| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_GC_HEAP_H_ |
| #define ART_RUNTIME_GC_HEAP_H_ |
| |
| #include <iosfwd> |
| #include <string> |
| #include <vector> |
| |
| #include "allocator_type.h" |
| #include "atomic.h" |
| #include "base/timing_logger.h" |
| #include "gc/accounting/atomic_stack.h" |
| #include "gc/accounting/card_table.h" |
| #include "gc/gc_cause.h" |
| #include "gc/collector/garbage_collector.h" |
| #include "gc/collector/gc_type.h" |
| #include "gc/collector_type.h" |
| #include "gc/space/large_object_space.h" |
| #include "globals.h" |
| #include "instruction_set.h" |
| #include "jni.h" |
| #include "object_callbacks.h" |
| #include "offsets.h" |
| #include "reference_processor.h" |
| #include "safe_map.h" |
| #include "thread_pool.h" |
| #include "verify_object.h" |
| |
| namespace art { |
| |
| class ConditionVariable; |
| class Mutex; |
| class StackVisitor; |
| class Thread; |
| class TimingLogger; |
| |
| namespace mirror { |
| class Class; |
| class Object; |
| } // namespace mirror |
| |
| namespace gc { |
| |
| class ReferenceProcessor; |
| |
| namespace accounting { |
| class HeapBitmap; |
| class ModUnionTable; |
| class RememberedSet; |
| } // namespace accounting |
| |
| namespace collector { |
| class ConcurrentCopying; |
| class GarbageCollector; |
| class MarkCompact; |
| class MarkSweep; |
| class SemiSpace; |
| } // namespace collector |
| |
| namespace allocator { |
| class RosAlloc; |
| } // namespace allocator |
| |
| namespace space { |
| class AllocSpace; |
| class BumpPointerSpace; |
| class ContinuousMemMapAllocSpace; |
| class DiscontinuousSpace; |
| class DlMallocSpace; |
| class ImageSpace; |
| class LargeObjectSpace; |
| class MallocSpace; |
| class RosAllocSpace; |
| class Space; |
| class SpaceTest; |
| class ZygoteSpace; |
| } // namespace space |
| |
| class AgeCardVisitor { |
| public: |
| uint8_t operator()(uint8_t card) const { |
| if (card == accounting::CardTable::kCardDirty) { |
| return card - 1; |
| } else { |
| return 0; |
| } |
| } |
| }; |
| |
| enum HomogeneousSpaceCompactResult { |
| // Success. |
| kSuccess, |
| // Reject due to disabled moving GC. |
| kErrorReject, |
| // System is shutting down. |
| kErrorVMShuttingDown, |
| }; |
| |
| // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace |
| static constexpr bool kUseRosAlloc = true; |
| |
| // If true, use thread-local allocation stack. |
| static constexpr bool kUseThreadLocalAllocationStack = true; |
| |
| // The process state passed in from the activity manager, used to determine when to do trimming |
| // and compaction. |
| enum ProcessState { |
| kProcessStateJankPerceptible = 0, |
| kProcessStateJankImperceptible = 1, |
| }; |
| std::ostream& operator<<(std::ostream& os, const ProcessState& process_state); |
| |
| class Heap { |
| public: |
| // If true, measure the total allocation time. |
| static constexpr bool kMeasureAllocationTime = false; |
| static constexpr size_t kDefaultStartingSize = kPageSize; |
| static constexpr size_t kDefaultInitialSize = 2 * MB; |
| static constexpr size_t kDefaultMaximumSize = 256 * MB; |
| static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; |
| static constexpr size_t kDefaultMaxFree = 2 * MB; |
| static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; |
| static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); |
| static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); |
| static constexpr size_t kDefaultTLABSize = 256 * KB; |
| static constexpr double kDefaultTargetUtilization = 0.5; |
| static constexpr double kDefaultHeapGrowthMultiplier = 2.0; |
| // Primitive arrays larger than this size are put in the large object space. |
| static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize; |
| // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR |
| // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. |
| #if USE_ART_LOW_4G_ALLOCATOR |
| static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = |
| space::kLargeObjectSpaceTypeFreeList; |
| #else |
| static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = |
| space::kLargeObjectSpaceTypeMap; |
| #endif |
| // Used so that we don't overflow the allocation time atomic integer. |
| static constexpr size_t kTimeAdjust = 1024; |
| |
| // How often we allow heap trimming to happen (nanoseconds). |
| static constexpr uint64_t kHeapTrimWait = MsToNs(5000); |
| // How long we wait after a transition request to perform a collector transition (nanoseconds). |
| static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); |
| |
| // Create a heap with the requested sizes. The possible empty |
| // image_file_names names specify Spaces to load based on |
| // ImageWriter output. |
| explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free, |
| size_t max_free, double target_utilization, |
| double foreground_heap_growth_multiplier, size_t capacity, |
| size_t non_moving_space_capacity, |
| const std::string& original_image_file_name, |
| InstructionSet image_instruction_set, |
| CollectorType foreground_collector_type, CollectorType background_collector_type, |
| space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold, |
