blob: 33fa87d568355b3ae83965a73ed30725f4e1023c [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "loop_optimization.h"
#include "linear_order.h"
namespace art {
// TODO: Generalize to cycles, as found by induction analysis?
static bool IsPhiInduction(HPhi* phi, ArenaSet<HInstruction*>* iset) {
DCHECK(iset->empty());
HInputsRef inputs = phi->GetInputs();
if (inputs.size() == 2 && (inputs[1]->IsAdd() || inputs[1]->IsSub())) {
HInstruction* addsub = inputs[1];
if (addsub->InputAt(0) == phi || addsub->InputAt(1) == phi) {
if (addsub->GetUses().HasExactlyOneElement()) {
iset->insert(phi);
iset->insert(addsub);
return true;
}
}
}
return false;
}
// Find: phi: Phi(init, addsub)
// s: SuspendCheck
// c: Condition(phi, bound)
// i: If(c)
// TODO: Find a less pattern matching approach?
static bool IsEmptyHeader(HBasicBlock* block, ArenaSet<HInstruction*>* iset) {
DCHECK(iset->empty());
HInstruction* phi = block->GetFirstPhi();
if (phi != nullptr && phi->GetNext() == nullptr && IsPhiInduction(phi->AsPhi(), iset)) {
HInstruction* s = block->GetFirstInstruction();
if (s != nullptr && s->IsSuspendCheck()) {
HInstruction* c = s->GetNext();
if (c != nullptr && c->IsCondition() && c->GetUses().HasExactlyOneElement()) {
HInstruction* i = c->GetNext();
if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
iset->insert(c);
iset->insert(s);
return true;
}
}
}
}
return false;
}
static bool IsEmptyBody(HBasicBlock* block, ArenaSet<HInstruction*>* iset) {
HInstruction* phi = block->GetFirstPhi();
HInstruction* i = block->GetFirstInstruction();
return phi == nullptr && iset->find(i) != iset->end() &&
i->GetNext() != nullptr && i->GetNext()->IsGoto();
}
static void RemoveFromCycle(HInstruction* instruction) {
// A bit more elaborate than the usual instruction removal,
// since there may be a cycle in the use structure.
instruction->RemoveAsUserOfAllInputs();
instruction->RemoveEnvironmentUsers();
instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
}
//
// Class methods.
//
HLoopOptimization::HLoopOptimization(HGraph* graph,
HInductionVarAnalysis* induction_analysis)
: HOptimization(graph, kLoopOptimizationPassName),
induction_range_(induction_analysis),
loop_allocator_(nullptr),
top_loop_(nullptr),
last_loop_(nullptr),
iset_(nullptr),
induction_simplication_count_(0) {
}
void HLoopOptimization::Run() {
// Well-behaved loops only.
// TODO: make this less of a sledgehammer.
if (graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
return;
}
// Phase-local allocator that draws from the global pool. Since the allocator
// itself resides on the stack, it is destructed on exiting Run(), which
// implies its underlying memory is released immediately.
ArenaAllocator allocator(graph_->GetArena()->GetArenaPool());
loop_allocator_ = &allocator;
// Perform loop optimizations.
LocalRun();
// Detach.
loop_allocator_ = nullptr;
last_loop_ = top_loop_ = nullptr;
}
void HLoopOptimization::LocalRun() {
// Build the linear order using the phase-local allocator. This step enables building
// a loop hierarchy that properly reflects the outer-inner and previous-next relation.
ArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
LinearizeGraph(graph_, loop_allocator_, &linear_order);
// Build the loop hierarchy.
for (HBasicBlock* block : linear_order) {
if (block->IsLoopHeader()) {
AddLoop(block->GetLoopInformation());
}
}
// Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
// a temporary set that stores instructions using the phase-local allocator.
if (top_loop_ != nullptr) {
ArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
iset_ = &iset;
TraverseLoopsInnerToOuter(top_loop_);
iset_ = nullptr; // detach
}
}
void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
DCHECK(loop_info != nullptr);
LoopNode* node = new (loop_allocator_) LoopNode(loop_info); // phase-local allocator
if (last_loop_ == nullptr) {
// First loop.
DCHECK(top_loop_ == nullptr);
last_loop_ = top_loop_ = node;
} else if (loop_info->IsIn(*last_loop_->loop_info)) {
// Inner loop.
node->outer = last_loop_;
DCHECK(last_loop_->inner == nullptr);
last_loop_ = last_loop_->inner = node;
} else {
// Subsequent loop.
while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
last_loop_ = last_loop_->outer;
}
node->outer = last_loop_->outer;
node->previous = last_loop_;
DCHECK(last_loop_->next == nullptr);
last_loop_ = last_loop_->next = node;
}
}
void HLoopOptimization::RemoveLoop(LoopNode* node) {
DCHECK(node != nullptr);
DCHECK(node->inner == nullptr);
if (node->previous != nullptr) {
// Within sequence.
node->previous->next = node->next;
if (node->next != nullptr) {
node->next->previous = node->previous;
}
} else {
// First of sequence.
if (node->outer != nullptr) {
node->outer->inner = node->next;
} else {
top_loop_ = node->next;
}
if (node->next != nullptr) {
node->next->outer = node->outer;
node->next->previous = nullptr;
}
}
}
void HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
for ( ; node != nullptr; node = node->next) {
int current_induction_simplification_count = induction_simplication_count_;
if (node->inner != nullptr) {
TraverseLoopsInnerToOuter(node->inner);
}
// Visit loop after its inner loops have been visited. If the induction of any inner
// loop has been simplified, recompute the induction information of this loop first.
if (current_induction_simplification_count != induction_simplication_count_) {
induction_range_.ReVisit(node->loop_info);
}
SimplifyInduction(node);
SimplifyBlocks(node);
RemoveIfEmptyLoop(node);
}
}
void HLoopOptimization::SimplifyInduction(LoopNode* node) {
HBasicBlock* header = node->loop_info->GetHeader();
HBasicBlock* preheader = node->loop_info->GetPreHeader();
// Scan the phis in the header to find opportunities to simplify an induction
// cycle that is only used outside the loop. Replace these uses, if any, with
// the last value and remove the induction cycle.
