| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <functional> |
| #include <memory> |
| |
| #include "base/macros.h" |
| #include "base/utils.h" |
| #include "builder.h" |
| #include "codegen_test_utils.h" |
| #include "dex/dex_file.h" |
| #include "dex/dex_instruction.h" |
| #include "driver/compiler_options.h" |
| #include "nodes.h" |
| #include "optimizing_unit_test.h" |
| #include "register_allocator_linear_scan.h" |
| #include "utils/arm/assembler_arm_vixl.h" |
| #include "utils/arm/managed_register_arm.h" |
| #include "utils/mips/managed_register_mips.h" |
| #include "utils/mips64/managed_register_mips64.h" |
| #include "utils/x86/managed_register_x86.h" |
| |
| #include "gtest/gtest.h" |
| |
| namespace art { |
| |
| // Return all combinations of ISA and code generator that are executable on |
| // hardware, or on simulator, and that we'd like to test. |
| static ::std::vector<CodegenTargetConfig> GetTargetConfigs() { |
| ::std::vector<CodegenTargetConfig> v; |
| ::std::vector<CodegenTargetConfig> test_config_candidates = { |
| #ifdef ART_ENABLE_CODEGEN_arm |
| // TODO: Should't this be `kThumb2` instead of `kArm` here? |
| CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips |
| CodegenTargetConfig(InstructionSet::kMips, create_codegen_mips), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips64 |
| CodegenTargetConfig(InstructionSet::kMips64, create_codegen_mips64) |
| #endif |
| }; |
| |
| for (const CodegenTargetConfig& test_config : test_config_candidates) { |
| if (CanExecute(test_config.GetInstructionSet())) { |
| v.push_back(test_config); |
| } |
| } |
| |
| return v; |
| } |
| |
| class CodegenTest : public OptimizingUnitTest { |
| protected: |
| void TestCode(const std::vector<uint16_t>& data, bool has_result = false, int32_t expected = 0); |
| void TestCodeLong(const std::vector<uint16_t>& data, bool has_result, int64_t expected); |
| void TestComparison(IfCondition condition, |
| int64_t i, |
| int64_t j, |
| DataType::Type type, |
| const CodegenTargetConfig target_config); |
| }; |
| |
| void CodegenTest::TestCode(const std::vector<uint16_t>& data, bool has_result, int32_t expected) { |
| for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { |
| ResetPoolAndAllocator(); |
| HGraph* graph = CreateCFG(data); |
| // Remove suspend checks, they cannot be executed in this context. |
| RemoveSuspendChecks(graph); |
| OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default"); |
| RunCode(target_config, *compiler_options_, graph, [](HGraph*) {}, has_result, expected); |
| } |
| } |
| |
| void CodegenTest::TestCodeLong(const std::vector<uint16_t>& data, |
| bool has_result, int64_t expected) { |
| for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { |
| ResetPoolAndAllocator(); |
| HGraph* graph = CreateCFG(data, DataType::Type::kInt64); |
| // Remove suspend checks, they cannot be executed in this context. |
| RemoveSuspendChecks(graph); |
| OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default"); |
| RunCode(target_config, *compiler_options_, graph, [](HGraph*) {}, has_result, expected); |
| } |
| } |
| |
| TEST_F(CodegenTest, ReturnVoid) { |
| const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); |
| TestCode(data); |
| } |
| |
| TEST_F(CodegenTest, CFG1) { |
| const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST_F(CodegenTest, CFG2) { |
| const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x100, |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST_F(CodegenTest, CFG3) { |
| const std::vector<uint16_t> data1 = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x200, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO | 0xFF00); |
| |
| TestCode(data1); |
| |
| const std::vector<uint16_t> data2 = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO_16, 3, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO_16, 0xFFFF); |
| |
| TestCode(data2); |
| |
| const std::vector<uint16_t> data3 = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO_32, 4, 0, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO_32, 0xFFFF, 0xFFFF); |
| |
| TestCode(data3); |
| } |
| |
| TEST_F(CodegenTest, CFG4) { |
| const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( |
| Instruction::RETURN_VOID, |
| Instruction::GOTO | 0x100, |
| Instruction::GOTO | 0xFE00); |
| |
| TestCode(data); |
