blob: ece0914ddbc11470f4d26d34ba2ad4100a18678c [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_SUPERBLOCK_CLONER_H_
#define ART_COMPILER_OPTIMIZING_SUPERBLOCK_CLONER_H_
#include "base/arena_bit_vector.h"
#include "base/arena_containers.h"
#include "base/bit_vector-inl.h"
#include "nodes.h"
namespace art {
class InductionVarRange;
static const bool kSuperblockClonerLogging = false;
// Represents an edge between two HBasicBlocks.
//
// Note: objects of this class are small - pass them by value.
class HEdge : public ArenaObject<kArenaAllocSuperblockCloner> {
public:
HEdge(HBasicBlock* from, HBasicBlock* to) : from_(from->GetBlockId()), to_(to->GetBlockId()) {
DCHECK_NE(to_, kInvalidBlockId);
DCHECK_NE(from_, kInvalidBlockId);
}
HEdge(uint32_t from, uint32_t to) : from_(from), to_(to) {
DCHECK_NE(to_, kInvalidBlockId);
DCHECK_NE(from_, kInvalidBlockId);
}
HEdge() : from_(kInvalidBlockId), to_(kInvalidBlockId) {}
uint32_t GetFrom() const { return from_; }
uint32_t GetTo() const { return to_; }
bool operator==(const HEdge& other) const {
return this->from_ == other.from_ && this->to_ == other.to_;
}
bool operator!=(const HEdge& other) const { return !operator==(other); }
void Dump(std::ostream& stream) const;
// Returns whether an edge represents a valid edge in CF graph: whether the from_ block
// has to_ block as a successor.
bool IsValid() const { return from_ != kInvalidBlockId && to_ != kInvalidBlockId; }
private:
// Predecessor block id.
uint32_t from_;
// Successor block id.
uint32_t to_;
};
// Returns whether a HEdge edge corresponds to an existing edge in the graph.
inline bool IsEdgeValid(HEdge edge, HGraph* graph) {
if (!edge.IsValid()) {
return false;
}
uint32_t from = edge.GetFrom();
uint32_t to = edge.GetTo();
if (from >= graph->GetBlocks().size() || to >= graph->GetBlocks().size()) {
return false;
}
HBasicBlock* block_from = graph->GetBlocks()[from];
HBasicBlock* block_to = graph->GetBlocks()[to];
if (block_from == nullptr || block_to == nullptr) {
return false;
}
return block_from->HasSuccessor(block_to, 0);
}
// SuperblockCloner provides a feature of cloning subgraphs in a smart, high level way without
// fine grain manipulation with IR; data flow and graph properties are resolved/adjusted
// automatically. The clone transformation is defined by specifying a set of basic blocks to copy
// and a set of rules how to treat edges, remap their successors. By using this approach such
// optimizations as Branch Target Expansion, Loop Peeling, Loop Unrolling can be implemented.
//
// The idea of the transformation is based on "Superblock cloning" technique described in the book
// "Engineering a Compiler. Second Edition", Keith D. Cooper, Linda Torczon, Rice University
// Houston, Texas. 2nd edition, Morgan Kaufmann. The original paper is "The Superblock: An Efective
// Technique for VLIW and Superscalar Compilation" by Hwu, W.M.W., Mahlke, S.A., Chen, W.Y. et al.
// J Supercomput (1993) 7: 229. doi:10.1007/BF01205185.
//
// There are two states of the IR graph: original graph (before the transformation) and
// copy graph (after).
//
// Before the transformation:
// Defining a set of basic block to copy (orig_bb_set) partitions all of the edges in the original
// graph into 4 categories/sets (use the following notation for edges: "(pred, succ)",
// where pred, succ - basic blocks):
// - internal - pred, succ are members of ‘orig_bb_set’.
// - outside - pred, succ are not members of ‘orig_bb_set’.
// - incoming - pred is not a member of ‘orig_bb_set’, succ is.
// - outgoing - pred is a member of ‘orig_bb_set’, succ is not.
//
// Transformation:
//
// 1. Initial cloning:
// 1.1. For each ‘orig_block’ in orig_bb_set create a copy ‘copy_block’; these new blocks
// form ‘copy_bb_set’.
// 1.2. For each edge (X, Y) from internal set create an edge (X_1, Y_1) where X_1, Y_1 are the
// copies of X, Y basic blocks correspondingly; these new edges form ‘copy_internal’ edge
// set.
// 1.3. For each edge (X, Y) from outgoing set create an edge (X_1, Y_1) where X_1, Y_1 are the
// copies of X, Y basic blocks correspondingly; these new edges form ‘copy_outgoing’ edge
// set.
// 2. Successors remapping.
