blob: 9b5b73cee974de71a245e2c95465b108ad232a34 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image_space.h"
#include <sys/statvfs.h>
#include <sys/types.h>
#include <unistd.h>
#include <random>
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "arch/instruction_set.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/array_ref.h"
#include "base/bit_memory_region.h"
#include "base/callee_save_type.h"
#include "base/enums.h"
#include "base/file_utils.h"
#include "base/macros.h"
#include "base/os.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "class_root.h"
#include "dex/art_dex_file_loader.h"
#include "dex/dex_file_loader.h"
#include "exec_utils.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/task_processor.h"
#include "image-inl.h"
#include "image_space_fs.h"
#include "intern_table-inl.h"
#include "mirror/class-inl.h"
#include "mirror/executable.h"
#include "mirror/object-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "oat_file.h"
#include "runtime.h"
#include "space-inl.h"
namespace art {
namespace gc {
namespace space {
using android::base::StringAppendF;
using android::base::StringPrintf;
Atomic<uint32_t> ImageSpace::bitmap_index_(0);
ImageSpace::ImageSpace(const std::string& image_filename,
const char* image_location,
MemMap&& mem_map,
std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap,
uint8_t* end)
: MemMapSpace(image_filename,
std::move(mem_map),
mem_map.Begin(),
end,
end,
kGcRetentionPolicyNeverCollect),
live_bitmap_(std::move(live_bitmap)),
oat_file_non_owned_(nullptr),
image_location_(image_location) {
DCHECK(live_bitmap_ != nullptr);
}
static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
CHECK_ALIGNED(min_delta, kPageSize);
CHECK_ALIGNED(max_delta, kPageSize);
CHECK_LT(min_delta, max_delta);
int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
if (r % 2 == 0) {
r = RoundUp(r, kPageSize);
} else {
r = RoundDown(r, kPageSize);
}
CHECK_LE(min_delta, r);
CHECK_GE(max_delta, r);
CHECK_ALIGNED(r, kPageSize);
return r;
}
static int32_t ChooseRelocationOffsetDelta() {
return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
}
static bool GenerateImage(const std::string& image_filename,
InstructionSet image_isa,
std::string* error_msg) {
Runtime* runtime = Runtime::Current();
const std::vector<std::string>& boot_class_path = runtime->GetBootClassPath();
if (boot_class_path.empty()) {
*error_msg = "Failed to generate image because no boot class path specified";
return false;
}
// We should clean up so we are more likely to have room for the image.
if (Runtime::Current()->IsZygote()) {
LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
PruneDalvikCache(image_isa);
}
std::vector<std::string> arg_vector;
std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
arg_vector.push_back(dex2oat);
std::string image_option_string("--image=");
image_option_string += image_filename;
arg_vector.push_back(image_option_string);
const std::vector<std::string>& boot_class_path_locations = runtime->GetBootClassPathLocations();
DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
for (size_t i = 0u; i < boot_class_path.size(); i++) {
arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
arg_vector.push_back(std::string("--dex-location=") + boot_class_path_locations[i]);
}
std::string oat_file_option_string("--oat-file=");
oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
arg_vector.push_back(oat_file_option_string);
// Note: we do not generate a fully debuggable boot image so we do not pass the
// compiler flag --debuggable here.
Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
CHECK_EQ(image_isa, kRuntimeISA)
<< "We should always be generating an image for the current isa.";
int32_t base_offset = ChooseRelocationOffsetDelta();
LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
<< "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
if (!kIsTargetBuild) {
arg_vector.push_back("--host");
}
const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
for (size_t i = 0; i < compiler_options.size(); ++i) {
arg_vector.push_back(compiler_options[i].c_str());
}
std::string command_line(android::base::Join(arg_vector, ' '));
LOG(INFO) << "GenerateImage: " << command_line;
return Exec(arg_vector, error_msg);
}
static bool FindImageFilenameImpl(const char* image_location,
const InstructionSet image_isa,
bool* has_system,
std::string* system_filename,
bool* dalvik_cache_exists,
std::string* dalvik_cache,
bool* is_global_cache,
bool* has_cache,
std::string* cache_filename) {
DCHECK(dalvik_cache != nullptr);
*has_system = false;
*has_cache = false;
// image_location = /system/framework/boot.art
// system_image_location = /system/framework/<image_isa>/boot.art
std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
if (OS::FileExists(system_image_filename.c_str())) {
*system_filename = system_image_filename;
*has_system = true;
}
bool have_android_data = false;
*dalvik_cache_exists = false;
GetDalvikCache(GetInstructionSetString(image_isa),
/*create_if_absent=*/ true,
dalvik_cache,
&have_android_data,
dalvik_cache_exists,
is_global_cache);
if (*dalvik_cache_exists) {
DCHECK(have_android_data);
// Always set output location even if it does not exist,
// so that the caller knows where to create the image.
//
// image_location = /system/framework/boot.art
// *image_filename = /data/dalvik-cache/<image_isa>/system@framework@boot.art
std::string error_msg;
if (!GetDalvikCacheFilename(image_location,
dalvik_cache->c_str(),
cache_filename,
&error_msg)) {
LOG(WARNING) << error_msg;
return *has_system;
}
*has_cache = OS::FileExists(cache_filename->c_str());
}
return *has_system || *has_cache;
}
bool ImageSpace::FindImageFilename(const char* image_location,
const InstructionSet image_isa,
std::string* system_filename,
bool* has_system,
std::string* cache_filename,
bool* dalvik_cache_exists,
bool* has_cache,
bool* is_global_cache) {
std::string dalvik_cache_unused;
return FindImageFilenameImpl(image_location,
image_isa,
has_system,
system_filename,
dalvik_cache_exists,
&dalvik_cache_unused,
is_global_cache,
has_cache,
cache_filename);
}
static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
if (image_file.get() == nullptr) {
return false;
}
const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
if (!success || !image_header->IsValid()) {
return false;
}
return true;
}
static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
std::string* error_msg) {
std::unique_ptr<ImageHeader> hdr(new ImageHeader);
if (!ReadSpecificImageHeader(filename, hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s", filename);
return nullptr;
}
return hdr;
}
std::unique_ptr<ImageHeader> ImageSpace::ReadImageHeader(const char* image_location,
const InstructionSet image_isa,
ImageSpaceLoadingOrder order,
std::string* error_msg) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = false;
if (FindImageFilename(image_location,
image_isa,
&system_filename,
&has_system,
&cache_filename,
&dalvik_cache_exists,
&has_cache,
&is_global_cache)) {
if (order == ImageSpaceLoadingOrder::kSystemFirst) {
if (has_system) {
return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
}
if (has_cache) {
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
} else {
if (has_cache) {
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
if (has_system) {
return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
}
}
}
*error_msg = StringPrintf("Unable to find image file for %s", image_location);
return nullptr;
}
static bool CanWriteToDalvikCache(const InstructionSet isa) {
const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
return true;
} else if (errno != EACCES) {
PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
}
return false;
}
static bool ImageCreationAllowed(bool is_global_cache,
const InstructionSet isa,
bool is_zygote,
std::string* error_msg) {
// Anyone can write into a "local" cache.
if (!is_global_cache) {
return true;
}
// Only the zygote running as root is allowed to create the global boot image.
