsBootImage() && !IsBootImageExtension() && IsVeryLarge(dex_files)) { |
| // Disable app image to make sure dex2oat unloading is enabled. |
| compiler_options_->image_type_ = CompilerOptions::ImageType::kNone; |
| |
| // If we need to downgrade the compiler-filter for size reasons, do that early before we read |
| // it below for creating verification callbacks. |
| if (!CompilerFilter::IsAsGoodAs(kLargeAppFilter, compiler_options_->GetCompilerFilter())) { |
| LOG(INFO) << "Very large app, downgrading to verify."; |
| compiler_options_->SetCompilerFilter(kLargeAppFilter); |
| } |
| } |
| |
| if (CompilerFilter::IsAnyCompilationEnabled(compiler_options_->GetCompilerFilter()) || |
| IsImage()) { |
| // Only modes with compilation or image generation require verification results. |
| verification_results_.reset(new VerificationResults()); |
| callbacks_->SetVerificationResults(verification_results_.get()); |
| } |
| |
| if (IsBootImage() || IsBootImageExtension()) { |
| // For boot image or boot image extension, pass opened dex files to the Runtime::Create(). |
| // Note: Runtime acquires ownership of these dex files. |
| runtime_options.Set(RuntimeArgumentMap::BootClassPathDexList, &opened_dex_files_); |
| } |
| if (!CreateRuntime(std::move(runtime_options))) { |
| return dex2oat::ReturnCode::kCreateRuntime; |
| } |
| if (runtime_->GetHeap()->GetBootImageSpaces().empty() && |
| (IsBootImageExtension() || IsAppImage())) { |
| LOG(WARNING) << "Cannot create " |
| << (IsBootImageExtension() ? "boot image extension" : "app image") |
| << " without a primary boot image."; |
| compiler_options_->image_type_ = CompilerOptions::ImageType::kNone; |
| } |
| ArrayRef<const DexFile* const> bcp_dex_files(runtime_->GetClassLinker()->GetBootClassPath()); |
| if (IsBootImage() || IsBootImageExtension()) { |
| // Check boot class path dex files and, if compiling an extension, the images it depends on. |
| if ((IsBootImage() && bcp_dex_files.size() != dex_files.size()) || |
| (IsBootImageExtension() && bcp_dex_files.size() <= dex_files.size())) { |
| LOG(ERROR) << "Unexpected number of boot class path dex files for boot image or extension, " |
| << bcp_dex_files.size() << (IsBootImage() ? " != " : " <= ") << dex_files.size(); |
| return dex2oat::ReturnCode::kOther; |
| } |
| if (!std::equal(dex_files.begin(), dex_files.end(), bcp_dex_files.end() - dex_files.size())) { |
| LOG(ERROR) << "Boot class path dex files do not end with the compiled dex files."; |
| return dex2oat::ReturnCode::kOther; |
| } |
| size_t bcp_df_pos = 0u; |
| size_t bcp_df_end = bcp_dex_files.size(); |
| for (const std::string& bcp_location : runtime_->GetBootClassPathLocations()) { |
| if (bcp_df_pos == bcp_df_end || bcp_dex_files[bcp_df_pos]->GetLocation() != bcp_location) { |
| LOG(ERROR) << "Missing dex file for boot class component " << bcp_location; |
| return dex2oat::ReturnCode::kOther; |
| } |
| CHECK(!DexFileLoader::IsMultiDexLocation(bcp_dex_files[bcp_df_pos]->GetLocation().c_str())); |
| ++bcp_df_pos; |
| while (bcp_df_pos != bcp_df_end && |
| DexFileLoader::IsMultiDexLocation(bcp_dex_files[bcp_df_pos]->GetLocation().c_str())) { |
| ++bcp_df_pos; |
| } |
| } |
| if (bcp_df_pos != bcp_df_end) { |
| LOG(ERROR) << "Unexpected dex file in boot class path " |
| << bcp_dex_files[bcp_df_pos]->GetLocation(); |
| return dex2oat::ReturnCode::kOther; |
| } |
| auto lacks_image = [](const DexFile* df) { |
| if (kIsDebugBuild && df->GetOatDexFile() != nullptr) { |
| const OatFile* oat_file = df->GetOatDexFile()->GetOatFile(); |
| CHECK(oat_file != nullptr); |
| const auto& image_spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces(); |
| CHECK(std::any_of(image_spaces.begin(), |
| image_spaces.end(), |
| [=](const ImageSpace* space) { |
| return oat_file == space->GetOatFile(); |
| })); |
| } |
| return df->GetOatDexFile() == nullptr; |
| }; |
| if (std::any_of(bcp_dex_files.begin(), bcp_dex_files.end() - dex_files.size(), lacks_image)) { |
| LOG(ERROR) << "Missing required boot image(s) for boot image extension."; |
| return dex2oat::ReturnCode::kOther; |
| } |
| } |
| |
| if (!compilation_reason_.empty()) { |
| key_value_store_->Put(OatHeader::kCompilationReasonKey, compilation_reason_); |
| } |
| |
| Runtime* runtime = Runtime::Current(); |
| |
| if (IsBootImage()) { |
| // If we're compiling the boot image, store the boot classpath into the Key-Value store. |
| // We use this when loading the boot image. |
| key_value_store_->Put(OatHeader::kBootClassPathKey, android::base::Join(dex_locations_, ':')); |
| } else if (IsBootImageExtension()) { |
| // Validate the boot class path and record the dependency on the loaded boot images. |
| TimingLogger::ScopedTiming t3("Loading image checksum", timings_); |
| std::string full_bcp = android::base::Join(runtime->GetBootClassPathLocations(), ':'); |
| std::string extension_part = ":" + android::base::Join(dex_locations_, ':'); |
| if (!android::base::EndsWith(full_bcp, extension_part)) { |
| LOG(ERROR) << "Full boot class path does not end with extension parts, full: " << full_bcp |
| << ", extension: " << extension_part.substr(1u); |
| return dex2oat::ReturnCode::kOther; |
| } |
| std::string bcp_dependency = full_bcp.substr(0u, full_bcp.size() - extension_part.size()); |
| key_value_store_->Put(OatHeader::kBootClassPathKey, bcp_dependency); |
| ArrayRef<const DexFile* const> bcp_dex_files_dependency = |
| bcp_dex_files.SubArray(/*pos=*/ 0u, bcp_dex_files.size() - dex_files.size()); |
| ArrayRef<ImageSpace* const> image_spaces(runtime->GetHeap()->GetBootImageSpaces()); |
| key_value_store_->Put( |
| OatHeader::kBootClassPathChecksumsKey, |
| gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files_dependency)); |
| } else { |
| if (CompilerFilter::DependsOnImageChecksum(original_compiler_filter)) { |
| TimingLogger::ScopedTiming t3("Loading image checksum", timings_); |
| key_value_store_->Put(OatHeader::kBootClassPathKey, |
| android::base::Join(runtime->GetBootClassPathLocations(), ':')); |
| ArrayRef<ImageSpace* const> image_spaces(runtime->GetHeap()->GetBootImageSpaces()); |
| key_value_store_->Put( |
| OatHeader::kBootClassPathChecksumsKey, |
| gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files)); |
| } |
| |
| // Open dex files for class path. |
| |
| if (class_loader_context_ == nullptr) { |
| // If no context was specified use the default one (which is an empty PathClassLoader). |
| class_loader_context_ = ClassLoaderContext::Default(); |
| } |
| |
| DCHECK_EQ(oat_writers_.size(), 1u); |
| |
| // Note: Ideally we would reject context where the source dex files are also |
| // specified in the classpath (as it doesn't make sense). However this is currently |
| // needed for non-prebuild tests and benchmarks which expects on the fly compilation. |
| // Also, for secondary dex files we do not have control on the actual classpath. |
| // Instead of aborting, remove all the source location from the context classpaths. |
| if (class_loader_context_->RemoveLocationsFromClassPaths( |
| oat_writers_[0]->GetSourceLocations())) { |
| LOG(WARNING) << "The source files to be compiled are also in the classpath."; |
| } |
| |
| // We need to open the dex files before encoding the context in the oat file. |
| // (because the encoding adds the dex checksum...) |
| // TODO(calin): consider redesigning this so we don't have to open the dex files before |
| // creating the actual class loader. |
| if (!class_loader_context_->OpenDexFiles(classpath_dir_, |
| class_loader_context_fds_)) { |
| // Do not abort if we couldn't open files from the classpath. They might be |
| // apks without dex files and right now are opening flow will fail them. |
| LOG(WARNING) << "Failed to open classpath dex files"; |
| } |
| |
| // Store the class loader context in the oat header. |
| // TODO: deprecate this since store_class_loader_context should be enough to cover the users |
| // of classpath_dir as well. |
| std::string class_path_key = |
| class_loader_context_->EncodeContextForOatFile(classpath_dir_, |
| stored_class_loader_context_.get()); |
| key_value_store_->Put(OatHeader::kClassPathKey, class_path_key); |
| } |
| |
| if (IsBootImage() || |
| IsBootImageExtension() || |
| CompilerFilter::DependsOnImageChecksum(original_compiler_filter)) { |
| std::string versions = |
