blob: 226f109bec49e385bfdc456080cae876f88749ba [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_arm_vixl.h"
#include "arch/arm/instruction_set_features_arm.h"
#include "art_method.h"
#include "code_generator_utils.h"
#include "common_arm.h"
#include "compiled_method.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "gc/accounting/card_table.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "thread.h"
#include "utils/arm/assembler_arm_vixl.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
namespace art {
namespace arm {
namespace vixl32 = vixl::aarch32;
using namespace vixl32; // NOLINT(build/namespaces)
using helpers::DWARFReg;
using helpers::FromLowSToD;
using helpers::OutputRegister;
using helpers::InputRegisterAt;
using helpers::InputOperandAt;
using helpers::OutputSRegister;
using helpers::InputSRegisterAt;
using RegisterList = vixl32::RegisterList;
static bool ExpectedPairLayout(Location location) {
// We expected this for both core and fpu register pairs.
return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
}
static constexpr size_t kArmInstrMaxSizeInBytes = 4u;
#ifdef __
#error "ARM Codegen VIXL macro-assembler macro already defined."
#endif
// TODO: Remove with later pop when codegen complete.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
// Marker that code is yet to be, and must, be implemented.
#define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented "
class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
public:
explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction)
: SlowPathCodeARMVIXL(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARMVIXL* armvixl_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
armvixl_codegen->InvokeRuntime(kQuickThrowDivZero,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARMVIXL"; }
private:
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL);
};
inline vixl32::Condition ARMCondition(IfCondition cond) {
switch (cond) {
case kCondEQ: return eq;
case kCondNE: return ne;
case kCondLT: return lt;
case kCondLE: return le;
case kCondGT: return gt;
case kCondGE: return ge;
case kCondB: return lo;
case kCondBE: return ls;
case kCondA: return hi;
case kCondAE: return hs;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
// Maps signed condition to unsigned condition.
inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) {
switch (cond) {
case kCondEQ: return eq;
case kCondNE: return ne;
// Signed to unsigned.
case kCondLT: return lo;
case kCondLE: return ls;
case kCondGT: return hi;
case kCondGE: return hs;
// Unsigned remain unchanged.
case kCondB: return lo;
case kCondBE: return ls;
case kCondA: return hi;
case kCondAE: return hs;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
// The ARM condition codes can express all the necessary branches, see the
// "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
// There is no dex instruction or HIR that would need the missing conditions
// "equal or unordered" or "not equal".
switch (cond) {
case kCondEQ: return eq;
case kCondNE: return ne /* unordered */;
case kCondLT: return gt_bias ? cc : lt /* unordered */;
case kCondLE: return gt_bias ? ls : le /* unordered */;
case kCondGT: return gt_bias ? hi /* unordered */ : gt;
case kCondGE: return gt_bias ? cs /* unordered */ : ge;
default:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
}
void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen ATTRIBUTE_UNUSED,
LocationSummary* locations ATTRIBUTE_UNUSED) {
TODO_VIXL32(FATAL);
}
void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen ATTRIBUTE_UNUSED,
LocationSummary* locations ATTRIBUTE_UNUSED) {
TODO_VIXL32(FATAL);
}
void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << vixl32::Register(reg);
}
void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << vixl32::SRegister(reg);
}
static uint32_t ComputeSRegisterMask(const SRegisterList& regs) {
uint32_t mask = 0;
for (uint32_t i = regs.GetFirstSRegister().GetCode();
i <= regs.GetLastSRegister().GetCode();
++i) {
mask |= (1 << i);
}
return mask;
}
#undef __
CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph,
const ArmInstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfCoreRegisters,
kNumberOfSRegisters,
kNumberOfRegisterPairs,
kCoreCalleeSaves.GetList(),
ComputeSRegisterMask(kFpuCalleeSaves),
compiler_options,
stats),
block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this),
assembler_(graph->GetArena()),
isa_features_(isa_features) {
// Always save the LR register to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(LR));
}
#define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()->
void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) {
GetAssembler()->FinalizeCode();
CodeGenerator::Finalize(allocator);
}
void CodeGeneratorARMVIXL::SetupBlockedRegisters() const {
// Don't allocate the dalvik style register pair passing.
blocked_register_pairs_[R1_R2] = true;
// Stack register, LR and PC are always reserved.
blocked_core_registers_[SP] = true;
blocked_core_registers_[LR] = true;
blocked_core_registers_[PC] = true;
// Reserve thread register.
blocked_core_registers_[TR] = true;
// Reserve temp register.
blocked_core_registers_[IP] = true;
if (GetGraph()->IsDebuggable()) {
// Stubs do not save callee-save floating point registers. If the graph
// is debuggable, we need to deal with these registers differently. For
// now, just block them.
for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode();
i <= kFpuCalleeSaves.GetLastSRegister().GetCode();
++i) {
blocked_fpu_registers_[i] = true;
}
}
UpdateBlockedPairRegisters();
}
// Blocks all register pairs containing blocked core registers.
