| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "thread.h" |
| |
| #include <limits.h> // for INT_MAX |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdlib.h> |
| #include <sys/resource.h> |
| #include <sys/time.h> |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <bitset> |
| #include <cerrno> |
| #include <iostream> |
| #include <list> |
| #include <optional> |
| #include <sstream> |
| |
| #include "android-base/file.h" |
| #include "android-base/stringprintf.h" |
| #include "android-base/strings.h" |
| |
| #include "unwindstack/AndroidUnwinder.h" |
| |
| #include "arch/context-inl.h" |
| #include "arch/context.h" |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/atomic.h" |
| #include "base/bit_utils.h" |
| #include "base/casts.h" |
| #include "base/file_utils.h" |
| #include "base/memory_tool.h" |
| #include "base/mutex.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "base/timing_logger.h" |
| #include "base/to_str.h" |
| #include "base/utils.h" |
| #include "class_linker-inl.h" |
| #include "class_root-inl.h" |
| #include "debugger.h" |
| #include "dex/descriptors_names.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_annotations.h" |
| #include "dex/dex_file_types.h" |
| #include "entrypoints/entrypoint_utils.h" |
| #include "entrypoints/quick/quick_alloc_entrypoints.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap-inl.h" |
| #include "gc/allocator/rosalloc.h" |
| #include "gc/heap.h" |
| #include "gc/space/space-inl.h" |
| #include "gc_root.h" |
| #include "handle_scope-inl.h" |
| #include "indirect_reference_table-inl.h" |
| #include "instrumentation.h" |
| #include "intern_table.h" |
| #include "interpreter/interpreter.h" |
| #include "interpreter/shadow_frame-inl.h" |
| #include "java_frame_root_info.h" |
| #include "jni/java_vm_ext.h" |
| #include "jni/jni_internal.h" |
| #include "mirror/class-alloc-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/object_array-alloc-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/stack_frame_info.h" |
| #include "mirror/stack_trace_element.h" |
| #include "monitor.h" |
| #include "monitor_objects_stack_visitor.h" |
| #include "native_stack_dump.h" |
| #include "nativehelper/scoped_local_ref.h" |
| #include "nativehelper/scoped_utf_chars.h" |
| #include "nterp_helpers.h" |
| #include "nth_caller_visitor.h" |
| #include "oat/oat_quick_method_header.h" |
| #include "oat/stack_map.h" |
| #include "obj_ptr-inl.h" |
| #include "object_lock.h" |
| #include "palette/palette.h" |
| #include "quick/quick_method_frame_info.h" |
| #include "quick_exception_handler.h" |
| #include "read_barrier-inl.h" |
| #include "reflection.h" |
| #include "reflective_handle_scope-inl.h" |
| #include "runtime-inl.h" |
| #include "runtime.h" |
| #include "runtime_callbacks.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "scoped_disable_public_sdk_checker.h" |
| #include "stack.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| #include "trace.h" |
| #include "verify_object.h" |
| #include "well_known_classes-inl.h" |
| |
| #ifdef ART_TARGET_ANDROID |
| #include <android/set_abort_message.h> |
| #endif |
| |
| #if ART_USE_FUTEXES |
| #include "linux/futex.h" |
| #include "sys/syscall.h" |
| #ifndef SYS_futex |
| #define SYS_futex __NR_futex |
| #endif |
| #endif // ART_USE_FUTEXES |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic error "-Wconversion" |
| |
| extern "C" __attribute__((weak)) void* __hwasan_tag_pointer(const volatile void* p, |
| unsigned char tag); |
| |
| namespace art HIDDEN { |
| |
| using android::base::StringAppendV; |
| using android::base::StringPrintf; |
| |
| extern "C" NO_RETURN void artDeoptimize(Thread* self, bool skip_method_exit_callbacks); |
| |
| bool Thread::is_started_ = false; |
| pthread_key_t Thread::pthread_key_self_; |
| ConditionVariable* Thread::resume_cond_ = nullptr; |
| const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA); |
| bool (*Thread::is_sensitive_thread_hook_)() = nullptr; |
| Thread* Thread::jit_sensitive_thread_ = nullptr; |
| std::atomic<Mutex*> Thread::cp_placeholder_mutex_(nullptr); |
| #ifndef __BIONIC__ |
| thread_local Thread* Thread::self_tls_ = nullptr; |
| #endif |
| |
| static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild; |
| |
| static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; |
| |
| void Thread::InitCardTable() { |
| tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); |
| } |
| |
| static void UnimplementedEntryPoint() { |
| UNIMPLEMENTED(FATAL); |
| } |
| |
| void InitEntryPoints(JniEntryPoints* jpoints, |
| QuickEntryPoints* qpoints, |
| bool monitor_jni_entry_exit); |
| void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active); |
| |
| void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) { |
| CHECK(gUseReadBarrier); |
| tls32_.is_gc_marking = is_marking; |
| UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking); |
| } |
| |
| void Thread::InitTlsEntryPoints() { |
| ScopedTrace trace("InitTlsEntryPoints"); |
| // Insert a placeholder so we can easily tell if we call an unimplemented entry point. |
| uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints); |
| uintptr_t* end = reinterpret_cast<uintptr_t*>( |
| reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints)); |
| for (uintptr_t* it = begin; it != end; ++it) { |
| *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); |
| } |
| bool monitor_jni_entry_exit = false; |
| PaletteShouldReportJniInvocations(&monitor_jni_entry_exit); |
| if (monitor_jni_entry_exit) { |
| AtomicSetFlag(ThreadFlag::kMonitorJniEntryExit); |
| } |
| InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints, monitor_jni_entry_exit); |
| } |
| |
| void Thread::ResetQuickAllocEntryPointsForThread() { |
| ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints); |
| } |
| |
| class DeoptimizationContextRecord { |
| public: |
| DeoptimizationContextRecord(const JValue& ret_val, |
| bool is_reference, |
| bool from_code, |
| ObjPtr<mirror::Throwable> pending_exception, |
| DeoptimizationMethodType method_type, |
| DeoptimizationContextRecord* link) |
| : ret_val_(ret_val), |
| is_reference_(is_reference), |
| from_code_(from_code), |
| pending_exception_(pending_exception.Ptr()), |
| deopt_method_type_(method_type), |
| link_(link) {} |
| |
| JValue GetReturnValue() const { return ret_val_; } |
| bool IsReference() const { return is_reference_; } |
| bool GetFromCode() const { return from_code_; } |
| ObjPtr<mirror::Throwable> GetPendingException() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| return pending_exception_; |
| } |
| DeoptimizationContextRecord* GetLink() const { return link_; } |
| mirror::Object** GetReturnValueAsGCRoot() { |
| DCHECK(is_reference_); |
| return ret_val_.GetGCRoot(); |
| } |
| mirror::Object** GetPendingExceptionAsGCRoot() { |
| return reinterpret_cast<mirror::Object**>(&pending_exception_); |
| } |
| DeoptimizationMethodType GetDeoptimizationMethodType() const { |
| return deopt_method_type_; |
| } |
| |
| private: |
| // The value returned by the method at the top of the stack before deoptimization. |
| JValue ret_val_; |
| |
| // Indicates whether the returned value is a reference. If so, the GC will visit it. |
| const bool is_reference_; |
| |
| // Whether the context was created from an explicit deoptimization in the code. |
| const bool from_code_; |
| |
| // The exception that was pending before deoptimization (or null if there was no pending |
| // exception). |
| mirror::Throwable* pending_exception_; |
| |
| // Whether the context was created for an (idempotent) runtime method. |
| const DeoptimizationMethodType deopt_method_type_; |
| |
| // A link to the previous DeoptimizationContextRecord. |
| DeoptimizationContextRecord* const link_; |
| |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord); |
| }; |
| |
| class StackedShadowFrameRecord { |
| public: |
| StackedShadowFrameRecord(ShadowFrame* shadow_frame, |
| StackedShadowFrameType type, |
| StackedShadowFrameRecord* link) |
| : shadow_frame_(shadow_frame), |
| type_(type), |
| link_(link) {} |
| |
| ShadowFrame* GetShadowFrame() const { return shadow_frame_; } |
| StackedShadowFrameType GetType() const { return type_; } |
| StackedShadowFrameRecord* GetLink() const { return link_; } |
| |
| private: |
| ShadowFrame* const shadow_frame_; |
| const StackedShadowFrameType type_; |
| StackedShadowFrameRecord* const link_; |
| |
| DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord); |
| }; |
| |
| void Thread::PushDeoptimizationContext(const JValue& return_value, |
| bool is_reference, |
| ObjPtr<mirror::Throwable> exception, |
| bool from_code, |
| DeoptimizationMethodType method_type) { |
| DCHECK(exception != Thread::GetDeoptimizationException()); |
| DeoptimizationContextRecord* record = new DeoptimizationContextRecord( |
| return_value, |
| is_reference, |
| from_code, |
| exception, |
| method_type, |
| tlsPtr_.deoptimization_context_stack); |
| tlsPtr_.deoptimization_context_stack = record; |
| } |
| |
| void Thread::PopDeoptimizationContext(JValue* result, |
| ObjPtr<mirror::Throwable>* exception, |
| bool* from_code, |
| DeoptimizationMethodType* method_type) { |
| AssertHasDeoptimizationContext(); |
| DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; |
| tlsPtr_.deoptimization_context_stack = record->GetLink(); |
| result->SetJ(record->GetReturnValue().GetJ()); |
| *exception = record->GetPendingException(); |
| *from_code = record->GetFromCode(); |
| *method_type = record->GetDeoptimizationMethodType(); |
| delete record; |
| } |
| |
| void Thread::AssertHasDeoptimizationContext() { |
| CHECK(tlsPtr_.deoptimization_context_stack != nullptr) |
| << "No deoptimization context for thread " << *this; |
| } |
| |
| enum { |
| kPermitAvailable = 0, // Incrementing consumes the permit |
| kNoPermit = 1, // Incrementing marks as waiter waiting |
| kNoPermitWaiterWaiting = 2 |
| }; |
| |
| void Thread::Park(bool is_absolute, int64_t time) { |
| DCHECK(this == Thread::Current()); |
| #if ART_USE_FUTEXES |
| // Consume the permit, or mark as waiting. This cannot cause park_state to go |
| // outside of its valid range (0, 1, 2), because in all cases where 2 is |
| // assigned it is set back to 1 before returning, and this method cannot run |
| // concurrently with itself since it operates on the current thread. |
| int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed); |
| if (old_state == kNoPermit) { |
| // no permit was available. block thread until later. |
| Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time); |
| bool timed_out = false; |
| if (!is_absolute && time == 0) { |
| // Thread.getState() is documented to return waiting for untimed parks. |
| ScopedThreadSuspension sts(this, ThreadState::kWaiting); |
| DCHECK_EQ(NumberOfHeldMutexes(), 0u); |
| int result = futex(tls32_.park_state_.Address(), |
| FUTEX_WAIT_PRIVATE, |
| /* sleep if val = */ kNoPermitWaiterWaiting, |
| /* timeout */ nullptr, |
| nullptr, |
| 0); |
| // This errno check must happen before the scope is closed, to ensure that |
| // no destructors (such as ScopedThreadSuspension) overwrite errno. |
| if (result == -1) { |
| switch (errno) { |
| case EAGAIN: |
| FALLTHROUGH_INTENDED; |
| case EINTR: break; // park() is allowed to spuriously return |
| default: PLOG(FATAL) << "Failed to park"; |
| } |
| } |
| } else if (time > 0) { |
| // Only actually suspend and futex_wait if we're going to wait for some |
| // positive amount of time - the kernel will reject negative times with |
| // EINVAL, and a zero time will just noop. |
| |
| // Thread.getState() is documented to return timed wait for timed parks. |
| ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting); |
| DCHECK_EQ(NumberOfHeldMutexes(), 0u); |
| timespec timespec; |
| int result = 0; |
| if (is_absolute) { |
| // Time is millis when scheduled for an absolute time |
| timespec.tv_nsec = (time % 1000) * 1000000; |
| timespec.tv_sec = SaturatedTimeT(time / 1000); |
| // This odd looking pattern is recommended by futex documentation to |
| // wait until an absolute deadline, with otherwise identical behavior to |
| // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the |
| // correct time when the system clock changes. |
| result = futex(tls32_.park_state_.Address(), |
| FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME, |
| /* sleep if val = */ kNoPermitWaiterWaiting, |
| ×pec, |
| nullptr, |
| static_cast<int>(FUTEX_BITSET_MATCH_ANY)); |
| } else { |
| // Time is nanos when scheduled for a relative time |
| timespec.tv_sec = SaturatedTimeT(time / 1000000000); |
| timespec.tv_nsec = time % 1000000000; |
| result = futex(tls32_.park_state_.Address(), |
| FUTEX_WAIT_PRIVATE, |
| /* sleep if val = */ kNoPermitWaiterWaiting, |
| ×pec, |
| nullptr, |
| 0); |
| } |
| // This errno check must happen before the scope is closed, to ensure that |
| // no destructors (such as ScopedThreadSuspension) overwrite errno. |
| if (result == -1) { |
| switch (errno) { |
| case ETIMEDOUT: |
| timed_out = true; |
| FALLTHROUGH_INTENDED; |
| case EAGAIN: |
| case EINTR: break; // park() is allowed to spuriously return |
| default: PLOG(FATAL) << "Failed to park"; |
| } |
| } |
| } |
| // Mark as no longer waiting, and consume permit if there is one. |
| tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed); |
| // TODO: Call to signal jvmti here |
| Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out); |
| } else { |
| // the fetch_add has consumed the permit. immediately return. |
| DCHECK_EQ(old_state, kPermitAvailable); |
| } |
| #else |
| #pragma clang diagnostic push |
| #pragma clang diagnostic warning "-W#warnings" |
| #warning "LockSupport.park/unpark implemented as noops without FUTEX support." |
| #pragma clang diagnostic pop |
| UNUSED(is_absolute, time); |
| UNIMPLEMENTED(WARNING); |
| sched_yield(); |
| #endif |
| } |
| |
| void Thread::Unpark() { |
| #if ART_USE_FUTEXES |
| // Set permit available; will be consumed either by fetch_add (when the thread |
| // tries to park) or store (when the parked thread is woken up) |
| if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed) |
| == kNoPermitWaiterWaiting) { |
| int result = futex(tls32_.park_state_.Address(), |
| FUTEX_WAKE_PRIVATE, |
| /* number of waiters = */ 1, |
| nullptr, |
| nullptr, |
| 0); |
| if (result == -1) { |
| PLOG(FATAL) << "Failed to unpark"; |
| } |
| } |
| #else |
| UNIMPLEMENTED(WARNING); |
| #endif |
| } |
| |
| void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) { |
| StackedShadowFrameRecord* record = new StackedShadowFrameRecord( |
| sf, type, tlsPtr_.stacked_shadow_frame_record); |
| tlsPtr_.stacked_shadow_frame_record = record; |
| } |
| |
| ShadowFrame* Thread::MaybePopDeoptimizedStackedShadowFrame() { |
| StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; |
| if (record == nullptr || |
| record->GetType() != StackedShadowFrameType::kDeoptimizationShadowFrame) { |
| return nullptr; |
| } |
| return PopStackedShadowFrame(); |
| } |
| |
| ShadowFrame* Thread::PopStackedShadowFrame() { |
| StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; |
| DCHECK_NE(record, nullptr); |
| tlsPtr_.stacked_shadow_frame_record = record->GetLink(); |
| ShadowFrame* shadow_frame = record->GetShadowFrame(); |
| delete record; |
| return shadow_frame; |
| } |
| |
| class FrameIdToShadowFrame { |
| public: |
| static FrameIdToShadowFrame* Create(size_t frame_id, |
| ShadowFrame* shadow_frame, |
| FrameIdToShadowFrame* next, |
| size_t num_vregs) { |
| // Append a bool array at the end to keep track of what vregs are updated by the debugger. |
| uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs]; |
| return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next); |
| } |
| |
| static void Delete(FrameIdToShadowFrame* f) { |
| uint8_t* memory = reinterpret_cast<uint8_t*>(f); |
| delete[] memory; |
| } |
| |
| size_t GetFrameId() const { return frame_id_; } |
| ShadowFrame* GetShadowFrame() const { return shadow_frame_; } |
| FrameIdToShadowFrame* GetNext() const { return next_; } |
| void SetNext(FrameIdToShadowFrame* next) { next_ = next; } |
| bool* GetUpdatedVRegFlags() { |
| return updated_vreg_flags_; |
| } |
| |
| private: |
| FrameIdToShadowFrame(size_t frame_id, |
| ShadowFrame* shadow_frame, |
| FrameIdToShadowFrame* next) |
| : frame_id_(frame_id), |
| shadow_frame_(shadow_frame), |
| next_(next) {} |
| |
| const size_t frame_id_; |
| ShadowFrame* const shadow_frame_; |
| FrameIdToShadowFrame* next_; |
| bool updated_vreg_flags_[0]; |
| |
| DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame); |
| }; |
| |
| static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head, |
| size_t frame_id) { |
| FrameIdToShadowFrame* found = nullptr; |
| for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) { |
| if (record->GetFrameId() == frame_id) { |
| if (kIsDebugBuild) { |
| // Check we have at most one record for this frame. |
| CHECK(found == nullptr) << "Multiple records for the frame " << frame_id; |
| found = record; |
| } else { |
| return record; |
| } |
| } |
| } |
| return found; |
| } |
| |
| ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) { |
| FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( |
| tlsPtr_.frame_id_to_shadow_frame, frame_id); |
| if (record != nullptr) { |
| return record->GetShadowFrame(); |
| } |
| return nullptr; |
| } |
| |
| // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr. |
| bool* Thread::GetUpdatedVRegFlags(size_t frame_id) { |
| FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( |
| tlsPtr_.frame_id_to_shadow_frame, frame_id); |
| CHECK(record != nullptr); |
| return record->GetUpdatedVRegFlags(); |
| } |
| |
| ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id, |
| uint32_t num_vregs, |
| ArtMethod* method, |
| uint32_t dex_pc) { |
| ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id); |
| if (shadow_frame != nullptr) { |
| return shadow_frame; |
| } |
| VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method); |
| shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, method, dex_pc); |
| FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id, |
| shadow_frame, |
| tlsPtr_.frame_id_to_shadow_frame, |
| num_vregs); |
| for (uint32_t i = 0; i < num_vregs; i++) { |
| // Do this to clear all references for root visitors. |
| shadow_frame->SetVRegReference(i, nullptr); |
| // This flag will be changed to true if the debugger modifies the value. |
| record->GetUpdatedVRegFlags()[i] = false; |
| } |
| tlsPtr_.frame_id_to_shadow_frame = record; |
| return shadow_frame; |
| } |
| |
| TLSData* Thread::GetCustomTLS(const char* key) { |
| MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_); |
| auto it = custom_tls_.find(key); |
| return (it != custom_tls_.end()) ? it->second.get() : nullptr; |
| } |
| |
| void Thread::SetCustomTLS(const char* key, TLSData* data) { |
| // We will swap the old data (which might be nullptr) with this and then delete it outside of the |
| // custom_tls_lock_. |
| std::unique_ptr<TLSData> old_data(data); |
| { |
| MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_); |
| custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data); |
| } |
| } |
| |
| void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) { |
| FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame; |
| if (head->GetFrameId() == frame_id) { |
| tlsPtr_.frame_id_to_shadow_frame = head->GetNext(); |
| FrameIdToShadowFrame::Delete(head); |
| return; |
| } |
| FrameIdToShadowFrame* prev = head; |
| for (FrameIdToShadowFrame* record = head->GetNext(); |
| record != nullptr; |
| prev = record, record = record->GetNext()) { |
| if (record->GetFrameId() == frame_id) { |
| prev->SetNext(record->GetNext()); |
| FrameIdToShadowFrame::Delete(record); |
| return; |
| } |
| } |
| LOG(FATAL) << "No shadow frame for frame " << frame_id; |
| UNREACHABLE(); |
| } |
| |
| void Thread::InitTid() { |
| tls32_.tid = ::art::GetTid(); |
| } |
| |
| void Thread::InitAfterFork() { |
| // One thread (us) survived the fork, but we have a new tid so we need to |
| // update the value stashed in this Thread*. |
| InitTid(); |
| } |
| |
| void Thread::DeleteJPeer(JNIEnv* env) { |
| // Make sure nothing can observe both opeer and jpeer set at the same time. |
| jobject old_jpeer = tlsPtr_.jpeer; |
| CHECK(old_jpeer != nullptr); |
| tlsPtr_.jpeer = nullptr; |
| env->DeleteGlobalRef(old_jpeer); |
| } |
| |
| void* Thread::CreateCallbackWithUffdGc(void* arg) { |
| return Thread::CreateCallback(arg); |
| } |
| |
| void* Thread::CreateCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| Runtime* runtime = Runtime::Current(); |
| if (runtime == nullptr) { |
| LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; |
| return nullptr; |
| } |
| { |
| // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true |
| // after self->Init(). |
| MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); |
| // Check that if we got here we cannot be shutting down (as shutdown should never have started |
| // while threads are being born). |
| CHECK(!runtime->IsShuttingDownLocked()); |
| // Note: given that the JNIEnv is created in the parent thread, the only failure point here is |
| // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort |
| // the runtime in such a case. In case this ever changes, we need to make sure here to |
| // delete the tmp_jni_env, as we own it at this point. |
| CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env)); |
| self->tlsPtr_.tmp_jni_env = nullptr; |
| Runtime::Current()->EndThreadBirth(); |
| } |
| { |
| ScopedObjectAccess soa(self); |
| self->InitStringEntryPoints(); |
| |
| // Copy peer into self, deleting global reference when done. |
| CHECK(self->tlsPtr_.jpeer != nullptr); |
| self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr(); |
| // Make sure nothing can observe both opeer and jpeer set at the same time. |
| self->DeleteJPeer(self->GetJniEnv()); |
| self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str()); |
| |
| ArtField* priorityField = WellKnownClasses::java_lang_Thread_priority; |
| self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer)); |
| |
| runtime->GetRuntimeCallbacks()->ThreadStart(self); |
| |
| // Unpark ourselves if the java peer was unparked before it started (see |
| // b/28845097#comment49 for more information) |
| |
| ArtField* unparkedField = WellKnownClasses::java_lang_Thread_unparkedBeforeStart; |
| bool should_unpark = false; |
| { |
| // Hold the lock here, so that if another thread calls unpark before the thread starts |
