| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image_space.h" |
| |
| #include <sys/statvfs.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <random> |
| |
| #include "android-base/stringprintf.h" |
| #include "android-base/strings.h" |
| |
| #include "arch/instruction_set.h" |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/array_ref.h" |
| #include "base/bit_memory_region.h" |
| #include "base/callee_save_type.h" |
| #include "base/enums.h" |
| #include "base/file_utils.h" |
| #include "base/macros.h" |
| #include "base/os.h" |
| #include "base/scoped_flock.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "base/utils.h" |
| #include "class_root.h" |
| #include "dex/art_dex_file_loader.h" |
| #include "dex/dex_file_loader.h" |
| #include "exec_utils.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/task_processor.h" |
| #include "image-inl.h" |
| #include "image_space_fs.h" |
| #include "intern_table-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/executable.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object-refvisitor-inl.h" |
| #include "oat_file.h" |
| #include "runtime.h" |
| #include "space-inl.h" |
| |
| namespace art { |
| namespace gc { |
| namespace space { |
| |
| using android::base::StringAppendF; |
| using android::base::StringPrintf; |
| |
| Atomic<uint32_t> ImageSpace::bitmap_index_(0); |
| |
| ImageSpace::ImageSpace(const std::string& image_filename, |
| const char* image_location, |
| MemMap&& mem_map, |
| std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap, |
| uint8_t* end) |
| : MemMapSpace(image_filename, |
| std::move(mem_map), |
| mem_map.Begin(), |
| end, |
| end, |
| kGcRetentionPolicyNeverCollect), |
| live_bitmap_(std::move(live_bitmap)), |
| oat_file_non_owned_(nullptr), |
| image_location_(image_location) { |
| DCHECK(live_bitmap_ != nullptr); |
| } |
| |
| static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { |
| CHECK_ALIGNED(min_delta, kPageSize); |
| CHECK_ALIGNED(max_delta, kPageSize); |
| CHECK_LT(min_delta, max_delta); |
| |
| int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta); |
| if (r % 2 == 0) { |
| r = RoundUp(r, kPageSize); |
| } else { |
| r = RoundDown(r, kPageSize); |
| } |
| CHECK_LE(min_delta, r); |
| CHECK_GE(max_delta, r); |
| CHECK_ALIGNED(r, kPageSize); |
| return r; |
| } |
| |
| static int32_t ChooseRelocationOffsetDelta() { |
| return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); |
| } |
| |
| static bool GenerateImage(const std::string& image_filename, |
| InstructionSet image_isa, |
| std::string* error_msg) { |
| Runtime* runtime = Runtime::Current(); |
| const std::vector<std::string>& boot_class_path = runtime->GetBootClassPath(); |
| if (boot_class_path.empty()) { |
| *error_msg = "Failed to generate image because no boot class path specified"; |
| return false; |
| } |
| // We should clean up so we are more likely to have room for the image. |
| if (Runtime::Current()->IsZygote()) { |
| LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile"; |
| PruneDalvikCache(image_isa); |
| } |
| |
| std::vector<std::string> arg_vector; |
| |
| std::string dex2oat(Runtime::Current()->GetCompilerExecutable()); |
| arg_vector.push_back(dex2oat); |
| |
| std::string image_option_string("--image="); |
| image_option_string += image_filename; |
| arg_vector.push_back(image_option_string); |
| |
| const std::vector<std::string>& boot_class_path_locations = runtime->GetBootClassPathLocations(); |
| DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size()); |
| for (size_t i = 0u; i < boot_class_path.size(); i++) { |
| arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]); |
| arg_vector.push_back(std::string("--dex-location=") + boot_class_path_locations[i]); |
| } |
| |
| std::string oat_file_option_string("--oat-file="); |
| oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename); |
| arg_vector.push_back(oat_file_option_string); |
| |
| // Note: we do not generate a fully debuggable boot image so we do not pass the |
| // compiler flag --debuggable here. |
| |
| Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector); |
| CHECK_EQ(image_isa, kRuntimeISA) |
| << "We should always be generating an image for the current isa."; |
| |
| int32_t base_offset = ChooseRelocationOffsetDelta(); |
| LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default " |
| << "art base address of 0x" << std::hex << ART_BASE_ADDRESS; |
| arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset)); |
| |
| if (!kIsTargetBuild) { |
