blob: c0068b2331cfb0bc60b457866b2745e3673d4709 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "local_value_numbering.h"
#include "mir_field_info.h"
#include "mir_graph.h"
namespace art {
uint16_t LocalValueNumbering::GetFieldId(const DexFile* dex_file, uint16_t field_idx) {
FieldReference key = { dex_file, field_idx };
auto it = field_index_map_.find(key);
if (it != field_index_map_.end()) {
return it->second;
}
uint16_t id = field_index_map_.size();
field_index_map_.Put(key, id);
return id;
}
void LocalValueNumbering::AdvanceGlobalMemory() {
// See AdvanceMemoryVersion() for explanation.
global_memory_version_ = next_memory_version_;
++next_memory_version_;
}
uint16_t LocalValueNumbering::GetMemoryVersion(uint16_t base, uint16_t field, uint16_t type) {
// See AdvanceMemoryVersion() for explanation.
MemoryVersionKey key = { base, field, type };
MemoryVersionMap::iterator it = memory_version_map_.find(key);
uint16_t memory_version = (it != memory_version_map_.end()) ? it->second : 0u;
if (base != NO_VALUE && non_aliasing_refs_.find(base) == non_aliasing_refs_.end()) {
// Check modifications by potentially aliased access.
MemoryVersionKey aliased_access_key = { NO_VALUE, field, type };
auto aa_it = memory_version_map_.find(aliased_access_key);
if (aa_it != memory_version_map_.end() && aa_it->second > memory_version) {
memory_version = aa_it->second;
}
memory_version = std::max(memory_version, global_memory_version_);
} else if (base != NO_VALUE) {
// Ignore global_memory_version_ for access via unique references.
} else {
memory_version = std::max(memory_version, global_memory_version_);
}
return memory_version;
};
uint16_t LocalValueNumbering::AdvanceMemoryVersion(uint16_t base, uint16_t field, uint16_t type) {
// When we read the same value from memory, we want to assign the same value name to it.
// However, we need to be careful not to assign the same value name if the memory location
// may have been written to between the reads. To avoid that we do "memory versioning".
//
// For each write to a memory location (instance field, static field, array element) we assign
// a new memory version number to the location identified by the value name of the base register,
// the field id and type, or "{ base, field, type }". For static fields the "base" is NO_VALUE
// since they are not accessed via a reference. For arrays the "field" is NO_VALUE since they
// don't have a field id.
//
// To account for the possibility of aliased access to the same memory location via different
// "base", we also store the memory version number with the key "{ NO_VALUE, field, type }"
// if "base" is an aliasing reference and check it in GetMemoryVersion() on reads via
// aliasing references. A global memory version is set for method calls as a method can
// potentially write to any memory location accessed via an aliasing reference.
uint16_t result = next_memory_version_;
++next_memory_version_;
MemoryVersionKey key = { base, field, type };
memory_version_map_.Overwrite(key, result);
if (base != NO_VALUE && non_aliasing_refs_.find(base) == non_aliasing_refs_.end()) {
// Advance memory version for aliased access.
MemoryVersionKey aliased_access_key = { NO_VALUE, field, type };
memory_version_map_.Overwrite(aliased_access_key, result);
}
return result;
};
uint16_t LocalValueNumbering::MarkNonAliasingNonNull(MIR* mir) {
uint16_t res = GetOperandValue(mir->ssa_rep->defs[0]);
SetOperandValue(mir->ssa_rep->defs[0], res);
DCHECK(null_checked_.find(res) == null_checked_.end());
null_checked_.insert(res);
non_aliasing_refs_.insert(res);
return res;
}
void LocalValueNumbering::MakeArgsAliasing(MIR* mir) {
for (size_t i = 0u, count = mir->ssa_rep->num_uses; i != count; ++i) {
uint16_t reg = GetOperandValue(mir->ssa_rep->uses[i]);
non_aliasing_refs_.erase(reg);
}
}
void LocalValueNumbering::HandleNullCheck(MIR* mir, uint16_t reg) {
if (null_checked_.find(reg) != null_checked_.end()) {
if (cu_->verbose) {
LOG(INFO) << "Removing null check for 0x" << std::hex << mir->offset;
}
mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
} else {
null_checked_.insert(reg);
}
}
void LocalValueNumbering::HandleRangeCheck(MIR* mir, uint16_t array, uint16_t index) {
if (ValueExists(ARRAY_REF, array, index, NO_VALUE)) {
if (cu_->verbose) {
LOG(INFO) << "Removing range check for 0x" << std::hex << mir->offset;
}
mir->optimization_flags |= MIR_IGNORE_RANGE_CHECK;
}
// Use side effect to note range check completed.