// 2.1. 'remap_orig_internal’ - set of edges (X, Y) from ‘orig_bb_set’ whose successors should
// be remapped to copy nodes: ((X, Y) will be transformed into (X, Y_1)).
// 2.2. ‘remap_copy_internal’ - set of edges (X_1, Y_1) from ‘copy_bb_set’ whose successors
// should be remapped to copy nodes: (X_1, Y_1) will be transformed into (X_1, Y)).
// 2.3. 'remap_incoming’ - set of edges (X, Y) from the ‘incoming’ edge set in the original graph
// whose successors should be remapped to copies nodes: ((X, Y) will be transformed into
// (X, Y_1)).
// 3. Adjust control flow structures and relations (dominance, reverse post order, loops, etc).
// 4. Fix/resolve data flow.
// 5. Do cleanups (DCE, critical edges splitting, etc).
//
class SuperblockCloner : public ValueObject {
public:
// TODO: Investigate optimal types for the containers.
using HBasicBlockMap = ArenaSafeMap<HBasicBlock*, HBasicBlock*>;
using HInstructionMap = ArenaSafeMap<HInstruction*, HInstruction*>;
using HBasicBlockSet = ArenaBitVector;
using HEdgeSet = ArenaHashSet<HEdge>;
SuperblockCloner(HGraph* graph,
const HBasicBlockSet* orig_bb_set,
HBasicBlockMap* bb_map,
HInstructionMap* hir_map,
InductionVarRange* induction_range);
// Sets edge successor remapping info specified by corresponding edge sets.
void SetSuccessorRemappingInfo(const HEdgeSet* remap_orig_internal,
const HEdgeSet* remap_copy_internal,
const HEdgeSet* remap_incoming);
// Returns whether the specified subgraph is copyable.
// TODO: Start from small range of graph patterns then extend it.
bool IsSubgraphClonable() const;
// Returns whether selected subgraph satisfies the criteria for fast data flow resolution
// when iterative DF algorithm is not required and dominators/instructions inputs can be
// trivially adjusted.
//
// TODO: formally describe the criteria.
//
// Loop peeling and unrolling satisfy the criteria.
bool IsFastCase() const;
// Runs the copy algorithm according to the description.
void Run();
// Cleans up the graph after transformation: splits critical edges, recalculates control flow
// information (back-edges, dominators, loop info, etc), eliminates redundant phis.
void CleanUp();
// Returns a clone of a basic block (orig_block).
//
// - The copy block will have no successors/predecessors; they should be set up manually.
// - For each instruction in the orig_block a copy is created and inserted into the copy block;
// this correspondence is recorded in the map (old instruction, new instruction).
// - Graph HIR is not valid after this transformation: all of the HIRs have their inputs the
// same, as in the original block, PHIs do not reflect a correct correspondence between the
// value and predecessors (as the copy block has no predecessors by now), etc.
HBasicBlock* CloneBasicBlock(const HBasicBlock* orig_block);
// Creates a clone for each basic blocks in orig_bb_set adding corresponding entries into bb_map_
// and hir_map_.
void CloneBasicBlocks();
HInstruction* GetInstrCopy(HInstruction* orig_instr) const {
auto copy_input_iter = hir_map_->find(orig_instr);
DCHECK(copy_input_iter != hir_map_->end());
return copy_input_iter->second;
}
HBasicBlock* GetBlockCopy(HBasicBlock* orig_block) const {
HBasicBlock* block = bb_map_->Get(orig_block);
DCHECK(block != nullptr);
return block;
}
HInstruction* GetInstrOrig(HInstruction* copy_instr) const {
for (auto it : *hir_map_) {
if (it.second == copy_instr) {
return it.first;
}
}
return nullptr;
}
bool IsInOrigBBSet(uint32_t block_id) const {
return orig_bb_set_.IsBitSet(block_id);
}
bool IsInOrigBBSet(const HBasicBlock* block) const {
return IsInOrigBBSet(block->GetBlockId());
}
// Returns the area (the most outer loop) in the graph for which control flow (back edges, loops,
// dominators) needs to be adjusted.
HLoopInformation* GetRegionToBeAdjusted() const {
return outer_loop_;
}
private:
// Fills the 'exits' vector with the subgraph exits.
void SearchForSubgraphExits(ArenaVector<HBasicBlock*>* exits) const;
// Finds and records information about the area in the graph for which control flow (back edges,
// loops, dominators) needs to be adjusted.
void FindAndSetLocalAreaForAdjustments();
// Remaps edges' successors according to the info specified in the edges sets.