| } |
| |
| TEST_F(CodegenTest, CFG5) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::IF_EQ, 3, |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST_F(CodegenTest, IntConstant) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST_F(CodegenTest, Return1) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::RETURN | 0); |
| |
| TestCode(data, true, 0); |
| } |
| |
| TEST_F(CodegenTest, Return2) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 0 | 1 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 0); |
| } |
| |
| TEST_F(CodegenTest, Return3) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 1); |
| } |
| |
| TEST_F(CodegenTest, ReturnIf1) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::IF_EQ, 3, |
| Instruction::RETURN | 0 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 1); |
| } |
| |
| TEST_F(CodegenTest, ReturnIf2) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, |
| Instruction::RETURN | 0 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 0); |
| } |
| |
| // Exercise bit-wise (one's complement) not-int instruction. |
| #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ |
| TEST_F(CodegenTest, TEST_NAME) { \ |
| const int32_t input = INPUT; \ |
| const uint16_t input_lo = Low16Bits(input); \ |
| const uint16_t input_hi = High16Bits(input); \ |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST | 0 << 8, input_lo, input_hi, \ |
| Instruction::NOT_INT | 1 << 8 | 0 << 12 , \ |
| Instruction::RETURN | 1 << 8); \ |
| \ |
| TestCode(data, true, EXPECTED_OUTPUT); \ |
| } |
| |
| NOT_INT_TEST(ReturnNotIntMinus2, -2, 1) |
| NOT_INT_TEST(ReturnNotIntMinus1, -1, 0) |
| NOT_INT_TEST(ReturnNotInt0, 0, -1) |
| NOT_INT_TEST(ReturnNotInt1, 1, -2) |
| NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1 |
| NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2 |
| NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1 |
| NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31) |
| |
| #undef NOT_INT_TEST |
| |
| // Exercise bit-wise (one's complement) not-long instruction. |
| #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ |
| TEST_F(CodegenTest, TEST_NAME) { \ |
| const int64_t input = INPUT; \ |
| const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \ |
| const uint16_t word1 = High16Bits(Low32Bits(input)); \ |
| const uint16_t word2 = Low16Bits(High32Bits(input)); \ |
| const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \ |
| const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \ |
| Instruction::NOT_LONG | 2 << 8 | 0 << 12, \ |
| Instruction::RETURN_WIDE | 2 << 8); \ |
| \ |
| TestCodeLong(data, true, EXPECTED_OUTPUT); \ |
| } |
| |
| NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1)) |
| NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0)) |
| NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1)) |
| NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2)) |
| |
| NOT_LONG_TEST(ReturnNotLongINT32_MIN, |
| INT64_C(-2147483648), |
| INT64_C(2147483647)) // (2^31) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1, |
| INT64_C(-2147483647), |
| INT64_C(2147483646)) // (2^31) - 2 |
| NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1, |
| INT64_C(2147483646), |
| INT64_C(-2147483647)) // -(2^31) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT32_MAX, |
| INT64_C(2147483647), |
| INT64_C(-2147483648)) // -(2^31) |
| |
| // Note that the C++ compiler won't accept |
| // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid |
| // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead. |
| NOT_LONG_TEST(ReturnNotINT64_MIN, |
| INT64_C(-9223372036854775807)-1, |
| INT64_C(9223372036854775807)); // (2^63) - 1 |
| NOT_LONG_TEST(ReturnNotINT64_MINPlus1, |
| INT64_C(-9223372036854775807), |
| INT64_C(9223372036854775806)); // (2^63) - 2 |
| NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1, |
| INT64_C(9223372036854775806), |
| INT64_C(-9223372036854775807)); // -(2^63) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT64_MAX, |
| INT64_C(9223372036854775807), |
| INT64_C(-9223372036854775807)-1); // -(2^63) |
| |
| #undef NOT_LONG_TEST |
| |
| TEST_F(CodegenTest, IntToLongOfLongToInt) { |
| const int64_t input = INT64_C(4294967296); // 2^32 |
| const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW. |
| const uint16_t word1 = High16Bits(Low32Bits(input)); |