void CodeGeneratorARMVIXL::UpdateBlockedPairRegisters() const {
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
ArmManagedRegister current =
ArmManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (blocked_core_registers_[current.AsRegisterPairLow()]
|| blocked_core_registers_[current.AsRegisterPairHigh()]) {
blocked_register_pairs_[i] = true;
}
}
}
void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
TODO_VIXL32(FATAL);
}
InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph,
CodeGeneratorARMVIXL* codegen)
: InstructionCodeGenerator(graph, codegen),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void CodeGeneratorARMVIXL::ComputeSpillMask() {
core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
// There is no easy instruction to restore just the PC on thumb2. We spill and
// restore another arbitrary register.
core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister.GetCode());
fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
// We use vpush and vpop for saving and restoring floating point registers, which take
// a SRegister and the number of registers to save/restore after that SRegister. We
// therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
// but in the range.
if (fpu_spill_mask_ != 0) {
uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
fpu_spill_mask_ |= (1 << i);
}
}
}
void CodeGeneratorARMVIXL::GenerateFrameEntry() {
bool skip_overflow_check =
IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
__ Bind(&frame_entry_label_);
if (HasEmptyFrame()) {
return;
}
UseScratchRegisterScope temps(GetVIXLAssembler());
vixl32::Register temp = temps.Acquire();
if (!skip_overflow_check) {
__ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
// The load must immediately precede RecordPcInfo.
{
AssemblerAccurateScope aas(GetVIXLAssembler(),
kArmInstrMaxSizeInBytes,
CodeBufferCheckScope::kMaximumSize);
__ ldr(temp, MemOperand(temp));
RecordPcInfo(nullptr, 0);
}
}
__ Push(RegisterList(core_spill_mask_));
GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
0,
core_spill_mask_,
kArmWordSize);
if (fpu_spill_mask_ != 0) {
uint32_t first = LeastSignificantBit(fpu_spill_mask_);
// Check that list is contiguous.
DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
__ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0),
0,
fpu_spill_mask_,
kArmWordSize);
}
int adjust = GetFrameSize() - FrameEntrySpillSize();
__ Sub(sp, sp, adjust);
GetAssembler()->cfi().AdjustCFAOffset(adjust);
GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
}
void CodeGeneratorARMVIXL::GenerateFrameExit() {
if (HasEmptyFrame()) {
__ Bx(lr);
return;
}
GetAssembler()->cfi().RememberState();
int adjust = GetFrameSize() - FrameEntrySpillSize();
__ Add(sp, sp, adjust);
GetAssembler()->cfi().AdjustCFAOffset(-adjust);
if (fpu_spill_mask_ != 0) {
uint32_t first = LeastSignificantBit(fpu_spill_mask_);
// Check that list is contiguous.
DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
__ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
GetAssembler()->cfi().AdjustCFAOffset(
-static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_));
GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)),
fpu_spill_mask_);
}
// Pop LR into PC to return.
DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U);
uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode;
__ Pop(RegisterList(pop_mask));
GetAssembler()->cfi().RestoreState();
GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
void CodeGeneratorARMVIXL::MoveConstant(Location destination, int32_t value) {
TODO_VIXL32(FATAL);
}
void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
TODO_VIXL32(FATAL);
}
void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) {
TODO_VIXL32(FATAL);
}
uintptr_t CodeGeneratorARMVIXL::GetAddressOf(HBasicBlock* block) {
TODO_VIXL32(FATAL);
return 0;
}
void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* null_check) {
TODO_VIXL32(FATAL);
}
void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* null_check) {
TODO_VIXL32(FATAL);
}
void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(entrypoint, instruction, slow_path);
GenerateInvokeRuntime(GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value());
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path) {
ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
GenerateInvokeRuntime(entry_point_offset);
}
void CodeGeneratorARMVIXL::GenerateInvokeRuntime(int32_t entry_point_offset) {
GetAssembler()->LoadFromOffset(kLoadWord, lr, tr, entry_point_offset);
__ Blx(lr);
}
// Check if the desired_string_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) {
TODO_VIXL32(FATAL);
return desired_string_load_kind;
}
// Check if the desired_class_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) {
TODO_VIXL32(FATAL);
return desired_class_load_kind;
}
// Check if the desired_dispatch_info is supported. If it is, return it,
// otherwise return a fall-back info that should be used instead.
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
HInvokeStaticOrDirect* invoke) {
TODO_VIXL32(FATAL);
return desired_dispatch_info;
}
// Generate a call to a static or direct method.
void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke,
Location temp) {
TODO_VIXL32(FATAL);
}
// Generate a call to a virtual method.
void CodeGeneratorARMVIXL::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp) {
TODO_VIXL32(FATAL);
}
// Copy the result of a call into the given target.
void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, Primitive::Type type) {
TODO_VIXL32(FATAL);
}
void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) {
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(block, successor)) {
__ B(codegen_->GetLabelOf(successor));
}
}
void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) {
HandleGoto(got, got->GetSuccessor());
}
void LocationsBuilderARMVIXL::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
}
void InstructionCodeGeneratorARMVIXL::GenerateVcmp(HInstruction* instruction) {
Primitive::Type type = instruction->InputAt(0)->GetType();
Location lhs_loc = instruction->GetLocations()->InAt(0);
Location rhs_loc = instruction->GetLocations()->InAt(1);
if (rhs_loc.IsConstant()) {
// 0.0 is the only immediate that can be encoded directly in
// a VCMP instruction.