| apex_versions_argument_.empty() ? runtime->GetApexVersions() : apex_versions_argument_; |
| key_value_store_->Put(OatHeader::kApexVersionsKey, versions); |
| } |
| |
| // Now that we have adjusted whether we generate an image, encode it in the |
| // key/value store. |
| key_value_store_->Put(OatHeader::kRequiresImage, compiler_options_->IsGeneratingImage()); |
| |
| // Now that we have finalized key_value_store_, start writing the .rodata section. |
| // Among other things, this creates type lookup tables that speed up the compilation. |
| { |
| TimingLogger::ScopedTiming t_dex("Starting .rodata", timings_); |
| rodata_.reserve(oat_writers_.size()); |
| for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { |
| rodata_.push_back(elf_writers_[i]->StartRoData()); |
| if (!oat_writers_[i]->StartRoData(dex_files_per_oat_file_[i], |
| rodata_.back(), |
| (i == 0u) ? key_value_store_.get() : nullptr)) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| } |
| } |
| |
| // We had to postpone the swap decision till now, as this is the point when we actually |
| // know about the dex files we're going to use. |
| |
| // Make sure that we didn't create the driver, yet. |
| CHECK(driver_ == nullptr); |
| // If we use a swap file, ensure we are above the threshold to make it necessary. |
| if (swap_fd_ != -1) { |
| if (!UseSwap(IsBootImage() || IsBootImageExtension(), dex_files)) { |
| close(swap_fd_); |
| swap_fd_ = -1; |
| VLOG(compiler) << "Decided to run without swap."; |
| } else { |
| LOG(INFO) << "Large app, accepted running with swap."; |
| } |
| } |
| // Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that. |
| |
| if (!IsBootImage() && !IsBootImageExtension()) { |
| constexpr bool kSaveDexInput = false; |
| if (kSaveDexInput) { |
| SaveDexInput(); |
| } |
| } |
| |
| // Setup VerifierDeps for compilation and report if we fail to parse the data. |
| if (input_vdex_file_ != nullptr) { |
| std::unique_ptr<verifier::VerifierDeps> verifier_deps( |
| new verifier::VerifierDeps(dex_files, /*output_only=*/ false)); |
| if (!verifier_deps->ParseStoredData(dex_files, input_vdex_file_->GetVerifierDepsData())) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| // We can do fast verification. |
| callbacks_->SetVerifierDeps(verifier_deps.release()); |
| } else { |
| // Create the main VerifierDeps, here instead of in the compiler since we want to aggregate |
| // the results for all the dex files, not just the results for the current dex file. |
| callbacks_->SetVerifierDeps(new verifier::VerifierDeps(dex_files)); |
| } |
| |
| return dex2oat::ReturnCode::kNoFailure; |
| } |
| |
| // Validates that the input vdex checksums match the source dex checksums. |
| // Note that this is only effective and relevant if the input_vdex_file does not |
| // contain a dex section (e.g. when they come from .dm files). |
| // If the input vdex does contain dex files, the dex files will be opened from there |
| // and so this check is redundant. |
| bool ValidateInputVdexChecksums() { |
| if (input_vdex_file_ == nullptr) { |
| // Nothing to validate |
| return true; |
| } |
| if (input_vdex_file_->GetNumberOfDexFiles() |
| != compiler_options_->dex_files_for_oat_file_.size()) { |
| LOG(ERROR) << "Vdex file contains a different number of dex files than the source. " |
| << " vdex_num=" << input_vdex_file_->GetNumberOfDexFiles() |
| << " dex_source_num=" << compiler_options_->dex_files_for_oat_file_.size(); |
| return false; |
| } |
| |
| for (size_t i = 0; i < compiler_options_->dex_files_for_oat_file_.size(); i++) { |
| uint32_t dex_source_checksum = |
| compiler_options_->dex_files_for_oat_file_[i]->GetLocationChecksum(); |
| uint32_t vdex_checksum = input_vdex_file_->GetLocationChecksum(i); |
| if (dex_source_checksum != vdex_checksum) { |
| LOG(ERROR) << "Vdex file checksum different than source dex checksum for position " << i |
| << std::hex |
| << " vdex_checksum=0x" << vdex_checksum |
| << " dex_source_checksum=0x" << dex_source_checksum |
| << std::dec; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // If we need to keep the oat file open for the image writer. |
| bool ShouldKeepOatFileOpen() const { |
| return IsImage() && oat_fd_ != File::kInvalidFd; |
| } |
| |
| // Doesn't return the class loader since it's not meant to be used for image compilation. |
| void CompileDexFilesIndividually() { |
| CHECK(!IsImage()) << "Not supported with image"; |
| for (const DexFile* dex_file : compiler_options_->dex_files_for_oat_file_) { |
| std::vector<const DexFile*> dex_files(1u, dex_file); |
| VLOG(compiler) << "Compiling " << dex_file->GetLocation(); |
| jobject class_loader = CompileDexFiles(dex_files); |
| CHECK(class_loader != nullptr); |
| ScopedObjectAccess soa(Thread::Current()); |
| // Unload class loader to free RAM. |
| jweak weak_class_loader = soa.Env()->GetVm()->AddWeakGlobalRef( |
| soa.Self(), |
| soa.Decode<mirror::ClassLoader>(class_loader)); |
| soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), class_loader); |
| runtime_->GetHeap()->CollectGarbage(/* clear_soft_references */ true); |
| ObjPtr<mirror::ClassLoader> decoded_weak = soa.Decode<mirror::ClassLoader>(weak_class_loader); |
| if (decoded_weak != nullptr) { |
| LOG(FATAL) << "Failed to unload class loader, path from root set: " |
| << runtime_->GetHeap()->GetVerification()->FirstPathFromRootSet(decoded_weak); |
| } |
| VLOG(compiler) << "Unloaded classloader"; |
| } |
| } |
| |
| bool ShouldCompileDexFilesIndividually() const { |
| // Compile individually if we are allowed to, and |
| // 1. not building an image, and |
| // 2. not verifying a vdex file, and |
| // 3. using multidex, and |
| // 4. not doing any AOT compilation. |
| // This means no-vdex verify will use the individual compilation |
| // mode (to reduce RAM used by the compiler). |
| return compile_individually_ && |
| (!IsImage() && !use_existing_vdex_ && |
| compiler_options_->dex_files_for_oat_file_.size() > 1 && |
| !CompilerFilter::IsAotCompilationEnabled(compiler_options_->GetCompilerFilter())); |
| } |
| |
| uint32_t GetCombinedChecksums() const { |
| uint32_t combined_checksums = 0u; |
| for (const DexFile* dex_file : compiler_options_->GetDexFilesForOatFile()) { |
| combined_checksums ^= dex_file->GetLocationChecksum(); |
| } |
| return combined_checksums; |
| } |
| |
| // Set up and create the compiler driver and then invoke it to compile all the dex files. |
| jobject Compile() REQUIRES(!Locks::mutator_lock_) { |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| |
| TimingLogger::ScopedTiming t("dex2oat Compile", timings_); |
| |
| // Find the dex files we should not inline from. |
| std::vector<std::string> no_inline_filters; |
| Split(no_inline_from_string_, ',', &no_inline_filters); |
| |
| // For now, on the host always have core-oj removed. |
| const std::string core_oj = "core-oj"; |
| if (!kIsTargetBuild && !ContainsElement(no_inline_filters, core_oj)) { |
| if (force_allow_oj_inlines_) { |
| LOG(ERROR) << "Inlines allowed from core-oj! FOR TESTING USE ONLY! DO NOT DISTRIBUTE" |
| << " BINARIES BUILT WITH THIS OPTION!"; |
| } else { |
| no_inline_filters.push_back(core_oj); |
| } |
| } |
| |
| if (!no_inline_filters.empty()) { |
| std::vector<const DexFile*> class_path_files; |
| if (!IsBootImage() && !IsBootImageExtension()) { |
| // The class loader context is used only for apps. |
| class_path_files = class_loader_context_->FlattenOpenedDexFiles(); |
| } |
| |
| const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_; |
| std::vector<const DexFile*> no_inline_from_dex_files; |
| const std::vector<const DexFile*>* dex_file_vectors[] = { |
| &class_linker->GetBootClassPath(), |
| &class_path_files, |
| &dex_files |
| }; |
| for (const std::vector<const DexFile*>* dex_file_vector : dex_file_vectors) { |
| for (const DexFile* dex_file : *dex_file_vector) { |
| for (const std::string& filter : no_inline_filters) { |
| // Use dex_file->GetLocation() rather than dex_file->GetBaseLocation(). This |
| // allows tests to specify <test-dexfile>!classes2.dex if needed but if the |
| // base location passes the StartsWith() test, so do all extra locations. |
| std::string dex_location = dex_file->GetLocation(); |
| if (filter.find('/') == std::string::npos) { |
| // The filter does not contain the path. Remove the path from dex_location as well. |