| size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode, |
| size_t long_pause_threshold, size_t long_gc_threshold, |
| bool ignore_max_footprint, bool use_tlab, |
| bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap, |
| bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc, |
| bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction, |
| uint64_t min_interval_homogeneous_space_compaction_by_oom); |
| |
| ~Heap(); |
| |
| // Allocates and initializes storage for an object instance. |
| template <bool kInstrumented, typename PreFenceVisitor> |
| mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes, |
| const PreFenceVisitor& pre_fence_visitor) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes, |
| GetCurrentAllocator(), |
| pre_fence_visitor); |
| } |
| |
| template <bool kInstrumented, typename PreFenceVisitor> |
| mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes, |
| const PreFenceVisitor& pre_fence_visitor) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes, |
| GetCurrentNonMovingAllocator(), |
| pre_fence_visitor); |
| } |
| |
| template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> |
| ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator( |
| Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator, |
| const PreFenceVisitor& pre_fence_visitor) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| AllocatorType GetCurrentAllocator() const { |
| return current_allocator_; |
| } |
| |
| AllocatorType GetCurrentNonMovingAllocator() const { |
| return current_non_moving_allocator_; |
| } |
| |
| // Visit all of the live objects in the heap. |
| void VisitObjects(ObjectCallback callback, void* arg) |
| SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); |
| |
| void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| void RegisterNativeAllocation(JNIEnv* env, size_t bytes); |
| void RegisterNativeFree(JNIEnv* env, size_t bytes); |
| |
| // Change the allocator, updates entrypoints. |
| void ChangeAllocator(AllocatorType allocator) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) |
| LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); |
| |
| // Transition the garbage collector during runtime, may copy objects from one space to another. |
| void TransitionCollector(CollectorType collector_type); |
| |
| // Change the collector to be one of the possible options (MS, CMS, SS). |
| void ChangeCollector(CollectorType collector_type) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // The given reference is believed to be to an object in the Java heap, check the soundness of it. |
| // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a |
| // proper lock ordering for it. |
| void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS; |
| |
| // Check sanity of all live references. |
| void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); |
| // Returns how many failures occured. |
| size_t VerifyHeapReferences(bool verify_referents = true) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); |
| bool VerifyMissingCardMarks() |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); |
| |
| // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, |
| // and doesn't abort on error, allowing the caller to report more |
| // meaningful diagnostics. |
| bool IsValidObjectAddress(const mirror::Object* obj) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Faster alternative to IsHeapAddress since finding if an object is in the large object space is |
| // very slow. |
| bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). |
| // Requires the heap lock to be held. |
| bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true, |
| bool search_live_stack = true, bool sorted = false) |
| SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); |
| |
| // Returns true if there is any chance that the object (obj) will move. |
| bool IsMovableObject(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Enables us to compacting GC until objects are released. |
| void IncrementDisableMovingGC(Thread* self); |
| void DecrementDisableMovingGC(Thread* self); |
| |
| // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. |
| void ClearMarkedObjects() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); |
| |
| // Initiates an explicit garbage collection. |
| void CollectGarbage(bool clear_soft_references); |
| |
| // Does a concurrent GC, should only be called by the GC daemon thread |
| // through runtime. |
| void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); |
| |
| // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. |
| // The boolean decides whether to use IsAssignableFrom or == when comparing classes. |
| void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, |
| uint64_t* counts) |
| LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| // Implements JDWP RT_Instances. |
| void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances) |
| LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| // Implements JDWP OR_ReferringObjects. |
| void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects) |
| LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to |