| arg_vector.push_back("--host"); |
| } |
| |
| const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions(); |
| for (size_t i = 0; i < compiler_options.size(); ++i) { |
| arg_vector.push_back(compiler_options[i].c_str()); |
| } |
| |
| std::string command_line(android::base::Join(arg_vector, ' ')); |
| LOG(INFO) << "GenerateImage: " << command_line; |
| return Exec(arg_vector, error_msg); |
| } |
| |
| static bool FindImageFilenameImpl(const char* image_location, |
| const InstructionSet image_isa, |
| bool* has_system, |
| std::string* system_filename, |
| bool* dalvik_cache_exists, |
| std::string* dalvik_cache, |
| bool* is_global_cache, |
| bool* has_cache, |
| std::string* cache_filename) { |
| DCHECK(dalvik_cache != nullptr); |
| |
| *has_system = false; |
| *has_cache = false; |
| // image_location = /system/framework/boot.art |
| // system_image_location = /system/framework/<image_isa>/boot.art |
| std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); |
| if (OS::FileExists(system_image_filename.c_str())) { |
| *system_filename = system_image_filename; |
| *has_system = true; |
| } |
| |
| bool have_android_data = false; |
| *dalvik_cache_exists = false; |
| GetDalvikCache(GetInstructionSetString(image_isa), |
| /*create_if_absent=*/ true, |
| dalvik_cache, |
| &have_android_data, |
| dalvik_cache_exists, |
| is_global_cache); |
| |
| if (*dalvik_cache_exists) { |
| DCHECK(have_android_data); |
| // Always set output location even if it does not exist, |
| // so that the caller knows where to create the image. |
| // |
| // image_location = /system/framework/boot.art |
| // *image_filename = /data/dalvik-cache/<image_isa>/system@framework@boot.art |
| std::string error_msg; |
| if (!GetDalvikCacheFilename(image_location, |
| dalvik_cache->c_str(), |
| cache_filename, |
| &error_msg)) { |
| LOG(WARNING) << error_msg; |
| return *has_system; |
| } |
| *has_cache = OS::FileExists(cache_filename->c_str()); |
| } |
| return *has_system || *has_cache; |
| } |
| |
| bool ImageSpace::FindImageFilename(const char* image_location, |
| const InstructionSet image_isa, |
| std::string* system_filename, |
| bool* has_system, |
| std::string* cache_filename, |
| bool* dalvik_cache_exists, |
| bool* has_cache, |
| bool* is_global_cache) { |
| std::string dalvik_cache_unused; |
| return FindImageFilenameImpl(image_location, |
| image_isa, |
| has_system, |
| system_filename, |
| dalvik_cache_exists, |
| &dalvik_cache_unused, |
| is_global_cache, |
| has_cache, |
| cache_filename); |
| } |
| |
| static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) { |
| std::unique_ptr<File> image_file(OS::OpenFileForReading(filename)); |
| if (image_file.get() == nullptr) { |
| return false; |
| } |
| const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader)); |
| if (!success || !image_header->IsValid()) { |
| return false; |
| } |
| return true; |
| } |
| |
| static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename, |
| std::string* error_msg) { |
| std::unique_ptr<ImageHeader> hdr(new ImageHeader); |
| if (!ReadSpecificImageHeader(filename, hdr.get())) { |
| *error_msg = StringPrintf("Unable to read image header for %s", filename); |
| return nullptr; |
| } |
| return hdr; |
| } |
| |
| std::unique_ptr<ImageHeader> ImageSpace::ReadImageHeader(const char* image_location, |
| const InstructionSet image_isa, |
| ImageSpaceLoadingOrder order, |
| std::string* error_msg) { |
| std::string system_filename; |
| bool has_system = false; |
| std::string cache_filename; |
| bool has_cache = false; |
| bool dalvik_cache_exists = false; |
| bool is_global_cache = false; |
| if (FindImageFilename(image_location, |
| image_isa, |
| &system_filename, |
| &has_system, |
| &cache_filename, |
| &dalvik_cache_exists, |
| &has_cache, |
| &is_global_cache)) { |
| if (order == ImageSpaceLoadingOrder::kSystemFirst) { |
| if (has_system) { |
| return ReadSpecificImageHeader(system_filename.c_str(), error_msg); |
| } |
| if (has_cache) { |
| return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); |
| } |
| } else { |
| if (has_cache) { |
| return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); |
| } |
| if (has_system) { |
| return ReadSpecificImageHeader(system_filename.c_str(), error_msg); |
| } |
| } |
| } |
| |
| *error_msg = StringPrintf("Unable to find image file for %s", image_location); |
| return nullptr; |
| } |
| |
| static bool CanWriteToDalvikCache(const InstructionSet isa) { |
| const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa)); |