//
// Both the JLS (section 15.20.1) and the JVMS (section 6.5)
// specify that in a floating-point comparison, positive zero
// and negative zero are considered equal, so we can use the
// literal 0.0 for both cases here.
//
// Note however that some methods (Float.equal, Float.compare,
// Float.compareTo, Double.equal, Double.compare,
// Double.compareTo, Math.max, Math.min, StrictMath.max,
// StrictMath.min) consider 0.0 to be (strictly) greater than
// -0.0. So if we ever translate calls to these methods into a
// HCompare instruction, we must handle the -0.0 case with
// care here.
DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
if (type == Primitive::kPrimFloat) {
__ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0);
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
__ Vcmp(F64, FromLowSToD(lhs_loc.AsFpuRegisterPairLow<vixl32::SRegister>()), 0.0);
}
} else {
if (type == Primitive::kPrimFloat) {
__ Vcmp(F32, InputSRegisterAt(instruction, 0), InputSRegisterAt(instruction, 1));
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
__ Vcmp(F64,
FromLowSToD(lhs_loc.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(rhs_loc.AsFpuRegisterPairLow<vixl32::SRegister>()));
}
}
}
void InstructionCodeGeneratorARMVIXL::GenerateFPJumps(HCondition* cond,
vixl32::Label* true_label,
vixl32::Label* false_label ATTRIBUTE_UNUSED) {
// To branch on the result of the FP compare we transfer FPSCR to APSR (encoded as PC in VMRS).
__ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
__ B(ARMFPCondition(cond->GetCondition(), cond->IsGtBias()), true_label);
}
void InstructionCodeGeneratorARMVIXL::GenerateLongComparesAndJumps(HCondition* cond,
vixl32::Label* true_label,
vixl32::Label* false_label) {
LocationSummary* locations = cond->GetLocations();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
IfCondition if_cond = cond->GetCondition();
vixl32::Register left_high = left.AsRegisterPairHigh<vixl32::Register>();
vixl32::Register left_low = left.AsRegisterPairLow<vixl32::Register>();
IfCondition true_high_cond = if_cond;
IfCondition false_high_cond = cond->GetOppositeCondition();
vixl32::Condition final_condition = ARMUnsignedCondition(if_cond); // unsigned on lower part
// Set the conditions for the test, remembering that == needs to be
// decided using the low words.
// TODO: consider avoiding jumps with temporary and CMP low+SBC high
switch (if_cond) {
case kCondEQ:
case kCondNE:
// Nothing to do.
break;
case kCondLT:
false_high_cond = kCondGT;
break;
case kCondLE:
true_high_cond = kCondLT;
break;
case kCondGT:
false_high_cond = kCondLT;
break;
case kCondGE:
true_high_cond = kCondGT;
break;
case kCondB:
false_high_cond = kCondA;
break;
case kCondBE:
true_high_cond = kCondB;
break;
case kCondA:
false_high_cond = kCondB;
break;
case kCondAE:
true_high_cond = kCondA;
break;
}
if (right.IsConstant()) {
int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
int32_t val_low = Low32Bits(value);
int32_t val_high = High32Bits(value);
__ Cmp(left_high, val_high);
if (if_cond == kCondNE) {
__ B(ARMCondition(true_high_cond), true_label);
} else if (if_cond == kCondEQ) {
__ B(ARMCondition(false_high_cond), false_label);
} else {
__ B(ARMCondition(true_high_cond), true_label);
__ B(ARMCondition(false_high_cond), false_label);
}
// Must be equal high, so compare the lows.
__ Cmp(left_low, val_low);
} else {
vixl32::Register right_high = right.AsRegisterPairHigh<vixl32::Register>();
vixl32::Register right_low = right.AsRegisterPairLow<vixl32::Register>();
__ Cmp(left_high, right_high);
if (if_cond == kCondNE) {
__ B(ARMCondition(true_high_cond), true_label);
} else if (if_cond == kCondEQ) {
__ B(ARMCondition(false_high_cond), false_label);
} else {
__ B(ARMCondition(true_high_cond), true_label);
__ B(ARMCondition(false_high_cond), false_label);
}
// Must be equal high, so compare the lows.
__ Cmp(left_low, right_low);
}
// The last comparison might be unsigned.