| // implement dalvik.system.VMRuntime.clearGrowthLimit. |
| void ClearGrowthLimit(); |
| |
| // Target ideal heap utilization ratio, implements |
| // dalvik.system.VMRuntime.getTargetHeapUtilization. |
| double GetTargetHeapUtilization() const { |
| return target_utilization_; |
| } |
| |
| // Data structure memory usage tracking. |
| void RegisterGCAllocation(size_t bytes); |
| void RegisterGCDeAllocation(size_t bytes); |
| |
| // Set the heap's private space pointers to be the same as the space based on it's type. Public |
| // due to usage by tests. |
| void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) |
| LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); |
| void AddSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); |
| void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); |
| |
| // Set target ideal heap utilization ratio, implements |
| // dalvik.system.VMRuntime.setTargetHeapUtilization. |
| void SetTargetHeapUtilization(float target); |
| |
| // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate |
| // from the system. Doesn't allow the space to exceed its growth limit. |
| void SetIdealFootprint(size_t max_allowed_footprint); |
| |
| // Blocks the caller until the garbage collector becomes idle and returns the type of GC we |
| // waited for. |
| collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) |
| LOCKS_EXCLUDED(gc_complete_lock_); |
| |
| // Update the heap's process state to a new value, may cause compaction to occur. |
| void UpdateProcessState(ProcessState process_state); |
| |
| const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const { |
| return continuous_spaces_; |
| } |
| |
| const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { |
| return discontinuous_spaces_; |
| } |
| |
| const collector::Iteration* GetCurrentGcIteration() const { |
| return ¤t_gc_iteration_; |
| } |
| collector::Iteration* GetCurrentGcIteration() { |
| return ¤t_gc_iteration_; |
| } |
| |
| // Enable verification of object references when the runtime is sufficiently initialized. |
| void EnableObjectValidation() { |
| verify_object_mode_ = kVerifyObjectSupport; |
| if (verify_object_mode_ > kVerifyObjectModeDisabled) { |
| VerifyHeap(); |
| } |
| } |
| |
| // Disable object reference verification for image writing. |
| void DisableObjectValidation() { |
| verify_object_mode_ = kVerifyObjectModeDisabled; |
| } |
| |
| // Other checks may be performed if we know the heap should be in a sane state. |
| bool IsObjectValidationEnabled() const { |
| return verify_object_mode_ > kVerifyObjectModeDisabled; |
| } |
| |
| // Returns true if low memory mode is enabled. |
| bool IsLowMemoryMode() const { |
| return low_memory_mode_; |
| } |
| |
| // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. |
| // Scales heap growth, min free, and max free. |
| double HeapGrowthMultiplier() const; |
| |
| // Freed bytes can be negative in cases where we copy objects from a compacted space to a |
| // free-list backed space. |
| void RecordFree(uint64_t freed_objects, int64_t freed_bytes); |
| |
| // Must be called if a field of an Object in the heap changes, and before any GC safe-point. |
| // The call is not needed if NULL is stored in the field. |
| void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/, |
| const mirror::Object* /*new_value*/) { |
| card_table_->MarkCard(dst); |
| } |
| |
| // Write barrier for array operations that update many field positions |
| void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/, |
| size_t /*length TODO: element_count or byte_count?*/) { |
| card_table_->MarkCard(dst); |
| } |
| |
| void WriteBarrierEveryFieldOf(const mirror::Object* obj) { |
| card_table_->MarkCard(obj); |
| } |
| |
| accounting::CardTable* GetCardTable() const { |
| return card_table_.get(); |
| } |
| |
| void AddFinalizerReference(Thread* self, mirror::Object** object); |
| |
| // Returns the number of bytes currently allocated. |
| size_t GetBytesAllocated() const { |
| return num_bytes_allocated_.LoadSequentiallyConsistent(); |
| } |
| |
| // Returns the number of objects currently allocated. |
| size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); |
| |
| // Returns the total number of objects allocated since the heap was created. |
| uint64_t GetObjectsAllocatedEver() const; |
| |
| // Returns the total number of bytes allocated since the heap was created. |
| uint64_t GetBytesAllocatedEver() const; |
| |
| // Returns the total number of objects freed since the heap was created. |
| uint64_t GetObjectsFreedEver() const { |
| return total_objects_freed_ever_; |
| } |
| |
| // Returns the total number of bytes freed since the heap was created. |
| uint64_t GetBytesFreedEver() const { |
| return total_bytes_freed_ever_; |
| } |
| |
| // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can |
| // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx |
| // were specified. Android apps start with a growth limit (small heap size) which is |
| // cleared/extended for large apps. |
| size_t GetMaxMemory() const { |
| // There is some race conditions in the allocation code that can cause bytes allocated to |