| // we don't observe the unparkedBeforeStart field before the unparker writes to it, |
| // which could cause a lost unpark. |
| art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_); |
| should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE; |
| } |
| if (should_unpark) { |
| self->Unpark(); |
| } |
| // Invoke the 'run' method of our java.lang.Thread. |
| ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer; |
| WellKnownClasses::java_lang_Thread_run->InvokeVirtual<'V'>(self, receiver); |
| } |
| // Detach and delete self. |
| Runtime::Current()->GetThreadList()->Unregister(self, /* should_run_callbacks= */ true); |
| |
| return nullptr; |
| } |
| |
| Thread* Thread::FromManagedThread(Thread* self, ObjPtr<mirror::Object> thread_peer) { |
| ArtField* f = WellKnownClasses::java_lang_Thread_nativePeer; |
| Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer)); |
| // Check that if we have a result it is either suspended or we hold the thread_list_lock_ |
| // to stop it from going away. |
| if (kIsDebugBuild) { |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| if (result != nullptr && !result->IsSuspended()) { |
| Locks::thread_list_lock_->AssertHeld(self); |
| } |
| } |
| return result; |
| } |
| |
| Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, |
| jobject java_thread) { |
| return FromManagedThread(soa.Self(), soa.Decode<mirror::Object>(java_thread)); |
| } |
| |
| static size_t FixStackSize(size_t stack_size) { |
| // A stack size of zero means "use the default". |
| if (stack_size == 0) { |
| stack_size = Runtime::Current()->GetDefaultStackSize(); |
| } |
| |
| // Dalvik used the bionic pthread default stack size for native threads, |
| // so include that here to support apps that expect large native stacks. |
| stack_size += 1 * MB; |
| |
| // Under sanitization, frames of the interpreter may become bigger, both for C code as |
| // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization |
| // of all core classes cannot be done in all test circumstances. |
| if (kMemoryToolIsAvailable) { |
| stack_size = std::max(2 * MB, stack_size); |
| } |
| |
| // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. |
| if (stack_size < PTHREAD_STACK_MIN) { |
| stack_size = PTHREAD_STACK_MIN; |
| } |
| |
| if (Runtime::Current()->GetImplicitStackOverflowChecks()) { |
| // If we are going to use implicit stack checks, allocate space for the protected |
| // region at the bottom of the stack. |
| stack_size += Thread::kStackOverflowImplicitCheckSize + |
| GetStackOverflowReservedBytes(kRuntimeISA); |
| } else { |
| // It's likely that callers are trying to ensure they have at least a certain amount of |
| // stack space, so we should add our reserved space on top of what they requested, rather |
| // than implicitly take it away from them. |
| stack_size += GetStackOverflowReservedBytes(kRuntimeISA); |
| } |
| |
| // Some systems require the stack size to be a multiple of the system page size, so round up. |
| stack_size = RoundUp(stack_size, gPageSize); |
| |
| return stack_size; |
| } |
| |
| // Return the nearest page-aligned address below the current stack top. |
| NO_INLINE |
| static uint8_t* FindStackTop() { |
| return reinterpret_cast<uint8_t*>( |
| AlignDown(__builtin_frame_address(0), gPageSize)); |
| } |
| |
| // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack |
| // overflow is detected. It is located right below the stack_begin_. |
| ATTRIBUTE_NO_SANITIZE_ADDRESS |
| void Thread::InstallImplicitProtection() { |
| uint8_t* pregion = tlsPtr_.stack_begin - GetStackOverflowProtectedSize(); |
| // Page containing current top of stack. |
| uint8_t* stack_top = FindStackTop(); |
| |
| // Try to directly protect the stack. |
| VLOG(threads) << "installing stack protected region at " << std::hex << |
| static_cast<void*>(pregion) << " to " << |
| static_cast<void*>(pregion + GetStackOverflowProtectedSize() - 1); |
| if (ProtectStack(/* fatal_on_error= */ false)) { |
| // Tell the kernel that we won't be needing these pages any more. |
| // NB. madvise will probably write zeroes into the memory (on linux it does). |
| size_t unwanted_size = |
| reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - gPageSize; |
| madvise(pregion, unwanted_size, MADV_DONTNEED); |
| return; |
| } |
| |
| // There is a little complexity here that deserves a special mention. On some |
| // architectures, the stack is created using a VM_GROWSDOWN flag |
| // to prevent memory being allocated when it's not needed. This flag makes the |
| // kernel only allocate memory for the stack by growing down in memory. Because we |
| // want to put an mprotected region far away from that at the stack top, we need |
| // to make sure the pages for the stack are mapped in before we call mprotect. |
| // |
| // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN |
| // with a non-mapped stack (usually only the main thread). |
| // |
| // We map in the stack by reading every page from the stack bottom (highest address) |
| // to the stack top. (We then madvise this away.) This must be done by reading from the |
| // current stack pointer downwards. |
| // |
| // Accesses too far below the current machine register corresponding to the stack pointer (e.g., |
| // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We |
| // thus have to move the stack pointer. We do this portably by using a recursive function with a |
| // large stack frame size. |
| |
| // (Defensively) first remove the protection on the protected region as we'll want to read |
| // and write it. Ignore errors. |
| UnprotectStack(); |
| |
| VLOG(threads) << "Need to map in stack for thread at " << std::hex << |
| static_cast<void*>(pregion); |
| |
| struct RecurseDownStack { |
| // This function has an intentionally large stack size. |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wframe-larger-than=" |
| NO_INLINE |
| __attribute__((no_sanitize("memtag"))) static void Touch(uintptr_t target) { |
| volatile size_t zero = 0; |
| // Use a large local volatile array to ensure a large frame size. Do not use anything close |
| // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but |
| // there is no pragma support for this. |
| // Note: for ASAN we need to shrink the array a bit, as there's other overhead. |
| constexpr size_t kAsanMultiplier = |
| #ifdef ADDRESS_SANITIZER |
| 2u; |
| #else |
| 1u; |
| #endif |
| // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually |
| // auto-initialize this local variable). |
| volatile char space[gPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized)); |
| [[maybe_unused]] char sink = space[zero]; |
| // Remove tag from the pointer. Nop in non-hwasan builds. |
| uintptr_t addr = reinterpret_cast<uintptr_t>( |
| __hwasan_tag_pointer != nullptr ? __hwasan_tag_pointer(space, 0) : space); |
| if (addr >= target + gPageSize) { |
| Touch(target); |
| } |
| zero *= 2; // Try to avoid tail recursion. |
| } |
| #pragma GCC diagnostic pop |
| }; |
| RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion)); |
| |
| VLOG(threads) << "(again) installing stack protected region at " << std::hex << |
| static_cast<void*>(pregion) << " to " << |
| static_cast<void*>(pregion + GetStackOverflowProtectedSize() - 1); |
| |
| // Protect the bottom of the stack to prevent read/write to it. |
| ProtectStack(/* fatal_on_error= */ true); |
| |
| // Tell the kernel that we won't be needing these pages any more. |
| // NB. madvise will probably write zeroes into the memory (on linux it does). |
| size_t unwanted_size = |
| reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - gPageSize; |
| madvise(pregion, unwanted_size, MADV_DONTNEED); |
| } |
| |
| template <bool kSupportTransaction> |
| static void SetNativePeer(ObjPtr<mirror::Object> java_peer, Thread* thread) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtField* field = WellKnownClasses::java_lang_Thread_nativePeer; |
| if (kSupportTransaction && Runtime::Current()->IsActiveTransaction()) { |
| field->SetLong</*kTransactionActive=*/ true>(java_peer, reinterpret_cast<jlong>(thread)); |
| } else { |
| field->SetLong</*kTransactionActive=*/ false>(java_peer, reinterpret_cast<jlong>(thread)); |
| } |
| } |
| |
| static void SetNativePeer(JNIEnv* env, jobject java_peer, Thread* thread) { |
| ScopedObjectAccess soa(env); |
| SetNativePeer</*kSupportTransaction=*/ false>(soa.Decode<mirror::Object>(java_peer), thread); |
| } |
| |
| void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { |
| CHECK(java_peer != nullptr); |
| Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf(); |
| |
| if (VLOG_IS_ON(threads)) { |
| ScopedObjectAccess soa(env); |
| |
| ArtField* f = WellKnownClasses::java_lang_Thread_name; |
| ObjPtr<mirror::String> java_name = |
| f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString(); |
| std::string thread_name; |
| if (java_name != nullptr) { |
| thread_name = java_name->ToModifiedUtf8(); |
| } else { |
| thread_name = "(Unnamed)"; |
| } |
| |
| VLOG(threads) << "Creating native thread for " << thread_name; |
| self->Dump(LOG_STREAM(INFO)); |
| } |
| |
| Runtime* runtime = Runtime::Current(); |
| |
| // Atomically start the birth of the thread ensuring the runtime isn't shutting down. |
| bool thread_start_during_shutdown = false; |
| { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| if (runtime->IsShuttingDownLocked()) { |
| thread_start_during_shutdown = true; |
| } else { |
| runtime->StartThreadBirth(); |
| } |
| } |
| if (thread_start_during_shutdown) { |
| ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); |
| env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); |
| return; |
| } |
| |
| Thread* child_thread = new Thread(is_daemon); |
| // Use global JNI ref to hold peer live while child thread starts. |
| child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); |
| stack_size = FixStackSize(stack_size); |
| |
| // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing |
| // to assign it. |
| SetNativePeer(env, java_peer, child_thread); |
| |
| // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and |
| // do not have a good way to report this on the child's side. |
| std::string error_msg; |
| std::unique_ptr<JNIEnvExt> child_jni_env_ext( |
| JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg)); |
| |
| int pthread_create_result = 0; |
| if (child_jni_env_ext.get() != nullptr) { |
| pthread_t new_pthread; |
| pthread_attr_t attr; |
| child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get(); |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); |
| CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), |
| "PTHREAD_CREATE_DETACHED"); |
| CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); |
| pthread_create_result = pthread_create(&new_pthread, |
| &attr, |
| gUseUserfaultfd ? Thread::CreateCallbackWithUffdGc |
| : Thread::CreateCallback, |
| child_thread); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); |
| |
| if (pthread_create_result == 0) { |
| // pthread_create started the new thread. The child is now responsible for managing the |
| // JNIEnvExt we created. |
| // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization |
| // between the threads. |
| child_jni_env_ext.release(); // NOLINT pthreads API. |
| return; |
| } |
| } |
| |
| // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up. |
| { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| runtime->EndThreadBirth(); |
| } |
| // Manually delete the global reference since Thread::Init will not have been run. Make sure |
| // nothing can observe both opeer and jpeer set at the same time. |
| child_thread->DeleteJPeer(env); |
| delete child_thread; |
| child_thread = nullptr; |
| // TODO: remove from thread group? |
| SetNativePeer(env, java_peer, nullptr); |
| { |
| std::string msg(child_jni_env_ext.get() == nullptr ? |
| StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) : |
| StringPrintf("pthread_create (%s stack) failed: %s", |
| PrettySize(stack_size).c_str(), strerror(pthread_create_result))); |
| ScopedObjectAccess soa(env); |
| soa.Self()->ThrowOutOfMemoryError(msg.c_str()); |
| } |
| } |
| |
| bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) { |
| // This function does all the initialization that must be run by the native thread it applies to. |
| // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so |
| // we can handshake with the corresponding native thread when it's ready.) Check this native |
| // thread hasn't been through here already... |
| CHECK(Thread::Current() == nullptr); |
| |
| // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this |
| // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). |
| tlsPtr_.pthread_self = pthread_self(); |
| CHECK(is_started_); |
| |
| ScopedTrace trace("Thread::Init"); |
| |
| SetUpAlternateSignalStack(); |
| if (!InitStackHwm()) { |
| return false; |
| } |
| InitCpu(); |
| InitTlsEntryPoints(); |
| RemoveSuspendTrigger(); |
| InitCardTable(); |
| InitTid(); |
| |
| #ifdef __BIONIC__ |
| __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this; |
| #else |
| CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); |
| Thread::self_tls_ = this; |
| #endif |
| DCHECK_EQ(Thread::Current(), this); |
| |
| tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); |
| |
| if (jni_env_ext != nullptr) { |
| DCHECK_EQ(jni_env_ext->GetVm(), java_vm); |
| DCHECK_EQ(jni_env_ext->GetSelf(), this); |
| tlsPtr_.jni_env = jni_env_ext; |
| } else { |
| std::string error_msg; |
| tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg); |
| if (tlsPtr_.jni_env == nullptr) { |
| LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg; |
| return false; |
| } |
| } |
| |
| ScopedTrace trace3("ThreadList::Register"); |
| thread_list->Register(this); |
| return true; |
| } |
| |
| template <typename PeerAction> |
| Thread* Thread::Attach(const char* thread_name, |
| bool as_daemon, |
| PeerAction peer_action, |
| bool should_run_callbacks) { |
| Runtime* runtime = Runtime::Current(); |
| ScopedTrace trace("Thread::Attach"); |
| if (runtime == nullptr) { |
| LOG(ERROR) << "Thread attaching to non-existent runtime: " << |
| ((thread_name != nullptr) ? thread_name : "(Unnamed)"); |
| return nullptr; |
| } |
| Thread* self; |
| { |
| ScopedTrace trace2("Thread birth"); |
| MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); |
| if (runtime->IsShuttingDownLocked()) { |
| LOG(WARNING) << "Thread attaching while runtime is shutting down: " << |
| ((thread_name != nullptr) ? thread_name : "(Unnamed)"); |
| return nullptr; |
| } else { |
| Runtime::Current()->StartThreadBirth(); |
| self = new Thread(as_daemon); |
| bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); |
| Runtime::Current()->EndThreadBirth(); |
| if (!init_success) { |
| delete self; |
| return nullptr; |
| } |
| } |
| } |
| |
| self->InitStringEntryPoints(); |
| |
| CHECK_NE(self->GetState(), ThreadState::kRunnable); |
| self->SetState(ThreadState::kNative); |
| |
| // Run the action that is acting on the peer. |
| if (!peer_action(self)) { |
| runtime->GetThreadList()->Unregister(self, should_run_callbacks); |
| // Unregister deletes self, no need to do this here. |
| return nullptr; |
| } |
| |
| if (VLOG_IS_ON(threads)) { |
| if (thread_name != nullptr) { |
| VLOG(threads) << "Attaching thread " << thread_name; |
| } else { |
| VLOG(threads) << "Attaching unnamed thread."; |
| } |
| ScopedObjectAccess soa(self); |
| self->Dump(LOG_STREAM(INFO)); |
| } |
| |
| if (should_run_callbacks) { |
| ScopedObjectAccess soa(self); |
| runtime->GetRuntimeCallbacks()->ThreadStart(self); |
| } |
| |
| return self; |
| } |
| |
| Thread* Thread::Attach(const char* thread_name, |
| bool as_daemon, |
| jobject thread_group, |
| bool create_peer, |
| bool should_run_callbacks) { |
| auto create_peer_action = [&](Thread* self) { |
| // If we're the main thread, ClassLinker won't be created until after we're attached, |
| // so that thread needs a two-stage attach. Regular threads don't need this hack. |
| // In the compiler, all threads need this hack, because no-one's going to be getting |
| // a native peer! |
| if (create_peer) { |
| self->CreatePeer(thread_name, as_daemon, thread_group); |
| if (self->IsExceptionPending()) { |
| // We cannot keep the exception around, as we're deleting self. Try to be helpful and log |
| // the failure but do not dump the exception details. If we fail to allocate the peer, we |
| // usually also fail to allocate an exception object and throw a pre-allocated OOME without |
| // any useful information. If we do manage to allocate the exception object, the memory |
| // information in the message could have been collected too late and therefore misleading. |
| { |
| ScopedObjectAccess soa(self); |
| LOG(ERROR) << "Exception creating thread peer: " |
| << ((thread_name != nullptr) ? thread_name : "<null>"); |
| self->ClearException(); |
| } |
| return false; |
| } |
| } else { |
| // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. |
| if (thread_name != nullptr) { |
| self->SetCachedThreadName(thread_name); |
| ::art::SetThreadName(thread_name); |
| } else if (self->GetJniEnv()->IsCheckJniEnabled()) { |
| LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; |
| } |
| } |
| return true; |
| }; |
| return Attach(thread_name, as_daemon, create_peer_action, should_run_callbacks); |
| } |
| |
| Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) { |
| auto set_peer_action = [&](Thread* self) { |
| // Install the given peer. |
| DCHECK(self == Thread::Current()); |
| ScopedObjectAccess soa(self); |
| ObjPtr<mirror::Object> peer = soa.Decode<mirror::Object>(thread_peer); |
| self->tlsPtr_.opeer = peer.Ptr(); |
| SetNativePeer</*kSupportTransaction=*/ false>(peer, self); |
| return true; |
| }; |
| return Attach(thread_name, as_daemon, set_peer_action, /* should_run_callbacks= */ true); |
| } |
| |
| void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime->IsStarted()); |
| Thread* self = this; |
| DCHECK_EQ(self, Thread::Current()); |
| |
| ScopedObjectAccess soa(self); |
| StackHandleScope<4u> hs(self); |
| DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized()); |
| Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>( |
| thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup())); |
| Handle<mirror::String> thread_name = hs.NewHandle( |
| name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr); |
| // Add missing null check in case of OOM b/18297817 |
| if (name != nullptr && UNLIKELY(thread_name == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return; |
| } |
| jint thread_priority = GetNativePriority(); |
| |
| DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized()); |
| Handle<mirror::Object> peer = |
| hs.NewHandle(WellKnownClasses::java_lang_Thread->AllocObject(self)); |
| if (UNLIKELY(peer == nullptr)) { |
| CHECK(IsExceptionPending()); |
| return; |
| } |
| tlsPtr_.opeer = peer.Get(); |
| WellKnownClasses::java_lang_Thread_init->InvokeInstance<'V', 'L', 'L', 'I', 'Z'>( |
| self, peer.Get(), thr_group.Get(), thread_name.Get(), thread_priority, as_daemon); |
| if (self->IsExceptionPending()) { |
| return; |
| } |
| |
| SetNativePeer</*kSupportTransaction=*/ false>(peer.Get(), self); |
| |
| MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName())); |
| if (peer_thread_name == nullptr) { |
| // The Thread constructor should have set the Thread.name to a |
| // non-null value. However, because we can run without code |
| // available (in the compiler, in tests), we manually assign the |
| // fields the constructor should have set. |
| if (runtime->IsActiveTransaction()) { |
| InitPeer<true>(tlsPtr_.opeer, |
| as_daemon, |
| thr_group.Get(), |
| thread_name.Get(), |
| thread_priority); |
| } else { |
| InitPeer<false>(tlsPtr_.opeer, |
| as_daemon, |
| thr_group.Get(), |
| thread_name.Get(), |
| thread_priority); |
| } |
| peer_thread_name.Assign(GetThreadName()); |
| } |
| // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. |
| if (peer_thread_name != nullptr) { |
| SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); |
| } |
| } |
| |
| ObjPtr<mirror::Object> Thread::CreateCompileTimePeer(const char* name, |
| bool as_daemon, |
| jobject thread_group) { |
| Runtime* runtime = Runtime::Current(); |
| CHECK(!runtime->IsStarted()); |
| Thread* self = this; |
| DCHECK_EQ(self, Thread::Current()); |
| |
| ScopedObjectAccessUnchecked soa(self); |
| StackHandleScope<3u> hs(self); |
| DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized()); |
| Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>( |
| thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup())); |
| Handle<mirror::String> thread_name = hs.NewHandle( |
| name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr); |
| // Add missing null check in case of OOM b/18297817 |
| if (name != nullptr && UNLIKELY(thread_name == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return nullptr; |
| } |
| jint thread_priority = kNormThreadPriority; // Always normalize to NORM priority. |
| |
| DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized()); |
| Handle<mirror::Object> peer = hs.NewHandle( |
| WellKnownClasses::java_lang_Thread->AllocObject(self)); |
| if (peer == nullptr) { |
| CHECK(Thread::Current()->IsExceptionPending()); |
| return nullptr; |
| } |
| |
| // We cannot call Thread.init, as it will recursively ask for currentThread. |
| |
| // The Thread constructor should have set the Thread.name to a |
| // non-null value. However, because we can run without code |
| // available (in the compiler, in tests), we manually assign the |
| // fields the constructor should have set. |
| if (runtime->IsActiveTransaction()) { |
| InitPeer<true>(peer.Get(), |
| as_daemon, |
| thr_group.Get(), |
| thread_name.Get(), |
| thread_priority); |
| } else { |
| InitPeer<false>(peer.Get(), |
| as_daemon, |
| thr_group.Get(), |
| thread_name.Get(), |
| thread_priority); |
| } |
| |
| return peer.Get(); |
| } |
| |
| template<bool kTransactionActive> |
| void Thread::InitPeer(ObjPtr<mirror::Object> peer, |
| bool as_daemon, |
| ObjPtr<mirror::Object> thread_group, |
| ObjPtr<mirror::String> thread_name, |
| jint thread_priority) { |
| WellKnownClasses::java_lang_Thread_daemon->SetBoolean<kTransactionActive>(peer, |
| static_cast<uint8_t>(as_daemon ? 1u : 0u)); |
| WellKnownClasses::java_lang_Thread_group->SetObject<kTransactionActive>(peer, thread_group); |
| WellKnownClasses::java_lang_Thread_name->SetObject<kTransactionActive>(peer, thread_name); |
| WellKnownClasses::java_lang_Thread_priority->SetInt<kTransactionActive>(peer, thread_priority); |
| } |