| if (access(dalvik_cache.c_str(), O_RDWR) == 0) { |
| return true; |
| } else if (errno != EACCES) { |
| PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES"; |
| } |
| return false; |
| } |
| |
| static bool ImageCreationAllowed(bool is_global_cache, |
| const InstructionSet isa, |
| bool is_zygote, |
| std::string* error_msg) { |
| // Anyone can write into a "local" cache. |
| if (!is_global_cache) { |
| return true; |
| } |
| |
| // Only the zygote running as root is allowed to create the global boot image. |
| // If the zygote is running as non-root (and cannot write to the dalvik-cache), |
| // then image creation is not allowed.. |
| if (is_zygote) { |
| return CanWriteToDalvikCache(isa); |
| } |
| |
| *error_msg = "Only the zygote can create the global boot image."; |
| return false; |
| } |
| |
| void ImageSpace::VerifyImageAllocations() { |
| uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); |
| while (current < End()) { |
| CHECK_ALIGNED(current, kObjectAlignment); |
| auto* obj = reinterpret_cast<mirror::Object*>(current); |
| CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; |
| CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf(); |
| if (kUseBakerReadBarrier) { |
| obj->AssertReadBarrierState(); |
| } |
| current += RoundUp(obj->SizeOf(), kObjectAlignment); |
| } |
| } |
| |
| // Helper class for relocating from one range of memory to another. |
| class RelocationRange { |
| public: |
| RelocationRange() = default; |
| RelocationRange(const RelocationRange&) = default; |
| RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length) |
| : source_(source), |
| dest_(dest), |
| length_(length) {} |
| |
| bool InSource(uintptr_t address) const { |
| return address - source_ < length_; |
| } |
| |
| bool InDest(const void* dest) const { |
| return InDest(reinterpret_cast<uintptr_t>(dest)); |
| } |
| |
| bool InDest(uintptr_t address) const { |
| return address - dest_ < length_; |
| } |
| |
| // Translate a source address to the destination space. |
| uintptr_t ToDest(uintptr_t address) const { |
| DCHECK(InSource(address)); |
| return address + Delta(); |
| } |
| |
| // Returns the delta between the dest from the source. |
| uintptr_t Delta() const { |
| return dest_ - source_; |
| } |
| |
| uintptr_t Source() const { |
| return source_; |
| } |
| |
| uintptr_t Dest() const { |
| return dest_; |
| } |
| |
| uintptr_t Length() const { |
| return length_; |
| } |
| |
| private: |
| const uintptr_t source_; |
| const uintptr_t dest_; |
| const uintptr_t length_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) { |
| return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-" |
| << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->(" |
| << reinterpret_cast<const void*>(reloc.Dest()) << "-" |
| << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")"; |
| } |
| |
| template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor> |
| class ImageSpace::PatchObjectVisitor final { |
| public: |
| explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor) |
| : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {} |
| |
| void VisitClass(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // A mirror::Class object consists of |
| // - instance fields inherited from j.l.Object, |
| // - instance fields inherited from j.l.Class, |
| // - embedded tables (vtable, interface method table), |
| // - static fields of the class itself. |
| // The reference fields are at the start of each field section (this is how the |
| // ClassLinker orders fields; except when that would create a gap between superclass |
| // fields and the first reference of the subclass due to alignment, it can be filled |
| // with smaller fields - but that's not the case for j.l.Object and j.l.Class). |
| |
| DCHECK_ALIGNED(klass, kObjectAlignment); |
| static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check."); |
| // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class. |
| // This should be the only reference field in j.l.Object and we assert that below. |
| PatchReferenceField</*kMayBeNull=*/ false>(klass, mirror::Object::ClassOffset()); |
| // Then patch the reference instance fields described by j.l.Class.class. |
| // Use the sizeof(Object) to determine where these reference fields start; |
| // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()` |
| // after patching but the j.l.Class may not have been patched yet. |
| mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>(); |
| DCHECK_NE(num_reference_instance_fields, 0u); |