| // become larger than growth_limit_ in rare cases. |
| return std::max(GetBytesAllocated(), growth_limit_); |
| } |
| |
| // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently |
| // consumed by an application. |
| size_t GetTotalMemory() const; |
| |
| // Returns approximately how much free memory we have until the next GC happens. |
| size_t GetFreeMemoryUntilGC() const { |
| return max_allowed_footprint_ - GetBytesAllocated(); |
| } |
| |
| // Returns approximately how much free memory we have until the next OOME happens. |
| size_t GetFreeMemoryUntilOOME() const { |
| return growth_limit_ - GetBytesAllocated(); |
| } |
| |
| // Returns how much free memory we have until we need to grow the heap to perform an allocation. |
| // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. |
| size_t GetFreeMemory() const { |
| size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); |
| size_t total_memory = GetTotalMemory(); |
| // Make sure we don't get a negative number. |
| return total_memory - std::min(total_memory, byte_allocated); |
| } |
| |
| // get the space that corresponds to an object's address. Current implementation searches all |
| // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. |
| // TODO: consider using faster data structure like binary tree. |
| space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const; |
| space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*, |
| bool fail_ok) const; |
| space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const; |
| |
| void DumpForSigQuit(std::ostream& os); |
| |
| // Do a pending heap transition or trim. |
| void DoPendingTransitionOrTrim() LOCKS_EXCLUDED(heap_trim_request_lock_); |
| |
| // Trim the managed and native heaps by releasing unused memory back to the OS. |
| void Trim() LOCKS_EXCLUDED(heap_trim_request_lock_); |
| |
| void RevokeThreadLocalBuffers(Thread* thread); |
| void RevokeRosAllocThreadLocalBuffers(Thread* thread); |
| void RevokeAllThreadLocalBuffers(); |
| void AssertThreadLocalBuffersAreRevoked(Thread* thread); |
| void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); |
| void RosAllocVerification(TimingLogger* timings, const char* name) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { |
| return live_bitmap_.get(); |
| } |
| |
| accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { |
| return mark_bitmap_.get(); |
| } |
| |
| accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { |
| return live_stack_.get(); |
| } |
| |
| void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; |
| |
| // Mark and empty stack. |
| void FlushAllocStack() |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); |
| |
| // Revoke all the thread-local allocation stacks. |
| void RevokeAllThreadLocalAllocationStacks(Thread* self) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) |
| LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_); |
| |
| // Mark all the objects in the allocation stack in the specified bitmap. |
| // TODO: Refactor? |
| void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, |
| accounting::SpaceBitmap<kObjectAlignment>* bitmap2, |
| accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, |
| accounting::ObjectStack* stack) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); |
| |
| // Mark the specified allocation stack as live. |
| void MarkAllocStackAsLive(accounting::ObjectStack* stack) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); |
| |
| // Unbind any bound bitmaps. |
| void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); |
| |
| // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added. |
| // Assumes there is only one image space. |
| space::ImageSpace* GetImageSpace() const; |
| |
| // Permenantly disable moving garbage collection. |
| void DisableMovingGc(); |
| |
| space::DlMallocSpace* GetDlMallocSpace() const { |
| return dlmalloc_space_; |
| } |
| |
| space::RosAllocSpace* GetRosAllocSpace() const { |
| return rosalloc_space_; |
| } |
| |
| // Return the corresponding rosalloc space. |
| space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const; |
| |
| space::MallocSpace* GetNonMovingSpace() const { |
| return non_moving_space_; |
| } |
| |
| space::LargeObjectSpace* GetLargeObjectsSpace() const { |
| return large_object_space_; |
| } |
| |
| // Returns the free list space that may contain movable objects (the |
| // one that's not the non-moving space), either rosalloc_space_ or |
| // dlmalloc_space_. |
| space::MallocSpace* GetPrimaryFreeListSpace() { |
| if (kUseRosAlloc) { |
| DCHECK(rosalloc_space_ != nullptr); |
| // reinterpret_cast is necessary as the space class hierarchy |
| // isn't known (#included) yet here. |
| return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); |
| } else { |
| DCHECK(dlmalloc_space_ != nullptr); |
| return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); |
| } |
| } |
| |
| std::string DumpSpaces() const WARN_UNUSED; |
| void DumpSpaces(std::ostream& stream) const; |
| |
| // Dump object should only be used by the signal handler. |
| void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; |
| // Safe version of pretty type of which check to make sure objects are heap addresses. |