// TODO: optimize cases where this is always true/false
__ B(final_condition, true_label);
}
void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition,
vixl32::Label* true_target_in,
vixl32::Label* false_target_in) {
// Generated branching requires both targets to be explicit. If either of the
// targets is nullptr (fallthrough) use and bind `fallthrough` instead.
vixl32::Label fallthrough;
vixl32::Label* true_target = (true_target_in == nullptr) ? &fallthrough : true_target_in;
vixl32::Label* false_target = (false_target_in == nullptr) ? &fallthrough : false_target_in;
Primitive::Type type = condition->InputAt(0)->GetType();
switch (type) {
case Primitive::kPrimLong:
GenerateLongComparesAndJumps(condition, true_target, false_target);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
GenerateVcmp(condition);
GenerateFPJumps(condition, true_target, false_target);
break;
default:
LOG(FATAL) << "Unexpected compare type " << type;
}
if (false_target != &fallthrough) {
__ B(false_target);
}
if (true_target_in == nullptr || false_target_in == nullptr) {
__ Bind(&fallthrough);
}
}
void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
vixl32::Label* true_target,
vixl32::Label* false_target) {
HInstruction* cond = instruction->InputAt(condition_input_index);
if (true_target == nullptr && false_target == nullptr) {
// Nothing to do. The code always falls through.
return;
} else if (cond->IsIntConstant()) {
// Constant condition, statically compared against "true" (integer value 1).
if (cond->AsIntConstant()->IsTrue()) {
if (true_target != nullptr) {
__ B(true_target);
}
} else {
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
if (false_target != nullptr) {
__ B(false_target);
}
}
return;
}
// The following code generates these patterns:
// (1) true_target == nullptr && false_target != nullptr
// - opposite condition true => branch to false_target
// (2) true_target != nullptr && false_target == nullptr
// - condition true => branch to true_target
// (3) true_target != nullptr && false_target != nullptr
// - condition true => branch to true_target
// - branch to false_target
if (IsBooleanValueOrMaterializedCondition(cond)) {
// Condition has been materialized, compare the output to 0.
if (kIsDebugBuild) {
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
DCHECK(cond_val.IsRegister());
}
if (true_target == nullptr) {
__ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
} else {
__ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
}
} else {
// Condition has not been materialized. Use its inputs as the comparison and
// its condition as the branch condition.
HCondition* condition = cond->AsCondition();
// If this is a long or FP comparison that has been folded into
// the HCondition, generate the comparison directly.
Primitive::Type type = condition->InputAt(0)->GetType();
if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
GenerateCompareTestAndBranch(condition, true_target, false_target);
return;
}
LocationSummary* locations = cond->GetLocations();
DCHECK(locations->InAt(0).IsRegister());
vixl32::Register left = InputRegisterAt(cond, 0);
Location right = locations->InAt(1);
if (right.IsRegister()) {
__ Cmp(left, InputRegisterAt(cond, 1));
} else {
DCHECK(right.IsConstant());
__ Cmp(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
}
if (true_target == nullptr) {
__ B(ARMCondition(condition->GetOppositeCondition()), false_target);
} else {
__ B(ARMCondition(condition->GetCondition()), true_target);
}
}
// If neither branch falls through (case 3), the conditional branch to `true_target`
// was already emitted (case 2) and we need to emit a jump to `false_target`.
if (true_target != nullptr && false_target != nullptr) {
__ B(false_target);
}
}
void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) {
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
vixl32::Label* true_target =
codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
nullptr : codegen_->GetLabelOf(true_successor);
vixl32::Label* false_target =
codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
nullptr : codegen_->GetLabelOf(false_successor);
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
}
void CodeGeneratorARMVIXL::GenerateNop() {
__ Nop();
}
void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
// Handle the long/FP comparisons made in instruction simplification.
switch (cond->InputAt(0)->GetType()) {
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
break;
// TODO: https://android-review.googlesource.com/#/c/252265/
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
break;
default:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
}
void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) {
if (cond->IsEmittedAtUseSite()) {
return;
}
LocationSummary* locations = cond->GetLocations();
Location right = locations->InAt(1);
vixl32::Register out = OutputRegister(cond);
vixl32::Label true_label, false_label;
switch (cond->InputAt(0)->GetType()) {
default: {
// Integer case.
if (right.IsRegister()) {
__ Cmp(InputRegisterAt(cond, 0), InputRegisterAt(cond, 1));
} else {
DCHECK(right.IsConstant());
__ Cmp(InputRegisterAt(cond, 0), CodeGenerator::GetInt32ValueOf(right.GetConstant()));
}
{
AssemblerAccurateScope aas(GetVIXLAssembler(),
kArmInstrMaxSizeInBytes * 3u,
CodeBufferCheckScope::kMaximumSize);
__ ite(ARMCondition(cond->GetCondition()));
__ mov(ARMCondition(cond->GetCondition()), OutputRegister(cond), 1);
__ mov(ARMCondition(cond->GetOppositeCondition()), OutputRegister(cond), 0);
}
return;
}
case Primitive::kPrimLong:
GenerateLongComparesAndJumps(cond, &true_label, &false_label);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
GenerateVcmp(cond);
GenerateFPJumps(cond, &true_label, &false_label);
break;
}
// Convert the jumps into the result.
vixl32::Label done_label;
// False case: result = 0.