| size_t last_slash = dex_file->GetLocation().rfind('/'); |
| if (last_slash != std::string::npos) { |
| dex_location = dex_location.substr(last_slash + 1); |
| } |
| } |
| |
| if (android::base::StartsWith(dex_location, filter)) { |
| VLOG(compiler) << "Disabling inlining from " << dex_file->GetLocation(); |
| no_inline_from_dex_files.push_back(dex_file); |
| break; |
| } |
| } |
| } |
| } |
| if (!no_inline_from_dex_files.empty()) { |
| compiler_options_->no_inline_from_.swap(no_inline_from_dex_files); |
| } |
| } |
| compiler_options_->profile_compilation_info_ = profile_compilation_info_.get(); |
| |
| driver_.reset(new CompilerDriver(compiler_options_.get(), |
| verification_results_.get(), |
| compiler_kind_, |
| thread_count_, |
| swap_fd_)); |
| |
| driver_->PrepareDexFilesForOatFile(timings_); |
| |
| if (!IsBootImage() && !IsBootImageExtension()) { |
| driver_->SetClasspathDexFiles(class_loader_context_->FlattenOpenedDexFiles()); |
| } |
| |
| const bool compile_individually = ShouldCompileDexFilesIndividually(); |
| if (compile_individually) { |
| // Set the compiler driver in the callbacks so that we can avoid re-verification. |
| // Only set the compiler filter if we are doing separate compilation since there is a bit |
| // of overhead when checking if a class was previously verified. |
| callbacks_->SetDoesClassUnloading(true, driver_.get()); |
| } |
| |
| // Setup vdex for compilation. |
| const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_; |
| // To allow initialization of classes that construct ThreadLocal objects in class initializer, |
| // re-initialize the ThreadLocal.nextHashCode to a new object that's not in the boot image. |
| ThreadLocalHashOverride thread_local_hash_override( |
| /*apply=*/ !IsBootImage(), /*initial_value=*/ 123456789u ^ GetCombinedChecksums()); |
| |
| // Invoke the compilation. |
| if (compile_individually) { |
| CompileDexFilesIndividually(); |
| // Return a null classloader since we already freed released it. |
| return nullptr; |
| } |
| return CompileDexFiles(dex_files); |
| } |
| |
| // Create the class loader, use it to compile, and return. |
| jobject CompileDexFiles(const std::vector<const DexFile*>& dex_files) { |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| |
| jobject class_loader = nullptr; |
| if (!IsBootImage() && !IsBootImageExtension()) { |
| class_loader = |
| class_loader_context_->CreateClassLoader(compiler_options_->GetDexFilesForOatFile()); |
| } |
| if (!IsBootImage()) { |
| callbacks_->SetDexFiles(&dex_files); |
| |
| // We need to set this after we create the class loader so that the runtime can access |
| // the hidden fields of the well known class loaders. |
| if (!public_sdk_.empty()) { |
| std::string error_msg; |
| std::unique_ptr<SdkChecker> sdk_checker(SdkChecker::Create(public_sdk_, &error_msg)); |
| if (sdk_checker != nullptr) { |
| AotClassLinker* aot_class_linker = down_cast<AotClassLinker*>(class_linker); |
| aot_class_linker->SetSdkChecker(std::move(sdk_checker)); |
| } else { |
| LOG(FATAL) << "Failed to create SdkChecker with dex files " |
| << public_sdk_ << " Error: " << error_msg; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| // Register dex caches and key them to the class loader so that they only unload when the |
| // class loader unloads. |
| for (const auto& dex_file : dex_files) { |
| ScopedObjectAccess soa(Thread::Current()); |
| // Registering the dex cache adds a strong root in the class loader that prevents the dex |
| // cache from being unloaded early. |
| ObjPtr<mirror::DexCache> dex_cache = class_linker->RegisterDexFile( |
| *dex_file, |
| soa.Decode<mirror::ClassLoader>(class_loader)); |
| if (dex_cache == nullptr) { |
| soa.Self()->AssertPendingException(); |
| LOG(FATAL) << "Failed to register dex file " << dex_file->GetLocation() << " " |
| << soa.Self()->GetException()->Dump(); |
| } |
| } |
| driver_->InitializeThreadPools(); |
| driver_->PreCompile(class_loader, |
| dex_files, |
| timings_, |
| &compiler_options_->image_classes_); |
| callbacks_->SetVerificationResults(nullptr); // Should not be needed anymore. |
| driver_->CompileAll(class_loader, dex_files, timings_); |
| driver_->FreeThreadPools(); |
| return class_loader; |
| } |
| |
| // Notes on the interleaving of creating the images and oat files to |
| // ensure the references between the two are correct. |
| // |
| // Currently we have a memory layout that looks something like this: |
| // |
| // +--------------+ |
| // | images | |
| // +--------------+ |
| // | oat files | |
| // +--------------+ |
| // | alloc spaces | |
| // +--------------+ |
| // |
| // There are several constraints on the loading of the images and oat files. |
| // |
| // 1. The images are expected to be loaded at an absolute address and |
| // contain Objects with absolute pointers within the images. |
| // |
| // 2. There are absolute pointers from Methods in the images to their |
| // code in the oat files. |
| // |
| // 3. There are absolute pointers from the code in the oat files to Methods |
| // in the images. |
| // |
| // 4. There are absolute pointers from code in the oat files to other code |
| // in the oat files. |
| // |
| // To get this all correct, we go through several steps. |
| // |
| // 1. We prepare offsets for all data in the oat files and calculate |
| // the oat data size and code size. During this stage, we also set |
| // oat code offsets in methods for use by the image writer. |
| // |
| // 2. We prepare offsets for the objects in the images and calculate |
| // the image sizes. |
| // |
| // 3. We create the oat files. Originally this was just our own proprietary |
| // file but now it is contained within an ELF dynamic object (aka an .so |
| // file). Since we know the image sizes and oat data sizes and code sizes we |
| // can prepare the ELF headers and we then know the ELF memory segment |
| // layout and we can now resolve all references. The compiler provides |
| // LinkerPatch information in each CompiledMethod and we resolve these, |
| // using the layout information and image object locations provided by |
| // image writer, as we're writing the method code. |
| // |
| // 4. We create the image files. They need to know where the oat files |
| // will be loaded after itself. Originally oat files were simply |
| // memory mapped so we could predict where their contents were based |
| // on the file size. Now that they are ELF files, we need to inspect |
| // the ELF files to understand the in memory segment layout including |
| // where the oat header is located within. |
| // TODO: We could just remember this information from step 3. |
| // |
| // 5. We fixup the ELF program headers so that dlopen will try to |
| // load the .so at the desired location at runtime by offsetting the |
| // Elf32_Phdr.p_vaddr values by the desired base address. |
| // TODO: Do this in step 3. We already know the layout there. |
| // |
| // Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5. |
| // are done by the CreateImageFile() below. |
| |
| // Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the |
| // ImageWriter, if necessary. |
| // Note: Flushing (and closing) the file is the caller's responsibility, except for the failure |
| // case (when the file will be explicitly erased). |
| bool WriteOutputFiles(jobject class_loader) { |
| TimingLogger::ScopedTiming t("dex2oat Oat", timings_); |
| |
| // Sync the data to the file, in case we did dex2dex transformations. |
| for (MemMap& map : opened_dex_files_maps_) { |
| if (!map.Sync()) { |
| PLOG(ERROR) << "Failed to Sync() dex2dex output. Map: " << map.GetName(); |
| return false; |
| } |
| } |
| |
| if (IsImage()) { |
| if (!IsBootImage()) { |
| DCHECK_EQ(image_base_, 0u); |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| image_base_ = heap->GetBootImagesStartAddress() + heap->GetBootImagesSize(); |
| } |
| VLOG(compiler) << "Image base=" << reinterpret_cast<void*>(image_base_); |
| |
| image_writer_.reset(new linker::ImageWriter(*compiler_options_, |
| image_base_, |
| image_storage_mode_, |
| oat_filenames_, |
| dex_file_oat_index_map_, |
| class_loader, |
| dirty_image_objects_.get())); |
| |
| // We need to prepare method offsets in the image address space for resolving linker patches. |
| TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_); |