| std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS; |
| std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; |
| |
| // GC performance measuring |
| void DumpGcPerformanceInfo(std::ostream& os); |
| |
| // Returns true if we currently care about pause times. |
| bool CareAboutPauseTimes() const { |
| return process_state_ == kProcessStateJankPerceptible; |
| } |
| |
| // Thread pool. |
| void CreateThreadPool(); |
| void DeleteThreadPool(); |
| ThreadPool* GetThreadPool() { |
| return thread_pool_.get(); |
| } |
| size_t GetParallelGCThreadCount() const { |
| return parallel_gc_threads_; |
| } |
| size_t GetConcGCThreadCount() const { |
| return conc_gc_threads_; |
| } |
| accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); |
| void AddModUnionTable(accounting::ModUnionTable* mod_union_table); |
| |
| accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); |
| void AddRememberedSet(accounting::RememberedSet* remembered_set); |
| // Also deletes the remebered set. |
| void RemoveRememberedSet(space::Space* space); |
| |
| bool IsCompilingBoot() const; |
| bool RunningOnValgrind() const { |
| return running_on_valgrind_; |
| } |
| bool HasImageSpace() const; |
| |
| ReferenceProcessor* GetReferenceProcessor() { |
| return &reference_processor_; |
| } |
| |
| bool HasZygoteSpace() const { |
| return zygote_space_ != nullptr; |
| } |
| |
| private: |
| // Compact source space to target space. |
| void Compact(space::ContinuousMemMapAllocSpace* target_space, |
| space::ContinuousMemMapAllocSpace* source_space, |
| GcCause gc_cause) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_); |
| |
| // Create a mem map with a preferred base address. |
| static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin, |
| size_t capacity, int prot_flags, |
| std::string* out_error_str); |
| |
| bool SupportHSpaceCompaction() const { |
| // Returns true if we can do hspace compaction |
| return main_space_backup_ != nullptr; |
| } |
| |
| static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { |
| return |
| allocator_type != kAllocatorTypeBumpPointer && |
| allocator_type != kAllocatorTypeTLAB; |
| } |
| static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { |
| return AllocatorHasAllocationStack(allocator_type); |
| } |
| static bool IsMovingGc(CollectorType collector_type) { |
| return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS || |
| collector_type == kCollectorTypeCC || collector_type == kCollectorTypeMC || |
| collector_type == kCollectorTypeHomogeneousSpaceCompact; |
| } |
| bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, |
| mirror::Object** obj) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| accounting::ObjectStack* GetMarkStack() { |
| return mark_stack_.get(); |
| } |
| |
| // We don't force this to be inlined since it is a slow path. |
| template <bool kInstrumented, typename PreFenceVisitor> |
| mirror::Object* AllocLargeObject(Thread* self, mirror::Class* klass, size_t byte_count, |
| const PreFenceVisitor& pre_fence_visitor) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Handles Allocate()'s slow allocation path with GC involved after |
| // an initial allocation attempt failed. |
| mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes, |
| size_t* bytes_allocated, size_t* usable_size, |
| mirror::Class** klass) |
| LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Allocate into a specific space. |
| mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c, |
| size_t bytes) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the |
| // wrong space. |
| void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so |
| // that the switch statement is constant optimized in the entrypoints. |
| template <const bool kInstrumented, const bool kGrow> |
| ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type, |
| size_t alloc_size, size_t* bytes_allocated, |
| size_t* usable_size) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| template <bool kGrow> |
| ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size); |
| |
| // Returns true if the address passed in is within the address range of a continuous space. |
| bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Run the finalizers. |
| void RunFinalization(JNIEnv* env); |
| |
| // Blocks the caller until the garbage collector becomes idle and returns the type of GC we |
| // waited for. |
| collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) |
| EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_); |
| |
| void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) |
| LOCKS_EXCLUDED(heap_trim_request_lock_); |
| void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); |
| void RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| void RequestConcurrentGC(Thread* self) |
| LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); |
| bool IsGCRequestPending() const; |
| |
| // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns |
| // which type of Gc was actually ran. |
| collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause, |
| bool clear_soft_references) |
| LOCKS_EXCLUDED(gc_complete_lock_, |