__ Bind(&false_label);
__ Mov(out, 0);
__ B(&done_label);
// True case: result = 1.
__ Bind(&true_label);
__ Mov(out, 1);
__ Bind(&done_label);
}
void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
memory_barrier->SetLocations(nullptr);
}
void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}
void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
}
void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
// The float-to-long, double-to-long and long-to-float type conversions
// rely on a call to the runtime.
LocationSummary::CallKind call_kind =
(((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
&& result_type == Primitive::kPrimLong)
|| (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
// The Java language does not allow treating boolean as an integral type but
// our bit representation makes it safe.
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to byte is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to short is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(
calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(0),
calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to char is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong: {
// Processing a Dex `long-to-float' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
break;
}
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to byte is a result of code transformations.
__ Sbfx(OutputRegister(conversion), in.AsRegisterPairLow<vixl32::Register>(), 0, 8);
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
__ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to short is a result of code transformations.
__ Sbfx(OutputRegister(conversion), in.AsRegisterPairLow<vixl32::Register>(), 0, 16);
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
__ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
DCHECK(out.IsRegister());
if (in.IsRegisterPair()) {
__ Mov(OutputRegister(conversion), in.AsRegisterPairLow<vixl32::Register>());
} else if (in.IsDoubleStackSlot()) {
GetAssembler()->LoadFromOffset(kLoadWord,
OutputRegister(conversion),
sp,
in.GetStackIndex());
} else {
DCHECK(in.IsConstant());
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ Mov(OutputRegister(conversion), static_cast<int32_t>(value));
}
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-int' instruction.
vixl32::SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<vixl32::SRegister>();
__ Vcvt(I32, F32, temp, InputSRegisterAt(conversion, 0));
__ Vmov(OutputRegister(conversion), temp);
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-int' instruction.
vixl32::SRegister temp_s =
locations->GetTemp(0).AsFpuRegisterPairLow<vixl32::SRegister>();
__ Vcvt(I32, F64, temp_s, FromLowSToD(in.AsFpuRegisterPairLow<vixl32::SRegister>()));
__ Vmov(OutputRegister(conversion), temp_s);
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
DCHECK(out.IsRegisterPair());
DCHECK(in.IsRegister());
__ Mov(out.AsRegisterPairLow<vixl32::Register>(), InputRegisterAt(conversion, 0));
// Sign extension.
__ Asr(out.AsRegisterPairHigh<vixl32::Register>(),
out.AsRegisterPairLow<vixl32::Register>(),
31);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-long' instruction.
codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-long' instruction.
codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to char is a result of code transformations.
__ Ubfx(OutputRegister(conversion), in.AsRegisterPairLow<vixl32::Register>(), 0, 16);
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
__ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar: {
// Processing a Dex `int-to-float' instruction.
__ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0));
__ Vcvt(F32, I32, OutputSRegister(conversion), OutputSRegister(conversion));
break;
}
case Primitive::kPrimLong:
// Processing a Dex `long-to-float' instruction.
codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickL2f, float, int64_t>();
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
__ Vcvt(F32,
F64,
OutputSRegister(conversion),
FromLowSToD(in.AsFpuRegisterPairLow<vixl32::SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar: {
// Processing a Dex `int-to-double' instruction.
__ Vmov(out.AsFpuRegisterPairLow<vixl32::SRegister>(), InputRegisterAt(conversion, 0));
__ Vcvt(F64,
I32,
FromLowSToD(out.AsFpuRegisterPairLow<vixl32::SRegister>()),
out.AsFpuRegisterPairLow<vixl32::SRegister>());
break;
}
case Primitive::kPrimLong: {
// Processing a Dex `long-to-double' instruction.