| if (!image_writer_->PrepareImageAddressSpace(timings_)) { |
| LOG(ERROR) << "Failed to prepare image address space."; |
| return false; |
| } |
| } |
| |
| // Initialize the writers with the compiler driver, image writer, and their |
| // dex files. The writers were created without those being there yet. |
| for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { |
| std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i]; |
| std::vector<const DexFile*>& dex_files = dex_files_per_oat_file_[i]; |
| oat_writer->Initialize(driver_.get(), image_writer_.get(), dex_files); |
| } |
| |
| if (!use_existing_vdex_) { |
| TimingLogger::ScopedTiming t2("dex2oat Write VDEX", timings_); |
| DCHECK(IsBootImage() || IsBootImageExtension() || oat_files_.size() == 1u); |
| verifier::VerifierDeps* verifier_deps = callbacks_->GetVerifierDeps(); |
| for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { |
| File* vdex_file = vdex_files_[i].get(); |
| if (!oat_writers_[i]->FinishVdexFile(vdex_file, verifier_deps)) { |
| LOG(ERROR) << "Failed to finish VDEX file " << vdex_file->GetPath(); |
| return false; |
| } |
| } |
| } |
| |
| { |
| TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_); |
| linker::MultiOatRelativePatcher patcher(compiler_options_->GetInstructionSet(), |
| compiler_options_->GetInstructionSetFeatures(), |
| driver_->GetCompiledMethodStorage()); |
| for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { |
| std::unique_ptr<linker::ElfWriter>& elf_writer = elf_writers_[i]; |
| std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i]; |
| |
| oat_writer->PrepareLayout(&patcher); |
| elf_writer->PrepareDynamicSection(oat_writer->GetOatHeader().GetExecutableOffset(), |
| oat_writer->GetCodeSize(), |
| oat_writer->GetDataBimgRelRoSize(), |
| oat_writer->GetBssSize(), |
| oat_writer->GetBssMethodsOffset(), |
| oat_writer->GetBssRootsOffset(), |
| oat_writer->GetVdexSize()); |
| if (IsImage()) { |
| // Update oat layout. |
| DCHECK(image_writer_ != nullptr); |
| DCHECK_LT(i, oat_filenames_.size()); |
| image_writer_->UpdateOatFileLayout(i, |
| elf_writer->GetLoadedSize(), |
| oat_writer->GetOatDataOffset(), |
| oat_writer->GetOatSize()); |
| } |
| } |
| |
| for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { |
| std::unique_ptr<File>& oat_file = oat_files_[i]; |
| std::unique_ptr<linker::ElfWriter>& elf_writer = elf_writers_[i]; |
| std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i]; |
| |
| // We need to mirror the layout of the ELF file in the compressed debug-info. |
| // Therefore PrepareDebugInfo() relies on the SetLoadedSectionSizes() call further above. |
| debug::DebugInfo debug_info = oat_writer->GetDebugInfo(); // Keep the variable alive. |
| elf_writer->PrepareDebugInfo(debug_info); // Processes the data on background thread. |
| |
| OutputStream* rodata = rodata_[i]; |
| DCHECK(rodata != nullptr); |
| if (!oat_writer->WriteRodata(rodata)) { |
| LOG(ERROR) << "Failed to write .rodata section to the ELF file " << oat_file->GetPath(); |
| return false; |
| } |
| elf_writer->EndRoData(rodata); |
| rodata = nullptr; |
| |
| OutputStream* text = elf_writer->StartText(); |
| if (!oat_writer->WriteCode(text)) { |
| LOG(ERROR) << "Failed to write .text section to the ELF file " << oat_file->GetPath(); |
| return false; |
| } |
| elf_writer->EndText(text); |
| |
| if (oat_writer->GetDataBimgRelRoSize() != 0u) { |
| OutputStream* data_bimg_rel_ro = elf_writer->StartDataBimgRelRo(); |
| if (!oat_writer->WriteDataBimgRelRo(data_bimg_rel_ro)) { |
| LOG(ERROR) << "Failed to write .data.bimg.rel.ro section to the ELF file " |
| << oat_file->GetPath(); |
| return false; |
| } |
| elf_writer->EndDataBimgRelRo(data_bimg_rel_ro); |
| } |
| |
| if (!oat_writer->WriteHeader(elf_writer->GetStream())) { |
| LOG(ERROR) << "Failed to write oat header to the ELF file " << oat_file->GetPath(); |
| return false; |
| } |
| |
| if (IsImage()) { |
| // Update oat header information. |
| DCHECK(image_writer_ != nullptr); |
| DCHECK_LT(i, oat_filenames_.size()); |
| image_writer_->UpdateOatFileHeader(i, oat_writer->GetOatHeader()); |
| } |
| |
| elf_writer->WriteDynamicSection(); |
| elf_writer->WriteDebugInfo(oat_writer->GetDebugInfo()); |
| |
| if (!elf_writer->End()) { |
| LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath(); |
| return false; |
| } |
| |
| if (!FlushOutputFile(&vdex_files_[i]) || !FlushOutputFile(&oat_files_[i])) { |
| return false; |
| } |
| |
| VLOG(compiler) << "Oat file written successfully: " << oat_filenames_[i]; |
| |
| oat_writer.reset(); |
| // We may still need the ELF writer later for stripping. |
| } |
| } |
| |
| return true; |
| } |
| |
| // If we are compiling an image, invoke the image creation routine. Else just skip. |
| bool HandleImage() { |
| if (IsImage()) { |
| TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_); |
| if (!CreateImageFile()) { |
| return false; |
| } |
| VLOG(compiler) << "Images written successfully"; |
| } |
| return true; |
| } |
| |
| // Copy the full oat files to symbols directory and then strip the originals. |
| bool CopyOatFilesToSymbolsDirectoryAndStrip() { |
| for (size_t i = 0; i < oat_unstripped_.size(); ++i) { |
| // If we don't want to strip in place, copy from stripped location to unstripped location. |
| // We need to strip after image creation because FixupElf needs to use .strtab. |
| if (oat_unstripped_[i] != oat_filenames_[i]) { |
| DCHECK(oat_files_[i].get() != nullptr && oat_files_[i]->IsOpened()); |
| |
| TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_); |
| std::unique_ptr<File>& in = oat_files_[i]; |
| int64_t in_length = in->GetLength(); |
| if (in_length < 0) { |
| PLOG(ERROR) << "Failed to get the length of oat file: " << in->GetPath(); |
| return false; |
| } |
| std::unique_ptr<File> out(OS::CreateEmptyFile(oat_unstripped_[i].c_str())); |
| if (out == nullptr) { |
| PLOG(ERROR) << "Failed to open oat file for writing: " << oat_unstripped_[i]; |
| return false; |
| } |
| if (!out->Copy(in.get(), 0, in_length)) { |
| PLOG(ERROR) << "Failed to copy oat file to file: " << out->GetPath(); |
| return false; |
| } |
| if (out->FlushCloseOrErase() != 0) { |
| PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_unstripped_[i]; |
| return false; |
| } |
| VLOG(compiler) << "Oat file copied successfully (unstripped): " << oat_unstripped_[i]; |
| |
| if (strip_) { |
| TimingLogger::ScopedTiming t2("dex2oat OatFile strip", timings_); |
| if (!elf_writers_[i]->StripDebugInfo()) { |
| PLOG(ERROR) << "Failed strip oat file: " << in->GetPath(); |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool FlushOutputFile(std::unique_ptr<File>* file) { |
| if ((file->get() != nullptr) && !file->get()->ReadOnlyMode()) { |
| if (file->get()->Flush() != 0) { |
| PLOG(ERROR) << "Failed to flush output file: " << file->get()->GetPath(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool FlushCloseOutputFile(File* file) { |
| if ((file != nullptr) && !file->ReadOnlyMode()) { |
| if (file->FlushCloseOrErase() != 0) { |
| PLOG(ERROR) << "Failed to flush and close output file: " << file->GetPath(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool FlushOutputFiles() { |
| TimingLogger::ScopedTiming t2("dex2oat Flush Output Files", timings_); |
| for (auto& files : { &vdex_files_, &oat_files_ }) { |
| for (size_t i = 0; i < files->size(); ++i) { |
| if (!FlushOutputFile(&(*files)[i])) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool FlushCloseOutputFiles() { |
| bool result = true; |
| for (auto& files : { &vdex_files_, &oat_files_ }) { |
| for (size_t i = 0; i < files->size(); ++i) { |
| result &= FlushCloseOutputFile((*files)[i].get()); |
| } |
| } |
| return result; |
| } |
| |
| void DumpTiming() { |
| if (compiler_options_->GetDumpTimings() || |
| (kIsDebugBuild && timings_->GetTotalNs() > MsToNs(1000))) { |
| LOG(INFO) << Dumpable<TimingLogger>(*timings_); |
| } |
| } |
| |
| bool IsImage() const { |
| return IsAppImage() || IsBootImage() || IsBootImageExtension(); |
| } |
| |
| bool IsAppImage() const { |
| return compiler_options_->IsAppImage(); |
| } |
| |
| bool IsBootImage() const { |
| return compiler_options_->IsBootImage(); |
| } |
| |
| bool IsBootImageExtension() const { |
| return compiler_options_->IsBootImageExtension(); |
| } |
| |