//
// Only edge successors/predecessors and phis' input records (to have a correspondence between
// a phi input record (not value) and a block's predecessor) are adjusted at this stage: neither
// phis' nor instructions' inputs values are resolved.
void RemapEdgesSuccessors();
// Adjusts control flow (back edges, loops, dominators) for the local area defined by
// FindAndSetLocalAreaForAdjustments.
void AdjustControlFlowInfo();
// Resolves Data Flow - adjusts phis' and instructions' inputs in order to have a valid graph in
// the SSA form.
void ResolveDataFlow();
//
// Helpers for live-outs processing and Subgraph-closed SSA.
//
// - live-outs - values which are defined inside the subgraph and have uses outside.
// - Subgraph-closed SSA - SSA form for which all the values defined inside the subgraph
// have no outside uses except for the phi-nodes in the subgraph exits.
//
// Note: now if the subgraph has live-outs it is only clonable if it has a single exit; this
// makes the subgraph-closed SSA form construction much easier.
//
// TODO: Support subgraphs with live-outs and multiple exits.
//
// For each live-out value 'val' in the region puts a record <val, val> into the map.
// Returns whether all of the instructions in the subgraph are clonable.
bool CollectLiveOutsAndCheckClonable(HInstructionMap* live_outs_) const;
// Constructs Subgraph-closed SSA; precondition - a subgraph has a single exit.
//
// For each live-out 'val' in 'live_outs_' map inserts a HPhi 'phi' into the exit node, updates
// the record in the map to <val, phi> and replaces all outside uses with this phi.
void ConstructSubgraphClosedSSA();
// Fixes the data flow for the live-out 'val' by adding a 'copy_val' input to the corresponding
// (<val, phi>) phi after the cloning is done.
void FixSubgraphClosedSSAAfterCloning();
//
// Helpers for CloneBasicBlock.
//
// Adjusts copy instruction's inputs: if the input of the original instruction is defined in the
// orig_bb_set, replaces it with a corresponding copy otherwise leaves it the same as original.
void ReplaceInputsWithCopies(HInstruction* copy_instr);
// Recursively clones the environment for the copy instruction. If the input of the original
// environment is defined in the orig_bb_set, replaces it with a corresponding copy otherwise
// leaves it the same as original.
void DeepCloneEnvironmentWithRemapping(HInstruction* copy_instr, const HEnvironment* orig_env);
//
// Helpers for RemapEdgesSuccessors.
//
// Remaps incoming or original internal edge to its copy, adjusts the phi inputs in orig_succ and
// copy_succ.
void RemapOrigInternalOrIncomingEdge(HBasicBlock* orig_block, HBasicBlock* orig_succ);
// Adds copy internal edge (from copy_block to copy_succ), updates phis in the copy_succ.
void AddCopyInternalEdge(HBasicBlock* orig_block, HBasicBlock* orig_succ);
// Remaps copy internal edge to its origin, adjusts the phi inputs in orig_succ.
void RemapCopyInternalEdge(HBasicBlock* orig_block, HBasicBlock* orig_succ);
//
// Local versions of control flow calculation/adjustment routines.
//
void FindBackEdgesLocal(HBasicBlock* entry_block, ArenaBitVector* local_set);
void RecalculateBackEdgesInfo(ArenaBitVector* outer_loop_bb_set);
GraphAnalysisResult AnalyzeLoopsLocally(ArenaBitVector* outer_loop_bb_set);
void CleanUpControlFlow();
//
// Helpers for ResolveDataFlow
//
// Resolves the inputs of the phi.
void ResolvePhi(HPhi* phi);
// Update induction range after when fixing SSA.
void UpdateInductionRangeInfoOf(
HInstruction* user, HInstruction* old_instruction, HInstruction* replacement);
//
// Debug and logging methods.
//
void CheckInstructionInputsRemapping(HInstruction* orig_instr);
bool CheckRemappingInfoIsValid();
void VerifyGraph();
void DumpInputSets();
HBasicBlock* GetBlockById(uint32_t block_id) const {
DCHECK(block_id < graph_->GetBlocks().size());
HBasicBlock* block = graph_->GetBlocks()[block_id];
DCHECK(block != nullptr);
return block;
}
HGraph* const graph_;
ArenaAllocator* const arena_;
// Set of basic block in the original graph to be copied.
HBasicBlockSet orig_bb_set_;
// Sets of edges which require successors remapping.
const HEdgeSet* remap_orig_internal_;
const HEdgeSet* remap_copy_internal_;
const HEdgeSet* remap_incoming_;
// Correspondence map for blocks: (original block, copy block).
HBasicBlockMap* bb_map_;
// Correspondence map for instructions: (original HInstruction, copy HInstruction).
HInstructionMap* hir_map_;
// As a result of cloning, the induction range analysis information can be invalidated
// and must be updated. If not null, the cloner updates it for changed instructions.
InductionVarRange* induction_range_;
// Area in the graph for which control flow (back edges, loops, dominators) needs to be adjusted.
