| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <regex> |
| |
| #include "base/arena_allocator.h" |
| #include "builder.h" |
| #include "induction_var_analysis.h" |
| #include "nodes.h" |
| #include "optimizing_unit_test.h" |
| |
| namespace art { |
| |
| /** |
| * Fixture class for the InductionVarAnalysis tests. |
| */ |
| class InductionVarAnalysisTest : public CommonCompilerTest { |
| public: |
| InductionVarAnalysisTest() : pool_(), allocator_(&pool_) { |
| graph_ = CreateGraph(&allocator_); |
| } |
| |
| ~InductionVarAnalysisTest() { } |
| |
| // Builds single for-loop at depth d. |
| void BuildForLoop(int d, int n) { |
| ASSERT_LT(d, n); |
| loop_preheader_[d] = new (&allocator_) HBasicBlock(graph_); |
| graph_->AddBlock(loop_preheader_[d]); |
| loop_header_[d] = new (&allocator_) HBasicBlock(graph_); |
| graph_->AddBlock(loop_header_[d]); |
| loop_preheader_[d]->AddSuccessor(loop_header_[d]); |
| if (d < (n - 1)) { |
| BuildForLoop(d + 1, n); |
| } |
| loop_body_[d] = new (&allocator_) HBasicBlock(graph_); |
| graph_->AddBlock(loop_body_[d]); |
| loop_body_[d]->AddSuccessor(loop_header_[d]); |
| if (d < (n - 1)) { |
| loop_header_[d]->AddSuccessor(loop_preheader_[d + 1]); |
| loop_header_[d + 1]->AddSuccessor(loop_body_[d]); |
| } else { |
| loop_header_[d]->AddSuccessor(loop_body_[d]); |
| } |
| } |
| |
| // Builds a n-nested loop in CFG where each loop at depth 0 <= d < n |
| // is defined as "for (int i_d = 0; i_d < 100; i_d++)". Tests can further |
| // populate the loop with instructions to set up interesting scenarios. |
| void BuildLoopNest(int n) { |
| ASSERT_LE(n, 10); |
| graph_->SetNumberOfVRegs(n + 3); |
| |
| // Build basic blocks with entry, nested loop, exit. |
| entry_ = new (&allocator_) HBasicBlock(graph_); |
| graph_->AddBlock(entry_); |
| BuildForLoop(0, n); |
| return_ = new (&allocator_) HBasicBlock(graph_); |
| graph_->AddBlock(return_); |
| exit_ = new (&allocator_) HBasicBlock(graph_); |
| graph_->AddBlock(exit_); |
| entry_->AddSuccessor(loop_preheader_[0]); |
| loop_header_[0]->AddSuccessor(return_); |
| return_->AddSuccessor(exit_); |
| graph_->SetEntryBlock(entry_); |
| graph_->SetExitBlock(exit_); |
| |
| // Provide entry and exit instructions. |
| parameter_ = new (&allocator_) HParameterValue( |
| graph_->GetDexFile(), 0, 0, Primitive::kPrimNot, true); |
| entry_->AddInstruction(parameter_); |
| constant0_ = graph_->GetIntConstant(0); |
| constant1_ = graph_->GetIntConstant(1); |
| constant100_ = graph_->GetIntConstant(100); |
| float_constant0_ = graph_->GetFloatConstant(0.0f); |
| return_->AddInstruction(new (&allocator_) HReturnVoid()); |
| exit_->AddInstruction(new (&allocator_) HExit()); |
| |
| // Provide loop instructions. |
| for (int d = 0; d < n; d++) { |
| basic_[d] = new (&allocator_) HPhi(&allocator_, d, 0, Primitive::kPrimInt); |
| loop_preheader_[d]->AddInstruction(new (&allocator_) HGoto()); |
| loop_header_[d]->AddPhi(basic_[d]); |
| HInstruction* compare = new (&allocator_) HLessThan(basic_[d], constant100_); |
| loop_header_[d]->AddInstruction(compare); |
| loop_header_[d]->AddInstruction(new (&allocator_) HIf(compare)); |
| increment_[d] = new (&allocator_) HAdd(Primitive::kPrimInt, basic_[d], constant1_); |
| loop_body_[d]->AddInstruction(increment_[d]); |
| loop_body_[d]->AddInstruction(new (&allocator_) HGoto()); |
| |
| basic_[d]->AddInput(constant0_); |
| basic_[d]->AddInput(increment_[d]); |
| } |
| } |
| |
| // Builds if-statement at depth d. |
| HPhi* BuildIf(int d, HBasicBlock** ifT, HBasicBlock** ifF) { |
| HBasicBlock* cond = new (&allocator_) HBasicBlock(graph_); |
| HBasicBlock* ifTrue = new (&allocator_) HBasicBlock(graph_); |
| HBasicBlock* ifFalse = new (&allocator_) HBasicBlock(graph_); |