| |
| void Thread::SetCachedThreadName(const char* name) { |
| DCHECK(name != kThreadNameDuringStartup); |
| const char* old_name = tlsPtr_.name.exchange(name == nullptr ? nullptr : strdup(name)); |
| if (old_name != nullptr && old_name != kThreadNameDuringStartup) { |
| // Deallocate it, carefully. Note that the load has to be ordered wrt the store of the xchg. |
| for (uint32_t i = 0; UNLIKELY(tls32_.num_name_readers.load(std::memory_order_seq_cst) != 0); |
| ++i) { |
| static constexpr uint32_t kNumSpins = 1000; |
| // Ugly, but keeps us from having to do anything on the reader side. |
| if (i > kNumSpins) { |
| usleep(500); |
| } |
| } |
| // We saw the reader count drop to zero since we replaced the name; old one is now safe to |
| // deallocate. |
| free(const_cast<char *>(old_name)); |
| } |
| } |
| |
| void Thread::SetThreadName(const char* name) { |
| SetCachedThreadName(name); |
| ::art::SetThreadName(name); |
| Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); |
| } |
| |
| static void GetThreadStack(pthread_t thread, |
| void** stack_base, |
| size_t* stack_size, |
| size_t* guard_size) { |
| #if defined(__APPLE__) |
| *stack_size = pthread_get_stacksize_np(thread); |
| void* stack_addr = pthread_get_stackaddr_np(thread); |
| |
| // Check whether stack_addr is the base or end of the stack. |
| // (On Mac OS 10.7, it's the end.) |
| int stack_variable; |
| if (stack_addr > &stack_variable) { |
| *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size; |
| } else { |
| *stack_base = stack_addr; |
| } |
| |
| // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac. |
| pthread_attr_t attributes; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); |
| #else |
| pthread_attr_t attributes; |
| CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); |
| |
| #if defined(__GLIBC__) |
| // If we're the main thread, check whether we were run with an unlimited stack. In that case, |
| // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection |
| // will be broken because we'll die long before we get close to 2GB. |
| bool is_main_thread = (::art::GetTid() == static_cast<uint32_t>(getpid())); |
| if (is_main_thread) { |
| rlimit stack_limit; |
| if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { |
| PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; |
| } |
| if (stack_limit.rlim_cur == RLIM_INFINITY) { |
| size_t old_stack_size = *stack_size; |
| |
| // Use the kernel default limit as our size, and adjust the base to match. |
| *stack_size = 8 * MB; |
| *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size); |
| |
| VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" |
| << " to " << PrettySize(*stack_size) |
| << " with base " << *stack_base; |
| } |
| } |
| #endif |
| |
| #endif |
| } |
| |
| bool Thread::InitStackHwm() { |
| ScopedTrace trace("InitStackHwm"); |
| void* read_stack_base; |
| size_t read_stack_size; |
| size_t read_guard_size; |
| GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size); |
| |
| tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base); |
| tlsPtr_.stack_size = read_stack_size; |
| |
| // The minimum stack size we can cope with is the protected region size + stack overflow check |
| // region size + some memory for normal stack usage. |
| // |
| // The protected region is located at the beginning (lowest address) of the stack region. |
| // Therefore, it starts at a page-aligned address. Its size should be a multiple of page sizes. |
| // Typically, it is one page in size, however this varies in some configurations. |
| // |
| // The overflow reserved bytes is size of the stack overflow check region, located right after |
| // the protected region, so also starts at a page-aligned address. The size is discretionary. |
| // Typically it is 8K, but this varies in some configurations. |
| // |
| // The rest of the stack memory is available for normal stack usage. It is located right after |
| // the stack overflow check region, so its starting address isn't necessarily page-aligned. The |
| // size of the region is discretionary, however should be chosen in a way that the overall stack |
| // size is a multiple of page sizes. Historically, it is chosen to be at least 4 KB. |
| // |
| // On systems with 4K page size, typically the minimum stack size will be 4+8+4 = 16K. |
| // The thread won't be able to do much with this stack: even the GC takes between 8K and 12K. |
| DCHECK_ALIGNED_PARAM(static_cast<size_t>(GetStackOverflowProtectedSize()), |
| static_cast<int32_t>(gPageSize)); |
| size_t min_stack = GetStackOverflowProtectedSize() + |
| RoundUp(GetStackOverflowReservedBytes(kRuntimeISA) + 4 * KB, gPageSize); |
| if (read_stack_size <= min_stack) { |
| // Note, as we know the stack is small, avoid operations that could use a lot of stack. |
| LogHelper::LogLineLowStack(__PRETTY_FUNCTION__, |
| __LINE__, |
| ::android::base::ERROR, |
| "Attempt to attach a thread with a too-small stack"); |
| return false; |
| } |
| |
| // This is included in the SIGQUIT output, but it's useful here for thread debugging. |
| VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)", |
| read_stack_base, |
| PrettySize(read_stack_size).c_str(), |
| PrettySize(read_guard_size).c_str()); |
| |
| // Set stack_end_ to the bottom of the stack saving space of stack overflows |
| |
| Runtime* runtime = Runtime::Current(); |
| bool implicit_stack_check = |
| runtime->GetImplicitStackOverflowChecks() && !runtime->IsAotCompiler(); |
| |
| ResetDefaultStackEnd(); |
| |
| // Install the protected region if we are doing implicit overflow checks. |
| if (implicit_stack_check) { |
| // The thread might have protected region at the bottom. We need |
| // to install our own region so we need to move the limits |
| // of the stack to make room for it. |
| |
| tlsPtr_.stack_begin += read_guard_size + GetStackOverflowProtectedSize(); |
| tlsPtr_.stack_end += read_guard_size + GetStackOverflowProtectedSize(); |
| tlsPtr_.stack_size -= read_guard_size + GetStackOverflowProtectedSize(); |
| |
| InstallImplicitProtection(); |
| } |
| |
| // Consistency check. |
| CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end)); |
| |
| return true; |
| } |
| |
| void Thread::ShortDump(std::ostream& os) const { |
| os << "Thread["; |
| if (GetThreadId() != 0) { |
| // If we're in kStarting, we won't have a thin lock id or tid yet. |
| os << GetThreadId() |
| << ",tid=" << GetTid() << ','; |
| } |
| tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst); |
| const char* name = tlsPtr_.name.load(); |
| os << GetState() |
| << ",Thread*=" << this |
| << ",peer=" << tlsPtr_.opeer |
| << ",\"" << (name == nullptr ? "null" : name) << "\"" |
| << "]"; |
| tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */); |
| } |
| |
| Thread::DumpOrder Thread::Dump(std::ostream& os, |
| bool dump_native_stack, |
| bool force_dump_stack) const { |
| DumpState(os); |
| return DumpStack(os, dump_native_stack, force_dump_stack); |
| } |
| |
| Thread::DumpOrder Thread::Dump(std::ostream& os, |
| unwindstack::AndroidLocalUnwinder& unwinder, |
| bool dump_native_stack, |
| bool force_dump_stack) const { |
| DumpState(os); |
| return DumpStack(os, unwinder, dump_native_stack, force_dump_stack); |
| } |
| |
| ObjPtr<mirror::String> Thread::GetThreadName() const { |
| if (tlsPtr_.opeer == nullptr) { |
| return nullptr; |
| } |
| ObjPtr<mirror::Object> name = WellKnownClasses::java_lang_Thread_name->GetObject(tlsPtr_.opeer); |
| return name == nullptr ? nullptr : name->AsString(); |
| } |
| |
| void Thread::GetThreadName(std::string& name) const { |
| tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst); |
| // The store part of the increment has to be ordered with respect to the following load. |
| const char* c_name = tlsPtr_.name.load(std::memory_order_seq_cst); |
| name.assign(c_name == nullptr ? "<no name>" : c_name); |
| tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */); |
| } |
| |
| uint64_t Thread::GetCpuMicroTime() const { |
| #if defined(__linux__) |
| clockid_t cpu_clock_id; |
| pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); |
| timespec now; |
| clock_gettime(cpu_clock_id, &now); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + |
| static_cast<uint64_t>(now.tv_nsec) / UINT64_C(1000); |
| #else // __APPLE__ |
| UNIMPLEMENTED(WARNING); |
| return -1; |
| #endif |
| } |
| |
| // Attempt to rectify locks so that we dump thread list with required locks before exiting. |
| void Thread::UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { |
| LOG(ERROR) << *thread << " suspend count already zero."; |
| Locks::thread_suspend_count_lock_->Unlock(self); |
| if (!Locks::mutator_lock_->IsSharedHeld(self)) { |
| Locks::mutator_lock_->SharedTryLock(self); |
| if (!Locks::mutator_lock_->IsSharedHeld(self)) { |
| LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; |
| } |
| } |
| if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { |
| Locks::thread_list_lock_->TryLock(self); |
| if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { |
| LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; |
| } |
| } |
| std::ostringstream ss; |
| Runtime::Current()->GetThreadList()->Dump(ss); |
| LOG(FATAL) << ss.str(); |
| UNREACHABLE(); |
| } |
| |
| bool Thread::PassActiveSuspendBarriers() { |
| DCHECK_EQ(this, Thread::Current()); |
| DCHECK_NE(GetState(), ThreadState::kRunnable); |
| // Grab the suspend_count lock and copy the current set of barriers. Then clear the list and the |
| // flag. The IncrementSuspendCount function requires the lock so we prevent a race between setting |
| // the kActiveSuspendBarrier flag and clearing it. |
| // TODO: Consider doing this without the temporary vector. That code will be a bit |
| // tricky, since the WrappedSuspend1Barrier may disappear once the barrier is decremented. |
| std::vector<AtomicInteger*> pass_barriers{}; |
| { |
| MutexLock mu(this, *Locks::thread_suspend_count_lock_); |
| if (!ReadFlag(ThreadFlag::kActiveSuspendBarrier)) { |
| // Quick exit test: The barriers have already been claimed - this is possible as there may |
| // be a race to claim and it doesn't matter who wins. All of the callers of this function |
| // (except SuspendAllInternal) will first test the kActiveSuspendBarrier flag without the |
| // lock. Here we double-check whether the barrier has been passed with the |
| // suspend_count_lock_. |
| return false; |
| } |
| if (tlsPtr_.active_suspendall_barrier != nullptr) { |
| // We have at most one active active_suspendall_barrier. See thread.h comment. |
| pass_barriers.push_back(tlsPtr_.active_suspendall_barrier); |
| tlsPtr_.active_suspendall_barrier = nullptr; |
| } |
| for (WrappedSuspend1Barrier* w = tlsPtr_.active_suspend1_barriers; w != nullptr; w = w->next_) { |
| pass_barriers.push_back(&(w->barrier_)); |
| } |
| tlsPtr_.active_suspend1_barriers = nullptr; |
| AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier); |
| CHECK_GT(pass_barriers.size(), 0U); // Since kActiveSuspendBarrier was set. |
| // Decrement suspend barrier(s) while we still hold the lock, since SuspendThread may |
| // remove and deallocate suspend barriers while holding suspend_count_lock_ . |
| // There will typically only be a single barrier to pass here. |
| for (AtomicInteger*& barrier : pass_barriers) { |
| int32_t old_val = barrier->fetch_sub(1, std::memory_order_release); |
| CHECK_GT(old_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << old_val; |
| if (old_val != 1) { |
| // We're done with it. |
| barrier = nullptr; |
| } |
| } |
| } |
| // Finally do futex_wakes after releasing the lock. |
| for (AtomicInteger* barrier : pass_barriers) { |
| #if ART_USE_FUTEXES |
| if (barrier != nullptr) { |
| futex(barrier->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0); |
| } |
| #endif |
| } |
| return true; |
| } |
| |
| void Thread::RunCheckpointFunction() { |
| DCHECK_EQ(Thread::Current(), this); |
| CHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags())); |
| // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If |
| // there are no more checkpoints we will also clear the kCheckpointRequest flag. |
| Closure* checkpoint; |
| { |
| MutexLock mu(this, *Locks::thread_suspend_count_lock_); |
| checkpoint = tlsPtr_.checkpoint_function; |
| if (!checkpoint_overflow_.empty()) { |
| // Overflow list not empty, copy the first one out and continue. |
| tlsPtr_.checkpoint_function = checkpoint_overflow_.front(); |
| checkpoint_overflow_.pop_front(); |
| } else { |
| // No overflow checkpoints. Clear the kCheckpointRequest flag |
| tlsPtr_.checkpoint_function = nullptr; |
| AtomicClearFlag(ThreadFlag::kCheckpointRequest); |
| } |
| } |
| // Outside the lock, run the checkpoint function. |
| ScopedTrace trace("Run checkpoint function"); |
| CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint"; |
| checkpoint->Run(this); |
| } |
| |
| void Thread::RunEmptyCheckpoint() { |
| // Note: Empty checkpoint does not access the thread's stack, |
| // so we do not need to check for the flip function. |
| DCHECK_EQ(Thread::Current(), this); |
| AtomicClearFlag(ThreadFlag::kEmptyCheckpointRequest); |
| Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this); |
| } |
| |
| bool Thread::RequestCheckpoint(Closure* function) { |
| bool success; |
| do { |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| if (old_state_and_flags.GetState() != ThreadState::kRunnable) { |
| return false; // Fail, thread is suspended and so can't run a checkpoint. |
| } |
| StateAndFlags new_state_and_flags = old_state_and_flags; |
| new_state_and_flags.SetFlag(ThreadFlag::kCheckpointRequest); |
| success = tls32_.state_and_flags.CompareAndSetWeakSequentiallyConsistent( |
| old_state_and_flags.GetValue(), new_state_and_flags.GetValue()); |
| } while (!success); |
| // Succeeded setting checkpoint flag, now insert the actual checkpoint. |
| if (tlsPtr_.checkpoint_function == nullptr) { |
| tlsPtr_.checkpoint_function = function; |
| } else { |
| checkpoint_overflow_.push_back(function); |
| } |
| DCHECK(ReadFlag(ThreadFlag::kCheckpointRequest)); |
| TriggerSuspend(); |
| return true; |
| } |
| |
| bool Thread::RequestEmptyCheckpoint() { |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| if (old_state_and_flags.GetState() != ThreadState::kRunnable) { |
| // If it's not runnable, we don't need to do anything because it won't be in the middle of a |
| // heap access (eg. the read barrier). |
| return false; |
| } |
| |
| // We must be runnable to request a checkpoint. |
| DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable); |
| StateAndFlags new_state_and_flags = old_state_and_flags; |
| new_state_and_flags.SetFlag(ThreadFlag::kEmptyCheckpointRequest); |
| bool success = tls32_.state_and_flags.CompareAndSetStrongSequentiallyConsistent( |
| old_state_and_flags.GetValue(), new_state_and_flags.GetValue()); |
| if (success) { |
| TriggerSuspend(); |
| } |
| return success; |
| } |
| |
| class BarrierClosure : public Closure { |
| public: |
| explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {} |
| |
| void Run(Thread* self) override { |
| wrapped_->Run(self); |
| barrier_.Pass(self); |
| } |
| |
| void Wait(Thread* self, ThreadState wait_state) { |
| if (wait_state != ThreadState::kRunnable) { |
| barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1); |
| } else { |
| barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1); |
| } |
| } |
| |
| private: |
| Closure* wrapped_; |
| Barrier barrier_; |
| }; |
| |
| // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution. |
| bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState wait_state) { |
| Thread* self = Thread::Current(); |
| if (this == self) { |
| Locks::thread_list_lock_->AssertExclusiveHeld(self); |
| // Unlock the tll before running so that the state is the same regardless of thread. |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| // Asked to run on this thread. Just run. |
| function->Run(this); |
| return true; |
| } |
| |
| // The current thread is not this thread. |
| |
| VerifyState(); |
| |
| Locks::thread_list_lock_->AssertExclusiveHeld(self); |
| // If target "this" thread is runnable, try to schedule a checkpoint. Do some gymnastics to not |
| // hold the suspend-count lock for too long. |
| if (GetState() == ThreadState::kRunnable) { |
| BarrierClosure barrier_closure(function); |
| bool installed = false; |
| { |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| installed = RequestCheckpoint(&barrier_closure); |
| } |
| if (installed) { |
| // Relinquish the thread-list lock. We should not wait holding any locks. We cannot |
| // reacquire it since we don't know if 'this' hasn't been deleted yet. |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| ScopedThreadStateChange sts(self, wait_state); |
| // Wait state can be kRunnable, in which case, for lock ordering purposes, it's as if we ran |
| // the closure ourselves. This means that the target thread should not acquire a pre-mutator |
| // lock without running the checkpoint, and the closure should not acquire a pre-mutator |
| // lock or suspend. |
| barrier_closure.Wait(self, wait_state); |
| return true; |
| } |
| // No longer runnable. Fall-through. |
| } |
| |
| // Target "this" thread was not runnable. Suspend it, hopefully redundantly, |
| // but it might have become runnable in the meantime. |
| // Although this is a thread suspension, the target thread only blocks while we run the |
| // checkpoint, which is presumed to terminate quickly even if other threads are blocked. |
| // Note: IncrementSuspendCount also expects the thread_list_lock to be held unless this == self. |
| { |
| bool is_suspended = false; |
| WrappedSuspend1Barrier wrapped_barrier{}; |
| |
| { |
| MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); |
| // If wait_state is kRunnable, function may not suspend. We thus never block because |
| // we ourselves are being asked to suspend. |
| if (UNLIKELY(wait_state != ThreadState::kRunnable && self->GetSuspendCount() != 0)) { |
| // We are being asked to suspend while we are suspending another thread that may be |
| // responsible for our suspension. This is likely to result in deadlock if we each |
| // block on the suspension request. Instead we wait for the situation to change. |
| ThreadExitFlag target_status; |
| NotifyOnThreadExit(&target_status); |
| for (int iter_count = 1; self->GetSuspendCount() != 0; ++iter_count) { |
| Locks::thread_suspend_count_lock_->ExclusiveUnlock(self); |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| { |
| ScopedThreadStateChange sts(self, wait_state); |
| usleep(ThreadList::kThreadSuspendSleepUs); |
| } |
| CHECK_LT(iter_count, ThreadList::kMaxSuspendRetries); |
| Locks::thread_list_lock_->ExclusiveLock(self); |
| if (target_status.HasExited()) { |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| DCheckUnregisteredEverywhere(&target_status, &target_status); |
| return false; |
| } |
| Locks::thread_suspend_count_lock_->ExclusiveLock(self); |
| } |
| UnregisterThreadExitFlag(&target_status); |
| } |
| IncrementSuspendCount(self, nullptr, &wrapped_barrier, SuspendReason::kInternal); |
| VerifyState(); |
| DCHECK_GT(GetSuspendCount(), 0); |
| if (wait_state != ThreadState::kRunnable) { |
| DCHECK_EQ(self->GetSuspendCount(), 0); |
| } |
| // Since we've incremented the suspend count, "this" thread can no longer disappear. |
| Locks::thread_list_lock_->ExclusiveUnlock(self); |
| if (IsSuspended()) { |
| // See the discussion in mutator_gc_coord.md and SuspendAllInternal for the race here. |
| RemoveFirstSuspend1Barrier(&wrapped_barrier); |
| if (!HasActiveSuspendBarrier()) { |
| AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier); |
| } |
| is_suspended = true; |
| } |
| } |
| if (!is_suspended) { |
| // This waits while holding the mutator lock. Effectively `self` becomes |
| // impossible to suspend until `this` responds to the suspend request. |
| // Arguably that's not making anything qualitatively worse. |
| bool success = !Runtime::Current() |
| ->GetThreadList() |
| ->WaitForSuspendBarrier(&wrapped_barrier.barrier_) |
| .has_value(); |
| CHECK(success); |
| } |
| |
| // Ensure that the flip function for this thread, if pending, is finished *before* |
| // the checkpoint function is run. Otherwise, we may end up with both `to' and 'from' |
| // space references on the stack, confusing the GC's thread-flip logic. The caller is |
| // runnable so can't have a pending flip function. |
| DCHECK_EQ(self->GetState(), ThreadState::kRunnable); |
| DCHECK(IsSuspended()); |
| DCHECK(!self->GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags())); |
| EnsureFlipFunctionStarted(self, this); |
| // Since we're runnable, and kPendingFlipFunction is set with all threads suspended, it |
| // cannot be set again here. Thus kRunningFlipFunction is either already set after the |
| // EnsureFlipFunctionStarted call, or will not be set before we call Run(). |
| if (ReadFlag(ThreadFlag::kRunningFlipFunction)) { |
| WaitForFlipFunction(self); |
| } |
| function->Run(this); |
| } |
| |
| { |
| MutexLock mu2(self, *Locks::thread_suspend_count_lock_); |
| DCHECK_NE(GetState(), ThreadState::kRunnable); |
| DCHECK_GT(GetSuspendCount(), 0); |
| DecrementSuspendCount(self); |
| resume_cond_->Broadcast(self); |
| } |
| |
| Locks::thread_list_lock_->AssertNotHeld(self); |
| return true; |
| } |
| |
| void Thread::SetFlipFunction(Closure* function) { |
| // This is called with all threads suspended, except for the calling thread. |
| DCHECK(IsSuspended() || Thread::Current() == this); |
| DCHECK(function != nullptr); |
| DCHECK(GetFlipFunction() == nullptr); |
| tlsPtr_.flip_function.store(function, std::memory_order_relaxed); |
| DCHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags())); |
| AtomicSetFlag(ThreadFlag::kPendingFlipFunction, std::memory_order_release); |
| } |
| |
| bool Thread::EnsureFlipFunctionStarted(Thread* self, |
| Thread* target, |
| StateAndFlags old_state_and_flags, |
| ThreadExitFlag* tef, |
| bool* finished) { |
| // Note: If tef is non-null, *target may have been destroyed. We have to be careful about |
| // accessing it. That is the reason this is static and not a member function. |
| DCHECK(self == Current()); |
| bool check_exited = (tef != nullptr); |
| // Check that the thread can't unexpectedly exit while we are running. |
| DCHECK(self == target || check_exited || target->ReadFlag(ThreadFlag::kSuspendRequest) || |
| Locks::thread_list_lock_->IsExclusiveHeld(self)) |
| << *target; |
| bool become_runnable; |
| auto maybe_release = [=]() NO_THREAD_SAFETY_ANALYSIS /* conditionally unlocks */ { |