| const uint16_t word2 = Low16Bits(High32Bits(input)); |
| const uint16_t word3 = High16Bits(High32Bits(input)); // MSW. |
| const std::vector<uint16_t> data = FIVE_REGISTERS_CODE_ITEM( |
| Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, |
| Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0, |
| Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1 |
| Instruction::LONG_TO_INT | 4 << 8 | 0 << 12, |
| Instruction::INT_TO_LONG | 2 << 8 | 4 << 12, |
| Instruction::RETURN_WIDE | 2 << 8); |
| |
| TestCodeLong(data, true, 1); |
| } |
| |
| TEST_F(CodegenTest, ReturnAdd1) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::ADD_INT, 1 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST_F(CodegenTest, ReturnAdd2) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::ADD_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST_F(CodegenTest, ReturnAdd3) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::ADD_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST_F(CodegenTest, ReturnAdd4) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::ADD_INT_LIT16, 3, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST_F(CodegenTest, ReturnMulInt) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::MUL_INT, 1 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 12); |
| } |
| |
| TEST_F(CodegenTest, ReturnMulInt2addr) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::MUL_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 12); |
| } |
| |
| TEST_F(CodegenTest, ReturnMulLong) { |
| const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( |
| Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, |
| Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, |
| Instruction::MUL_LONG, 2 << 8 | 0, |
| Instruction::RETURN_WIDE); |
| |
| TestCodeLong(data, true, 12); |
| } |
| |
| TEST_F(CodegenTest, ReturnMulLong2addr) { |
| const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( |
| Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, |
| Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, |
| Instruction::MUL_LONG_2ADDR | 2 << 12, |
| Instruction::RETURN_WIDE); |
| |
| TestCodeLong(data, true, 12); |
| } |
| |
| TEST_F(CodegenTest, ReturnMulIntLit8) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::MUL_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 12); |
| } |
| |
| TEST_F(CodegenTest, ReturnMulIntLit16) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::MUL_INT_LIT16, 3, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 12); |
| } |
| |
| TEST_F(CodegenTest, NonMaterializedCondition) { |
| for (CodegenTargetConfig target_config : GetTargetConfigs()) { |
| HGraph* graph = CreateGraph(); |
| |
| HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(entry); |
| graph->SetEntryBlock(entry); |
| entry->AddInstruction(new (GetAllocator()) HGoto()); |
| |
| HBasicBlock* first_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(first_block); |
| entry->AddSuccessor(first_block); |
| HIntConstant* constant0 = graph->GetIntConstant(0); |
| HIntConstant* constant1 = graph->GetIntConstant(1); |
| HEqual* equal = new (GetAllocator()) HEqual(constant0, constant0); |
| first_block->AddInstruction(equal); |
| first_block->AddInstruction(new (GetAllocator()) HIf(equal)); |
| |
| HBasicBlock* then_block = new (GetAllocator()) HBasicBlock(graph); |
| HBasicBlock* else_block = new (GetAllocator()) HBasicBlock(graph); |
| HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->SetExitBlock(exit_block); |
| |
| graph->AddBlock(then_block); |
| graph->AddBlock(else_block); |
| graph->AddBlock(exit_block); |
| first_block->AddSuccessor(then_block); |
| first_block->AddSuccessor(else_block); |
| then_block->AddSuccessor(exit_block); |
| else_block->AddSuccessor(exit_block); |
| |
| exit_block->AddInstruction(new (GetAllocator()) HExit()); |
| then_block->AddInstruction(new (GetAllocator()) HReturn(constant0)); |
| else_block->AddInstruction(new (GetAllocator()) HReturn(constant1)); |
| |
| ASSERT_FALSE(equal->IsEmittedAtUseSite()); |
| graph->BuildDominatorTree(); |
| PrepareForRegisterAllocation(graph, *compiler_options_).Run(); |
| ASSERT_TRUE(equal->IsEmittedAtUseSite()); |
| |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; |
| HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| |
| OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default"); |