| graph_->AddBlock(cond); |
| graph_->AddBlock(ifTrue); |
| graph_->AddBlock(ifFalse); |
| // Conditional split. |
| loop_header_[d]->ReplaceSuccessor(loop_body_[d], cond); |
| cond->AddSuccessor(ifTrue); |
| cond->AddSuccessor(ifFalse); |
| ifTrue->AddSuccessor(loop_body_[d]); |
| ifFalse->AddSuccessor(loop_body_[d]); |
| cond->AddInstruction(new (&allocator_) HIf(parameter_)); |
| *ifT = ifTrue; |
| *ifF = ifFalse; |
| |
| HPhi* select_phi = new (&allocator_) HPhi(&allocator_, -1, 0, Primitive::kPrimInt); |
| loop_body_[d]->AddPhi(select_phi); |
| return select_phi; |
| } |
| |
| // Inserts instruction right before increment at depth d. |
| HInstruction* InsertInstruction(HInstruction* instruction, int d) { |
| loop_body_[d]->InsertInstructionBefore(instruction, increment_[d]); |
| return instruction; |
| } |
| |
| // Inserts a phi to loop header at depth d and returns it. |
| HPhi* InsertLoopPhi(int vreg, int d) { |
| HPhi* phi = new (&allocator_) HPhi(&allocator_, vreg, 0, Primitive::kPrimInt); |
| loop_header_[d]->AddPhi(phi); |
| return phi; |
| } |
| |
| // Inserts an array store with given `subscript` at depth d to |
| // enable tests to inspect the computed induction at that point easily. |
| HInstruction* InsertArrayStore(HInstruction* subscript, int d) { |
| // ArraySet is given a float value in order to avoid SsaBuilder typing |
| // it from the array's non-existent reference type info. |
| return InsertInstruction(new (&allocator_) HArraySet( |
| parameter_, subscript, float_constant0_, Primitive::kPrimFloat, 0), d); |
| } |
| |
| // Returns induction information of instruction in loop at depth d. |
| std::string GetInductionInfo(HInstruction* instruction, int d) { |
| return HInductionVarAnalysis::InductionToString( |
| iva_->LookupInfo(loop_body_[d]->GetLoopInformation(), instruction)); |
| } |
| |
| // Returns induction information of the trip-count of loop at depth d. |
| std::string GetTripCount(int d) { |
| HInstruction* control = loop_header_[d]->GetLastInstruction(); |
| DCHECK(control->IsIf()); |
| return GetInductionInfo(control, d); |
| } |
| |
| // Returns true if instructions have identical induction. |
| bool HaveSameInduction(HInstruction* instruction1, HInstruction* instruction2) { |
| return HInductionVarAnalysis::InductionEqual( |
| iva_->LookupInfo(loop_body_[0]->GetLoopInformation(), instruction1), |
| iva_->LookupInfo(loop_body_[0]->GetLoopInformation(), instruction2)); |
| } |
| |
| // Performs InductionVarAnalysis (after proper set up). |
| void PerformInductionVarAnalysis() { |
| graph_->BuildDominatorTree(); |
| iva_ = new (&allocator_) HInductionVarAnalysis(graph_); |
| iva_->Run(); |
| } |
| |
| // General building fields. |
| ArenaPool pool_; |
| ArenaAllocator allocator_; |
| HGraph* graph_; |
| HInductionVarAnalysis* iva_; |
| |
| // Fixed basic blocks and instructions. |
| HBasicBlock* entry_; |
| HBasicBlock* return_; |
| HBasicBlock* exit_; |
| HInstruction* parameter_; // "this" |
| HInstruction* constant0_; |
| HInstruction* constant1_; |
| HInstruction* constant100_; |
| HInstruction* float_constant0_; |
| |
| // Loop specifics. |
| HBasicBlock* loop_preheader_[10]; |
| HBasicBlock* loop_header_[10]; |
| HBasicBlock* loop_body_[10]; |
| HInstruction* increment_[10]; |
| HPhi* basic_[10]; // "vreg_d", the "i_d" |
| }; |
| |
| // |
| // The actual InductionVarAnalysis tests. |
| // |
| |
| TEST_F(InductionVarAnalysisTest, ProperLoopSetup) { |
| // Setup: |
| // for (int i_0 = 0; i_0 < 100; i_0++) { |
| // .. |
| // for (int i_9 = 0; i_9 < 100; i_9++) { |
| // } |
| // .. |
| // } |
| BuildLoopNest(10); |
| graph_->BuildDominatorTree(); |
| |
| ASSERT_EQ(entry_->GetLoopInformation(), nullptr); |
| for (int d = 0; d < 1; d++) { |