| bool IsHost() const { |
| return is_host_; |
| } |
| |
| bool HasProfileInput() const { return !profile_file_fds_.empty() || !profile_files_.empty(); } |
| |
| // Must be called after the profile is loaded. |
| bool DoProfileGuidedOptimizations() const { |
| DCHECK(!HasProfileInput() || profile_load_attempted_) |
| << "The profile has to be loaded before we can decided " |
| << "if we do profile guided optimizations"; |
| return profile_compilation_info_ != nullptr && !profile_compilation_info_->IsEmpty(); |
| } |
| |
| bool DoGenerateCompactDex() const { |
| return compact_dex_level_ != CompactDexLevel::kCompactDexLevelNone; |
| } |
| |
| bool DoDexLayoutOptimizations() const { |
| // Only run dexlayout when being asked to generate compact dex. We do this |
| // to avoid having multiple arguments being passed to dex2oat and the main |
| // user of dex2oat (installd) will have the same reasons for |
| // disabling/enabling compact dex and dex layout. |
| return DoGenerateCompactDex(); |
| } |
| |
| bool DoOatLayoutOptimizations() const { |
| return DoProfileGuidedOptimizations(); |
| } |
| |
| bool LoadProfile() { |
| DCHECK(HasProfileInput()); |
| profile_load_attempted_ = true; |
| // TODO(calin): We should be using the runtime arena pool (instead of the |
| // default profile arena). However the setup logic is messy and needs |
| // cleaning up before that (e.g. the oat writers are created before the |
| // runtime). |
| bool for_boot_image = IsBootImage() || IsBootImageExtension(); |
| profile_compilation_info_.reset(new ProfileCompilationInfo(for_boot_image)); |
| |
| // Cleanup profile compilation info if we encounter any error when reading profiles. |
| auto cleanup = android::base::ScopeGuard([&]() { profile_compilation_info_.reset(nullptr); }); |
| |
| // Dex2oat only uses the reference profile and that is not updated concurrently by the app or |
| // other processes. So we don't need to lock (as we have to do in profman or when writing the |
| // profile info). |
| std::vector<std::unique_ptr<File>> profile_files; |
| if (!profile_file_fds_.empty()) { |
| for (int fd : profile_file_fds_) { |
| profile_files.push_back(std::make_unique<File>(DupCloexec(fd), |
| "profile", |
| /*check_usage=*/ false, |
| /*read_only_mode=*/ true)); |
| } |
| } else { |
| for (const std::string& file : profile_files_) { |
| profile_files.emplace_back(OS::OpenFileForReading(file.c_str())); |
| if (profile_files.back().get() == nullptr) { |
| PLOG(ERROR) << "Cannot open profiles"; |
| return false; |
| } |
| } |
| } |
| |
| std::map<std::string, uint32_t> old_profile_keys, new_profile_keys; |
| auto filter_fn = [&](const std::string& profile_key, uint32_t checksum) { |
| auto it = old_profile_keys.find(profile_key); |
| if (it != old_profile_keys.end() && it->second != checksum) { |
| // Filter out this entry. We have already loaded data for the same profile key with a |
| // different checksum from an earlier profile file. |
| return false; |
| } |
| // Insert the new profile key and checksum. |
| // Note: If the profile contains the same key with different checksums, this insertion fails |
| // but we still return `true` and let the `ProfileCompilationInfo::Load()` report an error. |
| new_profile_keys.insert(std::make_pair(profile_key, checksum)); |
| return true; |
| }; |
| for (const std::unique_ptr<File>& profile_file : profile_files) { |
| if (!profile_compilation_info_->Load(profile_file->Fd(), |
| /*merge_classes=*/ true, |
| filter_fn)) { |
| return false; |
| } |
| old_profile_keys.merge(new_profile_keys); |
| new_profile_keys.clear(); |
| } |
| |
| cleanup.Disable(); |
| return true; |
| } |
| |
| // If we're asked to speed-profile the app but we have no profile, or the profile |
| // is empty, change the filter to verify, and the image_type to none. |
| // A speed-profile compilation without profile data is equivalent to verify and |
| // this change will increase the precision of the telemetry data. |
| void UpdateCompilerOptionsBasedOnProfile() { |
| if (!DoProfileGuidedOptimizations() && |
| compiler_options_->GetCompilerFilter() == CompilerFilter::kSpeedProfile) { |
| VLOG(compiler) << "Changing compiler filter to verify from speed-profile " |
| << "because of empty or non existing profile"; |
| |
| compiler_options_->SetCompilerFilter(CompilerFilter::kVerify); |
| |
| // Note that we could reset the image_type to CompilerOptions::ImageType::kNone |
| // to prevent an app image generation. |
| // However, if we were pass an image file we would essentially leave the image |
| // file empty (possibly triggering some harmless errors when we try to load it). |
| // |
| // Letting the image_type_ be determined by whether or not we passed an image |
| // file will at least write the appropriate header making it an empty but valid |
| // image. |
| } |
| } |
| |
| class ScopedDex2oatReporting { |
| public: |
| explicit ScopedDex2oatReporting(const Dex2Oat& dex2oat) : |
| should_report_(dex2oat.should_report_dex2oat_compilation_) { |
| if (should_report_) { |
| if (dex2oat.zip_fd_ != -1) { |
| zip_dup_fd_.reset(DupCloexecOrError(dex2oat.zip_fd_)); |
| if (zip_dup_fd_ < 0) { |
| return; |
| } |
| } |
| int image_fd = dex2oat.IsAppImage() ? dex2oat.app_image_fd_ : dex2oat.image_fd_; |
| if (image_fd != -1) { |
| image_dup_fd_.reset(DupCloexecOrError(image_fd)); |
| if (image_dup_fd_ < 0) { |
| return; |
| } |
| } |
| oat_dup_fd_.reset(DupCloexecOrError(dex2oat.oat_fd_)); |
| if (oat_dup_fd_ < 0) { |
| return; |
| } |
| vdex_dup_fd_.reset(DupCloexecOrError(dex2oat.output_vdex_fd_)); |
| if (vdex_dup_fd_ < 0) { |
| return; |
| } |
| PaletteNotifyStartDex2oatCompilation(zip_dup_fd_, |
| image_dup_fd_, |
| oat_dup_fd_, |
| vdex_dup_fd_); |
| } |
| error_reporting_ = false; |
| } |
| |
| ~ScopedDex2oatReporting() { |
| if (!error_reporting_) { |
| if (should_report_) { |
| PaletteNotifyEndDex2oatCompilation(zip_dup_fd_, |
| image_dup_fd_, |
| oat_dup_fd_, |
| vdex_dup_fd_); |
| } |
| } |
| } |
| |
| bool ErrorReporting() const { return error_reporting_; } |
| |
| private: |
| int DupCloexecOrError(int fd) { |
| int dup_fd = DupCloexec(fd); |
| if (dup_fd < 0) { |
| LOG(ERROR) << "Error dup'ing a file descriptor " << strerror(errno); |
| error_reporting_ = true; |
| } |
| return dup_fd; |
| } |
| android::base::unique_fd oat_dup_fd_; |
| android::base::unique_fd vdex_dup_fd_; |
| android::base::unique_fd zip_dup_fd_; |
| android::base::unique_fd image_dup_fd_; |
| bool error_reporting_ = false; |
| bool should_report_; |
| }; |
| |
| private: |
| bool UseSwap(bool is_image, const std::vector<const DexFile*>& dex_files) { |
| if (is_image) { |
| // Don't use swap, we know generation should succeed, and we don't want to slow it down. |
| return false; |
| } |
| if (dex_files.size() < min_dex_files_for_swap_) { |
| // If there are less dex files than the threshold, assume it's gonna be fine. |
| return false; |
| } |
| size_t dex_files_size = 0; |
| for (const auto* dex_file : dex_files) { |
| dex_files_size += dex_file->GetHeader().file_size_; |
| } |
| return dex_files_size >= min_dex_file_cumulative_size_for_swap_; |
| } |
| |
| bool IsVeryLarge(const std::vector<const DexFile*>& dex_files) { |
| size_t dex_files_size = 0; |
| for (const auto* dex_file : dex_files) { |
| dex_files_size += dex_file->GetHeader().file_size_; |
| } |
| return dex_files_size >= very_large_threshold_; |
| } |
| |
| bool PrepareDirtyObjects() { |
| if (dirty_image_objects_fd_ != -1) { |
| dirty_image_objects_ = |
| ReadCommentedInputFromFd<std::vector<std::string>>(dirty_image_objects_fd_, nullptr); |
| // Close since we won't need it again. |
| close(dirty_image_objects_fd_); |
| dirty_image_objects_fd_ = -1; |
| if (dirty_image_objects_ == nullptr) { |
| LOG(ERROR) << "Failed to create list of dirty objects from fd " << dirty_image_objects_fd_; |
| return false; |
| } |
| } else if (dirty_image_objects_filename_ != nullptr) { |
| dirty_image_objects_ = ReadCommentedInputFromFile<std::vector<std::string>>( |
| dirty_image_objects_filename_, nullptr); |
| if (dirty_image_objects_ == nullptr) { |
| LOG(ERROR) << "Failed to create list of dirty objects from '" |
| << dirty_image_objects_filename_ << "'"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool PreparePreloadedClasses() { |
| if (!preloaded_classes_fds_.empty()) { |