// If the zygote is running as non-root (and cannot write to the dalvik-cache),
// then image creation is not allowed..
if (is_zygote) {
return CanWriteToDalvikCache(isa);
}
*error_msg = "Only the zygote can create the global boot image.";
return false;
}
void ImageSpace::VerifyImageAllocations() {
uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
while (current < End()) {
CHECK_ALIGNED(current, kObjectAlignment);
auto* obj = reinterpret_cast<mirror::Object*>(current);
CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
if (kUseBakerReadBarrier) {
obj->AssertReadBarrierState();
}
current += RoundUp(obj->SizeOf(), kObjectAlignment);
}
}
// Helper class for relocating from one range of memory to another.
class RelocationRange {
public:
RelocationRange() = default;
RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
: source_(source),
dest_(dest),
length_(length) {}
bool InSource(uintptr_t address) const {
return address - source_ < length_;
}
bool InDest(const void* dest) const {
return InDest(reinterpret_cast<uintptr_t>(dest));
}
bool InDest(uintptr_t address) const {
return address - dest_ < length_;
}
// Translate a source address to the destination space.
uintptr_t ToDest(uintptr_t address) const {
DCHECK(InSource(address));
return address + Delta();
}
// Returns the delta between the dest from the source.
uintptr_t Delta() const {
return dest_ - source_;
}
uintptr_t Source() const {
return source_;
}
uintptr_t Dest() const {
return dest_;
}
uintptr_t Length() const {
return length_;
}
private:
const uintptr_t source_;
const uintptr_t dest_;
const uintptr_t length_;
};
std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
<< reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
<< reinterpret_cast<const void*>(reloc.Dest()) << "-"
<< reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
}
template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
class ImageSpace::PatchObjectVisitor final {
public:
explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
: heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
void VisitClass(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_) {
// A mirror::Class object consists of
// - instance fields inherited from j.l.Object,
// - instance fields inherited from j.l.Class,
// - embedded tables (vtable, interface method table),
// - static fields of the class itself.
// The reference fields are at the start of each field section (this is how the
// ClassLinker orders fields; except when that would create a gap between superclass
// fields and the first reference of the subclass due to alignment, it can be filled
// with smaller fields - but that's not the case for j.l.Object and j.l.Class).
DCHECK_ALIGNED(klass, kObjectAlignment);
static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
// First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
// This should be the only reference field in j.l.Object and we assert that below.
PatchReferenceField</*kMayBeNull=*/ false>(klass, mirror::Object::ClassOffset());
// Then patch the reference instance fields described by j.l.Class.class.
// Use the sizeof(Object) to determine where these reference fields start;
// this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
// after patching but the j.l.Class may not have been patched yet.
mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
DCHECK_NE(num_reference_instance_fields, 0u);
static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
MemberOffset instance_field_offset(sizeof(mirror::Object));
for (size_t i = 0; i != num_reference_instance_fields; ++i) {
PatchReferenceField(klass, instance_field_offset);
static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
"Heap reference sizes equality check.");
instance_field_offset =
MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
}
// Now that we have patched the `super_class_`, if this is the j.l.Class.class,
// we can get a reference to j.l.Object.class and assert that it has only one
// reference instance field (the `klass_` patched above).
if (kIsDebugBuild && klass == class_class) {
ObjPtr<mirror::Class> object_class =
klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
}
// Then patch static fields.
size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
if (num_reference_static_fields != 0u) {
MemberOffset static_field_offset =
klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
for (size_t i = 0; i != num_reference_static_fields; ++i) {
PatchReferenceField(klass, static_field_offset);
static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
"Heap reference sizes equality check.");
static_field_offset =
MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
}
}
// Then patch native pointers.
klass->FixupNativePointers<kVerifyNone>(klass, kPointerSize, *this);
}
template <typename T>
T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
}
void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Fully patch the pointer array, including the `klass_` field.
PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
int32_t length = pointer_array->GetLength<kVerifyNone>();
for (int32_t i = 0; i != length; ++i) {
ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
}
}
void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
// Visit all reference fields.
object->VisitReferences</*kVisitNativeRoots=*/ false,
kVerifyNone,
kWithoutReadBarrier>(*this, *this);
// This function should not be called for classes.
DCHECK(!object->IsClass<kVerifyNone>());
}
// Visitor for VisitReferences().
ALWAYS_INLINE void operator()(mirror::Object* object, MemberOffset field_offset, bool is_static)
const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!is_static);
PatchReferenceField(object, field_offset);
}
// Visitor for VisitReferences(), java.lang.ref.Reference case.
ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, mirror::Reference* ref) const
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(klass->IsTypeOfReferenceClass());
this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
}
// Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
const {}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
void VisitDexCacheArrays(mirror::DexCache* dex_cache) REQUIRES_SHARED(Locks::mutator_lock_) {
FixupDexCacheArray<mirror::StringDexCacheType>(dex_cache,
mirror::DexCache::StringsOffset(),
dex_cache->NumStrings<kVerifyNone>());
FixupDexCacheArray<mirror::TypeDexCacheType>(dex_cache,
mirror::DexCache::ResolvedTypesOffset(),
dex_cache->NumResolvedTypes<kVerifyNone>());
FixupDexCacheArray<mirror::MethodDexCacheType>(dex_cache,
mirror::DexCache::ResolvedMethodsOffset(),
dex_cache->NumResolvedMethods<kVerifyNone>());
FixupDexCacheArray<mirror::FieldDexCacheType>(dex_cache,
mirror::DexCache::ResolvedFieldsOffset(),
dex_cache->NumResolvedFields<kVerifyNone>());
FixupDexCacheArray<mirror::MethodTypeDexCacheType>(
dex_cache,
mirror::DexCache::ResolvedMethodTypesOffset(),
dex_cache->NumResolvedMethodTypes<kVerifyNone>());
FixupDexCacheArray<GcRoot<mirror::CallSite>>(
dex_cache,
mirror::DexCache::ResolvedCallSitesOffset(),
dex_cache->NumResolvedCallSites<kVerifyNone>());
FixupDexCacheArray<GcRoot<mirror::String>>(
dex_cache,
mirror::DexCache::PreResolvedStringsOffset(),
dex_cache->NumPreResolvedStrings<kVerifyNone>());
}
template <bool kMayBeNull = true, typename T>
ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
T* old_value = root->template Read<kWithoutReadBarrier>();
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
*root = GcRoot<T>(heap_visitor_(old_value));
}
}
template <bool kMayBeNull = true, typename T>
ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
if (kPointerSize == PointerSize::k64) {
uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
T* old_value = reinterpret_cast64<T*>(*raw_entry);
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
T* new_value = native_visitor_(old_value);
*raw_entry = reinterpret_cast64<uint64_t>(new_value);
}
} else {
uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
T* old_value = reinterpret_cast32<T*>(*raw_entry);
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
T* new_value = native_visitor_(old_value);
*raw_entry = reinterpret_cast32<uint32_t>(new_value);
}
}
}
template <bool kMayBeNull = true>
ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> old_value =
object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
/*kCheckTransaction=*/ true,
kVerifyNone>(offset, new_value);
}
}
template <typename T>
void FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
"Size check for removing std::atomic<>.");
PatchGcRoot(&(reinterpret_cast<mirror::DexCachePair<T>*>(array)[index].object));
}
template <typename T>
void FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
static_assert(sizeof(std::atomic<mirror::NativeDexCachePair<T>>) ==
sizeof(mirror::NativeDexCachePair<T>),
"Size check for removing std::atomic<>.");
mirror::NativeDexCachePair<T> pair =
mirror::DexCache::GetNativePairPtrSize(array, index, kPointerSize);
if (pair.object != nullptr) {
pair.object = native_visitor_(pair.object);
mirror::DexCache::SetNativePairPtrSize(array, index, pair, kPointerSize);
}
}
void FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
PatchGcRoot(&array[index]);
}
void FixupDexCacheArrayEntry(GcRoot<mirror::String>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
PatchGcRoot(&array[index]);
}
template <typename EntryType>
void FixupDexCacheArray(mirror::DexCache* dex_cache,
MemberOffset array_offset,
uint32_t size) REQUIRES_SHARED(Locks::mutator_lock_) {
EntryType* old_array =
reinterpret_cast64<EntryType*>(dex_cache->GetField64<kVerifyNone>(array_offset));
DCHECK_EQ(old_array != nullptr, size != 0u);
if (old_array != nullptr) {
EntryType* new_array = native_visitor_(old_array);
dex_cache->SetField64<kVerifyNone>(array_offset, reinterpret_cast64<uint64_t>(new_array));
for (uint32_t i = 0; i != size; ++i) {
FixupDexCacheArrayEntry(new_array, i);
}
}
}
private:
// Heap objects visitor.
HeapVisitor heap_visitor_;
// Native objects visitor.