| if (check_exited) { |
| Locks::thread_list_lock_->Unlock(self); |
| } |
| }; |
| auto set_finished = [=](bool value) { |
| if (finished != nullptr) { |
| *finished = value; |
| } |
| }; |
| |
| if (check_exited) { |
| Locks::thread_list_lock_->Lock(self); |
| if (tef->HasExited()) { |
| Locks::thread_list_lock_->Unlock(self); |
| set_finished(true); |
| return false; |
| } |
| } |
| target->VerifyState(); |
| if (old_state_and_flags.GetValue() == 0) { |
| become_runnable = false; |
| old_state_and_flags = target->GetStateAndFlags(std::memory_order_relaxed); |
| } else { |
| become_runnable = true; |
| DCHECK(!check_exited); |
| DCHECK(target == self); |
| DCHECK(old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)); |
| DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)); |
| } |
| while (true) { |
| DCHECK(!check_exited || (Locks::thread_list_lock_->IsExclusiveHeld(self) && !tef->HasExited())); |
| if (!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) { |
| maybe_release(); |
| set_finished(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)); |
| return false; |
| } |
| DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)); |
| StateAndFlags new_state_and_flags = |
| old_state_and_flags.WithFlag(ThreadFlag::kRunningFlipFunction) |
| .WithoutFlag(ThreadFlag::kPendingFlipFunction); |
| if (become_runnable) { |
| DCHECK_EQ(self, target); |
| DCHECK_NE(self->GetState(), ThreadState::kRunnable); |
| new_state_and_flags = new_state_and_flags.WithState(ThreadState::kRunnable); |
| } |
| if (target->tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(), |
| new_state_and_flags.GetValue())) { |
| if (become_runnable) { |
| self->GetMutatorLock()->TransitionFromSuspendedToRunnable(self); |
| } |
| art::Locks::mutator_lock_->AssertSharedHeld(self); |
| maybe_release(); |
| // Thread will not go away while kRunningFlipFunction is set. |
| target->RunFlipFunction(self); |
| // At this point, no flip function flags should be set. It's unsafe to DCHECK that, since |
| // the thread may now have exited. |
| set_finished(true); |
| return become_runnable; |
| } |
| if (become_runnable) { |
| DCHECK(!check_exited); // We didn't acquire thread_list_lock_ . |
| // Let caller retry. |
| return false; |
| } |
| old_state_and_flags = target->GetStateAndFlags(std::memory_order_acquire); |
| } |
| // Unreachable. |
| } |
| |
| void Thread::RunFlipFunction(Thread* self) { |
| // This function is called either by the thread running `ThreadList::FlipThreadRoots()` or when |
| // a thread becomes runnable, after we've successfully set the kRunningFlipFunction ThreadFlag. |
| DCHECK(ReadFlag(ThreadFlag::kRunningFlipFunction)); |
| |
| Closure* flip_function = GetFlipFunction(); |
| tlsPtr_.flip_function.store(nullptr, std::memory_order_relaxed); |
| DCHECK(flip_function != nullptr); |
| VerifyState(); |
| flip_function->Run(this); |
| DCHECK(!ReadFlag(ThreadFlag::kPendingFlipFunction)); |
| VerifyState(); |
| AtomicClearFlag(ThreadFlag::kRunningFlipFunction, std::memory_order_release); |
| // From here on this thread may go away, and it is no longer safe to access. |
| |
| // Notify all threads that are waiting for completion. |
| // TODO: Should we create a separate mutex and condition variable instead |
| // of piggy-backing on the `thread_suspend_count_lock_` and `resume_cond_`? |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| resume_cond_->Broadcast(self); |
| } |
| |
| void Thread::WaitForFlipFunction(Thread* self) const { |
| // Another thread is running the flip function. Wait for it to complete. |
| // Check the flag while holding the mutex so that we do not miss the broadcast. |
| // Repeat the check after waiting to guard against spurious wakeups (and because |
| // we share the `thread_suspend_count_lock_` and `resume_cond_` with other code). |
| // Check that the thread can't unexpectedly exit while we are running. |
| DCHECK(self == this || ReadFlag(ThreadFlag::kSuspendRequest) || |
| Locks::thread_list_lock_->IsExclusiveHeld(self)); |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| while (true) { |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire); |
| if (!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) { |
| return; |
| } |
| // We sometimes hold mutator lock here. OK since the flip function must complete quickly. |
| resume_cond_->WaitHoldingLocks(self); |
| } |
| } |
| |
| void Thread::WaitForFlipFunctionTestingExited(Thread* self, ThreadExitFlag* tef) { |
| Locks::thread_list_lock_->Lock(self); |
| if (tef->HasExited()) { |
| Locks::thread_list_lock_->Unlock(self); |
| return; |
| } |
| // We need to hold suspend_count_lock_ to avoid missed wakeups when the flip function finishes. |
| // We need to hold thread_list_lock_ because the tef test result is only valid while we hold the |
| // lock, and once kRunningFlipFunction is no longer set, "this" may be deallocated. Hence the |
| // complicated locking dance. |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| while (true) { |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire); |
| Locks::thread_list_lock_->Unlock(self); // So we can wait or return. |
| if (!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) { |
| return; |
| } |
| resume_cond_->WaitHoldingLocks(self); |
| Locks::thread_suspend_count_lock_->Unlock(self); // To re-lock thread_list_lock. |
| Locks::thread_list_lock_->Lock(self); |
| Locks::thread_suspend_count_lock_->Lock(self); |
| if (tef->HasExited()) { |
| Locks::thread_list_lock_->Unlock(self); |
| return; |
| } |
| } |
| } |
| |
| void Thread::FullSuspendCheck(bool implicit) { |
| ScopedTrace trace(__FUNCTION__); |
| DCHECK(!ReadFlag(ThreadFlag::kSuspensionImmune)); |
| DCHECK(this == Thread::Current()); |
| VLOG(threads) << this << " self-suspending"; |
| // Make thread appear suspended to other threads, release mutator_lock_. |
| // Transition to suspended and back to runnable, re-acquire share on mutator_lock_. |
| ScopedThreadSuspension(this, ThreadState::kSuspended); // NOLINT |
| if (implicit) { |
| // For implicit suspend check we want to `madvise()` away |
| // the alternate signal stack to avoid wasting memory. |
| MadviseAwayAlternateSignalStack(); |
| } |
| VLOG(threads) << this << " self-reviving"; |
| } |
| |
| static std::string GetSchedulerGroupName(pid_t tid) { |
| // /proc/<pid>/cgroup looks like this: |
| // 2:devices:/ |
| // 1:cpuacct,cpu:/ |
| // We want the third field from the line whose second field contains the "cpu" token. |
| std::string cgroup_file; |
| if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), |
| &cgroup_file)) { |
| return ""; |
| } |
| std::vector<std::string> cgroup_lines; |
| Split(cgroup_file, '\n', &cgroup_lines); |
| for (size_t i = 0; i < cgroup_lines.size(); ++i) { |
| std::vector<std::string> cgroup_fields; |
| Split(cgroup_lines[i], ':', &cgroup_fields); |
| std::vector<std::string> cgroups; |
| Split(cgroup_fields[1], ',', &cgroups); |
| for (size_t j = 0; j < cgroups.size(); ++j) { |
| if (cgroups[j] == "cpu") { |
| return cgroup_fields[2].substr(1); // Skip the leading slash. |
| } |
| } |
| } |
| return ""; |
| } |
| |
| void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { |
| std::string group_name; |
| int priority; |
| bool is_daemon = false; |
| Thread* self = Thread::Current(); |
| |
| // Don't do this if we are aborting since the GC may have all the threads suspended. This will |
| // cause ScopedObjectAccessUnchecked to deadlock. |
| if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { |
| ScopedObjectAccessUnchecked soa(self); |
| priority = WellKnownClasses::java_lang_Thread_priority->GetInt(thread->tlsPtr_.opeer); |
| is_daemon = WellKnownClasses::java_lang_Thread_daemon->GetBoolean(thread->tlsPtr_.opeer); |
| |
| ObjPtr<mirror::Object> thread_group = |
| WellKnownClasses::java_lang_Thread_group->GetObject(thread->tlsPtr_.opeer); |
| |
| if (thread_group != nullptr) { |
| ObjPtr<mirror::Object> group_name_object = |
| WellKnownClasses::java_lang_ThreadGroup_name->GetObject(thread_group); |
| group_name = (group_name_object != nullptr) |
| ? group_name_object->AsString()->ToModifiedUtf8() |
| : "<null>"; |
| } |
| } else if (thread != nullptr) { |
| priority = thread->GetNativePriority(); |
| } else { |
| palette_status_t status = PaletteSchedGetPriority(tid, &priority); |
| CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO); |
| } |
| |
| std::string scheduler_group_name(GetSchedulerGroupName(tid)); |
| if (scheduler_group_name.empty()) { |
| scheduler_group_name = "default"; |
| } |
| |
| if (thread != nullptr) { |
| thread->tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst); |
| os << '"' << thread->tlsPtr_.name.load() << '"'; |
| thread->tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */); |
| if (is_daemon) { |
| os << " daemon"; |
| } |
| os << " prio=" << priority |
| << " tid=" << thread->GetThreadId() |
| << " " << thread->GetState(); |
| if (thread->IsStillStarting()) { |
| os << " (still starting up)"; |
| } |
| if (thread->tls32_.disable_thread_flip_count != 0) { |
| os << " DisableFlipCount = " << thread->tls32_.disable_thread_flip_count; |
| } |
| os << "\n"; |
| } else { |
| os << '"' << ::art::GetThreadName(tid) << '"' |
| << " prio=" << priority |
| << " (not attached)\n"; |
| } |
| |
| if (thread != nullptr) { |
| auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) { |
| StateAndFlags state_and_flags = thread->GetStateAndFlags(std::memory_order_relaxed); |
| static_assert( |
| static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u); |
| state_and_flags.SetState(ThreadState::kRunnable); // Clear state bits. |
| os << " | group=\"" << group_name << "\"" |
| << " sCount=" << thread->tls32_.suspend_count |
| << " ucsCount=" << thread->tls32_.user_code_suspend_count |
| << " flags=" << state_and_flags.GetValue() |
| << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer) |
| << " self=" << reinterpret_cast<const void*>(thread) << "\n"; |
| }; |
| if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) { |
| Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self); // For annotalysis. |
| suspend_log_fn(); |
| } else { |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| suspend_log_fn(); |
| } |
| } |
| |
| os << " | sysTid=" << tid |
| << " nice=" << getpriority(PRIO_PROCESS, static_cast<id_t>(tid)) |
| << " cgrp=" << scheduler_group_name; |
| if (thread != nullptr) { |
| int policy; |
| sched_param sp; |
| #if !defined(__APPLE__) |
| // b/36445592 Don't use pthread_getschedparam since pthread may have exited. |
| policy = sched_getscheduler(tid); |
| if (policy == -1) { |
| PLOG(WARNING) << "sched_getscheduler(" << tid << ")"; |
| } |
| int sched_getparam_result = sched_getparam(tid, &sp); |
| if (sched_getparam_result == -1) { |
| PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)"; |
| sp.sched_priority = -1; |
| } |
| #else |
| CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), |
| __FUNCTION__); |
| #endif |
| os << " sched=" << policy << "/" << sp.sched_priority |
| << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self); |
| } |
| os << "\n"; |
| |
| // Grab the scheduler stats for this thread. |
| std::string scheduler_stats; |
| if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), |
| &scheduler_stats) |
| && !scheduler_stats.empty()) { |
| scheduler_stats = android::base::Trim(scheduler_stats); // Lose the trailing '\n'. |
| } else { |
| scheduler_stats = "0 0 0"; |
| } |
| |
| char native_thread_state = '?'; |
| int utime = 0; |
| int stime = 0; |
| int task_cpu = 0; |
| GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); |
| |
| os << " | state=" << native_thread_state |
| << " schedstat=( " << scheduler_stats << " )" |
| << " utm=" << utime |
| << " stm=" << stime |
| << " core=" << task_cpu |
| << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; |
| if (thread != nullptr) { |
| os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-" |
| << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize=" |
| << PrettySize(thread->tlsPtr_.stack_size) << "\n"; |
| // Dump the held mutexes. |
| os << " | held mutexes="; |
| for (size_t i = 0; i < kLockLevelCount; ++i) { |
| if (i != kMonitorLock) { |
| BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i)); |
| if (mutex != nullptr) { |
| os << " \"" << mutex->GetName() << "\""; |
| if (mutex->IsReaderWriterMutex()) { |
| ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex); |
| if (rw_mutex->GetExclusiveOwnerTid() == tid) { |
| os << "(exclusive held)"; |
| } else { |
| os << "(shared held)"; |
| } |
| } |
| } |
| } |
| } |
| os << "\n"; |
| } |
| } |
| |
| void Thread::DumpState(std::ostream& os) const { |
| Thread::DumpState(os, this, GetTid()); |
| } |
| |
| struct StackDumpVisitor : public MonitorObjectsStackVisitor { |
| StackDumpVisitor(std::ostream& os_in, |
| Thread* thread_in, |
| Context* context, |
| bool can_allocate, |
| bool check_suspended = true, |
| bool dump_locks = true) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| : MonitorObjectsStackVisitor(thread_in, |
| context, |
| check_suspended, |
| can_allocate && dump_locks), |
| os(os_in), |
| last_method(nullptr), |
| last_line_number(0), |
| repetition_count(0) {} |
| |
| virtual ~StackDumpVisitor() { |
| if (frame_count == 0) { |
| os << " (no managed stack frames)\n"; |
| } |
| } |
| |
| static constexpr size_t kMaxRepetition = 3u; |
| |
| VisitMethodResult StartMethod(ArtMethod* m, [[maybe_unused]] size_t frame_nr) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache(); |
| int line_number = -1; |
| uint32_t dex_pc = GetDexPc(false); |
| if (dex_cache != nullptr) { // be tolerant of bad input |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| line_number = annotations::GetLineNumFromPC(dex_file, m, dex_pc); |
| } |
| if (line_number == last_line_number && last_method == m) { |
| ++repetition_count; |
| } else { |
| if (repetition_count >= kMaxRepetition) { |
| os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; |
| } |
| repetition_count = 0; |
| last_line_number = line_number; |
| last_method = m; |
| } |
| |
| if (repetition_count >= kMaxRepetition) { |
| // Skip visiting=printing anything. |
| return VisitMethodResult::kSkipMethod; |
| } |
| |
| os << " at " << m->PrettyMethod(false); |
| if (m->IsNative()) { |
| os << "(Native method)"; |
| } else { |
| const char* source_file(m->GetDeclaringClassSourceFile()); |
| if (line_number == -1) { |
| // If we failed to map to a line number, use |
| // the dex pc as the line number and leave source file null |
| source_file = nullptr; |
| line_number = static_cast<int32_t>(dex_pc); |
| } |
| os << "(" << (source_file != nullptr ? source_file : "unavailable") |
| << ":" << line_number << ")"; |
| } |
| os << "\n"; |
| // Go and visit locks. |
| return VisitMethodResult::kContinueMethod; |
| } |
| |
| VisitMethodResult EndMethod([[maybe_unused]] ArtMethod* m) override { |
| return VisitMethodResult::kContinueMethod; |
| } |
| |
| void VisitWaitingObject(ObjPtr<mirror::Object> obj, [[maybe_unused]] ThreadState state) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PrintObject(obj, " - waiting on ", ThreadList::kInvalidThreadId); |
| } |
| void VisitSleepingObject(ObjPtr<mirror::Object> obj) |
| override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PrintObject(obj, " - sleeping on ", ThreadList::kInvalidThreadId); |
| } |
| void VisitBlockedOnObject(ObjPtr<mirror::Object> obj, |
| ThreadState state, |
| uint32_t owner_tid) |
| override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const char* msg; |
| switch (state) { |
| case ThreadState::kBlocked: |
| msg = " - waiting to lock "; |
| break; |
| |
| case ThreadState::kWaitingForLockInflation: |
| msg = " - waiting for lock inflation of "; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| PrintObject(obj, msg, owner_tid); |
| num_blocked++; |
| } |
| void VisitLockedObject(ObjPtr<mirror::Object> obj) |
| override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PrintObject(obj, " - locked ", ThreadList::kInvalidThreadId); |
| num_locked++; |
| } |
| |
| void PrintObject(ObjPtr<mirror::Object> obj, |
| const char* msg, |
| uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (obj == nullptr) { |
| os << msg << "an unknown object"; |
| } else { |
| const std::string pretty_type(obj->PrettyTypeOf()); |
| // It's often unsafe to allow lock inflation here. We may be the only runnable thread, or |
| // this may be called from a checkpoint. We get the hashcode on a best effort basis. |
| static constexpr int kNumRetries = 3; |
| static constexpr int kSleepMicros = 10; |
| int32_t hash_code; |
| for (int i = 0;; ++i) { |
| hash_code = obj->IdentityHashCodeNoInflation(); |
| if (hash_code != 0 || i == kNumRetries) { |
| break; |
| } |
| usleep(kSleepMicros); |
| } |
| if (hash_code == 0) { |
| os << msg |
| << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", |
| reinterpret_cast<intptr_t>(obj.Ptr()), |
| pretty_type.c_str()); |
| } else { |
| // - waiting on <0x608c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>) |
| os << msg << StringPrintf("<0x%08x> (a %s)", hash_code, pretty_type.c_str()); |
| } |
| } |
| if (owner_tid != ThreadList::kInvalidThreadId) { |
| os << " held by thread " << owner_tid; |
| } |
| os << "\n"; |
| } |
| |
| std::ostream& os; |
| ArtMethod* last_method; |
| int last_line_number; |
| size_t repetition_count; |
| size_t num_blocked = 0; |
| size_t num_locked = 0; |
| }; |
| |
| static bool ShouldShowNativeStack(const Thread* thread) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ThreadState state = thread->GetState(); |
| |
| // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. |
| if (state > ThreadState::kWaiting && state < ThreadState::kStarting) { |
| return true; |
| } |
| |
| // In an Object.wait variant or Thread.sleep? That's not interesting. |
| if (state == ThreadState::kTimedWaiting || |
| state == ThreadState::kSleeping || |
| state == ThreadState::kWaiting) { |
| return false; |
| } |
| |
| // Threads with no managed stack frames should be shown. |
| if (!thread->HasManagedStack()) { |
| return true; |
| } |
| |
| // In some other native method? That's interesting. |
| // We don't just check kNative because native methods will be in state kSuspended if they're |
| // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the |
| // thread-startup states if it's early enough in their life cycle (http://b/7432159). |
| ArtMethod* current_method = thread->GetCurrentMethod(nullptr); |
| return current_method != nullptr && current_method->IsNative(); |
| } |
| |
| Thread::DumpOrder Thread::DumpJavaStack(std::ostream& os, |
| bool check_suspended, |
| bool dump_locks) const { |
| // Dumping the Java stack involves the verifier for locks. The verifier operates under the |
| // assumption that there is no exception pending on entry. Thus, stash any pending exception. |
| // Thread::Current() instead of this in case a thread is dumping the stack of another suspended |
| // thread. |
| ScopedExceptionStorage ses(Thread::Current()); |
| |
| std::unique_ptr<Context> context(Context::Create()); |
| StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), |
| !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks); |
| dumper.WalkStack(); |
| if (IsJitSensitiveThread()) { |
| return DumpOrder::kMain; |
| } else if (dumper.num_blocked > 0) { |
| return DumpOrder::kBlocked; |
| } else if (dumper.num_locked > 0) { |
| return DumpOrder::kLocked; |
| } else { |
| return DumpOrder::kDefault; |
| } |
| } |
| |
| Thread::DumpOrder Thread::DumpStack(std::ostream& os, |
| bool dump_native_stack, |
| bool force_dump_stack) const { |
| unwindstack::AndroidLocalUnwinder unwinder; |
| return DumpStack(os, unwinder, dump_native_stack, force_dump_stack); |
| } |
| |
| Thread::DumpOrder Thread::DumpStack(std::ostream& os, |
| unwindstack::AndroidLocalUnwinder& unwinder, |
| bool dump_native_stack, |
| bool force_dump_stack) const { |
| // TODO: we call this code when dying but may not have suspended the thread ourself. The |
| // IsSuspended check is therefore racy with the use for dumping (normally we inhibit |
| // the race with the thread_suspend_count_lock_). |
| bool dump_for_abort = (gAborting > 0); |
| bool safe_to_dump = (this == Thread::Current() || IsSuspended()); |
| if (!kIsDebugBuild) { |
| // We always want to dump the stack for an abort, however, there is no point dumping another |
| // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. |
| safe_to_dump = (safe_to_dump || dump_for_abort); |
| } |
| DumpOrder dump_order = DumpOrder::kDefault; |
| if (safe_to_dump || force_dump_stack) { |
| uint64_t nanotime = NanoTime(); |
| // If we're currently in native code, dump that stack before dumping the managed stack. |
| if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) { |
| ArtMethod* method = |
| GetCurrentMethod(nullptr, |
| /*check_suspended=*/ !force_dump_stack, |
| /*abort_on_error=*/ !(dump_for_abort || force_dump_stack)); |
| DumpNativeStack(os, unwinder, GetTid(), " native: ", method); |
| } |
| dump_order = DumpJavaStack(os, |
| /*check_suspended=*/ !force_dump_stack, |
| /*dump_locks=*/ !force_dump_stack); |
| Runtime* runtime = Runtime::Current(); |
| std::optional<uint64_t> start = runtime != nullptr ? runtime->SiqQuitNanoTime() : std::nullopt; |
| if (start.has_value()) { |
| os << "DumpLatencyMs: " << static_cast<float>(nanotime - start.value()) / 1000000.0 << "\n"; |
| } |
| } else { |
| os << "Not able to dump stack of thread that isn't suspended"; |
| } |
| return dump_order; |
| } |
| |
| void Thread::ThreadExitCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| if (self->tls32_.thread_exit_check_count == 0) { |
| LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " |
| "going to use a pthread_key_create destructor?): " << *self; |
| CHECK(is_started_); |
| #ifdef __BIONIC__ |
| __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self; |
| #else |
| CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); |
| Thread::self_tls_ = self; |
| #endif |
| self->tls32_.thread_exit_check_count = 1; |
| } else { |
| LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; |
| } |
| } |
| |
| void Thread::Startup() { |
| CHECK(!is_started_); |
| is_started_ = true; |
| { |
| // MutexLock to keep annotalysis happy. |
| // |
| // Note we use null for the thread because Thread::Current can |
| // return garbage since (is_started_ == true) and |
| // Thread::pthread_key_self_ is not yet initialized. |
| // This was seen on glibc. |
| MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); |
| resume_cond_ = new ConditionVariable("Thread resumption condition variable", |
| *Locks::thread_suspend_count_lock_); |
| } |
| |
| // Allocate a TLS slot. |
| CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), |
| "self key"); |
| |
| // Double-check the TLS slot allocation. |
| if (pthread_getspecific(pthread_key_self_) != nullptr) { |
| LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; |
| } |
| #ifndef __BIONIC__ |
| CHECK(Thread::self_tls_ == nullptr); |
| #endif |
| } |
| |
| void Thread::FinishStartup() { |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime->IsStarted()); |
| |
| // Finish attaching the main thread. |
| ScopedObjectAccess soa(Thread::Current()); |
| soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup()); |
| soa.Self()->AssertNoPendingException(); |
| |
| runtime->RunRootClinits(soa.Self()); |
| |
| // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular |
| // threads, this is done in Thread.start() on the Java side. |
| soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup()); |
| soa.Self()->AssertNoPendingException(); |
| } |
| |
| void Thread::Shutdown() { |
| CHECK(is_started_); |
| is_started_ = false; |
| CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); |
| MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); |
| if (resume_cond_ != nullptr) { |
| delete resume_cond_; |
| resume_cond_ = nullptr; |
| } |
| } |
| |
| void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) { |
| ObjPtr<mirror::Object> thread_object = soa.Self()->GetPeer(); |
| ObjPtr<mirror::Object> thread_group_object = soa.Decode<mirror::Object>(thread_group); |
| if (thread_group == nullptr || kIsDebugBuild) { |
| // There is always a group set. Retrieve it. |
| thread_group_object = WellKnownClasses::java_lang_Thread_group->GetObject(thread_object); |
| if (kIsDebugBuild && thread_group != nullptr) { |
| CHECK(thread_group_object == soa.Decode<mirror::Object>(thread_group)); |
| } |
| } |
| WellKnownClasses::java_lang_ThreadGroup_add->InvokeVirtual<'V', 'L'>( |
| soa.Self(), thread_group_object, thread_object); |
| } |
| |
| void Thread::SignalExitFlags() { |
| ThreadExitFlag* next; |
| for (ThreadExitFlag* tef = tlsPtr_.thread_exit_flags; tef != nullptr; tef = next) { |
| DCHECK(!tef->exited_); |
| tef->exited_ = true; |
| next = tef->next_; |
| if (kIsDebugBuild) { |
| ThreadExitFlag* const garbage_tef = reinterpret_cast<ThreadExitFlag*>(1); |
| // Link fields should no longer be used. |
| tef->prev_ = tef->next_ = garbage_tef; |
| } |
| } |
| tlsPtr_.thread_exit_flags = nullptr; // Now unused. |
| } |
| |
| Thread::Thread(bool daemon) |
| : tls32_(daemon), |
| wait_monitor_(nullptr), |
| is_runtime_thread_(false) { |
| wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock); |
| wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); |
| tlsPtr_.mutator_lock = Locks::mutator_lock_; |
| DCHECK(tlsPtr_.mutator_lock != nullptr); |
| tlsPtr_.name.store(kThreadNameDuringStartup, std::memory_order_relaxed); |
| CHECK_NE(GetStackOverflowProtectedSize(), 0u); |
| |
| static_assert((sizeof(Thread) % 4) == 0U, |
| "art::Thread has a size which is not a multiple of 4."); |
| DCHECK_EQ(GetStateAndFlags(std::memory_order_relaxed).GetValue(), 0u); |
| StateAndFlags state_and_flags = StateAndFlags(0u).WithState(ThreadState::kNative); |
| tls32_.state_and_flags.store(state_and_flags.GetValue(), std::memory_order_relaxed); |
| tls32_.interrupted.store(false, std::memory_order_relaxed); |
| // Initialize with no permit; if the java Thread was unparked before being |
| // started, it will unpark itself before calling into java code. |
| tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed); |
| memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); |
| std::fill(tlsPtr_.rosalloc_runs, |
| tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread, |
| gc::allocator::RosAlloc::GetDedicatedFullRun()); |
| tlsPtr_.checkpoint_function = nullptr; |
| tlsPtr_.active_suspendall_barrier = nullptr; |
| tlsPtr_.active_suspend1_barriers = nullptr; |
| tlsPtr_.flip_function.store(nullptr, std::memory_order_relaxed); |
| tlsPtr_.thread_local_mark_stack = nullptr; |
| ResetTlab(); |
| } |
| |
| bool Thread::CanLoadClasses() const { |
| return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable(); |
| } |
| |
| bool Thread::IsStillStarting() const { |
| // You might think you can check whether the state is kStarting, but for much of thread startup, |
| // the thread is in kNative; it might also be in kVmWait. |
| // You might think you can check whether the peer is null, but the peer is actually created and |
| // assigned fairly early on, and needs to be. |
| // It turns out that the last thing to change is the thread name; that's a good proxy for "has |
| // this thread _ever_ entered kRunnable". |
| return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || |
| (tlsPtr_.name.load() == kThreadNameDuringStartup); |
| } |
| |
| void Thread::AssertPendingException() const { |
| CHECK(IsExceptionPending()) << "Pending exception expected."; |
| } |
| |
| void Thread::AssertPendingOOMException() const { |
| AssertPendingException(); |
| auto* e = GetException(); |
| CHECK_EQ(e->GetClass(), WellKnownClasses::java_lang_OutOfMemoryError.Get()) << e->Dump(); |
| } |
| |
| void Thread::AssertNoPendingException() const { |
| if (UNLIKELY(IsExceptionPending())) { |
| ScopedObjectAccess soa(Thread::Current()); |
| LOG(FATAL) << "No pending exception expected: " << GetException()->Dump(); |
| } |
| } |
| |
| void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { |
| if (UNLIKELY(IsExceptionPending())) { |
| ScopedObjectAccess soa(Thread::Current()); |
| LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: " |
| << GetException()->Dump(); |
| } |
| } |
| |
| class MonitorExitVisitor : public SingleRootVisitor { |
| public: |
| explicit MonitorExitVisitor(Thread* self) : self_(self) { } |
| |
| // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit. |
| void VisitRoot(mirror::Object* entered_monitor, |
| [[maybe_unused]] const RootInfo& info) override NO_THREAD_SAFETY_ANALYSIS { |
| if (self_->HoldsLock(entered_monitor)) { |
| LOG(WARNING) << "Calling MonitorExit on object " |
| << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")" |
| << " left locked by native thread " |
| << *Thread::Current() << " which is detaching"; |
| entered_monitor->MonitorExit(self_); |
| } |
| } |
| |
| private: |
| Thread* const self_; |
| }; |
| |
| void Thread::Destroy(bool should_run_callbacks) { |
| Thread* self = this; |
| DCHECK_EQ(self, Thread::Current()); |
| |
| if (tlsPtr_.jni_env != nullptr) { |
| { |
| ScopedObjectAccess soa(self); |
| MonitorExitVisitor visitor(self); |
| // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. |
| tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal)); |
| } |
| // Release locally held global references which releasing may require the mutator lock. |
| if (tlsPtr_.jpeer != nullptr) { |
| // If pthread_create fails we don't have a jni env here. |
| tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); |
| tlsPtr_.jpeer = nullptr; |
| } |
| if (tlsPtr_.class_loader_override != nullptr) { |
| tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override); |
| tlsPtr_.class_loader_override = nullptr; |
| } |
| } |
| |
| if (tlsPtr_.opeer != nullptr) { |
| ScopedObjectAccess soa(self); |
| // We may need to call user-supplied managed code, do this before final clean-up. |
| HandleUncaughtExceptions(); |
| RemoveFromThreadGroup(); |
| Runtime* runtime = Runtime::Current(); |
| if (runtime != nullptr && should_run_callbacks) { |
| runtime->GetRuntimeCallbacks()->ThreadDeath(self); |
| } |
| |
| // this.nativePeer = 0; |
| SetNativePeer</*kSupportTransaction=*/ true>(tlsPtr_.opeer, nullptr); |
| |
| // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone |
| // who is waiting. |
| ObjPtr<mirror::Object> lock = |
| WellKnownClasses::java_lang_Thread_lock->GetObject(tlsPtr_.opeer); |
| // (This conditional is only needed for tests, where Thread.lock won't have been set.) |
| if (lock != nullptr) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> h_obj(hs.NewHandle(lock)); |
| ObjectLock<mirror::Object> locker(self, h_obj); |
| locker.NotifyAll(); |
| } |
| |
| tlsPtr_.opeer = nullptr; |
| } |
| |
| { |
| ScopedObjectAccess soa(self); |
| Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); |
| |
| if (UNLIKELY(self->GetMethodTraceBuffer() != nullptr)) { |
| Trace::FlushThreadBuffer(self); |
| } |
| } |
| // Mark-stack revocation must be performed at the very end. No |
| // checkpoint/flip-function or read-barrier should be called after this. |
| if (gUseReadBarrier) { |
| Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this); |
| } |
| } |
| |
| Thread::~Thread() { |
| CHECK(tlsPtr_.class_loader_override == nullptr); |
| CHECK(tlsPtr_.jpeer == nullptr); |
| CHECK(tlsPtr_.opeer == nullptr); |
| bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? |
| if (initialized) { |
| delete tlsPtr_.jni_env; |
| tlsPtr_.jni_env = nullptr; |
| } |
| CHECK_NE(GetState(), ThreadState::kRunnable); |
| CHECK(!ReadFlag(ThreadFlag::kCheckpointRequest)); |
| CHECK(!ReadFlag(ThreadFlag::kEmptyCheckpointRequest)); |
| CHECK(!ReadFlag(ThreadFlag::kSuspensionImmune)); |
| CHECK(tlsPtr_.checkpoint_function == nullptr); |
| CHECK_EQ(checkpoint_overflow_.size(), 0u); |
| // A pending flip function request is OK. FlipThreadRoots will have been notified that we |
| // exited, and nobody will attempt to process the request. |
| |
| // Make sure we processed all deoptimization requests. |
| CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization"; |
| CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) << |
| "Not all deoptimized frames have been consumed by the debugger."; |
| |
| // We may be deleting a still born thread. |
| SetStateUnsafe(ThreadState::kTerminated); |
| |
| delete wait_cond_; |
| delete wait_mutex_; |
| |
| if (tlsPtr_.long_jump_context != nullptr) { |
| delete tlsPtr_.long_jump_context; |
| } |
| |
| if (initialized) { |
| CleanupCpu(); |
| } |
| |
| SetCachedThreadName(nullptr); // Deallocate name. |
| delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample; |
| |
| CHECK_EQ(tlsPtr_.method_trace_buffer, nullptr); |
| |
| Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this); |
| |
| TearDownAlternateSignalStack(); |
| } |
| |
| void Thread::HandleUncaughtExceptions() { |
| Thread* self = this; |
| DCHECK_EQ(self, Thread::Current()); |
| if (!self->IsExceptionPending()) { |
| return; |
| } |
| |
| // Get and clear the exception. |
| ObjPtr<mirror::Object> exception = self->GetException(); |
| self->ClearException(); |
| |
| // Call the Thread instance's dispatchUncaughtException(Throwable) |
| WellKnownClasses::java_lang_Thread_dispatchUncaughtException->InvokeFinal<'V', 'L'>( |
| self, tlsPtr_.opeer, exception); |
| |
| // If the dispatchUncaughtException threw, clear that exception too. |
| self->ClearException(); |
| } |
| |
| void Thread::RemoveFromThreadGroup() { |
| Thread* self = this; |
| DCHECK_EQ(self, Thread::Current()); |
| // this.group.threadTerminated(this); |
| // group can be null if we're in the compiler or a test. |
| ObjPtr<mirror::Object> group = |
| WellKnownClasses::java_lang_Thread_group->GetObject(tlsPtr_.opeer); |
| if (group != nullptr) { |
| WellKnownClasses::java_lang_ThreadGroup_threadTerminated->InvokeVirtual<'V', 'L'>( |
| self, group, tlsPtr_.opeer); |
| } |
| } |
| |
| template <bool kPointsToStack> |
| class JniTransitionReferenceVisitor : public StackVisitor { |
| public: |
| JniTransitionReferenceVisitor(Thread* thread, void* obj) REQUIRES_SHARED(Locks::mutator_lock_) |
| : StackVisitor(thread, /*context=*/ nullptr, StackVisitor::StackWalkKind::kSkipInlinedFrames), |
| obj_(obj), |
| found_(false) {} |
| |
| bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = GetMethod(); |
| if (!m->IsNative() || m->IsCriticalNative()) { |
| return true; |
| } |
| if (kPointsToStack) { |
| uint8_t* sp = reinterpret_cast<uint8_t*>(GetCurrentQuickFrame()); |
| size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes(); |
| uint32_t* current_vreg = reinterpret_cast<uint32_t*>(sp + frame_size + sizeof(ArtMethod*)); |
| if (!m->IsStatic()) { |
| if (current_vreg == obj_) { |
| found_ = true; |
| return false; |
| } |
| current_vreg += 1u; |
| } |
| uint32_t shorty_length; |
| const char* shorty = m->GetShorty(&shorty_length); |
| for (size_t i = 1; i != shorty_length; ++i) { |
| switch (shorty[i]) { |
| case 'D': |
| case 'J': |
| current_vreg += 2u; |
| break; |
| case 'L': |
| if (current_vreg == obj_) { |
| found_ = true; |
| return false; |
| } |
| FALLTHROUGH_INTENDED; |
| default: |
| current_vreg += 1u; |
| break; |
| } |
| } |
| // Continue only if the object is somewhere higher on the stack. |
| return obj_ >= current_vreg; |
| } else { // if (kPointsToStack) |
| if (m->IsStatic() && obj_ == m->GetDeclaringClassAddressWithoutBarrier()) { |
| found_ = true; |
| return false; |
| } |
| return true; |
| } |
| } |
| |
| bool Found() const { |
| return found_; |
| } |
| |
| private: |
| void* obj_; |
| bool found_; |
| }; |
| |
| bool Thread::IsJniTransitionReference(jobject obj) const { |
| DCHECK(obj != nullptr); |
| // We need a non-const pointer for stack walk even if we're not modifying the thread state. |
| Thread* thread = const_cast<Thread*>(this); |
| uint8_t* raw_obj = reinterpret_cast<uint8_t*>(obj); |
| if (static_cast<size_t>(raw_obj - tlsPtr_.stack_begin) < tlsPtr_.stack_size) { |
| JniTransitionReferenceVisitor</*kPointsToStack=*/ true> visitor(thread, raw_obj); |
| visitor.WalkStack(); |
| return visitor.Found(); |
| } else { |
| JniTransitionReferenceVisitor</*kPointsToStack=*/ false> visitor(thread, raw_obj); |
| visitor.WalkStack(); |
| return visitor.Found(); |
| } |
| } |
| |
| void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) { |
| BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor( |
| visitor, RootInfo(kRootNativeStack, thread_id)); |
| for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { |
| cur->VisitRoots(buffered_visitor); |
| } |
| } |
| |
| ObjPtr<mirror::Object> Thread::DecodeGlobalJObject(jobject obj) const { |
| DCHECK(obj != nullptr); |
| IndirectRef ref = reinterpret_cast<IndirectRef>(obj); |
| IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref); |
| DCHECK_NE(kind, kJniTransition); |
| DCHECK_NE(kind, kLocal); |
| ObjPtr<mirror::Object> result; |
| bool expect_null = false; |
| if (kind == kGlobal) { |
| result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref); |
| } else { |
| DCHECK_EQ(kind, kWeakGlobal); |
| result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref); |
| if (Runtime::Current()->IsClearedJniWeakGlobal(result)) { |
| // This is a special case where it's okay to return null. |
| expect_null = true; |
| result = nullptr; |
| } |
| } |
| |
| DCHECK(expect_null || result != nullptr) |
| << "use of deleted " << ToStr<IndirectRefKind>(kind).c_str() |
| << " " << static_cast<const void*>(obj); |
| return result; |
| } |
| |
| bool Thread::IsJWeakCleared(jweak obj) const { |
| CHECK(obj != nullptr); |
| IndirectRef ref = reinterpret_cast<IndirectRef>(obj); |
| IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref); |
| CHECK_EQ(kind, kWeakGlobal); |
| return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref); |
| } |
| |
| // Implements java.lang.Thread.interrupted. |
| bool Thread::Interrupted() { |
| DCHECK_EQ(Thread::Current(), this); |
| // No other thread can concurrently reset the interrupted flag. |
| bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst); |
| if (interrupted) { |
| tls32_.interrupted.store(false, std::memory_order_seq_cst); |
| } |
| return interrupted; |
| } |
| |
| // Implements java.lang.Thread.isInterrupted. |
| bool Thread::IsInterrupted() { |
| return tls32_.interrupted.load(std::memory_order_seq_cst); |
| } |
| |
| void Thread::Interrupt(Thread* self) { |
| { |
| MutexLock mu(self, *wait_mutex_); |
| if (tls32_.interrupted.load(std::memory_order_seq_cst)) { |
| return; |
| } |
| tls32_.interrupted.store(true, std::memory_order_seq_cst); |
| NotifyLocked(self); |
| } |
| Unpark(); |
| } |
| |
| void Thread::Notify() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *wait_mutex_); |
| NotifyLocked(self); |
| } |
| |
| void Thread::NotifyLocked(Thread* self) { |
| if (wait_monitor_ != nullptr) { |
| wait_cond_->Signal(self); |
| } |
| } |
| |
| void Thread::SetClassLoaderOverride(jobject class_loader_override) { |
| if (tlsPtr_.class_loader_override != nullptr) { |
| GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override); |
| } |
| tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override); |
| } |
| |
| using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>; |
| |
| // Counts the stack trace depth and also fetches the first max_saved_frames frames. |
| class FetchStackTraceVisitor : public StackVisitor { |
| public: |
| explicit FetchStackTraceVisitor(Thread* thread, |
| ArtMethodDexPcPair* saved_frames = nullptr, |
| size_t max_saved_frames = 0) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), |
| saved_frames_(saved_frames), |
| max_saved_frames_(max_saved_frames) {} |
| |
| bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { |
| // We want to skip frames up to and including the exception's constructor. |
| // Note we also skip the frame if it doesn't have a method (namely the callee |
| // save frame) |
| ArtMethod* m = GetMethod(); |
| if (skipping_ && !m->IsRuntimeMethod() && |
| !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) { |
| skipping_ = false; |
| } |
| if (!skipping_) { |
| if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). |
| if (depth_ < max_saved_frames_) { |
| saved_frames_[depth_].first = m; |
| saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc(); |
| } |
| ++depth_; |
| } |
| } else { |
| ++skip_depth_; |
| } |
| return true; |
| } |
| |
| uint32_t GetDepth() const { |
| return depth_; |
| } |
| |
| uint32_t GetSkipDepth() const { |
| return skip_depth_; |
| } |
| |
| private: |
| uint32_t depth_ = 0; |
| uint32_t skip_depth_ = 0; |
| bool skipping_ = true; |
| ArtMethodDexPcPair* saved_frames_; |
| const size_t max_saved_frames_; |
| |
| DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor); |
| }; |
| |
| class BuildInternalStackTraceVisitor : public StackVisitor { |
| public: |
| BuildInternalStackTraceVisitor(Thread* self, Thread* thread, uint32_t skip_depth) |
| : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), |
| self_(self), |
| skip_depth_(skip_depth), |
| pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {} |
| |
| bool Init(uint32_t depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) { |
| // Allocate method trace as an object array where the first element is a pointer array that |
| // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring |
| // class of the ArtMethod pointers. |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| StackHandleScope<1> hs(self_); |
| ObjPtr<mirror::Class> array_class = |
| GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker); |
| // The first element is the methods and dex pc array, the other elements are declaring classes |
| // for the methods to ensure classes in the stack trace don't get unloaded. |
| Handle<mirror::ObjectArray<mirror::Object>> trace( |
| hs.NewHandle(mirror::ObjectArray<mirror::Object>::Alloc( |
| hs.Self(), array_class, static_cast<int32_t>(depth) + 1))); |
| if (trace == nullptr) { |
| // Acquire uninterruptible_ in all paths. |
| self_->StartAssertNoThreadSuspension("Building internal stack trace"); |
| self_->AssertPendingOOMException(); |
| return false; |
| } |
| ObjPtr<mirror::PointerArray> methods_and_pcs = |
| class_linker->AllocPointerArray(self_, depth * 2); |
| const char* last_no_suspend_cause = |
| self_->StartAssertNoThreadSuspension("Building internal stack trace"); |
| if (methods_and_pcs == nullptr) { |
| self_->AssertPendingOOMException(); |
| return false; |
| } |
| trace->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(0, methods_and_pcs); |
| trace_ = trace.Get(); |
| // If We are called from native, use non-transactional mode. |
| CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; |
| return true; |
| } |
| |
| virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) { |
| self_->EndAssertNoThreadSuspension(nullptr); |
| } |
| |
| bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (trace_ == nullptr) { |
| return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. |
| } |
| if (skip_depth_ > 0) { |
| skip_depth_--; |
| return true; |
| } |
| ArtMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| return true; // Ignore runtime frames (in particular callee save). |
| } |
| AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc()); |
| return true; |
| } |
| |
| void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::PointerArray> methods_and_pcs = GetTraceMethodsAndPCs(); |
| methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>( |
| count_, method, pointer_size_); |
| methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>( |
| static_cast<uint32_t>(methods_and_pcs->GetLength()) / 2 + count_, dex_pc, pointer_size_); |
| // Save the declaring class of the method to ensure that the declaring classes of the methods |
| // do not get unloaded while the stack trace is live. However, this does not work for copied |
| // methods because the declaring class of a copied method points to an interface class which |
| // may be in a different class loader. Instead, retrieve the class loader associated with the |
| // allocator that holds the copied method. This is much cheaper than finding the actual class. |
| ObjPtr<mirror::Object> keep_alive; |
| if (UNLIKELY(method->IsCopied())) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| keep_alive = class_linker->GetHoldingClassLoaderOfCopiedMethod(self_, method); |
| } else { |
| keep_alive = method->GetDeclaringClass(); |
| } |
| trace_->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>( |
| static_cast<int32_t>(count_) + 1, keep_alive); |
| ++count_; |
| } |
| |
| ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0)); |
| } |
| |
| mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const { |
| return trace_; |
| } |
| |
| private: |
| Thread* const self_; |
| // How many more frames to skip. |
| uint32_t skip_depth_; |
| // Current position down stack trace. |
| uint32_t count_ = 0; |
| // An object array where the first element is a pointer array that contains the `ArtMethod` |