(void)LookupValue(ARRAY_REF, array, index, NO_VALUE);
}
void LocalValueNumbering::HandlePutObject(MIR* mir) {
// If we're storing a non-aliasing reference, stop tracking it as non-aliasing now.
uint16_t base = GetOperandValue(mir->ssa_rep->uses[0]);
non_aliasing_refs_.erase(base);
}
uint16_t LocalValueNumbering::GetValueNumber(MIR* mir) {
uint16_t res = NO_VALUE;
uint16_t opcode = mir->dalvikInsn.opcode;
switch (opcode) {
case Instruction::NOP:
case Instruction::RETURN_VOID:
case Instruction::RETURN:
case Instruction::RETURN_OBJECT:
case Instruction::RETURN_WIDE:
case Instruction::MONITOR_ENTER:
case Instruction::MONITOR_EXIT:
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
case Instruction::CHECK_CAST:
case Instruction::THROW:
case Instruction::FILL_ARRAY_DATA:
case Instruction::PACKED_SWITCH:
case Instruction::SPARSE_SWITCH:
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE:
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ:
case kMirOpFusedCmplFloat:
case kMirOpFusedCmpgFloat:
case kMirOpFusedCmplDouble:
case kMirOpFusedCmpgDouble:
case kMirOpFusedCmpLong:
// Nothing defined - take no action.
break;
case Instruction::FILLED_NEW_ARRAY:
case Instruction::FILLED_NEW_ARRAY_RANGE:
// Nothing defined but the result will be unique and non-null.
if (mir->next != nullptr && mir->next->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
MarkNonAliasingNonNull(mir->next);
// The MOVE_RESULT_OBJECT will be processed next and we'll return the value name then.
}
MakeArgsAliasing(mir);
break;
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_DIRECT_RANGE:
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_VIRTUAL_RANGE:
case Instruction::INVOKE_SUPER:
case Instruction::INVOKE_SUPER_RANGE:
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_INTERFACE_RANGE: {
// Nothing defined but handle the null check.
uint16_t reg = GetOperandValue(mir->ssa_rep->uses[0]);
HandleNullCheck(mir, reg);
}
// Intentional fall-through.
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_STATIC_RANGE:
if ((mir->optimization_flags & MIR_INLINED) == 0) {
AdvanceGlobalMemory();
MakeArgsAliasing(mir);
}
break;
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_OBJECT:
case Instruction::INSTANCE_OF:
// 1 result, treat as unique each time, use result s_reg - will be unique.
res = GetOperandValue(mir->ssa_rep->defs[0]);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::MOVE_EXCEPTION:
case Instruction::NEW_INSTANCE:
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
case Instruction::CONST_CLASS:
case Instruction::NEW_ARRAY:
// 1 result, treat as unique each time, use result s_reg - will be unique.
res = MarkNonAliasingNonNull(mir);
break;
case Instruction::MOVE_RESULT_WIDE:
// 1 wide result, treat as unique each time, use result s_reg - will be unique.
res = GetOperandValueWide(mir->ssa_rep->defs[0]);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
break;
case kMirOpPhi:
/*
* Because we'll only see phi nodes at the beginning of an extended basic block,
* we can ignore them. Revisit if we shift to global value numbering.