NativeVisitor native_visitor_;
};
template <typename ReferenceVisitor>
class ImageSpace::ClassTableVisitor final {
public:
explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
: reference_visitor_(reference_visitor) {}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(root->AsMirrorPtr() != nullptr);
root->Assign(reference_visitor_(root->AsMirrorPtr()));
}
private:
ReferenceVisitor reference_visitor_;
};
// Helper class encapsulating loading, so we can access private ImageSpace members (this is a
// nested class), but not declare functions in the header.
class ImageSpace::Loader {
public:
static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
const char* image_location,
const OatFile* oat_file,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
std::unique_ptr<ImageSpace> space = Init(image_filename,
image_location,
oat_file,
&logger,
image_reservation,
error_msg);
if (space != nullptr) {
uint32_t expected_reservation_size =
RoundUp(space->GetImageHeader().GetImageSize(), kPageSize);
if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
!CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
return nullptr;
}
TimingLogger::ScopedTiming timing("RelocateImage", &logger);
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(space->GetMemMap()->Begin());
const PointerSize pointer_size = image_header->GetPointerSize();
bool result;
if (pointer_size == PointerSize::k64) {
result = RelocateInPlace<PointerSize::k64>(*image_header,
space->GetMemMap()->Begin(),
space->GetLiveBitmap(),
oat_file,
error_msg);
} else {
result = RelocateInPlace<PointerSize::k32>(*image_header,
space->GetMemMap()->Begin(),
space->GetLiveBitmap(),
oat_file,
error_msg);
}
if (!result) {
return nullptr;
}
Runtime* runtime = Runtime::Current();
CHECK_EQ(runtime->GetResolutionMethod(),
image_header->GetImageMethod(ImageHeader::kResolutionMethod));
CHECK_EQ(runtime->GetImtConflictMethod(),
image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
CHECK_EQ(runtime->GetImtUnimplementedMethod(),
image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck));
VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
}
if (VLOG_IS_ON(image)) {
logger.Dump(LOG_STREAM(INFO));
}
return space;
}
static std::unique_ptr<ImageSpace> Init(const char* image_filename,
const char* image_location,
const OatFile* oat_file,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(image_filename != nullptr);
CHECK(image_location != nullptr);
VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
std::unique_ptr<File> file;
{
TimingLogger::ScopedTiming timing("OpenImageFile", logger);
file.reset(OS::OpenFileForReading(image_filename));
if (file == nullptr) {
*error_msg = StringPrintf("Failed to open '%s'", image_filename);
return nullptr;
}
}
ImageHeader temp_image_header;
ImageHeader* image_header = &temp_image_header;
{
TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
bool success = file->ReadFully(image_header, sizeof(*image_header));
if (!success || !image_header->IsValid()) {
*error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
return nullptr;
}
}
// Check that the file is larger or equal to the header size + data size.
const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
*error_msg = StringPrintf(
"Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
image_file_size,
static_cast<uint64_t>(sizeof(ImageHeader) + image_header->GetDataSize()));
return nullptr;
}
if (oat_file != nullptr) {
// If we have an oat file (i.e. for app image), check the oat file checksum.
// Otherwise, we open the oat file after the image and check the checksum there.
const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
const uint32_t image_oat_checksum = image_header->GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
*error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
oat_checksum,
image_oat_checksum,
image_filename);
return nullptr;
}
}
if (VLOG_IS_ON(startup)) {
LOG(INFO) << "Dumping image sections";
for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
auto& section = image_header->GetImageSection(section_idx);
LOG(INFO) << section_idx << " start="
<< reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
<< section;
}
}
const auto& bitmap_section = image_header->GetImageBitmapSection();
// The location we want to map from is the first aligned page after the end of the stored
// (possibly compressed) data.
const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
kPageSize);
const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
if (end_of_bitmap != image_file_size) {
*error_msg = StringPrintf(
"Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
image_file_size,
end_of_bitmap);
return nullptr;
}
// GetImageBegin is the preferred address to map the image. If we manage to map the
// image at the image begin, the amount of fixup work required is minimized.
// If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
// avoid reading proc maps for a mapping failure and slowing everything down.
// For the boot image, we have already reserved the memory and we load the image
// into the `image_reservation`.
MemMap map = LoadImageFile(
image_filename,
image_location,
*image_header,
file->Fd(),
logger,
image_reservation,
error_msg);
if (!map.IsValid()) {
DCHECK(!error_msg->empty());
return nullptr;
}
DCHECK_EQ(0, memcmp(image_header, map.Begin(), sizeof(ImageHeader)));
MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
PROT_READ,
MAP_PRIVATE,
file->Fd(),
image_bitmap_offset,
/*low_4gb=*/ false,
image_filename,
error_msg);
if (!image_bitmap_map.IsValid()) {
*error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
return nullptr;
}
// Loaded the map, use the image header from the file now in case we patch it with
// RelocateInPlace.
image_header = reinterpret_cast<ImageHeader*>(map.Begin());
const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
image_filename,
bitmap_index));
// Bitmap only needs to cover until the end of the mirror objects section.
const ImageSection& image_objects = image_header->GetObjectsSection();
// We only want the mirror object, not the ArtFields and ArtMethods.
uint8_t* const image_end = map.Begin() + image_objects.End();
std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
{
TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
bitmap.reset(
accounting::ContinuousSpaceBitmap::CreateFromMemMap(
bitmap_name,
std::move(image_bitmap_map),
reinterpret_cast<uint8_t*>(map.Begin()),
// Make sure the bitmap is aligned to card size instead of just bitmap word size.
RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
if (bitmap == nullptr) {
*error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
return nullptr;
}
}
// We only want the mirror object, not the ArtFields and ArtMethods.
std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
image_location,
std::move(map),
std::move(bitmap),
image_end));
space->oat_file_non_owned_ = oat_file;
return space;
}
static bool CheckImageComponentCount(const ImageSpace& space,
uint32_t expected_component_count,
/*out*/std::string* error_msg) {
const ImageHeader& header = space.GetImageHeader();
if (header.GetComponentCount() != expected_component_count) {
*error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
space.GetImageFilename().c_str(),
header.GetComponentCount(),
expected_component_count);
return false;
}
return true;
}
static bool CheckImageReservationSize(const ImageSpace& space,
uint32_t expected_reservation_size,
/*out*/std::string* error_msg) {
const ImageHeader& header = space.GetImageHeader();
if (header.GetImageReservationSize() != expected_reservation_size) {
*error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
space.GetImageFilename().c_str(),
header.GetImageReservationSize(),
expected_reservation_size);
return false;
}
return true;
}
private:
static MemMap LoadImageFile(const char* image_filename,
const char* image_location,
const ImageHeader& image_header,
int fd,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg) {
TimingLogger::ScopedTiming timing("MapImageFile", logger);
std::string temp_error_msg;
const bool is_compressed = image_header.HasCompressedBlock();
if (!is_compressed) {
uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
return MemMap::MapFileAtAddress(address,
image_header.GetImageSize(),
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
fd,
/*start=*/ 0,
/*low_4gb=*/ true,
image_filename,
/*reuse=*/ false,
image_reservation,
error_msg);
}
// Reserve output and decompress into it.
MemMap map = MemMap::MapAnonymous(image_location,
image_header.GetImageSize(),
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
image_reservation,
error_msg);
if (map.IsValid()) {
const size_t stored_size = image_header.GetDataSize();
MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
PROT_READ,
MAP_PRIVATE,
fd,
/*start=*/ 0,
/*low_4gb=*/ false,
image_filename,
error_msg);
if (!temp_map.IsValid()) {
DCHECK(error_msg == nullptr || !error_msg->empty());
return MemMap::Invalid();
}
memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
Runtime::ScopedThreadPoolUsage stpu;
ThreadPool* const pool = stpu.GetThreadPool();
const uint64_t start = NanoTime();
Thread* const self = Thread::Current();
static constexpr size_t kMinBlocks = 2u;
const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
auto function = [&](Thread*) {
const uint64_t start2 = NanoTime();
ScopedTrace trace("LZ4 decompress block");
bool result = block.Decompress(/*out_ptr=*/map.Begin(),
/*in_ptr=*/temp_map.Begin(),
error_msg);
if (!result && error_msg != nullptr) {
*error_msg = "Failed to decompress image block " + *error_msg;
}
VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
<< block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
};
if (use_parallel) {
pool->AddTask(self, new FunctionTask(std::move(function)));
} else {
function(self);
}
}
if (use_parallel) {
ScopedTrace trace("Waiting for workers");
pool->Wait(self, true, false);
}
const uint64_t time = NanoTime() - start;
// Add one 1 ns to prevent possible divide by 0.
VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
<< PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
<< "/s)";
}
return map;
}
class EmptyRange {
public:
ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
};
template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
class ForwardAddress {
public:
ForwardAddress(const Range0& range0 = Range0(),
const Range1& range1 = Range1(),
const Range2& range2 = Range2())
: range0_(range0), range1_(range1), range2_(range2) {}
// Return the relocated address of a heap object.
// Null checks must be performed in the caller (for performance reasons).
template <typename T>
ALWAYS_INLINE T* operator()(T* src) const {
DCHECK(src != nullptr);
const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
if (range2_.InSource(uint_src)) {
return reinterpret_cast<T*>(range2_.ToDest(uint_src));
}
if (range1_.InSource(uint_src)) {
return reinterpret_cast<T*>(range1_.ToDest(uint_src));
}
CHECK(range0_.InSource(uint_src))
<< reinterpret_cast<const void*>(src) << " not in "
<< reinterpret_cast<const void*>(range0_.Source()) << "-"
<< reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
return reinterpret_cast<T*>(range0_.ToDest(uint_src));
}
private:
const Range0 range0_;
const Range1 range1_;
const Range2 range2_;
};
template <typename Forward>
class FixupRootVisitor {
public:
template<typename... Args>
explicit FixupRootVisitor(Args... args) : forward_(args...) {}
ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* ref = root->AsMirrorPtr();
mirror::Object* new_ref = forward_(ref);
if (ref != new_ref) {
root->Assign(new_ref);
}
}
private:
Forward forward_;
};
template <typename Forward>
class FixupObjectVisitor {
public:
explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
const Forward& forward)
: visited_(visited), forward_(forward) {}
// Fix up separately since we also need to fix up method entrypoints.
ALWAYS_INLINE void VisitRootIfNonNull(
mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
const {}
ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
MemberOffset offset,
bool is_static ATTRIBUTE_UNUSED) const
NO_THREAD_SAFETY_ANALYSIS {
// Space is not yet added to the heap, don't do a read barrier.
mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
offset);
if (ref != nullptr) {
// Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
// image.
obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
}
}
// java.lang.ref.Reference visitor.
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
ObjPtr<mirror::Reference> ref) const
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
if (obj != nullptr) {
ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
mirror::Reference::ReferentOffset(),
forward_(obj));
}
}
void operator()(mirror::Object* obj) const
NO_THREAD_SAFETY_ANALYSIS {
if (!visited_->Set(obj)) {
// Not already visited.
obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
*this,
*this);
CHECK(!obj->IsClass());
}
}
private:
gc::accounting::ContinuousSpaceBitmap* const visited_;
Forward forward_;
};
// Relocate an image space mapped at target_base which possibly used to be at a different base
// address. In place means modifying a single ImageSpace in place rather than relocating from
// one ImageSpace to another.
template <PointerSize kPointerSize>
static bool RelocateInPlace(ImageHeader& image_header,
uint8_t* target_base,
accounting::ContinuousSpaceBitmap* bitmap,
const OatFile* app_oat_file,
std::string* error_msg) {
DCHECK(error_msg != nullptr);
// Set up sections.
uint32_t boot_image_begin = 0;
uint32_t boot_image_end = 0;
uint32_t boot_oat_begin = 0;
uint32_t boot_oat_end = 0;
gc::Heap* const heap = Runtime::Current()->GetHeap();
heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
if (boot_image_begin == boot_image_end) {
*error_msg = "Can not relocate app image without boot image space";
return false;
}
if (boot_oat_begin == boot_oat_end) {
*error_msg = "Can not relocate app image without boot oat file";
return false;
}
const uint32_t boot_image_size = boot_oat_end - boot_image_begin;
const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
if (boot_image_size != image_header_boot_image_size) {
*error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
PRIu64,
static_cast<uint64_t>(boot_image_size),
static_cast<uint64_t>(image_header_boot_image_size));
return false;
}
const ImageSection& objects_section = image_header.GetObjectsSection();
// Where the app image objects are mapped to.
uint8_t* objects_location = target_base + objects_section.Offset();
TimingLogger logger(__FUNCTION__, true, false);
RelocationRange boot_image(image_header.GetBootImageBegin(),
boot_image_begin,
boot_image_size);
// Metadata is everything after the objects section, use exclusion to be safe.
RelocationRange app_image_metadata(
reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.End(),
reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
image_header.GetImageSize() - objects_section.End());
// App image heap objects, may be mapped in the heap.
RelocationRange app_image_objects(
reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.Offset(),
reinterpret_cast<uintptr_t>(objects_location),
objects_section.Size());
// Use the oat data section since this is where the OatFile::Begin is.
RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
// Not necessarily in low 4GB.
reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
VLOG(image) << "App image metadata " << app_image_metadata;
VLOG(image) << "App image objects " << app_image_objects;
VLOG(image) << "App oat " << app_oat;
VLOG(image) << "Boot image " << boot_image;
// True if we need to fixup any heap pointers.
const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
app_image_objects.Delta() != 0;
if (!fixup_image) {
// Nothing to fix up.
return true;
}
ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
ForwardObject forward_object(boot_image, app_image_objects);
ForwardObject forward_metadata(boot_image, app_image_metadata);
using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
ForwardCode forward_code(boot_image, app_oat);
PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
forward_object,
forward_metadata);
if (fixup_image) {
// Two pass approach, fix up all classes first, then fix up non class-objects.
// The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
target_base,
image_header.GetImageSize()));
{
TimingLogger::ScopedTiming timing("Fixup classes", &logger);
const auto& class_table_section = image_header.GetClassTableSection();
if (class_table_section.Size() > 0u) {
ScopedObjectAccess soa(Thread::Current());
ClassTableVisitor class_table_visitor(forward_object);
size_t read_count = 0u;
const uint8_t* data = target_base + class_table_section.Offset();
// We avoid making a copy of the data since we want modifications to be propagated to the
// memory map.
ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
for (ClassTable::TableSlot& slot : temp_set) {
slot.VisitRoot(class_table_visitor);
mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
if (!app_image_objects.InDest(klass)) {
continue;
}
const bool already_marked = visited_bitmap->Set(klass);
CHECK(!already_marked) << "App image class already visited";
patch_object_visitor.VisitClass(klass);
// Then patch the non-embedded vtable and iftable.
ObjPtr<mirror::PointerArray> vtable =
klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
if (vtable != nullptr &&
app_image_objects.InDest(vtable.Ptr()) &&
!visited_bitmap->Set(vtable.Ptr())) {
patch_object_visitor.VisitPointerArray(vtable);
}
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
// Avoid processing the fields of iftable since we will process them later anyways
// below.
int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
for (int32_t i = 0; i != ifcount; ++i) {
ObjPtr<mirror::PointerArray> unpatched_ifarray =
iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
if (unpatched_ifarray != nullptr) {
// The iftable has not been patched, so we need to explicitly adjust the pointer.
ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
if (app_image_objects.InDest(ifarray.Ptr()) &&
!visited_bitmap->Set(ifarray.Ptr())) {
patch_object_visitor.VisitPointerArray(ifarray);
}
}
}
}
}
}
}
// Fixup objects may read fields in the boot image, use the mutator lock here for sanity.
// Though its probably not required.
TimingLogger::ScopedTiming timing("Fixup objects", &logger);
ScopedObjectAccess soa(Thread::Current());
// Need to update the image to be at the target base.
uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
FixupObjectVisitor<ForwardObject> fixup_object_visitor(visited_bitmap.get(), forward_object);
bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
// Fixup image roots.
CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
image_header.GetImageRoots<kWithoutReadBarrier>().Ptr())));
image_header.RelocateImageObjects(app_image_objects.Delta());
CHECK_EQ(image_header.GetImageBegin(), target_base);
// Fix up dex cache DexFile pointers.
auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
AsObjectArray<mirror::DexCache, kVerifyNone>();
for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
CHECK(dex_cache != nullptr);
patch_object_visitor.VisitDexCacheArrays(dex_cache);
}
}
{
// Only touches objects in the app image, no need for mutator lock.