// Examples: for (int i = 0; x != null; i++) { .... no i .... }
// for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
iset_->clear();
int32_t use_count = 0;
if (IsPhiInduction(phi, iset_) &&
IsOnlyUsedAfterLoop(node->loop_info, phi, &use_count) &&
TryReplaceWithLastValue(phi, use_count, preheader)) {
for (HInstruction* i : *iset_) {
RemoveFromCycle(i);
}
induction_simplication_count_++;
}
}
}
void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
// Remove instructions that are dead, usually resulting from eliminating induction cycles.
for (HBackwardInstructionIterator i(block->GetInstructions()); !i.Done(); i.Advance()) {
HInstruction* instruction = i.Current();
if (instruction->IsDeadAndRemovable()) {
block->RemoveInstruction(instruction);
}
}
// Remove trivial control flow blocks from the loop body, again usually resulting
// from eliminating induction cycles.
if (block->GetPredecessors().size() == 1 &&
block->GetSuccessors().size() == 1 &&
block->GetFirstInstruction()->IsGoto()) {
HBasicBlock* pred = block->GetSinglePredecessor();
HBasicBlock* succ = block->GetSingleSuccessor();
if (succ->GetPredecessors().size() == 1) {
pred->ReplaceSuccessor(block, succ);
block->ClearDominanceInformation();
block->SetDominator(pred); // needed by next disconnect.
block->DisconnectAndDelete();
pred->AddDominatedBlock(succ);
succ->SetDominator(pred);
}
}
}
}
void HLoopOptimization::RemoveIfEmptyLoop(LoopNode* node) {
HBasicBlock* header = node->loop_info->GetHeader();
HBasicBlock* preheader = node->loop_info->GetPreHeader();
// Ensure there is only a single loop-body (besides the header).
HBasicBlock* body = nullptr;
for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
if (it.Current() != header) {
if (body != nullptr) {
return;
}
body = it.Current();
}
}
// Ensure there is only a single exit point.
if (header->GetSuccessors().size() != 2) {
return;
}
HBasicBlock* exit = (header->GetSuccessors()[0] == body)
? header->GetSuccessors()[1]
: header->GetSuccessors()[0];
// Ensure exit can only be reached by exiting loop.
if (exit->GetPredecessors().size() != 1) {
return;
}
// Detect an empty loop: no side effects other than plain iteration. Replace
// subsequent index uses, if any, with the last value and remove the loop.
iset_->clear();
int32_t use_count = 0;
if (IsEmptyHeader(header, iset_) &&
IsEmptyBody(body, iset_) &&
IsOnlyUsedAfterLoop(node->loop_info, header->GetFirstPhi(), &use_count) &&
TryReplaceWithLastValue(header->GetFirstPhi(), use_count, preheader)) {
body->DisconnectAndDelete();
exit->RemovePredecessor(header);
header->RemoveSuccessor(exit);
header->ClearDominanceInformation();
header->SetDominator(preheader); // needed by next disconnect.
header->DisconnectAndDelete();
preheader->AddSuccessor(exit);
preheader->AddInstruction(new (graph_->GetArena()) HGoto()); // global allocator
preheader->AddDominatedBlock(exit);
exit->SetDominator(preheader);
// Update hierarchy.
RemoveLoop(node);
}
}
bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
HInstruction* instruction,
/*out*/ int32_t* use_count) {
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
HInstruction* user = use.GetUser();
if (iset_->find(user) == iset_->end()) { // not excluded?
HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
return false;
}
++*use_count;
}
}
return true;
}
void HLoopOptimization::ReplaceAllUses(HInstruction* instruction, HInstruction* replacement) {
const HUseList<HInstruction*>& uses = instruction->GetUses();
for (auto it = uses.begin(), end = uses.end(); it != end;) {
HInstruction* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment before replacing
if (iset_->find(user) == iset_->end()) { // not excluded?
user->ReplaceInput(replacement, index);
induction_range_.Replace(user, instruction, replacement); // update induction
}
}
const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
HEnvironment* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment before replacing
if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
user->RemoveAsUserOfInput(index);
user->SetRawEnvAt(index, replacement);
replacement->AddEnvUseAt(user, index);
}
}
}
bool HLoopOptimization::TryReplaceWithLastValue(HInstruction* instruction,
int32_t use_count,
HBasicBlock* block) {
// If true uses appear after the loop, replace these uses with the last value. Environment
// uses can consume this value too, since any first true use is outside the loop (although
// this may imply that de-opting may look "ahead" a bit on the phi value). If there are only
// environment uses, the value is dropped altogether, since the computations have no effect.
if (use_count > 0) {
if (!induction_range_.CanGenerateLastValue(instruction)) {
return false;
}
ReplaceAllUses(instruction, induction_range_.GenerateLastValue(instruction, graph_, block));
}
return true;
}
} // namespace art