*/
break;
case Instruction::MOVE:
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_OBJECT_FROM16:
case kMirOpCopy:
// Just copy value number of source to value number of result.
res = GetOperandValue(mir->ssa_rep->uses[0]);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_16:
case Instruction::MOVE_WIDE_FROM16:
// Just copy value number of source to value number of result.
res = GetOperandValueWide(mir->ssa_rep->uses[0]);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
break;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
res = LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB),
High16Bits(mir->dalvikInsn.vB >> 16), 0);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::CONST_HIGH16:
res = LookupValue(Instruction::CONST, 0, mir->dalvikInsn.vB, 0);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32: {
uint16_t low_res = LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB),
High16Bits(mir->dalvikInsn.vB >> 16), 1);
uint16_t high_res;
if (mir->dalvikInsn.vB & 0x80000000) {
high_res = LookupValue(Instruction::CONST, 0xffff, 0xffff, 2);
} else {
high_res = LookupValue(Instruction::CONST, 0, 0, 2);
}
res = LookupValue(Instruction::CONST, low_res, high_res, 3);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CONST_WIDE: {
uint32_t low_word = Low32Bits(mir->dalvikInsn.vB_wide);
uint32_t high_word = High32Bits(mir->dalvikInsn.vB_wide);
uint16_t low_res = LookupValue(Instruction::CONST, Low16Bits(low_word),
High16Bits(low_word), 1);
uint16_t high_res = LookupValue(Instruction::CONST, Low16Bits(high_word),
High16Bits(high_word), 2);
res = LookupValue(Instruction::CONST, low_res, high_res, 3);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CONST_WIDE_HIGH16: {
uint16_t low_res = LookupValue(Instruction::CONST, 0, 0, 1);
uint16_t high_res = LookupValue(Instruction::CONST, 0, Low16Bits(mir->dalvikInsn.vB), 2);
res = LookupValue(Instruction::CONST, low_res, high_res, 3);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::ARRAY_LENGTH:
case Instruction::NEG_INT:
case Instruction::NOT_INT:
case Instruction::NEG_FLOAT:
case Instruction::INT_TO_BYTE:
case Instruction::INT_TO_SHORT:
case Instruction::INT_TO_CHAR:
case Instruction::INT_TO_FLOAT:
case Instruction::FLOAT_TO_INT: {
// res = op + 1 operand
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::LONG_TO_FLOAT:
case Instruction::LONG_TO_INT:
case Instruction::DOUBLE_TO_FLOAT:
case Instruction::DOUBLE_TO_INT: {
// res = op + 1 wide operand
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::DOUBLE_TO_LONG:
case Instruction::LONG_TO_DOUBLE:
case Instruction::NEG_LONG:
case Instruction::NOT_LONG:
case Instruction::NEG_DOUBLE: {
// wide res = op + 1 wide operand
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::FLOAT_TO_DOUBLE:
case Instruction::FLOAT_TO_LONG:
case Instruction::INT_TO_DOUBLE:
case Instruction::INT_TO_LONG: {
// wide res = op + 1 operand
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
res = LookupValue(opcode, operand1, NO_VALUE, NO_VALUE);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
case Instruction::CMP_LONG: {
// res = op + 2 wide operands
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
res = LookupValue(opcode, operand1, operand2, NO_VALUE);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CMPG_FLOAT:
case Instruction::CMPL_FLOAT:
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR: {
// res = op + 2 operands
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]);
res = LookupValue(opcode, operand1, operand2, NO_VALUE);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::ADD_LONG:
case Instruction::SUB_LONG:
case Instruction::MUL_LONG:
case Instruction::DIV_LONG:
case Instruction::REM_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::MUL_LONG_2ADDR:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR: {