| ASSERT_EQ(loop_preheader_[d]->GetLoopInformation(), |
| (d == 0) ? nullptr |
| : loop_header_[d - 1]->GetLoopInformation()); |
| ASSERT_NE(loop_header_[d]->GetLoopInformation(), nullptr); |
| ASSERT_NE(loop_body_[d]->GetLoopInformation(), nullptr); |
| ASSERT_EQ(loop_header_[d]->GetLoopInformation(), |
| loop_body_[d]->GetLoopInformation()); |
| } |
| ASSERT_EQ(exit_->GetLoopInformation(), nullptr); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindBasicInduction) { |
| // Setup: |
| // for (int i = 0; i < 100; i++) { |
| // a[i] = 0; |
| // } |
| BuildLoopNest(1); |
| HInstruction* store = InsertArrayStore(basic_[0], 0); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); |
| EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[0], 0).c_str()); |
| |
| // Offset matters! |
| EXPECT_FALSE(HaveSameInduction(store->InputAt(1), increment_[0])); |
| |
| // Trip-count. |
| EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", GetTripCount(0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindDerivedInduction) { |
| // Setup: |
| // for (int i = 0; i < 100; i++) { |
| // k = 100 + i; |
| // k = 100 - i; |
| // k = 100 * i; |
| // k = i << 1; |
| // k = - i; |
| // } |
| BuildLoopNest(1); |
| HInstruction* add = InsertInstruction( |
| new (&allocator_) HAdd(Primitive::kPrimInt, constant100_, basic_[0]), 0); |
| HInstruction* sub = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, constant100_, basic_[0]), 0); |
| HInstruction* mul = InsertInstruction( |
| new (&allocator_) HMul(Primitive::kPrimInt, constant100_, basic_[0]), 0); |
| HInstruction* shl = InsertInstruction( |
| new (&allocator_) HShl(Primitive::kPrimInt, basic_[0], constant1_), 0); |
| HInstruction* neg = InsertInstruction( |
| new (&allocator_) HNeg(Primitive::kPrimInt, basic_[0]), 0); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + (100)):PrimInt", GetInductionInfo(add, 0).c_str()); |
| EXPECT_STREQ("(( - (1)) * i + (100)):PrimInt", GetInductionInfo(sub, 0).c_str()); |
| EXPECT_STREQ("((100) * i + (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); |
| EXPECT_STREQ("((2) * i + (0)):PrimInt", GetInductionInfo(shl, 0).c_str()); |
| EXPECT_STREQ("(( - (1)) * i + (0)):PrimInt", GetInductionInfo(neg, 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindChainInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i = 0; i < 100; i++) { |
| // k = k + 100; |
| // a[k] = 0; |
| // k = k - 1; |
| // a[k] = 0; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant0_); |
| |
| HInstruction* add = InsertInstruction( |
| new (&allocator_) HAdd(Primitive::kPrimInt, k, constant100_), 0); |
| HInstruction* store1 = InsertArrayStore(add, 0); |
| HInstruction* sub = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, add, constant1_), 0); |
| HInstruction* store2 = InsertArrayStore(sub, 0); |
| k->AddInput(sub); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("(((100) - (1)) * i + (100)):PrimInt", |
| GetInductionInfo(store1->InputAt(1), 0).c_str()); |
| EXPECT_STREQ("(((100) - (1)) * i + ((100) - (1))):PrimInt", |
| GetInductionInfo(store2->InputAt(1), 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindTwoWayBasicInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i = 0; i < 100; i++) { |
| // if () k = k + 1; |
| // else k = k + 1; |
| // a[k] = 0; |
| // } |
| BuildLoopNest(1); |
| HPhi* k_header = InsertLoopPhi(0, 0); |
| k_header->AddInput(constant0_); |
| |
| HBasicBlock* ifTrue; |
| HBasicBlock* ifFalse; |
| HPhi* k_body = BuildIf(0, &ifTrue, &ifFalse); |
| |
| // True-branch. |
| HInstruction* inc1 = new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant1_); |
| ifTrue->AddInstruction(inc1); |
| k_body->AddInput(inc1); |
| // False-branch. |