| static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check."); |
| MemberOffset instance_field_offset(sizeof(mirror::Object)); |
| for (size_t i = 0; i != num_reference_instance_fields; ++i) { |
| PatchReferenceField(klass, instance_field_offset); |
| static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize, |
| "Heap reference sizes equality check."); |
| instance_field_offset = |
| MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize); |
| } |
| // Now that we have patched the `super_class_`, if this is the j.l.Class.class, |
| // we can get a reference to j.l.Object.class and assert that it has only one |
| // reference instance field (the `klass_` patched above). |
| if (kIsDebugBuild && klass == class_class) { |
| ObjPtr<mirror::Class> object_class = |
| klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>(); |
| CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u); |
| } |
| // Then patch static fields. |
| size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>(); |
| if (num_reference_static_fields != 0u) { |
| MemberOffset static_field_offset = |
| klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize); |
| for (size_t i = 0; i != num_reference_static_fields; ++i) { |
| PatchReferenceField(klass, static_field_offset); |
| static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize, |
| "Heap reference sizes equality check."); |
| static_field_offset = |
| MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize); |
| } |
| } |
| // Then patch native pointers. |
| klass->FixupNativePointers<kVerifyNone>(klass, kPointerSize, *this); |
| } |
| |
| template <typename T> |
| T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const { |
| return (ptr != nullptr) ? native_visitor_(ptr) : nullptr; |
| } |
| |
| void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Fully patch the pointer array, including the `klass_` field. |
| PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset()); |
| |
| int32_t length = pointer_array->GetLength<kVerifyNone>(); |
| for (int32_t i = 0; i != length; ++i) { |
| ArtMethod** method_entry = reinterpret_cast<ArtMethod**>( |
| pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize)); |
| PatchNativePointer</*kMayBeNull=*/ false>(method_entry); |
| } |
| } |
| |
| void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Visit all reference fields. |
| object->VisitReferences</*kVisitNativeRoots=*/ false, |
| kVerifyNone, |
| kWithoutReadBarrier>(*this, *this); |
| // This function should not be called for classes. |
| DCHECK(!object->IsClass<kVerifyNone>()); |
| } |
| |
| // Visitor for VisitReferences(). |
| ALWAYS_INLINE void operator()(mirror::Object* object, MemberOffset field_offset, bool is_static) |
| const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!is_static); |
| PatchReferenceField(object, field_offset); |
| } |
| // Visitor for VisitReferences(), java.lang.ref.Reference case. |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, mirror::Reference* ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(klass->IsTypeOfReferenceClass()); |
| this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); |
| } |
| // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false. |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| void VisitDexCacheArrays(mirror::DexCache* dex_cache) REQUIRES_SHARED(Locks::mutator_lock_) { |
| FixupDexCacheArray<mirror::StringDexCacheType>(dex_cache, |
| mirror::DexCache::StringsOffset(), |
| dex_cache->NumStrings<kVerifyNone>()); |
| FixupDexCacheArray<mirror::TypeDexCacheType>(dex_cache, |
| mirror::DexCache::ResolvedTypesOffset(), |
| dex_cache->NumResolvedTypes<kVerifyNone>()); |
| FixupDexCacheArray<mirror::MethodDexCacheType>(dex_cache, |
| mirror::DexCache::ResolvedMethodsOffset(), |
| dex_cache->NumResolvedMethods<kVerifyNone>()); |
| FixupDexCacheArray<mirror::FieldDexCacheType>(dex_cache, |
| mirror::DexCache::ResolvedFieldsOffset(), |
| dex_cache->NumResolvedFields<kVerifyNone>()); |
| FixupDexCacheArray<mirror::MethodTypeDexCacheType>( |
| dex_cache, |
| mirror::DexCache::ResolvedMethodTypesOffset(), |
| dex_cache->NumResolvedMethodTypes<kVerifyNone>()); |
| FixupDexCacheArray<GcRoot<mirror::CallSite>>( |
| dex_cache, |
| mirror::DexCache::ResolvedCallSitesOffset(), |
| dex_cache->NumResolvedCallSites<kVerifyNone>()); |
| FixupDexCacheArray<GcRoot<mirror::String>>( |
| dex_cache, |
| mirror::DexCache::PreResolvedStringsOffset(), |
| dex_cache->NumPreResolvedStrings<kVerifyNone>()); |
| } |
| |
| template <bool kMayBeNull = true, typename T> |
| ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check"); |
| T* old_value = root->template Read<kWithoutReadBarrier>(); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| *root = GcRoot<T>(heap_visitor_(old_value)); |
| } |
| } |
| |
| template <bool kMayBeNull = true, typename T> |
| ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const { |
| if (kPointerSize == PointerSize::k64) { |
| uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry); |
| T* old_value = reinterpret_cast64<T*>(*raw_entry); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| T* new_value = native_visitor_(old_value); |
| *raw_entry = reinterpret_cast64<uint64_t>(new_value); |
| } |
| } else { |
| uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry); |
| T* old_value = reinterpret_cast32<T*>(*raw_entry); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| T* new_value = native_visitor_(old_value); |
| *raw_entry = reinterpret_cast32<uint32_t>(new_value); |
| } |
| } |
| } |
| |
| template <bool kMayBeNull = true> |
| ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> old_value = |
| object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr()); |
| object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ true, |
| kVerifyNone>(offset, new_value); |
| } |
| } |
| |
| template <typename T> |
| void FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* array, uint32_t index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>), |
| "Size check for removing std::atomic<>."); |
| PatchGcRoot(&(reinterpret_cast<mirror::DexCachePair<T>*>(array)[index].object)); |
| } |
| |
| template <typename T> |
| void FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* array, uint32_t index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| static_assert(sizeof(std::atomic<mirror::NativeDexCachePair<T>>) == |
| sizeof(mirror::NativeDexCachePair<T>), |
| "Size check for removing std::atomic<>."); |
| mirror::NativeDexCachePair<T> pair = |
| mirror::DexCache::GetNativePairPtrSize(array, index, kPointerSize); |
| if (pair.object != nullptr) { |
| pair.object = native_visitor_(pair.object); |
| mirror::DexCache::SetNativePairPtrSize(array, index, pair, kPointerSize); |
| } |
| } |
| |
| void FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* array, uint32_t index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PatchGcRoot(&array[index]); |
| } |
| |
| void FixupDexCacheArrayEntry(GcRoot<mirror::String>* array, uint32_t index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PatchGcRoot(&array[index]); |
| } |
| |
| template <typename EntryType> |
| void FixupDexCacheArray(mirror::DexCache* dex_cache, |
| MemberOffset array_offset, |
| uint32_t size) REQUIRES_SHARED(Locks::mutator_lock_) { |
| EntryType* old_array = |
| reinterpret_cast64<EntryType*>(dex_cache->GetField64<kVerifyNone>(array_offset)); |
| DCHECK_EQ(old_array != nullptr, size != 0u); |
| if (old_array != nullptr) { |
| EntryType* new_array = native_visitor_(old_array); |
| dex_cache->SetField64<kVerifyNone>(array_offset, reinterpret_cast64<uint64_t>(new_array)); |
| for (uint32_t i = 0; i != size; ++i) { |
| FixupDexCacheArrayEntry(new_array, i); |
| } |
| } |
| } |
| |
| private: |
| // Heap objects visitor. |
| HeapVisitor heap_visitor_; |
| |
| // Native objects visitor. |
| NativeVisitor native_visitor_; |
| }; |
| |
| template <typename ReferenceVisitor> |
| class ImageSpace::ClassTableVisitor final { |
| public: |
| explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor) |
| : reference_visitor_(reference_visitor) {} |
| |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(root->AsMirrorPtr() != nullptr); |
| root->Assign(reference_visitor_(root->AsMirrorPtr())); |
| } |
| |
| private: |
| ReferenceVisitor reference_visitor_; |
| }; |
| |
| // Helper class encapsulating loading, so we can access private ImageSpace members (this is a |
| // nested class), but not declare functions in the header. |
| class ImageSpace::Loader { |
| public: |
| static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename, |
| const char* image_location, |
| const OatFile* oat_file, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image)); |
| |
| std::unique_ptr<ImageSpace> space = Init(image_filename, |
| image_location, |
| oat_file, |
| &logger, |
| image_reservation, |
| error_msg); |
| if (space != nullptr) { |
| uint32_t expected_reservation_size = |
| RoundUp(space->GetImageHeader().GetImageSize(), kPageSize); |
| if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) || |