| RunCode(target_config, *compiler_options_, graph, hook_before_codegen, true, 0); |
| } |
| } |
| |
| TEST_F(CodegenTest, MaterializedCondition1) { |
| for (CodegenTargetConfig target_config : GetTargetConfigs()) { |
| // Check that condition are materialized correctly. A materialized condition |
| // should yield `1` if it evaluated to true, and `0` otherwise. |
| // We force the materialization of comparisons for different combinations of |
| |
| // inputs and check the results. |
| |
| int lhs[] = {1, 2, -1, 2, 0xabc}; |
| int rhs[] = {2, 1, 2, -1, 0xabc}; |
| |
| for (size_t i = 0; i < arraysize(lhs); i++) { |
| HGraph* graph = CreateGraph(); |
| |
| HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (GetAllocator()) HGoto()); |
| HBasicBlock* code_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(code_block); |
| HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| exit_block->AddInstruction(new (GetAllocator()) HExit()); |
| |
| entry_block->AddSuccessor(code_block); |
| code_block->AddSuccessor(exit_block); |
| graph->SetExitBlock(exit_block); |
| |
| HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); |
| HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); |
| HLessThan cmp_lt(cst_lhs, cst_rhs); |
| code_block->AddInstruction(&cmp_lt); |
| HReturn ret(&cmp_lt); |
| code_block->AddInstruction(&ret); |
| |
| graph->BuildDominatorTree(); |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; |
| HParallelMove* move = |
| new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default"); |
| RunCode(target_config, *compiler_options_, graph, hook_before_codegen, true, lhs[i] < rhs[i]); |
| } |
| } |
| } |
| |
| TEST_F(CodegenTest, MaterializedCondition2) { |
| for (CodegenTargetConfig target_config : GetTargetConfigs()) { |
| // Check that HIf correctly interprets a materialized condition. |
| // We force the materialization of comparisons for different combinations of |
| // inputs. An HIf takes the materialized combination as input and returns a |
| // value that we verify. |
| |
| int lhs[] = {1, 2, -1, 2, 0xabc}; |
| int rhs[] = {2, 1, 2, -1, 0xabc}; |
| |
| |
| for (size_t i = 0; i < arraysize(lhs); i++) { |
| HGraph* graph = CreateGraph(); |
| |
| HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (GetAllocator()) HGoto()); |
| |
| HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(if_block); |
| HBasicBlock* if_true_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(if_true_block); |
| HBasicBlock* if_false_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(if_false_block); |
| HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| exit_block->AddInstruction(new (GetAllocator()) HExit()); |
| |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddSuccessor(if_block); |
| if_block->AddSuccessor(if_true_block); |
| if_block->AddSuccessor(if_false_block); |
| if_true_block->AddSuccessor(exit_block); |
| if_false_block->AddSuccessor(exit_block); |
| graph->SetExitBlock(exit_block); |
| |
| HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); |
| HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); |
| HLessThan cmp_lt(cst_lhs, cst_rhs); |
| if_block->AddInstruction(&cmp_lt); |
| // We insert a dummy instruction to separate the HIf from the HLessThan |
| // and force the materialization of the condition. |
| HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0); |
| if_block->AddInstruction(&force_materialization); |
| HIf if_lt(&cmp_lt); |
| if_block->AddInstruction(&if_lt); |
| |
| HIntConstant* cst_lt = graph->GetIntConstant(1); |
| HReturn ret_lt(cst_lt); |
| if_true_block->AddInstruction(&ret_lt); |
| HIntConstant* cst_ge = graph->GetIntConstant(0); |
| HReturn ret_ge(cst_ge); |
| if_false_block->AddInstruction(&ret_ge); |
| |
| graph->BuildDominatorTree(); |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; |
| HParallelMove* move = |
| new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default"); |
| RunCode(target_config, *compiler_options_, graph, hook_before_codegen, true, lhs[i] < rhs[i]); |
| } |
| } |
| } |
| |
| TEST_F(CodegenTest, ReturnDivIntLit8) { |
| const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::DIV_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 1); |
| } |
| |
| TEST_F(CodegenTest, ReturnDivInt2Addr) { |