| HInstruction* inc2 = new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant1_); |
| ifFalse->AddInstruction(inc2); |
| k_body->AddInput(inc2); |
| // Merge over a phi. |
| HInstruction* store = InsertArrayStore(k_body, 0); |
| k_header->AddInput(k_body); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); |
| |
| // Both increments get same induction. |
| EXPECT_TRUE(HaveSameInduction(store->InputAt(1), inc1)); |
| EXPECT_TRUE(HaveSameInduction(store->InputAt(1), inc2)); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindTwoWayDerivedInduction) { |
| // Setup: |
| // for (int i = 0; i < 100; i++) { |
| // if () k = i + 1; |
| // else k = i + 1; |
| // a[k] = 0; |
| // } |
| BuildLoopNest(1); |
| HBasicBlock* ifTrue; |
| HBasicBlock* ifFalse; |
| HPhi* k = BuildIf(0, &ifTrue, &ifFalse); |
| |
| // True-branch. |
| HInstruction* inc1 = new (&allocator_) HAdd(Primitive::kPrimInt, basic_[0], constant1_); |
| ifTrue->AddInstruction(inc1); |
| k->AddInput(inc1); |
| // False-branch. |
| HInstruction* inc2 = new (&allocator_) HAdd(Primitive::kPrimInt, basic_[0], constant1_); |
| ifFalse->AddInstruction(inc2); |
| k->AddInput(inc2); |
| // Merge over a phi. |
| HInstruction* store = InsertArrayStore(k, 0); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindFirstOrderWrapAroundInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i = 0; i < 100; i++) { |
| // a[k] = 0; |
| // k = 100 - i; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant0_); |
| |
| HInstruction* store = InsertArrayStore(k, 0); |
| HInstruction* sub = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, constant100_, basic_[0]), 0); |
| k->AddInput(sub); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("wrap((0), (( - (1)) * i + (100)):PrimInt):PrimInt", |
| GetInductionInfo(store->InputAt(1), 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindSecondOrderWrapAroundInduction) { |
| // Setup: |
| // k = 0; |
| // t = 100; |
| // for (int i = 0; i < 100; i++) { |
| // a[k] = 0; |
| // k = t; |
| // t = 100 - i; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant0_); |
| HPhi* t = InsertLoopPhi(1, 0); |
| t->AddInput(constant100_); |
| |
| HInstruction* store = InsertArrayStore(k, 0); |
| k->AddInput(t); |
| HInstruction* sub = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, constant100_, basic_[0], 0), 0); |
| t->AddInput(sub); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("wrap((0), wrap((100), (( - (1)) * i + (100)):PrimInt):PrimInt):PrimInt", |
| GetInductionInfo(store->InputAt(1), 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindWrapAroundDerivedInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i = 0; i < 100; i++) { |
| // t = k + 100; |
| // t = k - 100; |
| // t = k * 100; |
| // t = k << 1; |
| // t = - k; |
| // k = i << 1; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant0_); |
| |
| HInstruction* add = InsertInstruction( |
| new (&allocator_) HAdd(Primitive::kPrimInt, k, constant100_), 0); |
| HInstruction* sub = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, k, constant100_), 0); |
| HInstruction* mul = InsertInstruction( |
| new (&allocator_) HMul(Primitive::kPrimInt, k, constant100_), 0); |
| HInstruction* shl = InsertInstruction( |
| new (&allocator_) HShl(Primitive::kPrimInt, k, constant1_), 0); |
| HInstruction* neg = InsertInstruction( |
| new (&allocator_) HNeg(Primitive::kPrimInt, k), 0); |
| k->AddInput( |
| InsertInstruction(new (&allocator_) HShl(Primitive::kPrimInt, basic_[0], constant1_), 0)); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("wrap((100), ((2) * i + (100)):PrimInt):PrimInt", |
| GetInductionInfo(add, 0).c_str()); |
| EXPECT_STREQ("wrap(((0) - (100)), ((2) * i + ((0) - (100))):PrimInt):PrimInt", |
| GetInductionInfo(sub, 0).c_str()); |