TimingLogger::ScopedTiming timing("Fixup methods", &logger);
image_header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
// TODO: Consider a separate visitor for runtime vs normal methods.
if (UNLIKELY(method.IsRuntimeMethod())) {
ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
if (table != nullptr) {
ImtConflictTable* new_table = forward_metadata(table);
if (table != new_table) {
method.SetImtConflictTable(new_table, kPointerSize);
}
}
const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
const void* new_code = forward_code(old_code);
if (old_code != new_code) {
method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
}
} else {
method.UpdateObjectsForImageRelocation(forward_object);
method.UpdateEntrypoints(forward_code, kPointerSize);
}
}, target_base, kPointerSize);
}
if (fixup_image) {
{
// Only touches objects in the app image, no need for mutator lock.
TimingLogger::ScopedTiming timing("Fixup fields", &logger);
image_header.VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
field.UpdateObjects(forward_object);
}, target_base);
}
{
TimingLogger::ScopedTiming timing("Fixup imt", &logger);
image_header.VisitPackedImTables(forward_metadata, target_base, kPointerSize);
}
{
TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
image_header.VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
}
// In the app image case, the image methods are actually in the boot image.
image_header.RelocateImageMethods(boot_image.Delta());
// Fix up the intern table.
const auto& intern_table_section = image_header.GetInternedStringsSection();
if (intern_table_section.Size() > 0u) {
TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
ScopedObjectAccess soa(Thread::Current());
// Fixup the pointers in the newly written intern table to contain image addresses.
InternTable temp_intern_table;
// Note that we require that ReadFromMemory does not make an internal copy of the elements
// so that the VisitRoots() will update the memory directly rather than the copies.
temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
[&](InternTable::UnorderedSet& strings)
REQUIRES_SHARED(Locks::mutator_lock_) {
for (GcRoot<mirror::String>& root : strings) {
root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
}
}, /*is_boot_image=*/ false);
}
}
if (VLOG_IS_ON(image)) {
logger.Dump(LOG_STREAM(INFO));
}
return true;
}
};
class ImageSpace::BootImageLoader {
public:
BootImageLoader(const std::vector<std::string>& boot_class_path,
const std::vector<std::string>& boot_class_path_locations,
const std::string& image_location,
InstructionSet image_isa,
bool relocate,
bool executable,
bool is_zygote)
: boot_class_path_(boot_class_path),
boot_class_path_locations_(boot_class_path_locations),
image_location_(image_location),
image_isa_(image_isa),
relocate_(relocate),
executable_(executable),
is_zygote_(is_zygote),
has_system_(false),
has_cache_(false),
is_global_cache_(true),
dalvik_cache_exists_(false),
dalvik_cache_(),
cache_filename_() {
}
bool IsZygote() const { return is_zygote_; }
void FindImageFiles() {
std::string system_filename;
bool found_image = FindImageFilenameImpl(image_location_.c_str(),
image_isa_,
&has_system_,
&system_filename,
&dalvik_cache_exists_,
&dalvik_cache_,
&is_global_cache_,
&has_cache_,
&cache_filename_);
DCHECK(!dalvik_cache_exists_ || !dalvik_cache_.empty());
DCHECK_EQ(found_image, has_system_ || has_cache_);
}
bool HasSystem() const { return has_system_; }
bool HasCache() const { return has_cache_; }
bool DalvikCacheExists() const { return dalvik_cache_exists_; }
bool IsGlobalCache() const { return is_global_cache_; }
const std::string& GetDalvikCache() const {
return dalvik_cache_;
}
const std::string& GetCacheFilename() const {
return cache_filename_;
}
bool LoadFromSystem(bool validate_oat_file,
size_t extra_reservation_size,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
std::string filename = GetSystemImageFilename(image_location_.c_str(), image_isa_);
if (!LoadFromFile(filename,
validate_oat_file,
extra_reservation_size,
&logger,
boot_image_spaces,
extra_reservation,
error_msg)) {
return false;
}
if (VLOG_IS_ON(image)) {
LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
<< boot_image_spaces->front();
logger.Dump(LOG_STREAM(INFO));
}
return true;
}
bool LoadFromDalvikCache(
bool validate_oat_file,
size_t extra_reservation_size,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
DCHECK(DalvikCacheExists());
if (!LoadFromFile(cache_filename_,
validate_oat_file,
extra_reservation_size,
&logger,
boot_image_spaces,
extra_reservation,
error_msg)) {
return false;
}
if (VLOG_IS_ON(image)) {
LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromDalvikCache exiting "
<< boot_image_spaces->front();
logger.Dump(LOG_STREAM(INFO));
}
return true;
}
private:
bool LoadFromFile(
const std::string& filename,
bool validate_oat_file,
size_t extra_reservation_size,
TimingLogger* logger,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
ImageHeader system_hdr;
if (!ReadSpecificImageHeader(filename.c_str(), &system_hdr)) {
*error_msg = StringPrintf("Cannot read header of %s", filename.c_str());
return false;
}
if (system_hdr.GetComponentCount() == 0u ||
system_hdr.GetComponentCount() > boot_class_path_.size()) {
*error_msg = StringPrintf("Unexpected component count in %s, received %u, "
"expected non-zero and <= %zu",
filename.c_str(),
system_hdr.GetComponentCount(),
boot_class_path_.size());
return false;
}
MemMap image_reservation;
MemMap local_extra_reservation;
if (!ReserveBootImageMemory(system_hdr.GetImageReservationSize(),
reinterpret_cast32<uint32_t>(system_hdr.GetImageBegin()),
extra_reservation_size,
&image_reservation,
&local_extra_reservation,
error_msg)) {
return false;
}
ArrayRef<const std::string> provided_locations(boot_class_path_locations_.data(),
system_hdr.GetComponentCount());
std::vector<std::string> locations =
ExpandMultiImageLocations(provided_locations, image_location_);
std::vector<std::string> filenames =
ExpandMultiImageLocations(provided_locations, filename);
DCHECK_EQ(locations.size(), filenames.size());
std::vector<std::unique_ptr<ImageSpace>> spaces;
spaces.reserve(locations.size());
for (std::size_t i = 0u, size = locations.size(); i != size; ++i) {
spaces.push_back(Load(locations[i], filenames[i], logger, &image_reservation, error_msg));
const ImageSpace* space = spaces.back().get();
if (space == nullptr) {
return false;
}
uint32_t expected_component_count = (i == 0u) ? system_hdr.GetComponentCount() : 0u;
uint32_t expected_reservation_size = (i == 0u) ? system_hdr.GetImageReservationSize() : 0u;
if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
!Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
return false;
}
}
for (size_t i = 0u, size = spaces.size(); i != size; ++i) {
std::string expected_boot_class_path =
(i == 0u) ? android::base::Join(provided_locations, ':') : std::string();
if (!OpenOatFile(spaces[i].get(),
boot_class_path_[i],
expected_boot_class_path,
validate_oat_file,
logger,
&image_reservation,
error_msg)) {
return false;
}
}
if (!CheckReservationExhausted(image_reservation, error_msg)) {
return false;
}
MaybeRelocateSpaces(spaces, logger);
boot_image_spaces->swap(spaces);
*extra_reservation = std::move(local_extra_reservation);
return true;
}
private:
class RelocateVisitor {
public:
explicit RelocateVisitor(uint32_t diff) : diff_(diff) {}
template <typename T>
ALWAYS_INLINE T* operator()(T* src) const {
DCHECK(src != nullptr);
return reinterpret_cast32<T*>(reinterpret_cast32<uint32_t>(src) + diff_);
}
private:
const uint32_t diff_;
};
static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
}
template <PointerSize kPointerSize>
static void DoRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
uint32_t diff) REQUIRES_SHARED(Locks::mutator_lock_) {
std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> patched_objects(
gc::accounting::ContinuousSpaceBitmap::Create(
"Marked objects",
spaces.front()->Begin(),
spaces.back()->End() - spaces.front()->Begin()));
using PatchRelocateVisitor = PatchObjectVisitor<kPointerSize, RelocateVisitor, RelocateVisitor>;
RelocateVisitor relocate_visitor(diff);
PatchRelocateVisitor patch_object_visitor(relocate_visitor, relocate_visitor);
mirror::Class* dcheck_class_class = nullptr; // Used only for a DCHECK().
for (const std::unique_ptr<ImageSpace>& space : spaces) {
// First patch the image header. The `diff` is OK for patching 32-bit fields but
// the 64-bit method fields in the ImageHeader may need a negative `delta`.
reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImage(
(reinterpret_cast32<uint32_t>(space->Begin()) >= -diff) // Would `begin+diff` overflow?