| const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0, |
| Instruction::CONST_4 | 2 << 12 | 1 << 8, |
| Instruction::DIV_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 2); |
| } |
| |
| // Helper method. |
| void CodegenTest::TestComparison(IfCondition condition, |
| int64_t i, |
| int64_t j, |
| DataType::Type type, |
| const CodegenTargetConfig target_config) { |
| HGraph* graph = CreateGraph(); |
| |
| HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (GetAllocator()) HGoto()); |
| |
| HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(block); |
| |
| HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| graph->SetExitBlock(exit_block); |
| exit_block->AddInstruction(new (GetAllocator()) HExit()); |
| |
| entry_block->AddSuccessor(block); |
| block->AddSuccessor(exit_block); |
| |
| HInstruction* op1; |
| HInstruction* op2; |
| if (type == DataType::Type::kInt32) { |
| op1 = graph->GetIntConstant(i); |
| op2 = graph->GetIntConstant(j); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt64); |
| op1 = graph->GetLongConstant(i); |
| op2 = graph->GetLongConstant(j); |
| } |
| |
| HInstruction* comparison = nullptr; |
| bool expected_result = false; |
| const uint64_t x = i; |
| const uint64_t y = j; |
| switch (condition) { |
| case kCondEQ: |
| comparison = new (GetAllocator()) HEqual(op1, op2); |
| expected_result = (i == j); |
| break; |
| case kCondNE: |
| comparison = new (GetAllocator()) HNotEqual(op1, op2); |
| expected_result = (i != j); |
| break; |
| case kCondLT: |
| comparison = new (GetAllocator()) HLessThan(op1, op2); |
| expected_result = (i < j); |
| break; |
| case kCondLE: |
| comparison = new (GetAllocator()) HLessThanOrEqual(op1, op2); |
| expected_result = (i <= j); |
| break; |
| case kCondGT: |
| comparison = new (GetAllocator()) HGreaterThan(op1, op2); |
| expected_result = (i > j); |
| break; |
| case kCondGE: |
| comparison = new (GetAllocator()) HGreaterThanOrEqual(op1, op2); |
| expected_result = (i >= j); |
| break; |
| case kCondB: |
| comparison = new (GetAllocator()) HBelow(op1, op2); |
| expected_result = (x < y); |
| break; |
| case kCondBE: |
| comparison = new (GetAllocator()) HBelowOrEqual(op1, op2); |
| expected_result = (x <= y); |
| break; |
| case kCondA: |
| comparison = new (GetAllocator()) HAbove(op1, op2); |
| expected_result = (x > y); |
| break; |
| case kCondAE: |
| comparison = new (GetAllocator()) HAboveOrEqual(op1, op2); |
| expected_result = (x >= y); |
| break; |
| } |
| block->AddInstruction(comparison); |
| block->AddInstruction(new (GetAllocator()) HReturn(comparison)); |
| |
| graph->BuildDominatorTree(); |
| OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default"); |
| RunCode(target_config, *compiler_options_, graph, [](HGraph*) {}, true, expected_result); |
| } |
| |
| TEST_F(CodegenTest, ComparisonsInt) { |
| for (CodegenTargetConfig target_config : GetTargetConfigs()) { |
| for (int64_t i = -1; i <= 1; i++) { |
| for (int64_t j = -1; j <= 1; j++) { |
| for (int cond = kCondFirst; cond <= kCondLast; cond++) { |
| TestComparison( |
| static_cast<IfCondition>(cond), i, j, DataType::Type::kInt32, target_config); |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_F(CodegenTest, ComparisonsLong) { |
| for (CodegenTargetConfig target_config : GetTargetConfigs()) { |
| for (int64_t i = -1; i <= 1; i++) { |
| for (int64_t j = -1; j <= 1; j++) { |
| for (int cond = kCondFirst; cond <= kCondLast; cond++) { |
| TestComparison( |
| static_cast<IfCondition>(cond), i, j, DataType::Type::kInt64, target_config); |
| } |
| } |
| } |
| } |
| } |
| |
| #ifdef ART_ENABLE_CODEGEN_arm |
| TEST_F(CodegenTest, ARMVIXLParallelMoveResolver) { |
| OverrideInstructionSetFeatures(InstructionSet::kThumb2, "default"); |
| HGraph* graph = CreateGraph(); |
| arm::CodeGeneratorARMVIXL codegen(graph, *compiler_options_); |
| |
| codegen.Initialize(); |
| |
| // This will result in calling EmitSwap -> void ParallelMoveResolverARMVIXL::Exchange(int mem1, |
| // int mem2) which was faulty (before the fix). So previously GPR and FP scratch registers were |
| // used as temps; however GPR scratch register is required for big stack offsets which don't fit |
| // LDR encoding. So the following code is a regression test for that situation. |
| HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); |