// wide res = op + 2 wide operands
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
res = LookupValue(opcode, operand1, operand2, NO_VALUE);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::SHL_LONG:
case Instruction::SHR_LONG:
case Instruction::USHR_LONG:
case Instruction::SHL_LONG_2ADDR:
case Instruction::SHR_LONG_2ADDR:
case Instruction::USHR_LONG_2ADDR: {
// wide res = op + 1 wide operand + 1 operand
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
res = LookupValue(opcode, operand1, operand2, NO_VALUE);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR: {
// res = op + 2 operands
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]);
res = LookupValue(opcode, operand1, operand2, NO_VALUE);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::RSUB_INT:
case Instruction::ADD_INT_LIT16:
case Instruction::MUL_INT_LIT16:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT_LIT16:
case Instruction::AND_INT_LIT16:
case Instruction::OR_INT_LIT16:
case Instruction::XOR_INT_LIT16:
case Instruction::ADD_INT_LIT8:
case Instruction::RSUB_INT_LIT8:
case Instruction::MUL_INT_LIT8:
case Instruction::DIV_INT_LIT8:
case Instruction::REM_INT_LIT8:
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT_LIT8:
case Instruction::XOR_INT_LIT8:
case Instruction::SHL_INT_LIT8:
case Instruction::SHR_INT_LIT8:
case Instruction::USHR_INT_LIT8: {
// Same as res = op + 2 operands, except use vC as operand 2
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
uint16_t operand2 = LookupValue(Instruction::CONST, mir->dalvikInsn.vC, 0, 0);
res = LookupValue(opcode, operand1, operand2, NO_VALUE);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::AGET_OBJECT:
case Instruction::AGET:
case Instruction::AGET_WIDE:
case Instruction::AGET_BOOLEAN:
case Instruction::AGET_BYTE:
case Instruction::AGET_CHAR:
case Instruction::AGET_SHORT: {
uint16_t type = opcode - Instruction::AGET;
uint16_t array = GetOperandValue(mir->ssa_rep->uses[0]);
HandleNullCheck(mir, array);
uint16_t index = GetOperandValue(mir->ssa_rep->uses[1]);
HandleRangeCheck(mir, array, index);
// Establish value number for loaded register. Note use of memory version.
uint16_t memory_version = GetMemoryVersion(array, NO_VALUE, type);
uint16_t res = LookupValue(ARRAY_REF, array, index, memory_version);
if (opcode == Instruction::AGET_WIDE) {
SetOperandValueWide(mir->ssa_rep->defs[0], res);
} else {
SetOperandValue(mir->ssa_rep->defs[0], res);
}
}
break;
case Instruction::APUT_OBJECT:
HandlePutObject(mir);
// Intentional fall-through.
case Instruction::APUT:
case Instruction::APUT_WIDE:
case Instruction::APUT_BYTE:
case Instruction::APUT_BOOLEAN:
case Instruction::APUT_SHORT:
case Instruction::APUT_CHAR: {
uint16_t type = opcode - Instruction::APUT;
int array_idx = (opcode == Instruction::APUT_WIDE) ? 2 : 1;
int index_idx = array_idx + 1;
uint16_t array = GetOperandValue(mir->ssa_rep->uses[array_idx]);
HandleNullCheck(mir, array);
uint16_t index = GetOperandValue(mir->ssa_rep->uses[index_idx]);
HandleRangeCheck(mir, array, index);
// Rev the memory version
AdvanceMemoryVersion(array, NO_VALUE, type);
}
break;
case Instruction::IGET_OBJECT:
case Instruction::IGET:
case Instruction::IGET_WIDE:
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
case Instruction::IGET_CHAR:
case Instruction::IGET_SHORT: {
uint16_t type = opcode - Instruction::IGET;
uint16_t base = GetOperandValue(mir->ssa_rep->uses[0]);
HandleNullCheck(mir, base);
const MirFieldInfo& field_info = cu_->mir_graph->GetIFieldLoweringInfo(mir);
uint16_t memory_version;
uint16_t field_id;
if (!field_info.IsResolved() || field_info.IsVolatile()) {
// Volatile fields always get a new memory version; field id is irrelevant.