| EXPECT_STREQ("wrap((0), (((2) * (100)) * i + (0)):PrimInt):PrimInt", |
| GetInductionInfo(mul, 0).c_str()); |
| EXPECT_STREQ("wrap((0), (((2) * (2)) * i + (0)):PrimInt):PrimInt", |
| GetInductionInfo(shl, 0).c_str()); |
| EXPECT_STREQ("wrap((0), (( - (2)) * i + (0)):PrimInt):PrimInt", |
| GetInductionInfo(neg, 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindPeriodicInduction) { |
| // Setup: |
| // k = 0; |
| // t = 100; |
| // for (int i = 0; i < 100; i++) { |
| // a[k] = 0; |
| // a[t] = 0; |
| // // Swap t <-> k. |
| // d = t; |
| // t = k; |
| // k = d; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant0_); |
| HPhi* t = InsertLoopPhi(1, 0); |
| t->AddInput(constant100_); |
| |
| HInstruction* store1 = InsertArrayStore(k, 0); |
| HInstruction* store2 = InsertArrayStore(t, 0); |
| k->AddInput(t); |
| t->AddInput(k); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("periodic((0), (100)):PrimInt", GetInductionInfo(store1->InputAt(1), 0).c_str()); |
| EXPECT_STREQ("periodic((100), (0)):PrimInt", GetInductionInfo(store2->InputAt(1), 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindIdiomaticPeriodicInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i = 0; i < 100; i++) { |
| // a[k] = 0; |
| // k = 1 - k; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant0_); |
| |
| HInstruction* store = InsertArrayStore(k, 0); |
| HInstruction* sub = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, constant1_, k), 0); |
| k->AddInput(sub); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("periodic((0), (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); |
| EXPECT_STREQ("periodic((1), (0)):PrimInt", GetInductionInfo(sub, 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindXorPeriodicInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i = 0; i < 100; i++) { |
| // a[k] = 0; |
| // k = k ^ 1; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant0_); |
| |
| HInstruction* store = InsertArrayStore(k, 0); |
| HInstruction* x = InsertInstruction( |
| new (&allocator_) HXor(Primitive::kPrimInt, k, constant1_), 0); |
| k->AddInput(x); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("periodic((0), (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); |
| EXPECT_STREQ("periodic((1), (0)):PrimInt", GetInductionInfo(x, 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindXor100PeriodicInduction) { |
| // Setup: |
| // k = 100; |
| // for (int i = 0; i < 100; i++) { |
| // k = k ^ 100; |
| // } |
| BuildLoopNest(1); |
| HPhi* k = InsertLoopPhi(0, 0); |
| k->AddInput(constant100_); |
| |
| HInstruction* x = InsertInstruction( |
| new (&allocator_) HXor(Primitive::kPrimInt, k, constant100_), 0); |
| k->AddInput(x); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("periodic(((100) ^ (100)), (100)):PrimInt", GetInductionInfo(x, 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindDerivedPeriodicInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i = 0; i < 100; i++) { |
| // k = 1 - k; |
| // t = k + 100; |
| // t = k - 100; |
| // t = k * 100; |
| // t = k << 1; |
| // t = - k; |
| // } |
| BuildLoopNest(1); |
| HPhi* k_header = InsertLoopPhi(0, 0); |
| k_header->AddInput(constant0_); |
| |
| HInstruction* k_body = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, constant1_, k_header), 0); |
| k_header->AddInput(k_body); |
| |
| // Derived expressions. |
| HInstruction* add = InsertInstruction( |
| new (&allocator_) HAdd(Primitive::kPrimInt, k_body, constant100_), 0); |
| HInstruction* sub = InsertInstruction( |
| new (&allocator_) HSub(Primitive::kPrimInt, k_body, constant100_), 0); |
| HInstruction* mul = InsertInstruction( |
| new (&allocator_) HMul(Primitive::kPrimInt, k_body, constant100_), 0); |
| HInstruction* shl = InsertInstruction( |