| move->AddMove(Location::StackSlot(0), Location::StackSlot(8192), DataType::Type::kInt32, nullptr); |
| move->AddMove(Location::StackSlot(8192), Location::StackSlot(0), DataType::Type::kInt32, nullptr); |
| codegen.GetMoveResolver()->EmitNativeCode(move); |
| |
| InternalCodeAllocator code_allocator; |
| codegen.Finalize(&code_allocator); |
| } |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| // Regression test for b/34760542. |
| TEST_F(CodegenTest, ARM64ParallelMoveResolverB34760542) { |
| OverrideInstructionSetFeatures(InstructionSet::kArm64, "default"); |
| HGraph* graph = CreateGraph(); |
| arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_); |
| |
| codegen.Initialize(); |
| |
| // The following ParallelMove used to fail this assertion: |
| // |
| // Assertion failed (!available->IsEmpty()) |
| // |
| // in vixl::aarch64::UseScratchRegisterScope::AcquireNextAvailable, |
| // because of the following situation: |
| // |
| // 1. a temp register (IP0) is allocated as a scratch register by |
| // the parallel move resolver to solve a cycle (swap): |
| // |
| // [ source=DS0 destination=DS257 type=PrimDouble instruction=null ] |
| // [ source=DS257 destination=DS0 type=PrimDouble instruction=null ] |
| // |
| // 2. within CodeGeneratorARM64::MoveLocation, another temp |
| // register (IP1) is allocated to generate the swap between two |
| // double stack slots; |
| // |
| // 3. VIXL requires a third temp register to emit the `Ldr` or |
| // `Str` operation from CodeGeneratorARM64::MoveLocation (as |
| // one of the stack slots' offsets cannot be encoded as an |
| // immediate), but the pool of (core) temp registers is now |
| // empty. |
| // |
| // The solution used so far is to use a floating-point temp register |
| // (D31) in step #2, so that IP1 is available for step #3. |
| |
| HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); |
| move->AddMove(Location::DoubleStackSlot(0), |
| Location::DoubleStackSlot(257), |
| DataType::Type::kFloat64, |
| nullptr); |
| move->AddMove(Location::DoubleStackSlot(257), |
| Location::DoubleStackSlot(0), |
| DataType::Type::kFloat64, |
| nullptr); |
| codegen.GetMoveResolver()->EmitNativeCode(move); |
| |
| InternalCodeAllocator code_allocator; |
| codegen.Finalize(&code_allocator); |
| } |
| |
| // Check that ParallelMoveResolver works fine for ARM64 for both cases when SIMD is on and off. |
| TEST_F(CodegenTest, ARM64ParallelMoveResolverSIMD) { |
| OverrideInstructionSetFeatures(InstructionSet::kArm64, "default"); |
| HGraph* graph = CreateGraph(); |
| arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_); |
| |
| codegen.Initialize(); |
| |
| graph->SetHasSIMD(true); |
| for (int i = 0; i < 2; i++) { |
| HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); |
| move->AddMove(Location::SIMDStackSlot(0), |
| Location::SIMDStackSlot(257), |
| DataType::Type::kFloat64, |
| nullptr); |
| move->AddMove(Location::SIMDStackSlot(257), |
| Location::SIMDStackSlot(0), |
| DataType::Type::kFloat64, |
| nullptr); |
| move->AddMove(Location::FpuRegisterLocation(0), |
| Location::FpuRegisterLocation(1), |
| DataType::Type::kFloat64, |
| nullptr); |
| move->AddMove(Location::FpuRegisterLocation(1), |
| Location::FpuRegisterLocation(0), |
| DataType::Type::kFloat64, |
| nullptr); |
| codegen.GetMoveResolver()->EmitNativeCode(move); |
| graph->SetHasSIMD(false); |
| } |
| |
| InternalCodeAllocator code_allocator; |
| codegen.Finalize(&code_allocator); |
| } |
| |
| // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a75 as example). |
| TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA75) { |
| OverrideInstructionSetFeatures(InstructionSet::kArm64, "cortex-a75"); |
| HGraph* graph = CreateGraph(); |
| arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_); |
| vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures(); |
| |
| EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32)); |
| EXPECT_TRUE(features->Has(vixl::CPUFeatures::kDotProduct)); |
| EXPECT_TRUE(features->Has(vixl::CPUFeatures::kFPHalf)); |
| EXPECT_TRUE(features->Has(vixl::CPUFeatures::kAtomics)); |
| } |
| |
| // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a53 as example). |
| TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA53) { |
| OverrideInstructionSetFeatures(InstructionSet::kArm64, "cortex-a53"); |