? -static_cast<int64_t>(-diff) : static_cast<int64_t>(diff));
// Patch fields and methods.
const ImageHeader& image_header = space->GetImageHeader();
image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
&field.DeclaringClassRoot());
}, space->Begin());
image_header.VisitPackedArtMethods([&](ArtMethod& method)
REQUIRES_SHARED(Locks::mutator_lock_) {
patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
patch_object_visitor.PatchNativePointer(data_address);
void** entrypoint_address =
PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
patch_object_visitor.PatchNativePointer(entrypoint_address);
}, space->Begin(), kPointerSize);
auto method_table_visitor = [&](ArtMethod* method) {
DCHECK(method != nullptr);
return relocate_visitor(method);
};
image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
// Patch the intern table.
if (image_header.GetInternedStringsSection().Size() != 0u) {
const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
size_t read_count;
InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
for (GcRoot<mirror::String>& slot : temp_set) {
patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
}
}
// Patch the class table and classes, so that we can traverse class hierarchy to
// determine the types of other objects when we visit them later.
if (image_header.GetClassTableSection().Size() != 0u) {
uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
size_t read_count;
ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
DCHECK(!temp_set.empty());
ClassTableVisitor class_table_visitor(relocate_visitor);
for (ClassTable::TableSlot& slot : temp_set) {
slot.VisitRoot(class_table_visitor);
mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
DCHECK(klass != nullptr);
patched_objects->Set(klass);
patch_object_visitor.VisitClass(klass);
if (kIsDebugBuild) {
mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (dcheck_class_class == nullptr) {
dcheck_class_class = class_class;
} else {
CHECK_EQ(class_class, dcheck_class_class);
}
}
// Then patch the non-embedded vtable and iftable.
ObjPtr<mirror::PointerArray> vtable =
klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
if (vtable != nullptr && !patched_objects->Set(vtable.Ptr())) {
patch_object_visitor.VisitPointerArray(vtable);
}
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
if (iftable != nullptr) {
int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
for (int32_t i = 0; i != ifcount; ++i) {
ObjPtr<mirror::PointerArray> unpatched_ifarray =
iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
if (unpatched_ifarray != nullptr) {
// The iftable has not been patched, so we need to explicitly adjust the pointer.
ObjPtr<mirror::PointerArray> ifarray = relocate_visitor(unpatched_ifarray.Ptr());
if (!patched_objects->Set(ifarray.Ptr())) {
patch_object_visitor.VisitPointerArray(ifarray);
}
}
}
}
}
}
}
// Patch class roots now, so that we can recognize mirror::Method and mirror::Constructor.
ObjPtr<mirror::Class> method_class;
ObjPtr<mirror::Class> constructor_class;
{
const ImageSpace* space = spaces.front().get();
const ImageHeader& image_header = space->GetImageHeader();
ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
image_header.GetImageRoots<kWithoutReadBarrier>();
patched_objects->Set(image_roots.Ptr());
patch_object_visitor.VisitObject(image_roots.Ptr());
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(MakeObjPtr(
image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kClassRoots)));
patched_objects->Set(class_roots.Ptr());
patch_object_visitor.VisitObject(class_roots.Ptr());
method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
}
for (size_t s = 0u, size = spaces.size(); s != size; ++s) {
const ImageSpace* space = spaces[s].get();
const ImageHeader& image_header = space->GetImageHeader();
static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
uint32_t objects_end = image_header.GetObjectsSection().Size();
DCHECK_ALIGNED(objects_end, kObjectAlignment);
for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
if (!patched_objects->Test(object)) {
// This is the last pass over objects, so we do not need to Set().
patch_object_visitor.VisitObject(object);
mirror::Class* klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (klass->IsDexCacheClass<kVerifyNone>()) {
// Patch dex cache array pointers and elements.
mirror::DexCache* dex_cache = object->AsDexCache<kVerifyNone, kWithoutReadBarrier>();
patch_object_visitor.VisitDexCacheArrays(dex_cache);
} else if (klass == method_class || klass == constructor_class) {
// Patch the ArtMethod* in the mirror::Executable subobject.
ObjPtr<mirror::Executable> as_executable =
ObjPtr<mirror::Executable>::DownCast(MakeObjPtr(object));
ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
ArtMethod* patched_method = relocate_visitor(unpatched_method);
as_executable->SetArtMethod</*kTransactionActive=*/ false,
/*kCheckTransaction=*/ true,
kVerifyNone>(patched_method);
}
}
pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
}
}
}
void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
TimingLogger* logger)
REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
ImageSpace* first_space = spaces.front().get();
const ImageHeader& first_space_header = first_space->GetImageHeader();
uint32_t diff =
static_cast<uint32_t>(first_space->Begin() - first_space_header.GetImageBegin());
if (!relocate_) {
DCHECK_EQ(diff, 0u);
return;
}
PointerSize pointer_size = first_space_header.GetPointerSize();
if (pointer_size == PointerSize::k64) {
DoRelocateSpaces<PointerSize::k64>(spaces, diff);
} else {
DoRelocateSpaces<PointerSize::k32>(spaces, diff);
}
}
std::unique_ptr<ImageSpace> Load(const std::string& image_location,
const std::string& image_filename,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Should this be a RDWR lock? This is only a defensive measure, as at
// this point the image should exist.
// However, only the zygote can write into the global dalvik-cache, so
// restrict to zygote processes, or any process that isn't using
// /data/dalvik-cache (which we assume to be allowed to write there).
const bool rw_lock = is_zygote_ || !is_global_cache_;
// Note that we must not use the file descriptor associated with
// ScopedFlock::GetFile to Init the image file. We want the file
// descriptor (and the associated exclusive lock) to be released when
// we leave Create.
ScopedFlock image = LockedFile::Open(image_filename.c_str(),
/*flags=*/ rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY,
/*block=*/ true,
error_msg);
VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
<< image_location;
// If we are in /system we can assume the image is good. We can also
// assume this if we are using a relocated image (i.e. image checksum
// matches) since this is only different by the offset. We need this to
// make sure that host tests continue to work.
// Since we are the boot image, pass null since we load the oat file from the boot image oat
// file name.
return Loader::Init(image_filename.c_str(),
image_location.c_str(),
/*oat_file=*/ nullptr,
logger,
image_reservation,
error_msg);
}
bool OpenOatFile(ImageSpace* space,
const std::string& dex_filename,
const std::string& expected_boot_class_path,
bool validate_oat_file,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg) {
// VerifyImageAllocations() will be called later in Runtime::Init()
// as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
// and ArtField::java_lang_reflect_ArtField_, which are used from
// Object::SizeOf() which VerifyImageAllocations() calls, are not
// set yet at this point.