| for (int fd : preloaded_classes_fds_) { |
| if (!ReadCommentedInputFromFd(fd, nullptr, &compiler_options_->preloaded_classes_)) { |
| return false; |
| } |
| } |
| } else { |
| for (const std::string& file : preloaded_classes_files_) { |
| if (!ReadCommentedInputFromFile( |
| file.c_str(), nullptr, &compiler_options_->preloaded_classes_)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void PruneNonExistentDexFiles() { |
| DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); |
| size_t kept = 0u; |
| for (size_t i = 0, size = dex_filenames_.size(); i != size; ++i) { |
| // Keep if the file exist, or is passed as FD. |
| if (!OS::FileExists(dex_filenames_[i].c_str()) && i >= dex_fds_.size()) { |
| LOG(WARNING) << "Skipping non-existent dex file '" << dex_filenames_[i] << "'"; |
| } else { |
| if (kept != i) { |
| dex_filenames_[kept] = dex_filenames_[i]; |
| dex_locations_[kept] = dex_locations_[i]; |
| } |
| ++kept; |
| } |
| } |
| dex_filenames_.resize(kept); |
| dex_locations_.resize(kept); |
| } |
| |
| bool AddDexFileSources() { |
| TimingLogger::ScopedTiming t2("AddDexFileSources", timings_); |
| if (input_vdex_file_ != nullptr && input_vdex_file_->HasDexSection()) { |
| DCHECK_EQ(oat_writers_.size(), 1u); |
| const std::string& name = zip_location_.empty() ? dex_locations_[0] : zip_location_; |
| DCHECK(!name.empty()); |
| if (!oat_writers_[0]->AddVdexDexFilesSource(*input_vdex_file_.get(), name.c_str())) { |
| return false; |
| } |
| } else if (zip_fd_ != -1) { |
| DCHECK_EQ(oat_writers_.size(), 1u); |
| if (!oat_writers_[0]->AddDexFileSource(File(zip_fd_, /* check_usage */ false), |
| zip_location_.c_str())) { |
| return false; |
| } |
| } else { |
| DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); |
| DCHECK_GE(oat_writers_.size(), 1u); |
| |
| bool use_dex_fds = !dex_fds_.empty(); |
| if (use_dex_fds) { |
| DCHECK_EQ(dex_fds_.size(), dex_filenames_.size()); |
| } |
| |
| bool is_multi_image = oat_writers_.size() > 1u; |
| if (is_multi_image) { |
| DCHECK_EQ(oat_writers_.size(), dex_filenames_.size()); |
| } |
| |
| for (size_t i = 0; i != dex_filenames_.size(); ++i) { |
| int oat_index = is_multi_image ? i : 0; |
| auto oat_writer = oat_writers_[oat_index].get(); |
| |
| if (use_dex_fds) { |
| if (!oat_writer->AddDexFileSource(File(dex_fds_[i], /* check_usage */ false), |
| dex_locations_[i].c_str())) { |
| return false; |
| } |
| } else { |
| if (!oat_writer->AddDexFileSource(dex_filenames_[i].c_str(), |
| dex_locations_[i].c_str())) { |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| void CreateOatWriters() { |
| TimingLogger::ScopedTiming t2("CreateOatWriters", timings_); |
| elf_writers_.reserve(oat_files_.size()); |
| oat_writers_.reserve(oat_files_.size()); |
| for (const std::unique_ptr<File>& oat_file : oat_files_) { |
| elf_writers_.emplace_back(linker::CreateElfWriterQuick(*compiler_options_, oat_file.get())); |
| elf_writers_.back()->Start(); |
| bool do_oat_writer_layout = DoDexLayoutOptimizations() || DoOatLayoutOptimizations(); |
| oat_writers_.emplace_back(new linker::OatWriter( |
| *compiler_options_, |
| verification_results_.get(), |
| timings_, |
| do_oat_writer_layout ? profile_compilation_info_.get() : nullptr, |
| compact_dex_level_)); |
| } |
| } |
| |
| void SaveDexInput() { |
| const std::vector<const DexFile*>& dex_files = compiler_options_->dex_files_for_oat_file_; |
| for (size_t i = 0, size = dex_files.size(); i != size; ++i) { |
| const DexFile* dex_file = dex_files[i]; |
| std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex", |
| getpid(), i)); |
| std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str())); |
| if (tmp_file.get() == nullptr) { |
| PLOG(ERROR) << "Failed to open file " << tmp_file_name |
| << ". Try: adb shell chmod 777 /data/local/tmp"; |
| continue; |
| } |
| // This is just dumping files for debugging. Ignore errors, and leave remnants. |
| UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size())); |
| UNUSED(tmp_file->Flush()); |
| UNUSED(tmp_file->Close()); |
| LOG(INFO) << "Wrote input to " << tmp_file_name; |
| } |
| } |
| |
| bool PrepareRuntimeOptions(RuntimeArgumentMap* runtime_options, |
| QuickCompilerCallbacks* callbacks) { |
| RuntimeOptions raw_options; |
| if (IsBootImage()) { |
| std::string boot_class_path = "-Xbootclasspath:"; |
| boot_class_path += android::base::Join(dex_filenames_, ':'); |
| raw_options.push_back(std::make_pair(boot_class_path, nullptr)); |
| std::string boot_class_path_locations = "-Xbootclasspath-locations:"; |
| boot_class_path_locations += android::base::Join(dex_locations_, ':'); |
| raw_options.push_back(std::make_pair(boot_class_path_locations, nullptr)); |
| } else { |
| std::string boot_image_option = "-Ximage:"; |
| boot_image_option += boot_image_filename_; |
| raw_options.push_back(std::make_pair(boot_image_option, nullptr)); |
| } |
| for (size_t i = 0; i < runtime_args_.size(); i++) { |
| raw_options.push_back(std::make_pair(runtime_args_[i], nullptr)); |
| } |
| |
| raw_options.push_back(std::make_pair("compilercallbacks", callbacks)); |
| raw_options.push_back( |
| std::make_pair("imageinstructionset", |
| GetInstructionSetString(compiler_options_->GetInstructionSet()))); |
| |
| // Never allow implicit image compilation. |
| raw_options.push_back(std::make_pair("-Xnoimage-dex2oat", nullptr)); |
| // Disable libsigchain. We don't don't need it during compilation and it prevents us |
| // from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT). |
| raw_options.push_back(std::make_pair("-Xno-sig-chain", nullptr)); |
| // Disable Hspace compaction to save heap size virtual space. |
| // Only need disable Hspace for OOM becasue background collector is equal to |
| // foreground collector by default for dex2oat. |
| raw_options.push_back(std::make_pair("-XX:DisableHSpaceCompactForOOM", nullptr)); |
| |
| if (!Runtime::ParseOptions(raw_options, false, runtime_options)) { |
| LOG(ERROR) << "Failed to parse runtime options"; |
| return false; |
| } |
| return true; |
| } |
| |
| // Create a runtime necessary for compilation. |
| bool CreateRuntime(RuntimeArgumentMap&& runtime_options) { |
| // To make identity hashcode deterministic, set a seed based on the dex file checksums. |
| // That makes the seed also most likely different for different inputs, for example |
| // for primary boot image and different extensions that could be loaded together. |
| mirror::Object::SetHashCodeSeed(987654321u ^ GetCombinedChecksums()); |
| |
| TimingLogger::ScopedTiming t_runtime("Create runtime", timings_); |
| if (!Runtime::Create(std::move(runtime_options))) { |
| LOG(ERROR) << "Failed to create runtime"; |
| return false; |
| } |
| |
| // Runtime::Init will rename this thread to be "main". Prefer "dex2oat" so that "top" and |
| // "ps -a" don't change to non-descript "main." |
| SetThreadName(kIsDebugBuild ? "dex2oatd" : "dex2oat"); |
| |
| runtime_.reset(Runtime::Current()); |
| runtime_->SetInstructionSet(compiler_options_->GetInstructionSet()); |
| for (uint32_t i = 0; i < static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType); ++i) { |
| CalleeSaveType type = CalleeSaveType(i); |
| if (!runtime_->HasCalleeSaveMethod(type)) { |
| runtime_->SetCalleeSaveMethod(runtime_->CreateCalleeSaveMethod(), type); |
| } |
| } |
| |
| // Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this |
| // set up. |
| interpreter::UnstartedRuntime::Initialize(); |
| |
| Thread* self = Thread::Current(); |
| runtime_->GetClassLinker()->RunEarlyRootClinits(self); |
| InitializeIntrinsics(); |
| runtime_->RunRootClinits(self); |
| |
| // Runtime::Create acquired the mutator_lock_ that is normally given away when we |
| // Runtime::Start, give it away now so that we don't starve GC. |
| self->TransitionFromRunnableToSuspended(ThreadState::kNative); |
| |
| WatchDog::SetRuntime(runtime_.get()); |
| |
| return true; |
| } |
| |
| // Let the ImageWriter write the image files. If we do not compile PIC, also fix up the oat files. |
| bool CreateImageFile() |
| REQUIRES(!Locks::mutator_lock_) { |
| CHECK(image_writer_ != nullptr); |
| if (IsAppImage()) { |
| DCHECK(image_filenames_.empty()); |
| if (app_image_fd_ != -1) { |
| image_filenames_.push_back(StringPrintf("FileDescriptor[%d]", app_image_fd_)); |
| } else { |
| image_filenames_.push_back(app_image_file_name_); |