| HGraph* graph = CreateGraph(); |
| arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_); |
| vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures(); |
| |
| EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32)); |
| EXPECT_FALSE(features->Has(vixl::CPUFeatures::kDotProduct)); |
| EXPECT_FALSE(features->Has(vixl::CPUFeatures::kFPHalf)); |
| EXPECT_FALSE(features->Has(vixl::CPUFeatures::kAtomics)); |
| } |
| |
| constexpr static size_t kExpectedFPSpillSize = 8 * vixl::aarch64::kDRegSizeInBytes; |
| |
| // The following two tests check that for both SIMD and non-SIMD graphs exactly 64-bit is |
| // allocated on stack per callee-saved FP register to be preserved in the frame entry as |
| // ABI states. |
| TEST_F(CodegenTest, ARM64FrameSizeSIMD) { |
| OverrideInstructionSetFeatures(InstructionSet::kArm64, "default"); |
| HGraph* graph = CreateGraph(); |
| arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_); |
| |
| codegen.Initialize(); |
| graph->SetHasSIMD(true); |
| |
| DCHECK_EQ(arm64::callee_saved_fp_registers.GetCount(), 8); |
| vixl::aarch64::CPURegList reg_list = arm64::callee_saved_fp_registers; |
| while (!reg_list.IsEmpty()) { |
| uint32_t reg_code = reg_list.PopLowestIndex().GetCode(); |
| codegen.AddAllocatedRegister(Location::FpuRegisterLocation(reg_code)); |
| } |
| codegen.ComputeSpillMask(); |
| |
| EXPECT_EQ(codegen.GetFpuSpillSize(), kExpectedFPSpillSize); |
| } |
| |
| TEST_F(CodegenTest, ARM64FrameSizeNoSIMD) { |
| OverrideInstructionSetFeatures(InstructionSet::kArm64, "default"); |
| HGraph* graph = CreateGraph(); |
| arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_); |
| |
| codegen.Initialize(); |
| graph->SetHasSIMD(false); |
| |
| DCHECK_EQ(arm64::callee_saved_fp_registers.GetCount(), 8); |
| vixl::aarch64::CPURegList reg_list = arm64::callee_saved_fp_registers; |
| while (!reg_list.IsEmpty()) { |
| uint32_t reg_code = reg_list.PopLowestIndex().GetCode(); |
| codegen.AddAllocatedRegister(Location::FpuRegisterLocation(reg_code)); |
| } |
| codegen.ComputeSpillMask(); |
| |
| EXPECT_EQ(codegen.GetFpuSpillSize(), kExpectedFPSpillSize); |
| } |
| |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_mips |
| TEST_F(CodegenTest, MipsClobberRA) { |
| OverrideInstructionSetFeatures(InstructionSet::kMips, "mips32r"); |
| CHECK(!instruction_set_features_->AsMipsInstructionSetFeatures()->IsR6()); |
| if (!CanExecute(InstructionSet::kMips)) { |
| // HMipsComputeBaseMethodAddress and the NAL instruction behind it |
| // should only be generated on non-R6. |
| return; |
| } |
| |
| HGraph* graph = CreateGraph(); |
| |
| HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (GetAllocator()) HGoto()); |
| |
| HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(block); |
| |
| HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| graph->SetExitBlock(exit_block); |
| exit_block->AddInstruction(new (GetAllocator()) HExit()); |
| |
| entry_block->AddSuccessor(block); |
| block->AddSuccessor(exit_block); |
| |
| // To simplify matters, don't create PC-relative HLoadClass or HLoadString. |
| // Instead, generate HMipsComputeBaseMethodAddress directly. |
| HMipsComputeBaseMethodAddress* base = new (GetAllocator()) HMipsComputeBaseMethodAddress(); |
| block->AddInstruction(base); |
| // HMipsComputeBaseMethodAddress is defined as int, so just make the |
| // compiled method return it. |
| block->AddInstruction(new (GetAllocator()) HReturn(base)); |
| |
| graph->BuildDominatorTree(); |
| |
| mips::CodeGeneratorMIPS codegenMIPS(graph, *compiler_options_); |
| // Since there isn't HLoadClass or HLoadString, we need to manually indicate |
| // that RA is clobbered and the method entry code should generate a stack frame |
| // and preserve RA in it. And this is what we're testing here. |
| codegenMIPS.ClobberRA(); |
| // Without ClobberRA() the code would be: |
| // nal # Sets RA to point to the jr instruction below |
| // move v0, ra # and the CPU falls into an infinite loop. |
| // jr ra |
| // nop |
| // The expected code is: |
| // addiu sp, sp, -16 |
| // sw ra, 12(sp) |
| // sw a0, 0(sp) |
| // nal # Sets RA to point to the lw instruction below. |
| // move v0, ra |
| // lw ra, 12(sp) |
| // jr ra |
| // addiu sp, sp, 16 |
| RunCode(&codegenMIPS, graph, [](HGraph*) {}, false, 0); |
| } |
| #endif |
| |
| } // namespace art |