DCHECK(image_reservation != nullptr);
std::unique_ptr<OatFile> oat_file;
{
TimingLogger::ScopedTiming timing("OpenOatFile", logger);
std::string oat_filename =
ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
std::string oat_location =
ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
oat_filename,
oat_location,
executable_,
/*low_4gb=*/ false,
/*abs_dex_location=*/ dex_filename.c_str(),
image_reservation,
error_msg));
if (oat_file == nullptr) {
*error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
oat_filename.c_str(),
space->GetName(),
error_msg->c_str());
return false;
}
const ImageHeader& image_header = space->GetImageHeader();
uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
uint32_t image_oat_checksum = image_header.GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
*error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
" 0x%x in image %s",
oat_checksum,
image_oat_checksum,
space->GetName());
return false;
}
const char* oat_boot_class_path =
oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
if (expected_boot_class_path != oat_boot_class_path) {
*error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
"boot class path %s in image %s",
oat_boot_class_path,
expected_boot_class_path.c_str(),
space->GetName());
return false;
}
ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
CHECK(image_header.GetOatDataBegin() != nullptr);
uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
if (oat_file->Begin() != oat_data_begin) {
*error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
" %p v. %p",
oat_filename.c_str(),
space->GetName(),
oat_file->Begin(),
oat_data_begin);
return false;
}
}
if (validate_oat_file) {
TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
DCHECK(!error_msg->empty());
return false;
}
}
space->oat_file_ = std::move(oat_file);
space->oat_file_non_owned_ = space->oat_file_.get();
return true;
}
bool ReserveBootImageMemory(uint32_t reservation_size,
uint32_t image_start,
size_t extra_reservation_size,
/*out*/MemMap* image_reservation,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) {
DCHECK_ALIGNED(reservation_size, kPageSize);
DCHECK_ALIGNED(image_start, kPageSize);
DCHECK(!image_reservation->IsValid());
DCHECK_LT(extra_reservation_size, std::numeric_limits<uint32_t>::max() - reservation_size);
size_t total_size = reservation_size + extra_reservation_size;
// If relocating, choose a random address for ALSR.
uint32_t addr = relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : image_start;
*image_reservation =
MemMap::MapAnonymous("Boot image reservation",
reinterpret_cast32<uint8_t*>(addr),
total_size,
PROT_NONE,
/*low_4gb=*/ true,
/*reuse=*/ false,
/*reservation=*/ nullptr,
error_msg);
if (!image_reservation->IsValid()) {
return false;
}
DCHECK(!extra_reservation->IsValid());
if (extra_reservation_size != 0u) {
DCHECK_ALIGNED(extra_reservation_size, kPageSize);
DCHECK_LT(extra_reservation_size, image_reservation->Size());
uint8_t* split = image_reservation->End() - extra_reservation_size;
*extra_reservation = image_reservation->RemapAtEnd(split,
"Boot image extra reservation",
PROT_NONE,
error_msg);
if (!extra_reservation->IsValid()) {
return false;
}
}
return true;
}
bool CheckReservationExhausted(const MemMap& image_reservation, /*out*/std::string* error_msg) {
if (image_reservation.IsValid()) {
*error_msg = StringPrintf("Excessive image reservation after loading boot image: %p-%p",
image_reservation.Begin(),
image_reservation.End());
return false;
}
return true;
}
const std::vector<std::string>& boot_class_path_;
const std::vector<std::string>& boot_class_path_locations_;
const std::string& image_location_;
InstructionSet image_isa_;
bool relocate_;
bool executable_;
bool is_zygote_;
bool has_system_;
bool has_cache_;
bool is_global_cache_;
bool dalvik_cache_exists_;
std::string dalvik_cache_;
std::string cache_filename_;
};
static constexpr uint64_t kLowSpaceValue = 50 * MB;
static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
// Read the free space of the cache partition and make a decision whether to keep the generated
// image. This is to try to mitigate situations where the system might run out of space later.
static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
// Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
struct statvfs buf;
int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
if (res != 0) {
// Could not stat. Conservatively tell the system to delete the image.
*error_msg = "Could not stat the filesystem, assuming low-memory situation.";
return false;
}
uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
// Zygote is privileged, but other things are not. Use bavail.
uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
// Take the overall size as an indicator for a tmpfs, which is being used for the decryption
// environment. We do not want to fail quickening the boot image there, as it is beneficial
// for time-to-UI.
if (fs_overall_size > kTmpFsSentinelValue) {
if (fs_free_size < kLowSpaceValue) {
*error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
"least %" PRIu64 ".",
static_cast<double>(fs_free_size) / MB,
kLowSpaceValue / MB);
return false;
}
}
return true;
}
bool ImageSpace::LoadBootImage(
const std::vector<std::string>& boot_class_path,
const std::vector<std::string>& boot_class_path_locations,
const std::string& image_location,
const InstructionSet image_isa,
ImageSpaceLoadingOrder order,
bool relocate,
bool executable,
bool is_zygote,
size_t extra_reservation_size,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation) {
ScopedTrace trace(__FUNCTION__);
DCHECK(boot_image_spaces != nullptr);
DCHECK(boot_image_spaces->empty());
DCHECK_ALIGNED(extra_reservation_size, kPageSize);
DCHECK(extra_reservation != nullptr);
DCHECK_NE(image_isa, InstructionSet::kNone);
if (image_location.empty()) {
return false;
}
BootImageLoader loader(boot_class_path,
boot_class_path_locations,
image_location,
image_isa,
relocate,
executable,
is_zygote);
// Step 0: Extra zygote work.
// Step 0.a: If we're the zygote, mark boot.
if (loader.IsZygote() && CanWriteToDalvikCache(image_isa)) {
MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
}
loader.FindImageFiles();
// Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
// if necessary. While the runtime may be fine (it is pretty tolerant to
// out-of-disk-space situations), other parts of the platform are not.
//
// The advantage of doing this proactively is that the later steps are simplified,
// i.e., we do not need to code retries.
bool low_space = false;
if (loader.IsZygote() && loader.DalvikCacheExists()) {
// Extra checks for the zygote. These only apply when loading the first image, explained below.
const std::string& dalvik_cache = loader.GetDalvikCache();
DCHECK(!dalvik_cache.empty());
std::string local_error_msg;
bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
if (!check_space) {
LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
PruneDalvikCache(image_isa);
// Re-evaluate the image.
loader.FindImageFiles();
// Disable compilation/patching - we do not want to fill up the space again.
low_space = true;
}
}
// Collect all the errors.
std::vector<std::string> error_msgs;
auto try_load_from = [&](auto has_fn, auto load_fn, bool validate_oat_file) {
if ((loader.*has_fn)()) {
std::string local_error_msg;
if ((loader.*load_fn)(validate_oat_file,
extra_reservation_size,
boot_image_spaces,
extra_reservation,
&local_error_msg)) {
return true;
}
error_msgs.push_back(local_error_msg);
}
return false;
};
auto try_load_from_system = [&]() {
return try_load_from(&BootImageLoader::HasSystem, &BootImageLoader::LoadFromSystem, false);
};
auto try_load_from_cache = [&]() {
return try_load_from(&BootImageLoader::HasCache, &BootImageLoader::LoadFromDalvikCache, true);
};
auto invoke_sequentially = [](auto first, auto second) {
return first() || second();
};
// Step 1+2: Check system and cache images in the asked-for order.
if (order == ImageSpaceLoadingOrder::kSystemFirst) {
if (invoke_sequentially(try_load_from_system, try_load_from_cache)) {
return true;
}
} else {
if (invoke_sequentially(try_load_from_cache, try_load_from_system)) {
return true;
}
}
// Step 3: We do not have an existing image in /system,
// so generate an image into the dalvik cache.
if (!loader.HasSystem() && loader.DalvikCacheExists()) {
std::string local_error_msg;
if (low_space || !Runtime::Current()->IsImageDex2OatEnabled()) {
local_error_msg = "Image compilation disabled.";
} else if (ImageCreationAllowed(loader.IsGlobalCache(),
image_isa,
is_zygote,
&local_error_msg)) {
bool compilation_success =
GenerateImage(loader.GetCacheFilename(), image_isa, &local_error_msg);
if (compilation_success) {
if (loader.LoadFromDalvikCache(/*validate_oat_file=*/ false,
extra_reservation_size,
boot_image_spaces,
extra_reservation,
&local_error_msg)) {
return true;
}
}
}
error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
loader.GetCacheFilename().c_str(),
local_error_msg.c_str()));
}
// We failed. Prune the cache the free up space, create a compound error message
// and return false.
if (loader.DalvikCacheExists()) {
PruneDalvikCache(image_isa);
}
std::ostringstream oss;
bool first = true;
for (const auto& msg : error_msgs) {
if (!first) {
oss << "\n ";
}
oss << msg;
}
LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. "
<< "Attempting to fall back to imageless running. Error was: " << oss.str();
return false;
}
ImageSpace::~ImageSpace() {
// Everything done by member destructors. Classes forward-declared in header are now defined.