| Locks::heap_bitmap_lock_, |
| Locks::thread_suspend_count_lock_); |
| |
| void PreGcVerification(collector::GarbageCollector* gc) |
| LOCKS_EXCLUDED(Locks::mutator_lock_); |
| void PreGcVerificationPaused(collector::GarbageCollector* gc) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| void PrePauseRosAllocVerification(collector::GarbageCollector* gc) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| void PreSweepingGcVerification(collector::GarbageCollector* gc) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| void PostGcVerification(collector::GarbageCollector* gc) |
| LOCKS_EXCLUDED(Locks::mutator_lock_); |
| void PostGcVerificationPaused(collector::GarbageCollector* gc) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Update the watermark for the native allocated bytes based on the current number of native |
| // bytes allocated and the target utilization ratio. |
| void UpdateMaxNativeFootprint(); |
| |
| // Find a collector based on GC type. |
| collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); |
| |
| // Create a new alloc space and compact default alloc space to it. |
| HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact(); |
| |
| // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. |
| void CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit, |
| size_t capacity); |
| |
| // Create a malloc space based on a mem map. Does not set the space as default. |
| space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size, |
| size_t growth_limit, size_t capacity, |
| const char* name, bool can_move_objects); |
| |
| // Given the current contents of the alloc space, increase the allowed heap footprint to match |
| // the target utilization ratio. This should only be called immediately after a full garbage |
| // collection. |
| void GrowForUtilization(collector::GarbageCollector* collector_ran); |
| |
| size_t GetPercentFree(); |
| |
| static void VerificationCallback(mirror::Object* obj, void* arg) |
| SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); |
| |
| // Swap the allocation stack with the live stack. |
| void SwapStacks(Thread* self); |
| |
| // Clear cards and update the mod union table. |
| void ProcessCards(TimingLogger* timings, bool use_rem_sets); |
| |
| // Signal the heap trim daemon that there is something to do, either a heap transition or heap |
| // trim. |
| void SignalHeapTrimDaemon(Thread* self); |
| |
| // Push an object onto the allocation stack. |
| void PushOnAllocationStack(Thread* self, mirror::Object** obj) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| void PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, mirror::Object** obj) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark |
| // sweep GC, false for other GC types. |
| bool IsGcConcurrent() const ALWAYS_INLINE { |
| return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC; |
| } |
| |
| // All-known continuous spaces, where objects lie within fixed bounds. |
| std::vector<space::ContinuousSpace*> continuous_spaces_; |
| |
| // All-known discontinuous spaces, where objects may be placed throughout virtual memory. |
| std::vector<space::DiscontinuousSpace*> discontinuous_spaces_; |
| |
| // All-known alloc spaces, where objects may be or have been allocated. |
| std::vector<space::AllocSpace*> alloc_spaces_; |
| |
| // A space where non-movable objects are allocated, when compaction is enabled it contains |
| // Classes, ArtMethods, ArtFields, and non moving objects. |
| space::MallocSpace* non_moving_space_; |
| |
| // Space which we use for the kAllocatorTypeROSAlloc. |
| space::RosAllocSpace* rosalloc_space_; |
| |
| // Space which we use for the kAllocatorTypeDlMalloc. |
| space::DlMallocSpace* dlmalloc_space_; |
| |
| // The main space is the space which the GC copies to and from on process state updates. This |
| // space is typically either the dlmalloc_space_ or the rosalloc_space_. |
| space::MallocSpace* main_space_; |
| |
| // The large object space we are currently allocating into. |
| space::LargeObjectSpace* large_object_space_; |
| |
| // The card table, dirtied by the write barrier. |
| std::unique_ptr<accounting::CardTable> card_table_; |
| |
| // A mod-union table remembers all of the references from the it's space to other spaces. |
| AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> |
| mod_union_tables_; |
| |
| // A remembered set remembers all of the references from the it's space to the target space. |
| AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> |
| remembered_sets_; |
| |
| // The current collector type. |
| CollectorType collector_type_; |
| // Which collector we use when the app is in the foreground. |
| CollectorType foreground_collector_type_; |
| // Which collector we will use when the app is notified of a transition to background. |
| CollectorType background_collector_type_; |
| // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. |
| CollectorType desired_collector_type_; |
| |
| // Lock which guards heap trim requests. |
| Mutex* heap_trim_request_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| // When we want to perform the next heap trim (nano seconds). |