| new (&allocator_) HShl(Primitive::kPrimInt, k_body, constant1_), 0); |
| HInstruction* neg = InsertInstruction( |
| new (&allocator_) HNeg(Primitive::kPrimInt, k_body), 0); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("periodic(((1) + (100)), (100)):PrimInt", GetInductionInfo(add, 0).c_str()); |
| EXPECT_STREQ("periodic(((1) - (100)), ((0) - (100))):PrimInt", GetInductionInfo(sub, 0).c_str()); |
| EXPECT_STREQ("periodic((100), (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); |
| EXPECT_STREQ("periodic((2), (0)):PrimInt", GetInductionInfo(shl, 0).c_str()); |
| EXPECT_STREQ("periodic(( - (1)), (0)):PrimInt", GetInductionInfo(neg, 0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, FindDeepLoopInduction) { |
| // Setup: |
| // k = 0; |
| // for (int i_0 = 0; i_0 < 100; i_0++) { |
| // .. |
| // for (int i_9 = 0; i_9 < 100; i_9++) { |
| // k = 1 + k; |
| // a[k] = 0; |
| // } |
| // .. |
| // } |
| BuildLoopNest(10); |
| |
| HPhi* k[10]; |
| for (int d = 0; d < 10; d++) { |
| k[d] = InsertLoopPhi(0, d); |
| } |
| |
| HInstruction* inc = InsertInstruction( |
| new (&allocator_) HAdd(Primitive::kPrimInt, constant1_, k[9]), 9); |
| HInstruction* store = InsertArrayStore(inc, 9); |
| |
| for (int d = 0; d < 10; d++) { |
| k[d]->AddInput((d != 0) ? k[d - 1] : constant0_); |
| k[d]->AddInput((d != 9) ? k[d + 1] : inc); |
| } |
| PerformInductionVarAnalysis(); |
| |
| // Avoid exact phi number, since that depends on the SSA building phase. |
| std::regex r("\\(\\(1\\) \\* i \\+ " |
| "\\(\\(1\\) \\+ \\(\\d+:Phi\\)\\)\\):PrimInt"); |
| |
| for (int d = 0; d < 10; d++) { |
| if (d == 9) { |
| EXPECT_TRUE(std::regex_match(GetInductionInfo(store->InputAt(1), d), r)); |
| } else { |
| EXPECT_STREQ("", GetInductionInfo(store->InputAt(1), d).c_str()); |
| } |
| EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[d], d).c_str()); |
| // Trip-count. |
| EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", GetTripCount(d).c_str()); |
| } |
| } |
| |
| TEST_F(InductionVarAnalysisTest, ByteInductionIntLoopControl) { |
| // Setup: |
| // for (int i = 0; i < 100; i++) { |
| // k = (byte) i; |
| // a[k] = 0; |
| // a[i] = 0; |
| // } |
| BuildLoopNest(1); |
| HInstruction* conv = InsertInstruction( |
| new (&allocator_) HTypeConversion(Primitive::kPrimByte, basic_[0], -1), 0); |
| HInstruction* store1 = InsertArrayStore(conv, 0); |
| HInstruction* store2 = InsertArrayStore(basic_[0], 0); |
| PerformInductionVarAnalysis(); |
| |
| // Regular int induction (i) is "transferred" over conversion into byte induction (k). |
| EXPECT_STREQ("((1) * i + (0)):PrimByte", GetInductionInfo(store1->InputAt(1), 0).c_str()); |
| EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(store2->InputAt(1), 0).c_str()); |
| EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[0], 0).c_str()); |
| |
| // Type matters! |
| EXPECT_FALSE(HaveSameInduction(store1->InputAt(1), store2->InputAt(1))); |
| |
| // Trip-count. |
| EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", GetTripCount(0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, ByteLoopControl1) { |
| // Setup: |
| // for (byte i = -128; i < 127; i++) { // just fits! |
| // } |
| BuildLoopNest(1); |
| basic_[0]->ReplaceInput(graph_->GetIntConstant(-128), 0); |
| HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); |
| ifs->ReplaceInput(graph_->GetIntConstant(127), 1); |
| HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimByte, increment_[0], -1); |
| loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); |
| basic_[0]->ReplaceInput(conv, 1); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + ((-128) + (1))):PrimByte", GetInductionInfo(increment_[0], 0).c_str()); |
| // Trip-count. |