}
std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
const OatFile* oat_file,
std::string* error_msg) {
// Note: The oat file has already been validated.
return Loader::InitAppImage(image,
image,
oat_file,
/*image_reservation=*/ nullptr,
error_msg);
}
const OatFile* ImageSpace::GetOatFile() const {
return oat_file_non_owned_;
}
std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
CHECK(oat_file_ != nullptr);
return std::move(oat_file_);
}
void ImageSpace::Dump(std::ostream& os) const {
os << GetType()
<< " begin=" << reinterpret_cast<void*>(Begin())
<< ",end=" << reinterpret_cast<void*>(End())
<< ",size=" << PrettySize(Size())
<< ",name=\"" << GetName() << "\"]";
}
bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
const ArtDexFileLoader dex_file_loader;
for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
// Skip multidex locations - These will be checked when we visit their
// corresponding primary non-multidex location.
if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
continue;
}
std::vector<uint32_t> checksums;
if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
*error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
"referenced by oat file %s: %s",
dex_file_location.c_str(),
oat_file.GetLocation().c_str(),
error_msg->c_str());
return false;
}
CHECK(!checksums.empty());
if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
"'%s' and dex file '%s' (0x%x != 0x%x)",
oat_file.GetLocation().c_str(),
dex_file_location.c_str(),
oat_dex_file->GetDexFileLocationChecksum(),
checksums[0]);
return false;
}
// Verify checksums for any related multidex entries.
for (size_t i = 1; i < checksums.size(); i++) {
std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
i,
dex_file_location.c_str());
const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
nullptr,
error_msg);
if (multi_dex == nullptr) {
*error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
oat_file.GetLocation().c_str(),
multi_dex_location.c_str());
return false;
}
if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
"'%s' and dex file '%s' (0x%x != 0x%x)",
oat_file.GetLocation().c_str(),
multi_dex_location.c_str(),
multi_dex->GetDexFileLocationChecksum(),
checksums[i]);
return false;
}
}
}
return true;
}
std::string ImageSpace::GetBootClassPathChecksums(ArrayRef<const std::string> boot_class_path,
const std::string& image_location,
InstructionSet image_isa,
ImageSpaceLoadingOrder order,
/*out*/std::string* error_msg) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = false;
if (!FindImageFilename(image_location.c_str(),
image_isa,
&system_filename,
&has_system,
&cache_filename,
&dalvik_cache_exists,
&has_cache,
&is_global_cache)) {
*error_msg = StringPrintf("Unable to find image file for %s and %s",
image_location.c_str(),
GetInstructionSetString(image_isa));
return std::string();
}
DCHECK(has_system || has_cache);
const std::string& filename = (order == ImageSpaceLoadingOrder::kSystemFirst)
? (has_system ? system_filename : cache_filename)
: (has_cache ? cache_filename : system_filename);
std::unique_ptr<ImageHeader> header = ReadSpecificImageHeader(filename.c_str(), error_msg);
if (header == nullptr) {
return std::string();
}
if (header->GetComponentCount() == 0u || header->GetComponentCount() > boot_class_path.size()) {
*error_msg = StringPrintf("Unexpected component count in %s, received %u, "
"expected non-zero and <= %zu",
filename.c_str(),
header->GetComponentCount(),
boot_class_path.size());
return std::string();
}
std::string boot_image_checksum =
StringPrintf("i;%d/%08x", header->GetComponentCount(), header->GetImageChecksum());
ArrayRef<const std::string> boot_class_path_tail =
ArrayRef<const std::string>(boot_class_path).SubArray(header->GetComponentCount());
for (const std::string& bcp_filename : boot_class_path_tail) {
std::vector<std::unique_ptr<const DexFile>> dex_files;
const ArtDexFileLoader dex_file_loader;
if (!dex_file_loader.Open(bcp_filename.c_str(),
bcp_filename, // The location does not matter here.
/*verify=*/ false,
/*verify_checksum=*/ false,
error_msg,
&dex_files)) {
return std::string();
}
DCHECK(!dex_files.empty());
StringAppendF(&boot_image_checksum, ":d");
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
}
}
return boot_image_checksum;
}
std::string ImageSpace::GetBootClassPathChecksums(
const std::vector<ImageSpace*>& image_spaces,
const std::vector<const DexFile*>& boot_class_path) {
DCHECK(!image_spaces.empty());
const ImageHeader& primary_header = image_spaces.front()->GetImageHeader();
uint32_t component_count = primary_header.GetComponentCount();
DCHECK_EQ(component_count, image_spaces.size());
std::string boot_image_checksum =
StringPrintf("i;%d/%08x", component_count, primary_header.GetImageChecksum());
size_t pos = 0u;
for (const ImageSpace* space : image_spaces) {
size_t num_dex_files = space->oat_file_non_owned_->GetOatDexFiles().size();
if (kIsDebugBuild) {
CHECK_NE(num_dex_files, 0u);
CHECK_LE(space->oat_file_non_owned_->GetOatDexFiles().size(), boot_class_path.size() - pos);
for (size_t i = 0; i != num_dex_files; ++i) {
CHECK_EQ(space->oat_file_non_owned_->GetOatDexFiles()[i]->GetDexFileLocation(),
boot_class_path[pos + i]->GetLocation());
}
}
pos += num_dex_files;
}
ArrayRef<const DexFile* const> boot_class_path_tail =
ArrayRef<const DexFile* const>(boot_class_path).SubArray(pos);
DCHECK(boot_class_path_tail.empty() ||
!DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
for (const DexFile* dex_file : boot_class_path_tail) {
if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
StringAppendF(&boot_image_checksum, ":d");
}
StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
}
return boot_image_checksum;
}
std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
const std::vector<std::string>& dex_locations,
const std::string& image_location) {
return ExpandMultiImageLocations(ArrayRef<const std::string>(dex_locations), image_location);
}
std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
ArrayRef<const std::string> dex_locations,
const std::string& image_location) {
DCHECK(!dex_locations.empty());
// Find the path.
size_t last_slash = image_location.rfind('/');
CHECK_NE(last_slash, std::string::npos);
// We also need to honor path components that were encoded through '@'. Otherwise the loading
// code won't be able to find the images.
if (image_location.find('@', last_slash) != std::string::npos) {
last_slash = image_location.rfind('@');
}
// Find the dot separating the primary image name from the extension.
size_t last_dot = image_location.rfind('.');
// Extract the extension and base (the path and primary image name).
std::string extension;
std::string base = image_location;
if (last_dot != std::string::npos && last_dot > last_slash) {
extension = image_location.substr(last_dot); // Including the dot.
base.resize(last_dot);
}
// For non-empty primary image name, add '-' to the `base`.
if (last_slash + 1u != base.size()) {
base += '-';
}
std::vector<std::string> locations;
locations.reserve(dex_locations.size());
locations.push_back(image_location);
// Now create the other names. Use a counted loop to skip the first one.
for (size_t i = 1u; i < dex_locations.size(); ++i) {
// Replace path with `base` (i.e. image path and prefix) and replace the original
// extension (if any) with `extension`.
std::string name = dex_locations[i];
size_t last_dex_slash = name.rfind('/');
if (last_dex_slash != std::string::npos) {
name = name.substr(last_dex_slash + 1);
}
size_t last_dex_dot = name.rfind('.');
if (last_dex_dot != std::string::npos) {
name.resize(last_dex_dot);
}
locations.push_back(base + name + extension);
}
return locations;
}
void ImageSpace::DumpSections(std::ostream& os) const {
const uint8_t* base = Begin();
const ImageHeader& header = GetImageHeader();
for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
auto section_type = static_cast<ImageHeader::ImageSections>(i);
const ImageSection& section = header.GetImageSection(section_type);
os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
<< "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
}
}
void ImageSpace::DisablePreResolvedStrings() {
// Clear dex cache pointers.
ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
dex_cache->ClearPreResolvedStrings();
}
}
void ImageSpace::ReleaseMetadata() {
const ImageSection& metadata = GetImageHeader().GetMetadataSection();
VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
// In the case where new app images may have been added around the checkpoint, ensure that we
// don't madvise the cache for these.
ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
bool have_startup_cache = false;
for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
if (dex_cache->NumPreResolvedStrings() != 0u) {
have_startup_cache = true;
}
}
// Only safe to do for images that have their preresolved strings caches disabled. This is because
// uncompressed images madvise to the original unrelocated image contents.
if (!have_startup_cache) {
// Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
if (page_begin < page_end) {
CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
}
}
}
} // namespace space
} // namespace gc
} // namespace art