| // pointers on the stack and dex PCs. The rest of the elements are referencing objects |
| // that shall keep the methods alive, namely the declaring class of the `ArtMethod` for |
| // declared methods and the class loader for copied methods (because it's faster to find |
| // the class loader than the actual class that holds the copied method). The `trace_[i+1]` |
| // contains the declaring class or class loader of the `ArtMethod` of the i'th frame. |
| // We're initializing a newly allocated trace, so we do not need to record that under |
| // a transaction. If the transaction is aborted, the whole trace shall be unreachable. |
| mirror::ObjectArray<mirror::Object>* trace_ = nullptr; |
| // For cross compilation. |
| const PointerSize pointer_size_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor); |
| }; |
| |
| jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { |
| // Compute depth of stack, save frames if possible to avoid needing to recompute many. |
| constexpr size_t kMaxSavedFrames = 256; |
| std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]); |
| FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this), |
| &saved_frames[0], |
| kMaxSavedFrames); |
| count_visitor.WalkStack(); |
| const uint32_t depth = count_visitor.GetDepth(); |
| const uint32_t skip_depth = count_visitor.GetSkipDepth(); |
| |
| // Build internal stack trace. |
| BuildInternalStackTraceVisitor build_trace_visitor( |
| soa.Self(), const_cast<Thread*>(this), skip_depth); |
| if (!build_trace_visitor.Init(depth)) { |
| return nullptr; // Allocation failed. |
| } |
| // If we saved all of the frames we don't even need to do the actual stack walk. This is faster |
| // than doing the stack walk twice. |
| if (depth < kMaxSavedFrames) { |
| for (size_t i = 0; i < depth; ++i) { |
| build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second); |
| } |
| } else { |
| build_trace_visitor.WalkStack(); |
| } |
| |
| mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace(); |
| if (kIsDebugBuild) { |
| ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs(); |
| // Second half of trace_methods is dex PCs. |
| for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) { |
| auto* method = trace_methods->GetElementPtrSize<ArtMethod*>( |
| i, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); |
| CHECK(method != nullptr); |
| } |
| } |
| return soa.AddLocalReference<jobject>(trace); |
| } |
| |
| bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const { |
| // Only count the depth since we do not pass a stack frame array as an argument. |
| FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this)); |
| count_visitor.WalkStack(); |
| return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth()); |
| } |
| |
| static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement( |
| const ScopedObjectAccessAlreadyRunnable& soa, |
| ArtMethod* method, |
| uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { |
| int32_t line_number; |
| StackHandleScope<3> hs(soa.Self()); |
| auto class_name_object(hs.NewHandle<mirror::String>(nullptr)); |
| auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); |
| if (method->IsProxyMethod()) { |
| line_number = -1; |
| class_name_object.Assign(method->GetDeclaringClass()->GetName()); |
| // source_name_object intentionally left null for proxy methods |
| } else { |
| line_number = method->GetLineNumFromDexPC(dex_pc); |
| // Allocate element, potentially triggering GC |
| // TODO: reuse class_name_object via Class::name_? |
| const char* descriptor = method->GetDeclaringClassDescriptor(); |
| CHECK(descriptor != nullptr); |
| std::string class_name(PrettyDescriptor(descriptor)); |
| class_name_object.Assign( |
| mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); |
| if (class_name_object == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| const char* source_file = method->GetDeclaringClassSourceFile(); |
| if (line_number == -1) { |
| // Make the line_number field of StackTraceElement hold the dex pc. |
| // source_name_object is intentionally left null if we failed to map the dex pc to |
| // a line number (most probably because there is no debug info). See b/30183883. |
| line_number = static_cast<int32_t>(dex_pc); |
| } else { |
| if (source_file != nullptr) { |
| source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); |
| if (source_name_object == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| } |
| } |
| } |
| const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName(); |
| CHECK(method_name != nullptr); |
| Handle<mirror::String> method_name_object( |
| hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); |
| if (method_name_object == nullptr) { |
| return nullptr; |
| } |
| return mirror::StackTraceElement::Alloc(soa.Self(), |
| class_name_object, |
| method_name_object, |
| source_name_object, |
| line_number); |
| } |
| |
| jobjectArray Thread::InternalStackTraceToStackTraceElementArray( |
| const ScopedObjectAccessAlreadyRunnable& soa, |
| jobject internal, |
| jobjectArray output_array, |
| int* stack_depth) { |
| // Decode the internal stack trace into the depth, method trace and PC trace. |
| // Subtract one for the methods and PC trace. |
| int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1; |
| DCHECK_GE(depth, 0); |
| |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| |
| jobjectArray result; |
| |
| if (output_array != nullptr) { |
| // Reuse the array we were given. |
| result = output_array; |
| // ...adjusting the number of frames we'll write to not exceed the array length. |
| const int32_t traces_length = |
| soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength(); |
| depth = std::min(depth, traces_length); |
| } else { |
| // Create java_trace array and place in local reference table |
| ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces = |
| class_linker->AllocStackTraceElementArray(soa.Self(), static_cast<size_t>(depth)); |
| if (java_traces == nullptr) { |
| return nullptr; |
| } |
| result = soa.AddLocalReference<jobjectArray>(java_traces); |
| } |
| |
| if (stack_depth != nullptr) { |
| *stack_depth = depth; |
| } |
| |
| for (uint32_t i = 0; i < static_cast<uint32_t>(depth); ++i) { |
| ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces = |
| soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>(); |
| // Methods and dex PC trace is element 0. |
| DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray()); |
| const ObjPtr<mirror::PointerArray> method_trace = |
| ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0)); |
| // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) |
| ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize); |
| uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>( |
| i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize); |
| const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc); |
| if (obj == nullptr) { |
| return nullptr; |
| } |
| // We are called from native: use non-transactional mode. |
| soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>( |
| static_cast<int32_t>(i), obj); |
| } |
| return result; |
| } |
| |
| [[nodiscard]] static ObjPtr<mirror::StackFrameInfo> InitStackFrameInfo( |
| const ScopedObjectAccessAlreadyRunnable& soa, |
| ClassLinker* class_linker, |
| Handle<mirror::StackFrameInfo> stackFrameInfo, |
| ArtMethod* method, |
| uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { |
| StackHandleScope<4> hs(soa.Self()); |
| int32_t line_number; |
| auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); |
| if (method->IsProxyMethod()) { |
| line_number = -1; |
| // source_name_object intentionally left null for proxy methods |
| } else { |
| line_number = method->GetLineNumFromDexPC(dex_pc); |
| if (line_number == -1) { |
| // Make the line_number field of StackFrameInfo hold the dex pc. |
| // source_name_object is intentionally left null if we failed to map the dex pc to |
| // a line number (most probably because there is no debug info). See b/30183883. |
| line_number = static_cast<int32_t>(dex_pc); |
| } else { |
| const char* source_file = method->GetDeclaringClassSourceFile(); |
| if (source_file != nullptr) { |
| source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); |
| if (source_name_object == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| } |
| } |
| } |
| |
| Handle<mirror::Class> declaring_class_object( |
| hs.NewHandle<mirror::Class>(method->GetDeclaringClass())); |
| |
| ArtMethod* interface_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| const char* method_name = interface_method->GetName(); |
| CHECK(method_name != nullptr); |
| Handle<mirror::String> method_name_object( |
| hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); |
| if (method_name_object == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| |
| dex::ProtoIndex proto_idx = |
| method->GetDexFile()->GetIndexForProtoId(interface_method->GetPrototype()); |
| Handle<mirror::MethodType> method_type_object(hs.NewHandle<mirror::MethodType>( |
| class_linker->ResolveMethodType(soa.Self(), proto_idx, interface_method))); |
| if (method_type_object == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| |
| stackFrameInfo->AssignFields(declaring_class_object, |
| method_type_object, |
| method_name_object, |
| source_name_object, |
| line_number, |
| static_cast<int32_t>(dex_pc)); |
| return stackFrameInfo.Get(); |
| } |
| |
| constexpr jlong FILL_CLASS_REFS_ONLY = 0x2; // StackStreamFactory.FILL_CLASS_REFS_ONLY |
| |
| jint Thread::InternalStackTraceToStackFrameInfoArray( |
| const ScopedObjectAccessAlreadyRunnable& soa, |
| jlong mode, // See java.lang.StackStreamFactory for the mode flags |
| jobject internal, |
| jint startLevel, |
| jint batchSize, |
| jint startBufferIndex, |
| jobjectArray output_array) { |
| // Decode the internal stack trace into the depth, method trace and PC trace. |
| // Subtract one for the methods and PC trace. |
| int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1; |
| DCHECK_GE(depth, 0); |
| |
| StackHandleScope<6> hs(soa.Self()); |
| Handle<mirror::ObjectArray<mirror::Object>> framesOrClasses = |
| hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Object>>(output_array)); |
| |
| jint endBufferIndex = startBufferIndex; |
| |
| if (startLevel < 0 || startLevel >= depth) { |
| return endBufferIndex; |
| } |
| |
| int32_t bufferSize = framesOrClasses->GetLength(); |
| if (startBufferIndex < 0 || startBufferIndex >= bufferSize) { |
| return endBufferIndex; |
| } |
| |
| // The FILL_CLASS_REFS_ONLY flag is defined in AbstractStackWalker.fetchStackFrames() javadoc. |
| bool isClassArray = (mode & FILL_CLASS_REFS_ONLY) != 0; |
| |
| Handle<mirror::ObjectArray<mirror::Object>> decoded_traces = |
| hs.NewHandle(soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>()); |
| // Methods and dex PC trace is element 0. |
| DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray()); |
| Handle<mirror::PointerArray> method_trace = |
| hs.NewHandle(ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0))); |
| |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| Handle<mirror::Class> sfi_class = |
| hs.NewHandle(class_linker->FindSystemClass(soa.Self(), "Ljava/lang/StackFrameInfo;")); |
| DCHECK(sfi_class != nullptr); |
| |
| MutableHandle<mirror::StackFrameInfo> frame = hs.NewHandle<mirror::StackFrameInfo>(nullptr); |
| MutableHandle<mirror::Class> clazz = hs.NewHandle<mirror::Class>(nullptr); |
| for (uint32_t i = static_cast<uint32_t>(startLevel); i < static_cast<uint32_t>(depth); ++i) { |
| if (endBufferIndex >= startBufferIndex + batchSize || endBufferIndex >= bufferSize) { |
| break; |
| } |
| |
| ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize); |
| if (isClassArray) { |
| clazz.Assign(method->GetDeclaringClass()); |
| framesOrClasses->Set(endBufferIndex, clazz.Get()); |
| } else { |
| // Prepare parameters for fields in StackFrameInfo |
| uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>( |
| i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize); |
| |
| ObjPtr<mirror::Object> frameObject = framesOrClasses->Get(endBufferIndex); |
| // If libcore didn't allocate the object, we just stop here, but it's unlikely. |
| if (frameObject == nullptr || !frameObject->InstanceOf(sfi_class.Get())) { |
| break; |
| } |
| frame.Assign(ObjPtr<mirror::StackFrameInfo>::DownCast(frameObject)); |
| frame.Assign(InitStackFrameInfo(soa, class_linker, frame, method, dex_pc)); |
| // Break if InitStackFrameInfo fails to allocate objects or assign the fields. |
| if (frame == nullptr) { |
| break; |
| } |
| } |
| |
| ++endBufferIndex; |
| } |
| |
| return endBufferIndex; |
| } |
| |
| jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { |
| // This code allocates. Do not allow it to operate with a pending exception. |
| if (IsExceptionPending()) { |
| return nullptr; |
| } |
| |
| class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor { |
| public: |
| CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in, |
| Thread* self, |
| Context* context) |
| : MonitorObjectsStackVisitor(self, context), |
| wait_jobject_(soaa_in.Env(), nullptr), |
| block_jobject_(soaa_in.Env(), nullptr), |
| soaa_(soaa_in) {} |
| |
| protected: |
| VisitMethodResult StartMethod(ArtMethod* m, [[maybe_unused]] size_t frame_nr) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement( |
| soaa_, m, GetDexPc(/* abort on error */ false)); |
| if (obj == nullptr) { |
| return VisitMethodResult::kEndStackWalk; |
| } |
| stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr())); |
| return VisitMethodResult::kContinueMethod; |
| } |
| |
| VisitMethodResult EndMethod([[maybe_unused]] ArtMethod* m) override { |
| lock_objects_.push_back({}); |
| lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_); |
| |
| DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size()); |
| |
| return VisitMethodResult::kContinueMethod; |
| } |
| |
| void VisitWaitingObject(ObjPtr<mirror::Object> obj, [[maybe_unused]] ThreadState state) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj)); |
| } |
| void VisitSleepingObject(ObjPtr<mirror::Object> obj) |
| override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj)); |
| } |
| void VisitBlockedOnObject(ObjPtr<mirror::Object> obj, |
| [[maybe_unused]] ThreadState state, |
| [[maybe_unused]] uint32_t owner_tid) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj)); |
| } |
| void VisitLockedObject(ObjPtr<mirror::Object> obj) |
| override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj)); |
| } |
| |
| public: |
| std::vector<ScopedLocalRef<jobject>> stack_trace_elements_; |
| ScopedLocalRef<jobject> wait_jobject_; |
| ScopedLocalRef<jobject> block_jobject_; |
| std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_; |
| |
| private: |
| const ScopedObjectAccessAlreadyRunnable& soaa_; |
| |
| std::vector<ScopedLocalRef<jobject>> frame_lock_objects_; |
| }; |
| |
| std::unique_ptr<Context> context(Context::Create()); |
| CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get()); |
| dumper.WalkStack(); |
| |
| // There should not be a pending exception. Otherwise, return with it pending. |
| if (IsExceptionPending()) { |
| return nullptr; |
| } |
| |
| // Now go and create Java arrays. |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| |
| StackHandleScope<6> hs(soa.Self()); |
| Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass( |
| soa.Self(), |
| "[Ldalvik/system/AnnotatedStackTraceElement;")); |
| if (h_aste_array_class == nullptr) { |
| return nullptr; |
| } |
| Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType()); |
| |
| Handle<mirror::Class> h_o_array_class = |
| hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker)); |
| DCHECK(h_o_array_class != nullptr); // Class roots must be already initialized. |
| |
| |
| // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 . |
| class_linker->EnsureInitialized(soa.Self(), |
| h_aste_class, |
| /* can_init_fields= */ true, |
| /* can_init_parents= */ true); |
| if (soa.Self()->IsExceptionPending()) { |
| // This should not fail in a healthy runtime. |
| return nullptr; |
| } |
| |
| ArtField* stack_trace_element_field = |
| h_aste_class->FindDeclaredInstanceField("stackTraceElement", "Ljava/lang/StackTraceElement;"); |
| DCHECK(stack_trace_element_field != nullptr); |
| ArtField* held_locks_field = |
| h_aste_class->FindDeclaredInstanceField("heldLocks", "[Ljava/lang/Object;"); |
| DCHECK(held_locks_field != nullptr); |
| ArtField* blocked_on_field = |
| h_aste_class->FindDeclaredInstanceField("blockedOn", "Ljava/lang/Object;"); |
| DCHECK(blocked_on_field != nullptr); |
| |
| int32_t length = static_cast<int32_t>(dumper.stack_trace_elements_.size()); |
| ObjPtr<mirror::ObjectArray<mirror::Object>> array = |
| mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length); |
| if (array == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| |
| ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array)); |
| |
| MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr)); |
| MutableHandle<mirror::ObjectArray<mirror::Object>> handle2( |
| hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr)); |
| for (size_t i = 0; i != static_cast<size_t>(length); ++i) { |
| handle.Assign(h_aste_class->AllocObject(soa.Self())); |
| if (handle == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| |
| // Set stack trace element. |
| stack_trace_element_field->SetObject<false>( |
| handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get())); |
| |
| // Create locked-on array. |
| if (!dumper.lock_objects_[i].empty()) { |
| handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc( |
| soa.Self(), h_o_array_class.Get(), static_cast<int32_t>(dumper.lock_objects_[i].size()))); |
| if (handle2 == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return nullptr; |
| } |
| int32_t j = 0; |
| for (auto& scoped_local : dumper.lock_objects_[i]) { |
| if (scoped_local == nullptr) { |
| continue; |
| } |
| handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get())); |
| DCHECK(!soa.Self()->IsExceptionPending()); |
| j++; |
| } |
| held_locks_field->SetObject<false>(handle.Get(), handle2.Get()); |
| } |
| |
| // Set blocked-on object. |
| if (i == 0) { |
| if (dumper.block_jobject_ != nullptr) { |
| blocked_on_field->SetObject<false>( |
| handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get())); |
| } |
| } |
| |
| ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get())); |
| soa.Env()->SetObjectArrayElement(result.get(), static_cast<jsize>(i), elem.get()); |
| DCHECK(!soa.Self()->IsExceptionPending()); |
| } |
| |
| return result.release(); |
| } |
| |
| void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { |
| va_list args; |
| va_start(args, fmt); |
| ThrowNewExceptionV(exception_class_descriptor, fmt, args); |
| va_end(args); |
| } |
| |
| void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, |
| const char* fmt, va_list ap) { |
| std::string msg; |
| StringAppendV(&msg, fmt, ap); |
| ThrowNewException(exception_class_descriptor, msg.c_str()); |
| } |
| |
| void Thread::ThrowNewException(const char* exception_class_descriptor, |
| const char* msg) { |
| // Callers should either clear or call ThrowNewWrappedException. |
| AssertNoPendingExceptionForNewException(msg); |
| ThrowNewWrappedException(exception_class_descriptor, msg); |
| } |
| |
| static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* method = self->GetCurrentMethod(nullptr); |
| return method != nullptr |
| ? method->GetDeclaringClass()->GetClassLoader() |
| : nullptr; |
| } |
| |
| void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, |
| const char* msg) { |
| DCHECK_EQ(this, Thread::Current()); |
| ScopedObjectAccessUnchecked soa(this); |
| StackHandleScope<3> hs(soa.Self()); |
| |
| // Disable public sdk checks if we need to throw exceptions. |
| // The checks are only used in AOT compilation and may block (exception) class |
| // initialization if it needs access to private fields (e.g. serialVersionUID). |
| // |
| // Since throwing an exception will EnsureInitialization and the public sdk may |
| // block that, disable the checks. It's ok to do so, because the thrown exceptions |
| // are not part of the application code that needs to verified. |
| ScopedDisablePublicSdkChecker sdpsc; |
| |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self()))); |
| ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException())); |
| ClearException(); |
| Runtime* runtime = Runtime::Current(); |
| auto* cl = runtime->GetClassLinker(); |
| Handle<mirror::Class> exception_class( |
| hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader))); |
| if (UNLIKELY(exception_class == nullptr)) { |
| CHECK(IsExceptionPending()); |
| LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); |
| return; |
| } |
| |
| if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true, |
| true))) { |
| DCHECK(IsExceptionPending()); |
| return; |
| } |
| DCHECK_IMPLIES(runtime->IsStarted(), exception_class->IsThrowableClass()); |
| Handle<mirror::Throwable> exception( |
| hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this)))); |
| |
| // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. |
| if (exception == nullptr) { |
| Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one. |
| SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException()); |
| return; |
| } |
| |
| // Choose an appropriate constructor and set up the arguments. |
| const char* signature; |
| ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr); |
| if (msg != nullptr) { |
| // Ensure we remember this and the method over the String allocation. |
| msg_string.reset( |
| soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg))); |
| if (UNLIKELY(msg_string.get() == nullptr)) { |
| CHECK(IsExceptionPending()); // OOME. |
| return; |
| } |
| if (cause.get() == nullptr) { |
| signature = "(Ljava/lang/String;)V"; |
| } else { |
| signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; |
| } |
| } else { |
| if (cause.get() == nullptr) { |
| signature = "()V"; |
| } else { |
| signature = "(Ljava/lang/Throwable;)V"; |
| } |
| } |
| ArtMethod* exception_init_method = |
| exception_class->FindConstructor(signature, cl->GetImagePointerSize()); |
| |
| CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in " |
| << PrettyDescriptor(exception_class_descriptor); |
| |
| if (UNLIKELY(!runtime->IsStarted())) { |
| // Something is trying to throw an exception without a started runtime, which is the common |
| // case in the compiler. We won't be able to invoke the constructor of the exception, so set |