| !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) { |
| return nullptr; |
| } |
| |
| TimingLogger::ScopedTiming timing("RelocateImage", &logger); |
| ImageHeader* image_header = reinterpret_cast<ImageHeader*>(space->GetMemMap()->Begin()); |
| const PointerSize pointer_size = image_header->GetPointerSize(); |
| bool result; |
| if (pointer_size == PointerSize::k64) { |
| result = RelocateInPlace<PointerSize::k64>(*image_header, |
| space->GetMemMap()->Begin(), |
| space->GetLiveBitmap(), |
| oat_file, |
| error_msg); |
| } else { |
| result = RelocateInPlace<PointerSize::k32>(*image_header, |
| space->GetMemMap()->Begin(), |
| space->GetLiveBitmap(), |
| oat_file, |
| error_msg); |
| } |
| if (!result) { |
| return nullptr; |
| } |
| Runtime* runtime = Runtime::Current(); |
| CHECK_EQ(runtime->GetResolutionMethod(), |
| image_header->GetImageMethod(ImageHeader::kResolutionMethod)); |
| CHECK_EQ(runtime->GetImtConflictMethod(), |
| image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); |
| CHECK_EQ(runtime->GetImtUnimplementedMethod(), |
| image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves), |
| image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly), |
| image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs), |
| image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything), |
| image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit), |
| image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck), |
| image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck)); |
| |
| VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get(); |
| } |
| if (VLOG_IS_ON(image)) { |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return space; |
| } |
| |
| static std::unique_ptr<ImageSpace> Init(const char* image_filename, |
| const char* image_location, |
| const OatFile* oat_file, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CHECK(image_filename != nullptr); |
| CHECK(image_location != nullptr); |
| |
| VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename; |
| |
| std::unique_ptr<File> file; |
| { |
| TimingLogger::ScopedTiming timing("OpenImageFile", logger); |
| file.reset(OS::OpenFileForReading(image_filename)); |
| if (file == nullptr) { |
| *error_msg = StringPrintf("Failed to open '%s'", image_filename); |
| return nullptr; |
| } |
| } |
| ImageHeader temp_image_header; |
| ImageHeader* image_header = &temp_image_header; |
| { |
| TimingLogger::ScopedTiming timing("ReadImageHeader", logger); |
| bool success = file->ReadFully(image_header, sizeof(*image_header)); |
| if (!success || !image_header->IsValid()) { |
| *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); |
| return nullptr; |
| } |
| } |
| // Check that the file is larger or equal to the header size + data size. |
| const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength()); |
| if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) { |
| *error_msg = StringPrintf( |
| "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".", |
| image_file_size, |
| static_cast<uint64_t>(sizeof(ImageHeader) + image_header->GetDataSize())); |
| return nullptr; |
| } |
| |
| if (oat_file != nullptr) { |
| // If we have an oat file (i.e. for app image), check the oat file checksum. |
| // Otherwise, we open the oat file after the image and check the checksum there. |
| const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); |
| const uint32_t image_oat_checksum = image_header->GetOatChecksum(); |
| if (oat_checksum != image_oat_checksum) { |
| *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s", |
| oat_checksum, |
| image_oat_checksum, |
| image_filename); |
| return nullptr; |
| } |
| } |
| |
| if (VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Dumping image sections"; |
| for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { |
| const auto section_idx = static_cast<ImageHeader::ImageSections>(i); |
| auto& section = image_header->GetImageSection(section_idx); |
| LOG(INFO) << section_idx << " start=" |
| << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " " |
| << section; |
| } |
| } |
| |
| const auto& bitmap_section = image_header->GetImageBitmapSection(); |
| // The location we want to map from is the first aligned page after the end of the stored |
| // (possibly compressed) data. |
| const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(), |
| kPageSize); |
| const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size(); |
| if (end_of_bitmap != image_file_size) { |
| *error_msg = StringPrintf( |