| uint64_t last_trim_time_ GUARDED_BY(heap_trim_request_lock_); |
| // When we want to perform the next heap transition (nano seconds) or heap trim. |
| uint64_t heap_transition_or_trim_target_time_ GUARDED_BY(heap_trim_request_lock_); |
| // If we have a heap trim request pending. |
| bool heap_trim_request_pending_ GUARDED_BY(heap_trim_request_lock_); |
| |
| // How many GC threads we may use for paused parts of garbage collection. |
| const size_t parallel_gc_threads_; |
| |
| // How many GC threads we may use for unpaused parts of garbage collection. |
| const size_t conc_gc_threads_; |
| |
| // Boolean for if we are in low memory mode. |
| const bool low_memory_mode_; |
| |
| // If we get a pause longer than long pause log threshold, then we print out the GC after it |
| // finishes. |
| const size_t long_pause_log_threshold_; |
| |
| // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. |
| const size_t long_gc_log_threshold_; |
| |
| // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is |
| // useful for benchmarking since it reduces time spent in GC to a low %. |
| const bool ignore_max_footprint_; |
| |
| // Lock which guards zygote space creation. |
| Mutex zygote_creation_lock_; |
| |
| // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before |
| // zygote space creation. |
| space::ZygoteSpace* zygote_space_; |
| |
| // Minimum allocation size of large object. |
| size_t large_object_threshold_; |
| |
| // Guards access to the state of GC, associated conditional variable is used to signal when a GC |
| // completes. |
| Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); |
| |
| // Reference processor; |
| ReferenceProcessor reference_processor_; |
| |
| // True while the garbage collector is running. |
| volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); |
| |
| // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. |
| volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); |
| collector::GcType next_gc_type_; |
| |
| // Maximum size that the heap can reach. |
| const size_t capacity_; |
| |
| // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap |
| // programs it is "cleared" making it the same as capacity. |
| size_t growth_limit_; |
| |
| // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating |
| // a GC should be triggered. |
| size_t max_allowed_footprint_; |
| |
| // The watermark at which a concurrent GC is requested by registerNativeAllocation. |
| size_t native_footprint_gc_watermark_; |
| |
| // Whether or not we need to run finalizers in the next native allocation. |
| bool native_need_to_run_finalization_; |
| |
| // Whether or not we currently care about pause times. |
| ProcessState process_state_; |
| |
| // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that |
| // it completes ahead of an allocation failing. |
| size_t concurrent_start_bytes_; |
| |
| // Since the heap was created, how many bytes have been freed. |
| uint64_t total_bytes_freed_ever_; |
| |
| // Since the heap was created, how many objects have been freed. |
| uint64_t total_objects_freed_ever_; |
| |
| // Number of bytes allocated. Adjusted after each allocation and free. |
| Atomic<size_t> num_bytes_allocated_; |
| |
| // Bytes which are allocated and managed by native code but still need to be accounted for. |
| Atomic<size_t> native_bytes_allocated_; |
| |
| // Info related to the current or previous GC iteration. |
| collector::Iteration current_gc_iteration_; |
| |
| // Heap verification flags. |
| const bool verify_missing_card_marks_; |
| const bool verify_system_weaks_; |
| const bool verify_pre_gc_heap_; |
| const bool verify_pre_sweeping_heap_; |
| const bool verify_post_gc_heap_; |
| const bool verify_mod_union_table_; |
| bool verify_pre_gc_rosalloc_; |
| bool verify_pre_sweeping_rosalloc_; |
| bool verify_post_gc_rosalloc_; |
| |
| // RAII that temporarily disables the rosalloc verification during |
| // the zygote fork. |
| class ScopedDisableRosAllocVerification { |
| private: |
| Heap* const heap_; |
| const bool orig_verify_pre_gc_; |
| const bool orig_verify_pre_sweeping_; |
| const bool orig_verify_post_gc_; |
| |
| public: |
| explicit ScopedDisableRosAllocVerification(Heap* heap) |
| : heap_(heap), |
| orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), |
| orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), |
| orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { |
| heap_->verify_pre_gc_rosalloc_ = false; |
| heap_->verify_pre_sweeping_rosalloc_ = false; |
| heap_->verify_post_gc_rosalloc_ = false; |
| } |
| ~ScopedDisableRosAllocVerification() { |
| heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; |
| heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; |
| heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; |
| } |
| }; |
| |
| // Parallel GC data structures. |
| std::unique_ptr<ThreadPool> thread_pool_; |
| |
| // The nanosecond time at which the last GC ended. |
| uint64_t last_gc_time_ns_; |
| |
| // How many bytes were allocated at the end of the last GC. |
| uint64_t last_gc_size_; |
| |
| // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle |
| // and the start of the current one. |