| // the exception fields directly. |
| if (msg != nullptr) { |
| exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString()); |
| } |
| if (cause.get() != nullptr) { |
| exception->SetCause(DecodeJObject(cause.get())->AsThrowable()); |
| } |
| ScopedLocalRef<jobject> trace(GetJniEnv(), CreateInternalStackTrace(soa)); |
| if (trace.get() != nullptr) { |
| exception->SetStackState(DecodeJObject(trace.get()).Ptr()); |
| } |
| SetException(exception.Get()); |
| } else { |
| jvalue jv_args[2]; |
| size_t i = 0; |
| |
| if (msg != nullptr) { |
| jv_args[i].l = msg_string.get(); |
| ++i; |
| } |
| if (cause.get() != nullptr) { |
| jv_args[i].l = cause.get(); |
| ++i; |
| } |
| ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get())); |
| InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args); |
| if (LIKELY(!IsExceptionPending())) { |
| SetException(exception.Get()); |
| } |
| } |
| } |
| |
| void Thread::ThrowOutOfMemoryError(const char* msg) { |
| LOG(WARNING) << "Throwing OutOfMemoryError " |
| << '"' << msg << '"' |
| << " (VmSize " << GetProcessStatus("VmSize") |
| << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")"); |
| ScopedTrace trace("OutOfMemoryError"); |
| if (!tls32_.throwing_OutOfMemoryError) { |
| tls32_.throwing_OutOfMemoryError = true; |
| ThrowNewException("Ljava/lang/OutOfMemoryError;", msg); |
| tls32_.throwing_OutOfMemoryError = false; |
| } else { |
| Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one. |
| SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()); |
| } |
| } |
| |
| Thread* Thread::CurrentFromGdb() { |
| return Thread::Current(); |
| } |
| |
| void Thread::DumpFromGdb() const { |
| std::ostringstream ss; |
| Dump(ss); |
| std::string str(ss.str()); |
| // log to stderr for debugging command line processes |
| std::cerr << str; |
| #ifdef ART_TARGET_ANDROID |
| // log to logcat for debugging frameworks processes |
| LOG(INFO) << str; |
| #endif |
| } |
| |
| // Explicitly instantiate 32 and 64bit thread offset dumping support. |
| template |
| void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset); |
| template |
| void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset); |
| |
| template<PointerSize ptr_size> |
| void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { |
| #define DO_THREAD_OFFSET(x, y) \ |
| if (offset == (x).Uint32Value()) { \ |
| os << (y); \ |
| return; \ |
| } |
| DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags") |
| DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table") |
| DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception") |
| DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer"); |
| DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env") |
| DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self") |
| DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end") |
| DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id") |
| DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking") |
| DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method") |
| DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame") |
| DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope") |
| DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger") |
| #undef DO_THREAD_OFFSET |
| |
| #define JNI_ENTRY_POINT_INFO(x) \ |
| if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ |
| os << #x; \ |
| return; \ |
| } |
| JNI_ENTRY_POINT_INFO(pDlsymLookup) |
| JNI_ENTRY_POINT_INFO(pDlsymLookupCritical) |
| #undef JNI_ENTRY_POINT_INFO |
| |
| #define QUICK_ENTRY_POINT_INFO(x) \ |
| if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ |
| os << #x; \ |
| return; \ |
| } |
| QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) |
| QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8) |
| QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16) |
| QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32) |
| QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64) |
| QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) |
| QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) |
| QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks) |
| QUICK_ENTRY_POINT_INFO(pAllocStringObject) |
| QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes) |
| QUICK_ENTRY_POINT_INFO(pAllocStringFromChars) |
| QUICK_ENTRY_POINT_INFO(pAllocStringFromString) |
| QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) |
| QUICK_ENTRY_POINT_INFO(pCheckInstanceOf) |
| QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) |
| QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess) |
| QUICK_ENTRY_POINT_INFO(pResolveType) |
| QUICK_ENTRY_POINT_INFO(pResolveString) |
| QUICK_ENTRY_POINT_INFO(pSet8Instance) |
| QUICK_ENTRY_POINT_INFO(pSet8Static) |
| QUICK_ENTRY_POINT_INFO(pSet16Instance) |
| QUICK_ENTRY_POINT_INFO(pSet16Static) |
| QUICK_ENTRY_POINT_INFO(pSet32Instance) |
| QUICK_ENTRY_POINT_INFO(pSet32Static) |
| QUICK_ENTRY_POINT_INFO(pSet64Instance) |
| QUICK_ENTRY_POINT_INFO(pSet64Static) |
| QUICK_ENTRY_POINT_INFO(pSetObjInstance) |
| QUICK_ENTRY_POINT_INFO(pSetObjStatic) |
| QUICK_ENTRY_POINT_INFO(pGetByteInstance) |
| QUICK_ENTRY_POINT_INFO(pGetBooleanInstance) |
| QUICK_ENTRY_POINT_INFO(pGetByteStatic) |
| QUICK_ENTRY_POINT_INFO(pGetBooleanStatic) |
| QUICK_ENTRY_POINT_INFO(pGetShortInstance) |
| QUICK_ENTRY_POINT_INFO(pGetCharInstance) |
| QUICK_ENTRY_POINT_INFO(pGetShortStatic) |
| QUICK_ENTRY_POINT_INFO(pGetCharStatic) |
| QUICK_ENTRY_POINT_INFO(pGet32Instance) |
| QUICK_ENTRY_POINT_INFO(pGet32Static) |
| QUICK_ENTRY_POINT_INFO(pGet64Instance) |
| QUICK_ENTRY_POINT_INFO(pGet64Static) |
| QUICK_ENTRY_POINT_INFO(pGetObjInstance) |
| QUICK_ENTRY_POINT_INFO(pGetObjStatic) |
| QUICK_ENTRY_POINT_INFO(pAputObject) |
| QUICK_ENTRY_POINT_INFO(pJniMethodStart) |
| QUICK_ENTRY_POINT_INFO(pJniMethodEnd) |
| QUICK_ENTRY_POINT_INFO(pJniMethodEntryHook) |
| QUICK_ENTRY_POINT_INFO(pJniDecodeReferenceResult) |
| QUICK_ENTRY_POINT_INFO(pJniLockObject) |
| QUICK_ENTRY_POINT_INFO(pJniUnlockObject) |
| QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) |
| QUICK_ENTRY_POINT_INFO(pLockObject) |
| QUICK_ENTRY_POINT_INFO(pUnlockObject) |
| QUICK_ENTRY_POINT_INFO(pCmpgDouble) |
| QUICK_ENTRY_POINT_INFO(pCmpgFloat) |
| QUICK_ENTRY_POINT_INFO(pCmplDouble) |
| QUICK_ENTRY_POINT_INFO(pCmplFloat) |
| QUICK_ENTRY_POINT_INFO(pCos) |
| QUICK_ENTRY_POINT_INFO(pSin) |
| QUICK_ENTRY_POINT_INFO(pAcos) |
| QUICK_ENTRY_POINT_INFO(pAsin) |
| QUICK_ENTRY_POINT_INFO(pAtan) |
| QUICK_ENTRY_POINT_INFO(pAtan2) |
| QUICK_ENTRY_POINT_INFO(pCbrt) |
| QUICK_ENTRY_POINT_INFO(pCosh) |
| QUICK_ENTRY_POINT_INFO(pExp) |
| QUICK_ENTRY_POINT_INFO(pExpm1) |
| QUICK_ENTRY_POINT_INFO(pHypot) |
| QUICK_ENTRY_POINT_INFO(pLog) |
| QUICK_ENTRY_POINT_INFO(pLog10) |
| QUICK_ENTRY_POINT_INFO(pNextAfter) |
| QUICK_ENTRY_POINT_INFO(pSinh) |
| QUICK_ENTRY_POINT_INFO(pTan) |
| QUICK_ENTRY_POINT_INFO(pTanh) |
| QUICK_ENTRY_POINT_INFO(pFmod) |
| QUICK_ENTRY_POINT_INFO(pL2d) |
| QUICK_ENTRY_POINT_INFO(pFmodf) |
| QUICK_ENTRY_POINT_INFO(pL2f) |
| QUICK_ENTRY_POINT_INFO(pD2iz) |
| QUICK_ENTRY_POINT_INFO(pF2iz) |
| QUICK_ENTRY_POINT_INFO(pIdivmod) |
| QUICK_ENTRY_POINT_INFO(pD2l) |
| QUICK_ENTRY_POINT_INFO(pF2l) |
| QUICK_ENTRY_POINT_INFO(pLdiv) |
| QUICK_ENTRY_POINT_INFO(pLmod) |
| QUICK_ENTRY_POINT_INFO(pLmul) |
| QUICK_ENTRY_POINT_INFO(pShlLong) |
| QUICK_ENTRY_POINT_INFO(pShrLong) |
| QUICK_ENTRY_POINT_INFO(pUshrLong) |
| QUICK_ENTRY_POINT_INFO(pIndexOf) |
| QUICK_ENTRY_POINT_INFO(pStringCompareTo) |
| QUICK_ENTRY_POINT_INFO(pMemcpy) |
| QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) |
| QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) |
| QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) |
| QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokePolymorphic) |
| QUICK_ENTRY_POINT_INFO(pTestSuspend) |
| QUICK_ENTRY_POINT_INFO(pDeliverException) |
| QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) |
| QUICK_ENTRY_POINT_INFO(pThrowDivZero) |
| QUICK_ENTRY_POINT_INFO(pThrowNullPointer) |
| QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) |
| QUICK_ENTRY_POINT_INFO(pDeoptimize) |
| QUICK_ENTRY_POINT_INFO(pA64Load) |
| QUICK_ENTRY_POINT_INFO(pA64Store) |
| QUICK_ENTRY_POINT_INFO(pNewEmptyString) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BB) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromString) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder) |
| QUICK_ENTRY_POINT_INFO(pNewStringFromUtf16Bytes_BII) |
| QUICK_ENTRY_POINT_INFO(pJniReadBarrier) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierSlow) |
| QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow) |
| #undef QUICK_ENTRY_POINT_INFO |
| |
| os << offset; |
| } |
| |
| void Thread::QuickDeliverException(bool skip_method_exit_callbacks) { |
| // Get exception from thread. |
| ObjPtr<mirror::Throwable> exception = GetException(); |
| CHECK(exception != nullptr); |
| if (exception == GetDeoptimizationException()) { |
| // This wasn't a real exception, so just clear it here. If there was an actual exception it |
| // will be recorded in the DeoptimizationContext and it will be restored later. |
| ClearException(); |
| artDeoptimize(this, skip_method_exit_callbacks); |
| UNREACHABLE(); |
| } |
| |
| ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr()); |
| |
| // This is a real exception: let the instrumentation know about it. Exception throw listener |
| // could set a breakpoint or install listeners that might require a deoptimization. Hence the |
| // deoptimization check needs to happen after calling the listener. |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| if (instrumentation->HasExceptionThrownListeners() && |
| IsExceptionThrownByCurrentMethod(exception)) { |
| // Instrumentation may cause GC so keep the exception object safe. |
| StackHandleScope<1> hs(this); |
| HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception)); |
| instrumentation->ExceptionThrownEvent(this, exception); |
| } |
| // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something? |
| // Note: we do this *after* reporting the exception to instrumentation in case it now requires |
| // deoptimization. It may happen if a debugger is attached and requests new events (single-step, |
| // breakpoint, ...) when the exception is reported. |
| // Frame pop can be requested on a method unwind callback which requires a deopt. We could |
| // potentially check after each unwind callback to see if a frame pop was requested and deopt if |
| // needed. Since this is a debug only feature and this path is only taken when an exception is |
| // thrown, it is not performance critical and we keep it simple by just deopting if method exit |
| // listeners are installed and frame pop feature is supported. |
| bool needs_deopt = |
| instrumentation->HasMethodExitListeners() && Runtime::Current()->AreNonStandardExitsEnabled(); |
| if (Dbg::IsForcedInterpreterNeededForException(this) || IsForceInterpreter() || needs_deopt) { |
| NthCallerVisitor visitor(this, 0, false); |
| visitor.WalkStack(); |
| if (visitor.GetCurrentQuickFrame() != nullptr) { |
| if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.GetOuterMethod(), visitor.caller_pc)) { |
| // method_type shouldn't matter due to exception handling. |
| const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault; |
| // Save the exception into the deoptimization context so it can be restored |
| // before entering the interpreter. |
| PushDeoptimizationContext( |
| JValue(), |
| /* is_reference= */ false, |
| exception, |
| /* from_code= */ false, |
| method_type); |
| artDeoptimize(this, skip_method_exit_callbacks); |
| UNREACHABLE(); |
| } else { |
| LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method " |
| << visitor.caller->PrettyMethod(); |
| } |
| } else { |
| // This is either top of call stack, or shadow frame. |
| DCHECK(visitor.caller == nullptr || visitor.IsShadowFrame()); |
| } |
| } |
| |
| // Don't leave exception visible while we try to find the handler, which may cause class |
| // resolution. |
| ClearException(); |
| QuickExceptionHandler exception_handler(this, false); |
| exception_handler.FindCatch(exception, skip_method_exit_callbacks); |
| if (exception_handler.GetClearException()) { |
| // Exception was cleared as part of delivery. |
| DCHECK(!IsExceptionPending()); |
| } else { |
| // Exception was put back with a throw location. |
| DCHECK(IsExceptionPending()); |
| // Check the to-space invariant on the re-installed exception (if applicable). |
| ReadBarrier::MaybeAssertToSpaceInvariant(GetException()); |
| } |
| exception_handler.DoLongJump(); |
| } |
| |
| Context* Thread::GetLongJumpContext() { |
| Context* result = tlsPtr_.long_jump_context; |
| if (result == nullptr) { |
| result = Context::Create(); |
| } else { |
| tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. |
| result->Reset(); |
| } |
| return result; |
| } |
| |
| ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out, |
| bool check_suspended, |
| bool abort_on_error) const { |
| // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is |
| // so we don't abort in a special situation (thinlocked monitor) when dumping the Java |
| // stack. |
| ArtMethod* method = nullptr; |
| uint32_t dex_pc = dex::kDexNoIndex; |
| StackVisitor::WalkStack( |
| [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = visitor->GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| // Continue if this is a runtime method. |
| return true; |
| } |
| method = m; |
| dex_pc = visitor->GetDexPc(abort_on_error); |
| return false; |
| }, |
| const_cast<Thread*>(this), |
| /* context= */ nullptr, |
| StackVisitor::StackWalkKind::kIncludeInlinedFrames, |
| check_suspended); |
| |
| if (dex_pc_out != nullptr) { |
| *dex_pc_out = dex_pc; |
| } |
| return method; |
| } |
| |
| bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const { |
| return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId(); |
| } |
| |
| extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). |
| template <typename RootVisitor, bool kPrecise = false> |
| class ReferenceMapVisitor : public StackVisitor { |
| public: |
| ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| // We are visiting the references in compiled frames, so we do not need |
| // to know the inlined frames. |
| : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames), |
| visitor_(visitor), |
| visit_declaring_class_(!Runtime::Current()->GetHeap()->IsPerformingUffdCompaction()) {} |
| |
| bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (false) { |
| LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod()) |
| << StringPrintf("@ PC:%04x", GetDexPc()); |
| } |
| ShadowFrame* shadow_frame = GetCurrentShadowFrame(); |
| if (shadow_frame != nullptr) { |
| VisitShadowFrame(shadow_frame); |
| } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) { |
| VisitNterpFrame(); |
| } else { |
| VisitQuickFrame(); |
| } |
| return true; |
| } |
| |
| void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = shadow_frame->GetMethod(); |
| VisitDeclaringClass(m); |
| DCHECK(m != nullptr); |
| size_t num_regs = shadow_frame->NumberOfVRegs(); |
| // handle scope for JNI or References for interpreter. |
| for (size_t reg = 0; reg < num_regs; ++reg) { |
| mirror::Object* ref = shadow_frame->GetVRegReference(reg); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| visitor_(&new_ref, reg, this); |
| if (new_ref != ref) { |
| shadow_frame->SetVRegReference(reg, new_ref); |
| } |
| } |
| } |
| // Mark lock count map required for structured locking checks. |
| shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this); |
| } |
| |
| private: |
| // Visiting the declaring class is necessary so that we don't unload the class of a method that |
| // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since |
| // the threads do not all hold the heap bitmap lock for parallel GC. |
| void VisitDeclaringClass(ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| NO_THREAD_SAFETY_ANALYSIS { |
| if (!visit_declaring_class_) { |
| return; |
| } |
| ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>(); |
| // klass can be null for runtime methods. |
| if (klass != nullptr) { |
| if (kVerifyImageObjectsMarked) { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass, |
| /*fail_ok=*/true); |
| if (space != nullptr && space->IsImageSpace()) { |
| bool failed = false; |
| if (!space->GetLiveBitmap()->Test(klass.Ptr())) { |
| failed = true; |
| LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space; |
| } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) { |
| failed = true; |
| LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space; |
| } |
| if (failed) { |
| GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); |
| space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT)); |
| LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method |
| << " klass@" << klass.Ptr(); |
| // Pretty info last in case it crashes. |
| LOG(FATAL) << "Method " << method->PrettyMethod() << " klass " |
| << klass->PrettyClass(); |
| } |
| } |
| } |
| mirror::Object* new_ref = klass.Ptr(); |
| visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this); |
| if (new_ref != klass) { |
| method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass()); |
| } |
| } |
| } |
| |
| void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); |
| StackReference<mirror::Object>* vreg_ref_base = |
| reinterpret_cast<StackReference<mirror::Object>*>(NterpGetReferenceArray(cur_quick_frame)); |
| StackReference<mirror::Object>* vreg_int_base = |
| reinterpret_cast<StackReference<mirror::Object>*>(NterpGetRegistersArray(cur_quick_frame)); |
| CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData()); |
| const uint16_t num_regs = accessor.RegistersSize(); |
| // An nterp frame has two arrays: a dex register array and a reference array |
| // that shadows the dex register array but only containing references |
| // (non-reference dex registers have nulls). See nterp_helpers.cc. |
| for (size_t reg = 0; reg < num_regs; ++reg) { |
| StackReference<mirror::Object>* ref_addr = vreg_ref_base + reg; |
| mirror::Object* ref = ref_addr->AsMirrorPtr(); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| visitor_(&new_ref, reg, this); |
| if (new_ref != ref) { |
| ref_addr->Assign(new_ref); |
| StackReference<mirror::Object>* int_addr = vreg_int_base + reg; |
| int_addr->Assign(new_ref); |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| ALWAYS_INLINE |
| inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); |
| DCHECK(cur_quick_frame != nullptr); |
| ArtMethod* m = *cur_quick_frame; |
| VisitDeclaringClass(m); |
| |
| if (m->IsNative()) { |
| // TODO: Spill the `this` reference in the AOT-compiled String.charAt() |
| // slow-path for throwing SIOOBE, so that we can remove this carve-out. |
| if (UNLIKELY(m->IsIntrinsic()) && |
| m->GetIntrinsic() == enum_cast<uint32_t>(Intrinsics::kStringCharAt)) { |
| // The String.charAt() method is AOT-compiled with an intrinsic implementation |
| // instead of a JNI stub. It has a slow path that constructs a runtime frame |
| // for throwing SIOOBE and in that path we do not get the `this` pointer |
| // spilled on the stack, so there is nothing to visit. We can distinguish |
| // this from the GenericJni path by checking that the PC is in the boot image |
| // (PC shall be known thanks to the runtime frame for throwing SIOOBE). |
| // Note that JIT does not emit that intrinic implementation. |
| const void* pc = reinterpret_cast<const void*>(GetCurrentQuickFramePc()); |
| if (pc != nullptr && Runtime::Current()->GetHeap()->IsInBootImageOatFile(pc)) { |
| return; |
| } |
| } |
| // Native methods spill their arguments to the reserved vregs in the caller's frame |
| // and use pointers to these stack references as jobject, jclass, jarray, etc. |
| // Note: We can come here for a @CriticalNative method when it needs to resolve the |
| // target native function but there would be no references to visit below. |
| const size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes(); |
| const size_t method_pointer_size = static_cast<size_t>(kRuntimePointerSize); |
| uint32_t* current_vreg = reinterpret_cast<uint32_t*>( |
| reinterpret_cast<uint8_t*>(cur_quick_frame) + frame_size + method_pointer_size); |
| auto visit = [&]() REQUIRES_SHARED(Locks::mutator_lock_) { |
| auto* ref_addr = reinterpret_cast<StackReference<mirror::Object>*>(current_vreg); |
| mirror::Object* ref = ref_addr->AsMirrorPtr(); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kNativeReferenceArgument, this); |
| if (ref != new_ref) { |
| ref_addr->Assign(new_ref); |
| } |
| } |
| }; |
| const char* shorty = m->GetShorty(); |
| if (!m->IsStatic()) { |
| visit(); |
| current_vreg += 1u; |
| } |
| for (shorty += 1u; *shorty != 0; ++shorty) { |
| switch (*shorty) { |
| case 'D': |
| case 'J': |
| current_vreg += 2u; |
| break; |
| case 'L': |
| visit(); |
| FALLTHROUGH_INTENDED; |
| default: |
| current_vreg += 1u; |
| break; |
| } |
| } |
| } else if (!m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) { |
| // Process register map (which native, runtime and proxy methods don't have) |
| const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); |
| DCHECK(method_header->IsOptimized()); |
| StackReference<mirror::Object>* vreg_base = |
| reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame); |
| uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc()); |
| CodeInfo code_info = kPrecise |
| ? CodeInfo(method_header) // We will need dex register maps. |
| : CodeInfo::DecodeGcMasksOnly(method_header); |
| StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset); |
| DCHECK(map.IsValid()); |
| |
| T vreg_info(m, code_info, map, visitor_); |
| |
| // Visit stack entries that hold pointers. |
| BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map); |
| for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) { |
| if (stack_mask.LoadBit(i)) { |
| StackReference<mirror::Object>* ref_addr = vreg_base + i; |
| mirror::Object* ref = ref_addr->AsMirrorPtr(); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| vreg_info.VisitStack(&new_ref, i, this); |
| if (ref != new_ref) { |
| ref_addr->Assign(new_ref); |
| } |
| } |
| } |
| } |
| // Visit callee-save registers that hold pointers. |
| uint32_t register_mask = code_info.GetRegisterMaskOf(map); |
| for (uint32_t i = 0; i < BitSizeOf<uint32_t>(); ++i) { |
| if (register_mask & (1 << i)) { |
| mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i)); |