| } |
| } |
| if (image_fd_ != -1) { |
| DCHECK(image_filenames_.empty()); |
| image_filenames_.push_back(StringPrintf("FileDescriptor[%d]", image_fd_)); |
| } |
| if (!image_writer_->Write(IsAppImage() ? app_image_fd_ : image_fd_, |
| image_filenames_, |
| IsAppImage() ? 1u : dex_locations_.size())) { |
| LOG(ERROR) << "Failure during image file creation"; |
| return false; |
| } |
| |
| // We need the OatDataBegin entries. |
| dchecked_vector<uintptr_t> oat_data_begins; |
| for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { |
| oat_data_begins.push_back(image_writer_->GetOatDataBegin(i)); |
| } |
| // Destroy ImageWriter. |
| image_writer_.reset(); |
| |
| return true; |
| } |
| |
| template <typename T> |
| static bool ReadCommentedInputFromFile( |
| const char* input_filename, std::function<std::string(const char*)>* process, T* output) { |
| auto input_file = std::unique_ptr<FILE, decltype(&fclose)>{fopen(input_filename, "re"), fclose}; |
| if (!input_file) { |
| LOG(ERROR) << "Failed to open input file " << input_filename; |
| return false; |
| } |
| ReadCommentedInputStream<T>(input_file.get(), process, output); |
| return true; |
| } |
| |
| template <typename T> |
| static bool ReadCommentedInputFromFd( |
| int input_fd, std::function<std::string(const char*)>* process, T* output) { |
| auto input_file = std::unique_ptr<FILE, decltype(&fclose)>{fdopen(input_fd, "r"), fclose}; |
| if (!input_file) { |
| LOG(ERROR) << "Failed to re-open input fd from /prof/self/fd/" << input_fd; |
| return false; |
| } |
| ReadCommentedInputStream<T>(input_file.get(), process, output); |
| return true; |
| } |
| |
| // Read lines from the given file, dropping comments and empty lines. Post-process each line with |
| // the given function. |
| template <typename T> |
| static std::unique_ptr<T> ReadCommentedInputFromFile( |
| const char* input_filename, std::function<std::string(const char*)>* process) { |
| std::unique_ptr<T> output(new T()); |
| ReadCommentedInputFromFile(input_filename, process, output.get()); |
| return output; |
| } |
| |
| // Read lines from the given fd, dropping comments and empty lines. Post-process each line with |
| // the given function. |
| template <typename T> |
| static std::unique_ptr<T> ReadCommentedInputFromFd( |
| int input_fd, std::function<std::string(const char*)>* process) { |
| std::unique_ptr<T> output(new T()); |
| ReadCommentedInputFromFd(input_fd, process, output.get()); |
| return output; |
| } |
| |
| // Read lines from the given stream, dropping comments and empty lines. Post-process each line |
| // with the given function. |
| template <typename T> static void ReadCommentedInputStream( |
| std::FILE* in_stream, |
| std::function<std::string(const char*)>* process, |
| T* output) { |
| char* line = nullptr; |
| size_t line_alloc = 0; |
| ssize_t len = 0; |
| while ((len = getline(&line, &line_alloc, in_stream)) > 0) { |
| if (line[0] == '\0' || line[0] == '#' || line[0] == '\n') { |
| continue; |
| } |
| if (line[len - 1] == '\n') { |
| line[len - 1] = '\0'; |
| } |
| if (process != nullptr) { |
| std::string descriptor((*process)(line)); |
| output->insert(output->end(), descriptor); |
| } else { |
| output->insert(output->end(), line); |
| } |
| } |
| free(line); |
| } |
| |
| void LogCompletionTime() { |
| // Note: when creation of a runtime fails, e.g., when trying to compile an app but when there |
| // is no image, there won't be a Runtime::Current(). |
| // Note: driver creation can fail when loading an invalid dex file. |
| LOG(INFO) << "dex2oat took " |
| << PrettyDuration(NanoTime() - start_ns_) |
| << " (" << PrettyDuration(ProcessCpuNanoTime() - start_cputime_ns_) << " cpu)" |
| << " (threads: " << thread_count_ << ") " |
| << ((Runtime::Current() != nullptr && driver_ != nullptr) ? |
| driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) : |
| ""); |
| } |
| |
| std::string StripIsaFrom(const char* image_filename, InstructionSet isa) { |
| std::string res(image_filename); |
| size_t last_slash = res.rfind('/'); |
| if (last_slash == std::string::npos || last_slash == 0) { |
| return res; |
| } |
| size_t penultimate_slash = res.rfind('/', last_slash - 1); |
| if (penultimate_slash == std::string::npos) { |
| return res; |
| } |
| // Check that the string in-between is the expected one. |
| if (res.substr(penultimate_slash + 1, last_slash - penultimate_slash - 1) != |
| GetInstructionSetString(isa)) { |
| LOG(WARNING) << "Unexpected string when trying to strip isa: " << res; |
| return res; |
| } |
| return res.substr(0, penultimate_slash) + res.substr(last_slash); |
| } |
| |
| std::unique_ptr<CompilerOptions> compiler_options_; |
| Compiler::Kind compiler_kind_; |
| |
| std::unique_ptr<OatKeyValueStore> key_value_store_; |
| |
| std::unique_ptr<VerificationResults> verification_results_; |
| |
| std::unique_ptr<QuickCompilerCallbacks> callbacks_; |
| |
| std::unique_ptr<Runtime> runtime_; |
| |
| // The spec describing how the class loader should be setup for compilation. |
| std::unique_ptr<ClassLoaderContext> class_loader_context_; |
| |
| // Optional list of file descriptors corresponding to dex file locations in |
| // flattened `class_loader_context_`. |
| std::vector<int> class_loader_context_fds_; |
| |
| // The class loader context stored in the oat file. May be equal to class_loader_context_. |
| std::unique_ptr<ClassLoaderContext> stored_class_loader_context_; |
| |
| size_t thread_count_; |
| std::vector<int32_t> cpu_set_; |
| uint64_t start_ns_; |
| uint64_t start_cputime_ns_; |
| std::unique_ptr<WatchDog> watchdog_; |
| std::vector<std::unique_ptr<File>> oat_files_; |
| std::vector<std::unique_ptr<File>> vdex_files_; |
| std::string oat_location_; |
| std::vector<std::string> oat_filenames_; |
| std::vector<std::string> oat_unstripped_; |
| bool strip_; |
| int oat_fd_; |
| int input_vdex_fd_; |
| int output_vdex_fd_; |
| std::string input_vdex_; |
| std::string output_vdex_; |
| std::unique_ptr<VdexFile> input_vdex_file_; |
| int dm_fd_; |
| std::string dm_file_location_; |
| std::unique_ptr<ZipArchive> dm_file_; |
| std::vector<std::string> dex_filenames_; |
| std::vector<std::string> dex_locations_; |
| std::vector<int> dex_fds_; |
| int zip_fd_; |
| std::string zip_location_; |
| std::string boot_image_filename_; |
| std::vector<const char*> runtime_args_; |
| std::vector<std::string> image_filenames_; |
| int image_fd_; |
| bool have_multi_image_arg_; |
| uintptr_t image_base_; |
| ImageHeader::StorageMode image_storage_mode_; |
| const char* passes_to_run_filename_; |
| const char* dirty_image_objects_filename_; |
| int dirty_image_objects_fd_; |
| std::unique_ptr<std::vector<std::string>> dirty_image_objects_; |
| std::unique_ptr<std::vector<std::string>> passes_to_run_; |
| bool is_host_; |
| std::string android_root_; |
| std::string no_inline_from_string_; |
| bool force_allow_oj_inlines_ = false; |
| |
| // TODO(b/256664509): Clean this up. |
| CompactDexLevel compact_dex_level_ = CompactDexLevel::kCompactDexLevelNone; |
| |
| std::vector<std::unique_ptr<linker::ElfWriter>> elf_writers_; |
| std::vector<std::unique_ptr<linker::OatWriter>> oat_writers_; |
| std::vector<OutputStream*> rodata_; |
| std::vector<std::unique_ptr<OutputStream>> vdex_out_; |
| std::unique_ptr<linker::ImageWriter> image_writer_; |
| std::unique_ptr<CompilerDriver> driver_; |
| |
| std::vector<MemMap> opened_dex_files_maps_; |
| std::vector<std::unique_ptr<const DexFile>> opened_dex_files_; |
| |
| bool avoid_storing_invocation_; |
| android::base::unique_fd invocation_file_; |
| std::string swap_file_name_; |
| int swap_fd_; |
| size_t min_dex_files_for_swap_ = kDefaultMinDexFilesForSwap; |
| size_t min_dex_file_cumulative_size_for_swap_ = kDefaultMinDexFileCumulativeSizeForSwap; |
| size_t very_large_threshold_ = std::numeric_limits<size_t>::max(); |
| std::string app_image_file_name_; |
| int app_image_fd_; |
| std::vector<std::string> profile_files_; |
| std::vector<int> profile_file_fds_; |
| std::vector<std::string> preloaded_classes_files_; |
| std::vector<int> preloaded_classes_fds_; |
| std::unique_ptr<ProfileCompilationInfo> profile_compilation_info_; |
| TimingLogger* timings_; |
| std::vector<std::vector<const DexFile*>> dex_files_per_oat_file_; |
| HashMap<const DexFile*, size_t> dex_file_oat_index_map_; |