| uint64_t allocation_rate_; |
| |
| // For a GC cycle, a bitmap that is set corresponding to the |
| std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); |
| std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); |
| |
| // Mark stack that we reuse to avoid re-allocating the mark stack. |
| std::unique_ptr<accounting::ObjectStack> mark_stack_; |
| |
| // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us |
| // to use the live bitmap as the old mark bitmap. |
| const size_t max_allocation_stack_size_; |
| std::unique_ptr<accounting::ObjectStack> allocation_stack_; |
| |
| // Second allocation stack so that we can process allocation with the heap unlocked. |
| std::unique_ptr<accounting::ObjectStack> live_stack_; |
| |
| // Allocator type. |
| AllocatorType current_allocator_; |
| const AllocatorType current_non_moving_allocator_; |
| |
| // Which GCs we run in order when we an allocation fails. |
| std::vector<collector::GcType> gc_plan_; |
| |
| // Bump pointer spaces. |
| space::BumpPointerSpace* bump_pointer_space_; |
| // Temp space is the space which the semispace collector copies to. |
| space::BumpPointerSpace* temp_space_; |
| |
| // Minimum free guarantees that you always have at least min_free_ free bytes after growing for |
| // utilization, regardless of target utilization ratio. |
| size_t min_free_; |
| |
| // The ideal maximum free size, when we grow the heap for utilization. |
| size_t max_free_; |
| |
| // Target ideal heap utilization ratio |
| double target_utilization_; |
| |
| // How much more we grow the heap when we are a foreground app instead of background. |
| double foreground_heap_growth_multiplier_; |
| |
| // Total time which mutators are paused or waiting for GC to complete. |
| uint64_t total_wait_time_; |
| |
| // Total number of objects allocated in microseconds. |
| AtomicInteger total_allocation_time_; |
| |
| // The current state of heap verification, may be enabled or disabled. |
| VerifyObjectMode verify_object_mode_; |
| |
| // Compacting GC disable count, prevents compacting GC from running iff > 0. |
| size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); |
| |
| std::vector<collector::GarbageCollector*> garbage_collectors_; |
| collector::SemiSpace* semi_space_collector_; |
| collector::MarkCompact* mark_compact_collector_; |
| collector::ConcurrentCopying* concurrent_copying_collector_; |
| |
| const bool running_on_valgrind_; |
| const bool use_tlab_; |
| |
| // Pointer to the space which becomes the new main space when we do homogeneous space compaction. |
| // Use unique_ptr since the space is only added during the homogeneous compaction phase. |
| std::unique_ptr<space::MallocSpace> main_space_backup_; |
| |
| // Minimal interval allowed between two homogeneous space compactions caused by OOM. |
| uint64_t min_interval_homogeneous_space_compaction_by_oom_; |
| |
| // Times of the last homogeneous space compaction caused by OOM. |
| uint64_t last_time_homogeneous_space_compaction_by_oom_; |
| |
| // Saved OOMs by homogeneous space compaction. |
| Atomic<size_t> count_delayed_oom_; |
| |
| // Count for requested homogeneous space compaction. |
| Atomic<size_t> count_requested_homogeneous_space_compaction_; |
| |
| // Count for ignored homogeneous space compaction. |
| Atomic<size_t> count_ignored_homogeneous_space_compaction_; |
| |
| // Count for performed homogeneous space compaction. |
| Atomic<size_t> count_performed_homogeneous_space_compaction_; |
| |
| // Whether or not we use homogeneous space compaction to avoid OOM errors. |
| bool use_homogeneous_space_compaction_for_oom_; |
| |
| friend class collector::GarbageCollector; |
| friend class collector::MarkCompact; |
| friend class collector::MarkSweep; |
| friend class collector::SemiSpace; |
| friend class ReferenceQueue; |
| friend class VerifyReferenceCardVisitor; |
| friend class VerifyReferenceVisitor; |
| friend class VerifyObjectVisitor; |
| friend class ScopedHeapFill; |
| friend class ScopedHeapLock; |
| friend class space::SpaceTest; |
| |
| class AllocationTimer { |
| private: |
| Heap* heap_; |
| mirror::Object** allocated_obj_ptr_; |
| uint64_t allocation_start_time_; |
| public: |
| AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr); |
| ~AllocationTimer(); |
| }; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); |
| }; |
| |
| // ScopedHeapFill changes the bytes allocated counter to be equal to the growth limit. This |
| // causes the next allocation to perform a GC and possibly an OOM. It can be used to ensure that a |
| // GC happens in specific methods such as ThrowIllegalMonitorStateExceptionF in Monitor::Wait. |
| class ScopedHeapFill { |
| public: |
| explicit ScopedHeapFill(Heap* heap) |
| : heap_(heap), |
| delta_(heap_->GetMaxMemory() - heap_->GetBytesAllocated()) { |
| heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(delta_); |
| } |
| ~ScopedHeapFill() { |
| heap_->num_bytes_allocated_.FetchAndSubSequentiallyConsistent(delta_); |
| } |
| |
| private: |
| Heap* const heap_; |
| const int64_t delta_; |
| }; |
| |
| } // namespace gc |
| } // namespace art |
| |
| #endif // ART_RUNTIME_GC_HEAP_H_ |