vixl32::Register low = in.AsRegisterPairLow<vixl32::Register>();
vixl32::Register high = in.AsRegisterPairHigh<vixl32::Register>();
vixl32::SRegister out_s = out.AsFpuRegisterPairLow<vixl32::SRegister>();
vixl32::DRegister out_d = FromLowSToD(out_s);
vixl32::SRegister temp_s =
locations->GetTemp(0).AsFpuRegisterPairLow<vixl32::SRegister>();
vixl32::DRegister temp_d = FromLowSToD(temp_s);
vixl32::SRegister constant_s =
locations->GetTemp(1).AsFpuRegisterPairLow<vixl32::SRegister>();
vixl32::DRegister constant_d = FromLowSToD(constant_s);
// temp_d = int-to-double(high)
__ Vmov(temp_s, high);
__ Vcvt(F64, I32, temp_d, temp_s);
// constant_d = k2Pow32EncodingForDouble
__ Vmov(F64,
constant_d,
vixl32::DOperand(bit_cast<double, int64_t>(k2Pow32EncodingForDouble)));
// out_d = unsigned-to-double(low)
__ Vmov(out_s, low);
__ Vcvt(F64, U32, out_d, out_s);
// out_d += temp_d * constant_d
__ Vmla(F64, out_d, temp_d, constant_d);
break;
}
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
__ Vcvt(F64,
F32,
FromLowSToD(out.AsFpuRegisterPairLow<vixl32::SRegister>()),
InputSRegisterAt(conversion, 0));
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
// TODO: https://android-review.googlesource.com/#/c/254144/
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) {
LocationSummary* locations = add->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
__ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1));
}
break;
// TODO: https://android-review.googlesource.com/#/c/254144/
case Primitive::kPrimLong: {
DCHECK(second.IsRegisterPair());
__ Adds(out.AsRegisterPairLow<vixl32::Register>(),
first.AsRegisterPairLow<vixl32::Register>(),
Operand(second.AsRegisterPairLow<vixl32::Register>()));
__ Adc(out.AsRegisterPairHigh<vixl32::Register>(),
first.AsRegisterPairHigh<vixl32::Register>(),
second.AsRegisterPairHigh<vixl32::Register>());
break;
}
case Primitive::kPrimFloat: {
__ Vadd(F32, OutputSRegister(add), InputSRegisterAt(add, 0), InputSRegisterAt(add, 1));
}
break;
case Primitive::kPrimDouble:
__ Vadd(F64,
FromLowSToD(out.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<vixl32::SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void LocationsBuilderARMVIXL::VisitSub(HSub* sub) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
// TODO: https://android-review.googlesource.com/#/c/254144/
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) {
LocationSummary* locations = sub->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputRegisterAt(sub, 1));
} else {
__ Sub(OutputRegister(sub),
InputRegisterAt(sub, 0),
second.GetConstant()->AsIntConstant()->GetValue());
}
break;
}
// TODO: https://android-review.googlesource.com/#/c/254144/
case Primitive::kPrimLong: {
DCHECK(second.IsRegisterPair());
__ Subs(out.AsRegisterPairLow<vixl32::Register>(),
first.AsRegisterPairLow<vixl32::Register>(),
Operand(second.AsRegisterPairLow<vixl32::Register>()));
__ Sbc(out.AsRegisterPairHigh<vixl32::Register>(),
first.AsRegisterPairHigh<vixl32::Register>(),
Operand(second.AsRegisterPairHigh<vixl32::Register>()));
break;
}
case Primitive::kPrimFloat: {
__ Vsub(F32, OutputSRegister(sub), InputSRegisterAt(sub, 0), InputSRegisterAt(sub, 1));
break;
}
case Primitive::kPrimDouble: {
__ Vsub(F64,
FromLowSToD(out.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<vixl32::SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void LocationsBuilderARMVIXL::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) {
LocationSummary* locations = mul->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (mul->GetResultType()) {
case Primitive::kPrimInt: {
__ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
break;
}
case Primitive::kPrimLong: {
vixl32::Register out_hi = out.AsRegisterPairHigh<vixl32::Register>();
vixl32::Register out_lo = out.AsRegisterPairLow<vixl32::Register>();
vixl32::Register in1_hi = first.AsRegisterPairHigh<vixl32::Register>();
vixl32::Register in1_lo = first.AsRegisterPairLow<vixl32::Register>();
vixl32::Register in2_hi = second.AsRegisterPairHigh<vixl32::Register>();
vixl32::Register in2_lo = second.AsRegisterPairLow<vixl32::Register>();
// Extra checks to protect caused by the existence of R1_R2.
// The algorithm is wrong if out.hi is either in1.lo or in2.lo:
// (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
DCHECK_NE(out_hi.GetCode(), in1_lo.GetCode());
DCHECK_NE(out_hi.GetCode(), in2_lo.GetCode());
// input: in1 - 64 bits, in2 - 64 bits
// output: out
// formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
// parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
// parts: out.lo = (in1.lo * in2.lo)[31:0]
UseScratchRegisterScope temps(GetVIXLAssembler());
vixl32::Register temp = temps.Acquire();
// temp <- in1.lo * in2.hi
__ Mul(temp, in1_lo, in2_hi);
// out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
__ Mla(out_hi, in1_hi, in2_lo, temp);
// out.lo <- (in1.lo * in2.lo)[31:0];
__ Umull(out_lo, temp, in1_lo, in2_lo);
// out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
__ Add(out_hi, out_hi, Operand(temp));
break;
}
case Primitive::kPrimFloat: {
__ Vmul(F32, OutputSRegister(mul), InputSRegisterAt(mul, 0), InputSRegisterAt(mul, 1));
break;
}
case Primitive::kPrimDouble: {
__ Vmul(F64,
FromLowSToD(out.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<vixl32::SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void LocationsBuilderARMVIXL::VisitNot(HNot* not_) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) {
LocationSummary* locations = not_->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (not_->GetResultType()) {
case Primitive::kPrimInt:
__ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0));
break;
case Primitive::kPrimLong:
__ Mvn(out.AsRegisterPairLow<vixl32::Register>(),
Operand(in.AsRegisterPairLow<vixl32::Register>()));
__ Mvn(out.AsRegisterPairHigh<vixl32::Register>(),
Operand(in.AsRegisterPairHigh<vixl32::Register>()));
break;
default:
LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
}
}
void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) {
// TODO (ported from quick): revisit ARM barrier kinds.
DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings.
switch (kind) {
case MemBarrierKind::kAnyStore:
case MemBarrierKind::kLoadAny:
case MemBarrierKind::kAnyAny: {
flavor = DmbOptions::ISH;
break;
}
case MemBarrierKind::kStoreStore: {
flavor = DmbOptions::ISHST;
break;
}
default:
LOG(FATAL) << "Unexpected memory barrier " << kind;
}
__ Dmb(flavor);
}
void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
vixl32::Register out = OutputRegister(instruction);
vixl32::Register dividend = InputRegisterAt(instruction, 0);
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
DCHECK(imm == 1 || imm == -1);
if (instruction->IsRem()) {
__ Mov(out, 0);
} else {
if (imm == 1) {
__ Mov(out, dividend);
} else {
__ Rsb(out, dividend, 0);
}
}
}
void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
vixl32::Register out = OutputRegister(instruction);
vixl32::Register dividend = InputRegisterAt(instruction, 0);
vixl32::Register temp = locations->GetTemp(0).AsRegister<vixl32::Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
int ctz_imm = CTZ(abs_imm);
if (ctz_imm == 1) {
__ Lsr(temp, dividend, 32 - ctz_imm);
} else {
__ Asr(temp, dividend, 31);
__ Lsr(temp, temp, 32 - ctz_imm);
}
__ Add(out, temp, Operand(dividend));
if (instruction->IsDiv()) {
__ Asr(out, out, ctz_imm);
if (imm < 0) {
__ Rsb(out, out, Operand(0));
}
} else {
__ Ubfx(out, out, 0, ctz_imm);
__ Sub(out, out, Operand(temp));
}
}
void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
vixl32::Register out = OutputRegister(instruction);
vixl32::Register dividend = InputRegisterAt(instruction, 0);
vixl32::Register temp1 = locations->GetTemp(0).AsRegister<vixl32::Register>();
vixl32::Register temp2 = locations->GetTemp(1).AsRegister<vixl32::Register>();
int64_t imm = second.GetConstant()->AsIntConstant()->GetValue();
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
__ Mov(temp1, magic);
__ Smull(temp2, temp1, dividend, temp1);
if (imm > 0 && magic < 0) {
__ Add(temp1, temp1, Operand(dividend));
} else if (imm < 0 && magic > 0) {
__ Sub(temp1, temp1, Operand(dividend));
}
if (shift != 0) {
__ Asr(temp1, temp1, shift);
}
if (instruction->IsDiv()) {
__ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
} else {
__ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
// TODO: Strength reduction for mls.
__ Mov(temp2, imm);
__ Mls(out, temp1, temp2, dividend);
}
}
void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral(
HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
DivRemByPowerOfTwo(instruction);
} else {
DCHECK(imm <= -2 || imm >= 2);
GenerateDivRemWithAnyConstant(instruction);
}
}
void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
if (div->GetResultType() == Primitive::kPrimLong) {
// pLdiv runtime call.
call_kind = LocationSummary::kCallOnMainOnly;
} else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
// sdiv will be replaced by other instruction sequence.
} else if (div->GetResultType() == Primitive::kPrimInt &&
!codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
// pIdivmod runtime call.
call_kind = LocationSummary::kCallOnMainOnly;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
if (div->InputAt(1)->IsConstant()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
int32_t value = div->InputAt(1)->AsIntConstant()->GetValue();
if (value == 1 || value == 0 || value == -1) {
// No temp register required.