| |
| // Backing storage. |
| std::forward_list<std::string> char_backing_storage_; |
| |
| // See CompilerOptions.force_determinism_. |
| bool force_determinism_; |
| // See CompilerOptions.crash_on_linkage_violation_. |
| bool check_linkage_conditions_; |
| // See CompilerOptions.crash_on_linkage_violation_. |
| bool crash_on_linkage_violation_; |
| |
| // Directory of relative classpaths. |
| std::string classpath_dir_; |
| |
| // Whether the given input vdex is also the output. |
| bool use_existing_vdex_ = false; |
| |
| // By default, copy the dex to the vdex file only if dex files are |
| // compressed in APK. |
| linker::CopyOption copy_dex_files_ = linker::CopyOption::kOnlyIfCompressed; |
| |
| // The reason for invoking the compiler. |
| std::string compilation_reason_; |
| |
| // Whether to force individual compilation. |
| bool compile_individually_; |
| |
| // The classpath that determines if a given symbol should be resolved at compile time or not. |
| std::string public_sdk_; |
| |
| // The apex versions of jars in the boot classpath. Set through command line |
| // argument. |
| std::string apex_versions_argument_; |
| |
| // Whether or we attempted to load the profile (if given). |
| bool profile_load_attempted_; |
| |
| // Whether PaletteNotify{Start,End}Dex2oatCompilation should be called. |
| bool should_report_dex2oat_compilation_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat); |
| }; |
| |
| static void b13564922() { |
| #if defined(__linux__) && defined(__arm__) |
| int major, minor; |
| struct utsname uts; |
| if (uname(&uts) != -1 && |
| sscanf(uts.release, "%d.%d", &major, &minor) == 2 && |
| ((major < 3) || ((major == 3) && (minor < 4)))) { |
| // Kernels before 3.4 don't handle the ASLR well and we can run out of address |
| // space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization. |
| int old_personality = personality(0xffffffff); |
| if ((old_personality & ADDR_NO_RANDOMIZE) == 0) { |
| int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE); |
| if (new_personality == -1) { |
| LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed."; |
| } |
| } |
| } |
| #endif |
| } |
| |
| class ScopedGlobalRef { |
| public: |
| explicit ScopedGlobalRef(jobject obj) : obj_(obj) {} |
| ~ScopedGlobalRef() { |
| if (obj_ != nullptr) { |
| ScopedObjectAccess soa(Thread::Current()); |
| soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), obj_); |
| } |
| } |
| |
| private: |
| jobject obj_; |
| }; |
| |
| static dex2oat::ReturnCode DoCompilation(Dex2Oat& dex2oat) REQUIRES(!Locks::mutator_lock_) { |
| Locks::mutator_lock_->AssertNotHeld(Thread::Current()); |
| dex2oat.LoadImageClassDescriptors(); |
| jobject class_loader = dex2oat.Compile(); |
| // Keep the class loader that was used for compilation live for the rest of the compilation |
| // process. |
| ScopedGlobalRef global_ref(class_loader); |
| |
| if (!dex2oat.WriteOutputFiles(class_loader)) { |
| dex2oat.EraseOutputFiles(); |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| // Flush output files. Keep them open as we might still modify them later (strip them). |
| if (!dex2oat.FlushOutputFiles()) { |
| dex2oat.EraseOutputFiles(); |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| // Creates the boot.art and patches the oat files. |
| if (!dex2oat.HandleImage()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| // When given --host, finish early without stripping. |
| if (dex2oat.IsHost()) { |
| if (!dex2oat.FlushCloseOutputFiles()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| dex2oat.DumpTiming(); |
| return dex2oat::ReturnCode::kNoFailure; |
| } |
| |
| // Copy stripped to unstripped location, if necessary. This will implicitly flush & close the |
| // stripped versions. If this is given, we expect to be able to open writable files by name. |
| if (!dex2oat.CopyOatFilesToSymbolsDirectoryAndStrip()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| // FlushClose again, as stripping might have re-opened the oat files. |
| if (!dex2oat.FlushCloseOutputFiles()) { |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| dex2oat.DumpTiming(); |
| return dex2oat::ReturnCode::kNoFailure; |
| } |
| |
| static dex2oat::ReturnCode Dex2oat(int argc, char** argv) { |
| b13564922(); |
| |
| TimingLogger timings("compiler", false, false); |
| |
| // Allocate `dex2oat` on the heap instead of on the stack, as Clang |
| // might produce a stack frame too large for this function or for |
| // functions inlining it (such as main), that would not fit the |
| // requirements of the `-Wframe-larger-than` option. |
| std::unique_ptr<Dex2Oat> dex2oat = std::make_unique<Dex2Oat>(&timings); |
| |
| // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError. |
| dex2oat->ParseArgs(argc, argv); |
| |
| art::MemMap::Init(); // For ZipEntry::ExtractToMemMap, vdex and profiles. |
| |
| // If needed, process profile information for profile guided compilation. |
| // This operation involves I/O. |
| if (dex2oat->HasProfileInput()) { |
| if (!dex2oat->LoadProfile()) { |
| LOG(ERROR) << "Failed to process profile file"; |
| return dex2oat::ReturnCode::kOther; |
| } |
| } |
| |
| // Check if we need to update any of the compiler options (such as the filter) |
| // and do it before anything else (so that the other operations have a true |
| // view of the state). |
| dex2oat->UpdateCompilerOptionsBasedOnProfile(); |
| |
| // Insert the compiler options in the key value store. |
| // We have to do this after we altered any incoming arguments |
| // (such as the compiler filter). |
| dex2oat->InsertCompileOptions(argc, argv); |
| |
| // Check early that the result of compilation can be written |
| if (!dex2oat->OpenFile()) { |
| // Flush close so that the File Guard checks don't fail the assertions. |
| dex2oat->FlushCloseOutputFiles(); |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| // Print the complete line when any of the following is true: |
| // 1) Debug build |
| // 2) Compiling an image |
| // 3) Compiling with --host |
| // 4) Compiling on the host (not a target build) |
| // Otherwise, print a stripped command line. |
| if (kIsDebugBuild || |
| dex2oat->IsBootImage() || dex2oat->IsBootImageExtension() || |
| dex2oat->IsHost() || |
| !kIsTargetBuild) { |
| LOG(INFO) << CommandLine(); |
| } else { |
| LOG(INFO) << StrippedCommandLine(); |
| } |
| |
| Dex2Oat::ScopedDex2oatReporting sdr(*dex2oat.get()); |
| |
| if (sdr.ErrorReporting()) { |
| dex2oat->EraseOutputFiles(); |
| return dex2oat::ReturnCode::kOther; |
| } |
| |
| dex2oat::ReturnCode setup_code = dex2oat->Setup(); |
| if (setup_code != dex2oat::ReturnCode::kNoFailure) { |
| dex2oat->EraseOutputFiles(); |
| return setup_code; |
| } |
| |
| // TODO: Due to the cyclic dependencies, profile loading and verifying are |
| // being done separately. Refactor and place the two next to each other. |
| // If verification fails, we don't abort the compilation and instead log an |
| // error. |
| // TODO(b/62602192, b/65260586): We should consider aborting compilation when |
| // the profile verification fails. |
| // Note: If dex2oat fails, installd will remove the oat files causing the app |
| // to fallback to apk with possible in-memory extraction. We want to avoid |
| // that, and thus we're lenient towards profile corruptions. |
| if (dex2oat->DoProfileGuidedOptimizations()) { |
| dex2oat->VerifyProfileData(); |
| } |
| |
| // Helps debugging on device. Can be used to determine which dalvikvm instance invoked a dex2oat |
| // instance. Used by tools/bisection_search/bisection_search.py. |
| VLOG(compiler) << "Running dex2oat (parent PID = " << getppid() << ")"; |
| |
| dex2oat::ReturnCode result = DoCompilation(*dex2oat); |
| |
| return result; |
| } |
| } // namespace art |
| |
| int main(int argc, char** argv) { |
| int result = static_cast<int>(art::Dex2oat(argc, argv)); |
| // Everything was done, do an explicit exit here to avoid running Runtime destructors that take |
| // time (bug 10645725) unless we're a debug or instrumented build or running on a memory tool. |
| // Note: The Dex2Oat class should not destruct the runtime in this case. |
| if (!art::kIsDebugBuild && !art::kIsPGOInstrumentation && !art::kRunningOnMemoryTool) { |
| art::FastExit(result); |
| } |
| return result; |
| } |