// Unresolved fields may be volatile, so handle them as such to be safe.
field_id = 0u;
memory_version = next_memory_version_;
++next_memory_version_;
} else {
DCHECK(field_info.IsResolved());
field_id = GetFieldId(field_info.DeclaringDexFile(), field_info.DeclaringFieldIndex());
memory_version = std::max(unresolved_ifield_version_[type],
GetMemoryVersion(base, field_id, type));
}
if (opcode == Instruction::IGET_WIDE) {
res = LookupValue(Instruction::IGET_WIDE, base, field_id, memory_version);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
} else {
res = LookupValue(Instruction::IGET, base, field_id, memory_version);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
}
break;
case Instruction::IPUT_OBJECT:
HandlePutObject(mir);
// Intentional fall-through.
case Instruction::IPUT:
case Instruction::IPUT_WIDE:
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
case Instruction::IPUT_CHAR:
case Instruction::IPUT_SHORT: {
uint16_t type = opcode - Instruction::IPUT;
int base_reg = (opcode == Instruction::IPUT_WIDE) ? 2 : 1;
uint16_t base = GetOperandValue(mir->ssa_rep->uses[base_reg]);
HandleNullCheck(mir, base);
const MirFieldInfo& field_info = cu_->mir_graph->GetIFieldLoweringInfo(mir);
if (!field_info.IsResolved()) {
// Unresolved fields always alias with everything of the same type.
unresolved_ifield_version_[type] = next_memory_version_;
++next_memory_version_;
} else if (field_info.IsVolatile()) {
// Nothing to do, resolved volatile fields always get a new memory version anyway and
// can't alias with resolved non-volatile fields.
} else {
AdvanceMemoryVersion(base, GetFieldId(field_info.DeclaringDexFile(),
field_info.DeclaringFieldIndex()), type);
}
}
break;
case Instruction::SGET_OBJECT:
case Instruction::SGET:
case Instruction::SGET_WIDE:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT: {
uint16_t type = opcode - Instruction::SGET;
const MirFieldInfo& field_info = cu_->mir_graph->GetSFieldLoweringInfo(mir);
uint16_t memory_version;
uint16_t field_id;
if (!field_info.IsResolved() || field_info.IsVolatile()) {
// Volatile fields always get a new memory version; field id is irrelevant.
// Unresolved fields may be volatile, so handle them as such to be safe.
field_id = 0u;
memory_version = next_memory_version_;
++next_memory_version_;
} else {
DCHECK(field_info.IsResolved());
field_id = GetFieldId(field_info.DeclaringDexFile(), field_info.DeclaringFieldIndex());
memory_version = std::max(unresolved_sfield_version_[type],
GetMemoryVersion(NO_VALUE, field_id, type));
}
if (opcode == Instruction::SGET_WIDE) {
res = LookupValue(Instruction::SGET_WIDE, NO_VALUE, field_id, memory_version);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
} else {
res = LookupValue(Instruction::SGET, NO_VALUE, field_id, memory_version);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
}
break;
case Instruction::SPUT_OBJECT:
HandlePutObject(mir);
// Intentional fall-through.
case Instruction::SPUT:
case Instruction::SPUT_WIDE:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT: {
uint16_t type = opcode - Instruction::SPUT;
const MirFieldInfo& field_info = cu_->mir_graph->GetSFieldLoweringInfo(mir);
if (!field_info.IsResolved()) {
// Unresolved fields always alias with everything of the same type.
unresolved_sfield_version_[type] = next_memory_version_;
++next_memory_version_;
} else if (field_info.IsVolatile()) {
// Nothing to do, resolved volatile fields always get a new memory version anyway and
// can't alias with resolved non-volatile fields.
} else {
AdvanceMemoryVersion(NO_VALUE, GetFieldId(field_info.DeclaringDexFile(),
field_info.DeclaringFieldIndex()), type);
}
}
break;
}
return res;
}
} // namespace art