} else {
locations->AddTemp(Location::RequiresRegister());
if (!IsPowerOfTwo(AbsOrMin(value))) {
locations->AddTemp(Location::RequiresRegister());
}
}
} else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
} else {
TODO_VIXL32(FATAL);
}
break;
}
case Primitive::kPrimLong: {
TODO_VIXL32(FATAL);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) {
LocationSummary* locations = div->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsConstant()) {
GenerateDivRemConstantIntegral(div);
} else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
__ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
} else {
TODO_VIXL32(FATAL);
}
break;
}
case Primitive::kPrimLong: {
TODO_VIXL32(FATAL);
break;
}
case Primitive::kPrimFloat: {
__ Vdiv(F32, OutputSRegister(div), InputSRegisterAt(div, 0), InputSRegisterAt(div, 1));
break;
}
case Primitive::kPrimDouble: {
__ Vdiv(F64,
FromLowSToD(out.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<vixl32::SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<vixl32::SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
DivZeroCheckSlowPathARMVIXL* slow_path =
new (GetGraph()->GetArena()) DivZeroCheckSlowPathARMVIXL(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location value = locations->InAt(0);
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt: {
if (value.IsRegister()) {
__ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
}
}
break;
}
case Primitive::kPrimLong: {
if (value.IsRegisterPair()) {
UseScratchRegisterScope temps(GetVIXLAssembler());
vixl32::Register temp = temps.Acquire();
__ Orrs(temp,
value.AsRegisterPairLow<vixl32::Register>(),
Operand(value.AsRegisterPairHigh<vixl32::Register>()));
__ B(eq, slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
}
}
break;
}
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
}
}
void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverARMVIXL::EmitMove(size_t index) {
MoveOperands* move = moves_[index];
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ Mov(destination.AsRegister<vixl32::Register>(), source.AsRegister<vixl32::Register>());
} else if (destination.IsFpuRegister()) {
__ Vmov(destination.AsFpuRegister<vixl32::SRegister>(),
source.AsRegister<vixl32::Register>());
} else {
DCHECK(destination.IsStackSlot());
GetAssembler()->StoreToOffset(kStoreWord,
source.AsRegister<vixl32::Register>(),
sp,
destination.GetStackIndex());
}
} else if (source.IsStackSlot()) {
TODO_VIXL32(FATAL);
} else if (source.IsFpuRegister()) {
TODO_VIXL32(FATAL);
} else if (source.IsDoubleStackSlot()) {
TODO_VIXL32(FATAL);
} else if (source.IsRegisterPair()) {
if (destination.IsRegisterPair()) {
__ Mov(destination.AsRegisterPairLow<vixl32::Register>(),
source.AsRegisterPairLow<vixl32::Register>());
__ Mov(destination.AsRegisterPairHigh<vixl32::Register>(),
source.AsRegisterPairHigh<vixl32::Register>());
} else if (destination.IsFpuRegisterPair()) {
__ Vmov(FromLowSToD(destination.AsFpuRegisterPairLow<vixl32::SRegister>()),
source.AsRegisterPairLow<vixl32::Register>(),
source.AsRegisterPairHigh<vixl32::Register>());
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
DCHECK(ExpectedPairLayout(source));
GetAssembler()->StoreToOffset(kStoreWordPair,
source.AsRegisterPairLow<vixl32::Register>(),
sp,
destination.GetStackIndex());
}
} else if (source.IsFpuRegisterPair()) {
TODO_VIXL32(FATAL);
} else {
DCHECK(source.IsConstant()) << source;
HConstant* constant = source.GetConstant();
if (constant->IsIntConstant() || constant->IsNullConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
if (destination.IsRegister()) {
__ Mov(destination.AsRegister<vixl32::Register>(), value);
} else {
DCHECK(destination.IsStackSlot());
UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
vixl32::Register temp = temps.Acquire();
__ Mov(temp, value);
GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
}
} else if (constant->IsLongConstant()) {
int64_t value = constant->AsLongConstant()->GetValue();
if (destination.IsRegisterPair()) {
__ Mov(destination.AsRegisterPairLow<vixl32::Register>(), Low32Bits(value));
__ Mov(destination.AsRegisterPairHigh<vixl32::Register>(), High32Bits(value));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
vixl32::Register temp = temps.Acquire();
__ Mov(temp, Low32Bits(value));
GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
__ Mov(temp, High32Bits(value));
GetAssembler()->StoreToOffset(kStoreWord,
temp,
sp,
destination.GetHighStackIndex(kArmWordSize));
}
} else if (constant->IsDoubleConstant()) {
double value = constant->AsDoubleConstant()->GetValue();
if (destination.IsFpuRegisterPair()) {
__ Vmov(F64, FromLowSToD(destination.AsFpuRegisterPairLow<vixl32::SRegister>()), value);
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
uint64_t int_value = bit_cast<uint64_t, double>(value);
UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
vixl32::Register temp = temps.Acquire();
GetAssembler()->LoadImmediate(temp, Low32Bits(int_value));
GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
GetAssembler()->LoadImmediate(temp, High32Bits(int_value));
GetAssembler()->StoreToOffset(kStoreWord,
temp,
sp,
destination.GetHighStackIndex(kArmWordSize));
}
} else {
DCHECK(constant->IsFloatConstant()) << constant->DebugName();
float value = constant->AsFloatConstant()->GetValue();
if (destination.IsFpuRegister()) {
__ Vmov(F32, destination.AsFpuRegister<vixl32::SRegister>(), value);
} else {
DCHECK(destination.IsStackSlot());
UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
vixl32::Register temp = temps.Acquire();
GetAssembler()->LoadImmediate(temp, bit_cast<int32_t, float>(value));
GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
}
}
}
}
void ParallelMoveResolverARMVIXL::Exchange(Register reg, int mem) {
TODO_VIXL32(FATAL);
}
void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) {
TODO_VIXL32(FATAL);
}
void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) {
TODO_VIXL32(FATAL);
}
void ParallelMoveResolverARMVIXL::SpillScratch(int reg ATTRIBUTE_UNUSED) {
TODO_VIXL32(FATAL);
}
void ParallelMoveResolverARMVIXL::RestoreScratch(int reg ATTRIBUTE_UNUSED) {
TODO_VIXL32(FATAL);
}
// TODO: Remove when codegen complete.
#pragma GCC diagnostic pop
#undef __
#undef QUICK_ENTRY_POINT
#undef TODO_VIXL32
} // namespace arm
} // namespace art