| if (kIsDebugBuild && ref_addr == nullptr) { |
| std::string thread_name; |
| GetThread()->GetThreadName(thread_name); |
| LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name; |
| DescribeStack(GetThread()); |
| LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) " |
| << "set in register_mask=" << register_mask << " at " << DescribeLocation(); |
| } |
| if (*ref_addr != nullptr) { |
| vreg_info.VisitRegister(ref_addr, i, this); |
| } |
| } |
| } |
| } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) { |
| // If this is a proxy method, visit its reference arguments. |
| DCHECK(!m->IsStatic()); |
| DCHECK(!m->IsNative()); |
| std::vector<StackReference<mirror::Object>*> ref_addrs = |
| GetProxyReferenceArguments(cur_quick_frame); |
| for (StackReference<mirror::Object>* ref_addr : ref_addrs) { |
| mirror::Object* ref = ref_addr->AsMirrorPtr(); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this); |
| if (ref != new_ref) { |
| ref_addr->Assign(new_ref); |
| } |
| } |
| } |
| } |
| } |
| |
| void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (kPrecise) { |
| VisitQuickFramePrecise(); |
| } else { |
| VisitQuickFrameNonPrecise(); |
| } |
| } |
| |
| void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) { |
| struct UndefinedVRegInfo { |
| UndefinedVRegInfo([[maybe_unused]] ArtMethod* method, |
| [[maybe_unused]] const CodeInfo& code_info, |
| [[maybe_unused]] const StackMap& map, |
| RootVisitor& _visitor) |
| : visitor(_visitor) {} |
| |
| ALWAYS_INLINE |
| void VisitStack(mirror::Object** ref, |
| [[maybe_unused]] size_t stack_index, |
| const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { |
| visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor); |
| } |
| |
| ALWAYS_INLINE |
| void VisitRegister(mirror::Object** ref, |
| [[maybe_unused]] size_t register_index, |
| const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { |
| visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor); |
| } |
| |
| RootVisitor& visitor; |
| }; |
| VisitQuickFrameWithVregCallback<UndefinedVRegInfo>(); |
| } |
| |
| void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) { |
| struct StackMapVRegInfo { |
| StackMapVRegInfo(ArtMethod* method, |
| const CodeInfo& _code_info, |
| const StackMap& map, |
| RootVisitor& _visitor) |
| : number_of_dex_registers(method->DexInstructionData().RegistersSize()), |
| code_info(_code_info), |
| dex_register_map(code_info.GetDexRegisterMapOf(map)), |
| visitor(_visitor) { |
| DCHECK_EQ(dex_register_map.size(), number_of_dex_registers); |
| } |
| |
| // TODO: If necessary, we should consider caching a reverse map instead of the linear |
| // lookups for each location. |
| void FindWithType(const size_t index, |
| const DexRegisterLocation::Kind kind, |
| mirror::Object** ref, |
| const StackVisitor* stack_visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| bool found = false; |
| for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) { |
| DexRegisterLocation location = dex_register_map[dex_reg]; |
| if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) { |
| visitor(ref, dex_reg, stack_visitor); |
| found = true; |
| } |
| } |
| |
| if (!found) { |
| // If nothing found, report with unknown. |
| visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor); |
| } |
| } |
| |
| void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const size_t stack_offset = stack_index * kFrameSlotSize; |
| FindWithType(stack_offset, |
| DexRegisterLocation::Kind::kInStack, |
| ref, |
| stack_visitor); |
| } |
| |
| void VisitRegister(mirror::Object** ref, |
| size_t register_index, |
| const StackVisitor* stack_visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| FindWithType(register_index, |
| DexRegisterLocation::Kind::kInRegister, |
| ref, |
| stack_visitor); |
| } |
| |
| size_t number_of_dex_registers; |
| const CodeInfo& code_info; |
| DexRegisterMap dex_register_map; |
| RootVisitor& visitor; |
| }; |
| VisitQuickFrameWithVregCallback<StackMapVRegInfo>(); |
| } |
| |
| // Visitor for when we visit a root. |
| RootVisitor& visitor_; |
| bool visit_declaring_class_; |
| }; |
| |
| class RootCallbackVisitor { |
| public: |
| RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {} |
| |
| void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg)); |
| } |
| |
| private: |
| RootVisitor* const visitor_; |
| const uint32_t tid_; |
| }; |
| |
| void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) { |
| for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope(); |
| brhs != nullptr; |
| brhs = brhs->GetLink()) { |
| brhs->VisitTargets(visitor); |
| } |
| } |
| |
| // FIXME: clang-r433403 reports the below function exceeds frame size limit. |
| // http://b/197647048 |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wframe-larger-than=" |
| template <bool kPrecise> |
| void Thread::VisitRoots(RootVisitor* visitor) { |
| const uint32_t thread_id = GetThreadId(); |
| visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id)); |
| if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { |
| visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), |
| RootInfo(kRootNativeStack, thread_id)); |
| } |
| if (tlsPtr_.async_exception != nullptr) { |
| visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception), |
| RootInfo(kRootNativeStack, thread_id)); |
| } |
| visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id)); |
| tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id)); |
| tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id)); |
| HandleScopeVisitRoots(visitor, thread_id); |
| // Visit roots for deoptimization. |
| if (tlsPtr_.stacked_shadow_frame_record != nullptr) { |
| RootCallbackVisitor visitor_to_callback(visitor, thread_id); |
| ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback); |
| for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; |
| record != nullptr; |
| record = record->GetLink()) { |
| for (ShadowFrame* shadow_frame = record->GetShadowFrame(); |
| shadow_frame != nullptr; |
| shadow_frame = shadow_frame->GetLink()) { |
| mapper.VisitShadowFrame(shadow_frame); |
| } |
| } |
| } |
| for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; |
| record != nullptr; |
| record = record->GetLink()) { |
| if (record->IsReference()) { |
| visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(), |
| RootInfo(kRootThreadObject, thread_id)); |
| } |
| visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(), |
| RootInfo(kRootThreadObject, thread_id)); |
| } |
| if (tlsPtr_.frame_id_to_shadow_frame != nullptr) { |
| RootCallbackVisitor visitor_to_callback(visitor, thread_id); |
| ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback); |
| for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame; |
| record != nullptr; |
| record = record->GetNext()) { |
| mapper.VisitShadowFrame(record->GetShadowFrame()); |
| } |
| } |
| // Visit roots on this thread's stack |
| RuntimeContextType context; |
| RootCallbackVisitor visitor_to_callback(visitor, thread_id); |
| ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback); |
| mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false); |
| } |
| #pragma GCC diagnostic pop |
| |
| static void SweepCacheEntry(IsMarkedVisitor* visitor, const Instruction* inst, size_t* value) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (inst == nullptr) { |
| return; |
| } |
| using Opcode = Instruction::Code; |
| Opcode opcode = inst->Opcode(); |
| switch (opcode) { |
| case Opcode::NEW_INSTANCE: |
| case Opcode::CHECK_CAST: |
| case Opcode::INSTANCE_OF: |
| case Opcode::NEW_ARRAY: |
| case Opcode::CONST_CLASS: { |
| mirror::Class* klass = reinterpret_cast<mirror::Class*>(*value); |
| if (klass == nullptr || klass == Runtime::GetWeakClassSentinel()) { |
| return; |
| } |
| mirror::Class* new_klass = down_cast<mirror::Class*>(visitor->IsMarked(klass)); |
| if (new_klass == nullptr) { |
| *value = reinterpret_cast<size_t>(Runtime::GetWeakClassSentinel()); |
| } else if (new_klass != klass) { |
| *value = reinterpret_cast<size_t>(new_klass); |
| } |
| return; |
| } |
| case Opcode::CONST_STRING: |
| case Opcode::CONST_STRING_JUMBO: { |
| mirror::Object* object = reinterpret_cast<mirror::Object*>(*value); |
| if (object == nullptr) { |
| return; |
| } |
| mirror::Object* new_object = visitor->IsMarked(object); |
| // We know the string is marked because it's a strongly-interned string that |
| // is always alive (see b/117621117 for trying to make those strings weak). |
| if (kIsDebugBuild && new_object == nullptr) { |
| // (b/275005060) Currently the problem is reported only on CC GC. |
| // Therefore we log it with more information. But since the failure rate |
| // is quite high, sampling it. |
| if (gUseReadBarrier) { |
| Runtime* runtime = Runtime::Current(); |
| gc::collector::ConcurrentCopying* cc = runtime->GetHeap()->ConcurrentCopyingCollector(); |
| CHECK_NE(cc, nullptr); |
| LOG(FATAL) << cc->DumpReferenceInfo(object, "string") |
| << " string interned: " << std::boolalpha |
| << runtime->GetInternTable()->LookupStrong(Thread::Current(), |
| down_cast<mirror::String*>(object)) |
| << std::noboolalpha; |
| } else { |
| // Other GCs |
| LOG(FATAL) << __FUNCTION__ |
| << ": IsMarked returned null for a strongly interned string: " << object; |
| } |
| } else if (new_object != object) { |
| *value = reinterpret_cast<size_t>(new_object); |
| } |
| return; |
| } |
| default: |
| // The following opcode ranges store non-reference values. |
| if ((Opcode::IGET <= opcode && opcode <= Opcode::SPUT_SHORT) || |
| (Opcode::INVOKE_VIRTUAL <= opcode && opcode <= Opcode::INVOKE_INTERFACE_RANGE)) { |
| return; // Nothing to do for the GC. |
| } |
| // New opcode is using the cache. We need to explicitly handle it in this method. |
| DCHECK(false) << "Unhandled opcode " << inst->Opcode(); |
| } |
| } |
| |
| void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) { |
| for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) { |
| SweepCacheEntry(visitor, reinterpret_cast<const Instruction*>(entry.first), &entry.second); |
| } |
| } |
| |
| // FIXME: clang-r433403 reports the below function exceeds frame size limit. |
| // http://b/197647048 |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wframe-larger-than=" |
| void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { |
| if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) { |
| VisitRoots</* kPrecise= */ true>(visitor); |
| } else { |
| VisitRoots</* kPrecise= */ false>(visitor); |
| } |
| } |
| #pragma GCC diagnostic pop |
| |
| class VerifyRootVisitor : public SingleRootVisitor { |
| public: |
| void VisitRoot(mirror::Object* root, [[maybe_unused]] const RootInfo& info) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| VerifyObject(root); |
| } |
| }; |
| |
| void Thread::VerifyStackImpl() { |
| if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) { |
| VerifyRootVisitor visitor; |
| std::unique_ptr<Context> context(Context::Create()); |
| RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId()); |
| ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback); |
| mapper.WalkStack(); |
| } |
| } |
| |
| // Set the stack end to that to be used during a stack overflow |
| void Thread::SetStackEndForStackOverflow() { |
| // During stack overflow we allow use of the full stack. |
| if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { |
| // However, we seem to have already extended to use the full stack. |
| LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " |
| << GetStackOverflowReservedBytes(kRuntimeISA) << ")?"; |
| DumpStack(LOG_STREAM(ERROR)); |
| LOG(FATAL) << "Recursive stack overflow."; |
| } |
| |
| tlsPtr_.stack_end = tlsPtr_.stack_begin; |
| |
| // Remove the stack overflow protection if is it set up. |
| bool implicit_stack_check = Runtime::Current()->GetImplicitStackOverflowChecks(); |
| if (implicit_stack_check) { |
| if (!UnprotectStack()) { |
| LOG(ERROR) << "Unable to remove stack protection for stack overflow"; |
| } |
| } |
| } |
| |
| void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) { |
| DCHECK_LE(start, end); |
| DCHECK_LE(end, limit); |
| tlsPtr_.thread_local_start = start; |
| tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; |
| tlsPtr_.thread_local_end = end; |
| tlsPtr_.thread_local_limit = limit; |
| tlsPtr_.thread_local_objects = 0; |
| } |
| |
| void Thread::ResetTlab() { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| if (heap->GetHeapSampler().IsEnabled()) { |
| // Note: We always ResetTlab before SetTlab, therefore we can do the sample |
| // offset adjustment here. |
| heap->AdjustSampleOffset(GetTlabPosOffset()); |
| VLOG(heap) << "JHP: ResetTlab, Tid: " << GetTid() |
| << " adjustment = " |
| << (tlsPtr_.thread_local_pos - tlsPtr_.thread_local_start); |
| } |
| SetTlab(nullptr, nullptr, nullptr); |
| } |
| |
| bool Thread::HasTlab() const { |
| const bool has_tlab = tlsPtr_.thread_local_pos != nullptr; |
| if (has_tlab) { |
| DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); |
| } else { |
| DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); |
| } |
| return has_tlab; |
| } |
| |
| void Thread::AdjustTlab(size_t slide_bytes) { |
| if (HasTlab()) { |
| tlsPtr_.thread_local_start -= slide_bytes; |
| tlsPtr_.thread_local_pos -= slide_bytes; |
| tlsPtr_.thread_local_end -= slide_bytes; |
| tlsPtr_.thread_local_limit -= slide_bytes; |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const Thread& thread) { |
| thread.ShortDump(os); |
| return os; |
| } |
| |
| bool Thread::ProtectStack(bool fatal_on_error) { |
| void* pregion = tlsPtr_.stack_begin - GetStackOverflowProtectedSize(); |
| VLOG(threads) << "Protecting stack at " << pregion; |
| if (mprotect(pregion, GetStackOverflowProtectedSize(), PROT_NONE) == -1) { |
| if (fatal_on_error) { |
| // b/249586057, LOG(FATAL) times out |
| LOG(ERROR) << "Unable to create protected region in stack for implicit overflow check. " |
| "Reason: " |
| << strerror(errno) << " size: " << GetStackOverflowProtectedSize(); |
| exit(1); |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| bool Thread::UnprotectStack() { |
| void* pregion = tlsPtr_.stack_begin - GetStackOverflowProtectedSize(); |
| VLOG(threads) << "Unprotecting stack at " << pregion; |
| return mprotect(pregion, GetStackOverflowProtectedSize(), PROT_READ|PROT_WRITE) == 0; |
| } |
| |
| size_t Thread::NumberOfHeldMutexes() const { |
| size_t count = 0; |
| for (BaseMutex* mu : tlsPtr_.held_mutexes) { |
| count += mu != nullptr ? 1 : 0; |
| } |
| return count; |
| } |
| |
| void Thread::DeoptimizeWithDeoptimizationException(JValue* result) { |
| DCHECK_EQ(GetException(), Thread::GetDeoptimizationException()); |
| ClearException(); |
| ObjPtr<mirror::Throwable> pending_exception; |
| bool from_code = false; |
| DeoptimizationMethodType method_type; |
| PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type); |
| SetTopOfStack(nullptr); |
| |
| // Restore the exception that was pending before deoptimization then interpret the |
| // deoptimized frames. |
| if (pending_exception != nullptr) { |
| SetException(pending_exception); |
| } |
| |
| ShadowFrame* shadow_frame = MaybePopDeoptimizedStackedShadowFrame(); |
| // We may not have a shadow frame if we deoptimized at the return of the |
| // quick_to_interpreter_bridge which got directly called by art_quick_invoke_stub. |
| if (shadow_frame != nullptr) { |
| SetTopOfShadowStack(shadow_frame); |
| interpreter::EnterInterpreterFromDeoptimize(this, |
| shadow_frame, |
| result, |
| from_code, |
| method_type); |
| } |
| } |
| |
| void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) { |
| CHECK(new_exception != nullptr); |
| Runtime::Current()->SetAsyncExceptionsThrown(); |
| if (kIsDebugBuild) { |
| // Make sure we are in a checkpoint. |
| MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); |
| CHECK(this == Thread::Current() || GetSuspendCount() >= 1) |
| << "It doesn't look like this was called in a checkpoint! this: " |
| << this << " count: " << GetSuspendCount(); |
| } |
| tlsPtr_.async_exception = new_exception.Ptr(); |
| } |
| |
| bool Thread::ObserveAsyncException() { |
| DCHECK(this == Thread::Current()); |
| if (tlsPtr_.async_exception != nullptr) { |
| if (tlsPtr_.exception != nullptr) { |
| LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: " |
| << tlsPtr_.exception->Dump(); |
| LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump(); |
| } |
| tlsPtr_.exception = tlsPtr_.async_exception; |
| tlsPtr_.async_exception = nullptr; |
| return true; |
| } else { |
| return IsExceptionPending(); |
| } |
| } |
| |
| void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) { |
| CHECK(new_exception != nullptr); |
| // TODO: DCHECK(!IsExceptionPending()); |
| tlsPtr_.exception = new_exception.Ptr(); |
| } |
| |
| bool Thread::IsAotCompiler() { |
| return Runtime::Current()->IsAotCompiler(); |
| } |
| |
| mirror::Object* Thread::GetPeerFromOtherThread() { |
| Thread* self = Thread::Current(); |
| if (this == self) { |
| // We often call this on every thread, including ourselves. |
| return GetPeer(); |
| } |
| // If "this" thread is not suspended, it could disappear. |
| DCHECK(IsSuspended()) << *this; |
| DCHECK(tlsPtr_.jpeer == nullptr); |
| // Some JVMTI code may unfortunately hold thread_list_lock_, but if it does, it should hold the |
| // mutator lock in exclusive mode, and we should not have a pending flip function. |
| if (kIsDebugBuild && Locks::thread_list_lock_->IsExclusiveHeld(self)) { |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| CHECK(!ReadFlag(ThreadFlag::kPendingFlipFunction)); |
| } |
| // Ensure that opeer is not obsolete. |
| EnsureFlipFunctionStarted(self, this); |
| if (ReadFlag(ThreadFlag::kRunningFlipFunction)) { |
| // Does not release mutator lock. Hence no new flip requests can be issued. |
| WaitForFlipFunction(self); |
| } |
| return tlsPtr_.opeer; |
| } |
| |
| mirror::Object* Thread::LockedGetPeerFromOtherThread(ThreadExitFlag* tef) { |
| DCHECK(tlsPtr_.jpeer == nullptr); |
| Thread* self = Thread::Current(); |
| Locks::thread_list_lock_->AssertHeld(self); |
| if (ReadFlag(ThreadFlag::kPendingFlipFunction)) { |
| // It is unsafe to call EnsureFlipFunctionStarted with thread_list_lock_. Thus we temporarily |
| // release it, taking care to handle the case in which "this" thread disapppears while we no |
| // longer hold it. |
| Locks::thread_list_lock_->Unlock(self); |
| EnsureFlipFunctionStarted(self, this, StateAndFlags(0), tef); |
| Locks::thread_list_lock_->Lock(self); |
| if (tef->HasExited()) { |
| return nullptr; |
| } |
| } |
| if (ReadFlag(ThreadFlag::kRunningFlipFunction)) { |
| // Does not release mutator lock. Hence no new flip requests can be issued. |
| WaitForFlipFunction(self); |
| } |
| return tlsPtr_.opeer; |
| } |
| |
| void Thread::SetReadBarrierEntrypoints() { |
| // Make sure entrypoints aren't null. |
| UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true); |
| } |
| |
| void Thread::ClearAllInterpreterCaches() { |
| static struct ClearInterpreterCacheClosure : Closure { |
| void Run(Thread* thread) override { |
| thread->GetInterpreterCache()->Clear(thread); |
| } |
| } closure; |
| Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); |
| } |
| |
| |
| void Thread::ReleaseLongJumpContextInternal() { |
| // Each QuickExceptionHandler gets a long jump context and uses |
| // it for doing the long jump, after finding catch blocks/doing deoptimization. |
| // Both finding catch blocks and deoptimization can trigger another |
| // exception such as a result of class loading. So there can be nested |
| // cases of exception handling and multiple contexts being used. |
| // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context |
| // for reuse so there is no need to always allocate a new one each time when |
| // getting a context. Since we only keep one context for reuse, delete the |
| // existing one since the passed in context is yet to be used for longjump. |
| delete tlsPtr_.long_jump_context; |
| } |
| |
| void Thread::SetNativePriority(int new_priority) { |
| palette_status_t status = PaletteSchedSetPriority(GetTid(), new_priority); |
| CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO); |
| } |
| |
| int Thread::GetNativePriority() const { |
| int priority = 0; |
| palette_status_t status = PaletteSchedGetPriority(GetTid(), &priority); |
| CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO); |
| return priority; |
| } |
| |
| void Thread::AbortInThis(std::string message) { |
| std::string thread_name; |
| Thread::Current()->GetThreadName(thread_name); |
| LOG(ERROR) << message; |
| LOG(ERROR) << "Aborting culprit thread"; |
| Runtime::Current()->SetAbortMessage(("Caused " + thread_name + " failure : " + message).c_str()); |
| // Unlike Runtime::Abort() we do not fflush(nullptr), since we want to send the signal with as |
| // little delay as possible. |
| int res = pthread_kill(tlsPtr_.pthread_self, SIGABRT); |
| if (res != 0) { |
| LOG(ERROR) << "pthread_kill failed with " << res << " " << strerror(res) << " target was " |
| << tls32_.tid; |
| } else { |
| // Wait for our process to be aborted. |
| sleep(10 /* seconds */); |
| } |
| // The process should have died long before we got here. Never return. |
| LOG(FATAL) << "Failed to abort in culprit thread: " << message; |
| UNREACHABLE(); |
| } |
| |
| bool Thread::IsSystemDaemon() const { |
| if (GetPeer() == nullptr) { |
| return false; |
| } |
| return WellKnownClasses::java_lang_Thread_systemDaemon->GetBoolean(GetPeer()); |
| } |
| |
| std::string Thread::StateAndFlagsAsHexString() const { |
| std::stringstream result_stream; |
| result_stream << std::hex << GetStateAndFlags(std::memory_order_relaxed).GetValue(); |
| return result_stream.str(); |
| } |
| |
| ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self) |
| : self_(self), hs_(self_), excp_(hs_.NewHandle<art::mirror::Throwable>(self_->GetException())) { |
| self_->ClearException(); |
| } |
| |
| void ScopedExceptionStorage::SuppressOldException(const char* message) { |
| CHECK(self_->IsExceptionPending()) << *self_; |
| ObjPtr<mirror::Throwable> old_suppressed(excp_.Get()); |
| excp_.Assign(self_->GetException()); |
| if (old_suppressed != nullptr) { |
| LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump(); |
| } |
| self_->ClearException(); |
| } |
| |
| ScopedExceptionStorage::~ScopedExceptionStorage() { |
| CHECK(!self_->IsExceptionPending()) << *self_; |
| if (!excp_.IsNull()) { |
| self_->SetException(excp_.Get()); |
| } |
| } |
| |
| } // namespace art |
| |
| #pragma clang diagnostic pop // -Wconversion |