| EXPECT_STREQ("(((127) - (-128)) (TC-loop) ((-128) < (127)))", GetTripCount(0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, ByteLoopControl2) { |
| // Setup: |
| // for (byte i = -128; i < 128; i++) { // infinite loop! |
| // } |
| BuildLoopNest(1); |
| basic_[0]->ReplaceInput(graph_->GetIntConstant(-128), 0); |
| HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); |
| ifs->ReplaceInput(graph_->GetIntConstant(128), 1); |
| HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimByte, increment_[0], -1); |
| loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); |
| basic_[0]->ReplaceInput(conv, 1); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + ((-128) + (1))):PrimByte", GetInductionInfo(increment_[0], 0).c_str()); |
| // Trip-count undefined. |
| EXPECT_STREQ("", GetTripCount(0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, ShortLoopControl1) { |
| // Setup: |
| // for (short i = -32768; i < 32767; i++) { // just fits! |
| // } |
| BuildLoopNest(1); |
| basic_[0]->ReplaceInput(graph_->GetIntConstant(-32768), 0); |
| HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); |
| ifs->ReplaceInput(graph_->GetIntConstant(32767), 1); |
| HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimShort, increment_[0], -1); |
| loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); |
| basic_[0]->ReplaceInput(conv, 1); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + ((-32768) + (1))):PrimShort", |
| GetInductionInfo(increment_[0], 0).c_str()); |
| // Trip-count. |
| EXPECT_STREQ("(((32767) - (-32768)) (TC-loop) ((-32768) < (32767)))", GetTripCount(0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, ShortLoopControl2) { |
| // Setup: |
| // for (short i = -32768; i < 32768; i++) { // infinite loop! |
| // } |
| BuildLoopNest(1); |
| basic_[0]->ReplaceInput(graph_->GetIntConstant(-32768), 0); |
| HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); |
| ifs->ReplaceInput(graph_->GetIntConstant(32768), 1); |
| HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimShort, increment_[0], -1); |
| loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); |
| basic_[0]->ReplaceInput(conv, 1); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + ((-32768) + (1))):PrimShort", |
| GetInductionInfo(increment_[0], 0).c_str()); |
| // Trip-count undefined. |
| EXPECT_STREQ("", GetTripCount(0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, CharLoopControl1) { |
| // Setup: |
| // for (char i = 0; i < 65535; i++) { // just fits! |
| // } |
| BuildLoopNest(1); |
| HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); |
| ifs->ReplaceInput(graph_->GetIntConstant(65535), 1); |
| HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimChar, increment_[0], -1); |
| loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); |
| basic_[0]->ReplaceInput(conv, 1); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + (1)):PrimChar", GetInductionInfo(increment_[0], 0).c_str()); |
| // Trip-count. |
| EXPECT_STREQ("((65535) (TC-loop) ((0) < (65535)))", GetTripCount(0).c_str()); |
| } |
| |
| TEST_F(InductionVarAnalysisTest, CharLoopControl2) { |
| // Setup: |
| // for (char i = 0; i < 65536; i++) { // infinite loop! |
| // } |
| BuildLoopNest(1); |
| HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); |
| ifs->ReplaceInput(graph_->GetIntConstant(65536), 1); |
| HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimChar, increment_[0], -1); |
| loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); |
| basic_[0]->ReplaceInput(conv, 1); |
| PerformInductionVarAnalysis(); |
| |
| EXPECT_STREQ("((1) * i + (1)):PrimChar", GetInductionInfo(increment_[0], 0).c_str()); |
| // Trip-count undefined. |
| EXPECT_STREQ("", GetTripCount(0).c_str()); |
| } |
| |
| } // namespace art |