HLoopInformation* outer_loop_;
HBasicBlockSet outer_loop_bb_set_;
HInstructionMap live_outs_;
ART_FRIEND_TEST(SuperblockClonerTest, AdjustControlFlowInfo);
ART_FRIEND_TEST(SuperblockClonerTest, IsGraphConnected);
DISALLOW_COPY_AND_ASSIGN(SuperblockCloner);
};
// Helper class to perform loop peeling/unrolling.
//
// This helper should be used when correspondence map between original and copied
// basic blocks/instructions are demanded.
class PeelUnrollHelper : public ValueObject {
public:
PeelUnrollHelper(HLoopInformation* info,
SuperblockCloner::HBasicBlockMap* bb_map,
SuperblockCloner::HInstructionMap* hir_map,
InductionVarRange* induction_range) :
loop_info_(info),
cloner_(info->GetHeader()->GetGraph(), &info->GetBlocks(), bb_map, hir_map, induction_range) {
// For now do peeling/unrolling only for natural loops.
DCHECK(!info->IsIrreducible());
}
// Returns whether the loop can be peeled/unrolled (static function).
static bool IsLoopClonable(HLoopInformation* loop_info);
// Returns whether the loop can be peeled/unrolled.
bool IsLoopClonable() const { return cloner_.IsSubgraphClonable(); }
HBasicBlock* DoPeeling() { return DoPeelUnrollImpl(/* to_unroll= */ false); }
HBasicBlock* DoUnrolling() { return DoPeelUnrollImpl(/* to_unroll= */ true); }
HLoopInformation* GetRegionToBeAdjusted() const { return cloner_.GetRegionToBeAdjusted(); }
protected:
// Applies loop peeling/unrolling for the loop specified by 'loop_info'.
//
// Depending on 'do_unroll' either unrolls loop by 2 or peels one iteration from it.
HBasicBlock* DoPeelUnrollImpl(bool to_unroll);
private:
HLoopInformation* loop_info_;
SuperblockCloner cloner_;
DISALLOW_COPY_AND_ASSIGN(PeelUnrollHelper);
};
// Helper class to perform loop peeling/unrolling.
//
// This helper should be used when there is no need to get correspondence information between
// original and copied basic blocks/instructions.
class PeelUnrollSimpleHelper : public ValueObject {
public:
PeelUnrollSimpleHelper(HLoopInformation* info, InductionVarRange* induction_range);
bool IsLoopClonable() const { return helper_.IsLoopClonable(); }
HBasicBlock* DoPeeling() { return helper_.DoPeeling(); }
HBasicBlock* DoUnrolling() { return helper_.DoUnrolling(); }
HLoopInformation* GetRegionToBeAdjusted() const { return helper_.GetRegionToBeAdjusted(); }
const SuperblockCloner::HBasicBlockMap* GetBasicBlockMap() const { return &bb_map_; }
const SuperblockCloner::HInstructionMap* GetInstructionMap() const { return &hir_map_; }
private:
SuperblockCloner::HBasicBlockMap bb_map_;
SuperblockCloner::HInstructionMap hir_map_;
PeelUnrollHelper helper_;
DISALLOW_COPY_AND_ASSIGN(PeelUnrollSimpleHelper);
};
// Collects edge remapping info for loop peeling/unrolling for the loop specified by loop info.
void CollectRemappingInfoForPeelUnroll(bool to_unroll,
HLoopInformation* loop_info,
SuperblockCloner::HEdgeSet* remap_orig_internal,
SuperblockCloner::HEdgeSet* remap_copy_internal,
SuperblockCloner::HEdgeSet* remap_incoming);
// Returns whether blocks from 'work_set' are reachable from the rest of the graph.
//
// Returns whether such a set 'outer_entries' of basic blocks exists that:
// - each block from 'outer_entries' is not from 'work_set'.
// - each block from 'work_set' is reachable from at least one block from 'outer_entries'.
//
// After the function returns work_set contains only blocks from the original 'work_set'
// which are unreachable from the rest of the graph.
bool IsSubgraphConnected(SuperblockCloner::HBasicBlockSet* work_set, HGraph* graph);
// Returns a common predecessor of loop1 and loop2 in the loop tree or nullptr if it is the whole
// graph.
HLoopInformation* FindCommonLoop(HLoopInformation* loop1, HLoopInformation* loop2);
} // namespace art
namespace std {
template <>
struct hash<art::HEdge> {
size_t operator()(art::HEdge const& x) const noexcept {
// Use Cantor pairing function as the hash function.
size_t a = x.GetFrom();
size_t b = x.GetTo();
return (a + b) * (a + b + 1) / 2 + b;
}
};
ostream& operator<<(ostream& os, const art::HEdge& e);
} // namespace std
#endif // ART_COMPILER_OPTIMIZING_SUPERBLOCK_CLONER_H_