| "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", |
| image_file_size, |
| end_of_bitmap); |
| return nullptr; |
| } |
| |
| // GetImageBegin is the preferred address to map the image. If we manage to map the |
| // image at the image begin, the amount of fixup work required is minimized. |
| // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to |
| // avoid reading proc maps for a mapping failure and slowing everything down. |
| // For the boot image, we have already reserved the memory and we load the image |
| // into the `image_reservation`. |
| MemMap map = LoadImageFile( |
| image_filename, |
| image_location, |
| *image_header, |
| file->Fd(), |
| logger, |
| image_reservation, |
| error_msg); |
| if (!map.IsValid()) { |
| DCHECK(!error_msg->empty()); |
| return nullptr; |
| } |
| DCHECK_EQ(0, memcmp(image_header, map.Begin(), sizeof(ImageHeader))); |
| |
| MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(), |
| PROT_READ, |
| MAP_PRIVATE, |
| file->Fd(), |
| image_bitmap_offset, |
| /*low_4gb=*/ false, |
| image_filename, |
| error_msg); |
| if (!image_bitmap_map.IsValid()) { |
| *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); |
| return nullptr; |
| } |
| // Loaded the map, use the image header from the file now in case we patch it with |
| // RelocateInPlace. |
| image_header = reinterpret_cast<ImageHeader*>(map.Begin()); |
| const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1); |
| std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", |
| image_filename, |
| bitmap_index)); |
| // Bitmap only needs to cover until the end of the mirror objects section. |
| const ImageSection& image_objects = image_header->GetObjectsSection(); |
| // We only want the mirror object, not the ArtFields and ArtMethods. |
| uint8_t* const image_end = map.Begin() + image_objects.End(); |
| std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap; |
| { |
| TimingLogger::ScopedTiming timing("CreateImageBitmap", logger); |
| bitmap.reset( |
| accounting::ContinuousSpaceBitmap::CreateFromMemMap( |
| bitmap_name, |
| std::move(image_bitmap_map), |
| reinterpret_cast<uint8_t*>(map.Begin()), |
| // Make sure the bitmap is aligned to card size instead of just bitmap word size. |
| RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize))); |
| if (bitmap == nullptr) { |
| *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); |
| return nullptr; |
| } |
| } |
| // We only want the mirror object, not the ArtFields and ArtMethods. |
| std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename, |
| image_location, |
| std::move(map), |
| std::move(bitmap), |
| image_end)); |
| space->oat_file_non_owned_ = oat_file; |
| return space; |
| } |
| |
| static bool CheckImageComponentCount(const ImageSpace& space, |
| uint32_t expected_component_count, |
| /*out*/std::string* error_msg) { |
| const ImageHeader& header = space.GetImageHeader(); |
| if (header.GetComponentCount() != expected_component_count) { |
| *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u", |
| space.GetImageFilename().c_str(), |
| header.GetComponentCount(), |
| expected_component_count); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool CheckImageReservationSize(const ImageSpace& space, |
| uint32_t expected_reservation_size, |
| /*out*/std::string* error_msg) { |
| const ImageHeader& header = space.GetImageHeader(); |
| if (header.GetImageReservationSize() != expected_reservation_size) { |
| *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u", |
| space.GetImageFilename().c_str(), |
| header.GetImageReservationSize(), |
| expected_reservation_size); |
| return false; |
| } |
| return true; |
| } |
| |
| private: |
| static MemMap LoadImageFile(const char* image_filename, |
| const char* image_location, |
| const ImageHeader& image_header, |
| int fd, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) { |
| TimingLogger::ScopedTiming timing("MapImageFile", logger); |
| std::string temp_error_msg; |
| const bool is_compressed = image_header.HasCompressedBlock(); |
| if (!is_compressed) { |
| uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr; |
| return MemMap::MapFileAtAddress(address, |
| image_header.GetImageSize(), |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE, |
| fd, |
| /*start=*/ 0, |
| /*low_4gb=*/ true, |
| image_filename, |
| /*reuse=*/ false, |
| image_reservation, |
| error_msg); |
| } |
| |
| // Reserve output and decompress into it. |
| MemMap map = MemMap::MapAnonymous(image_location, |
| image_header.GetImageSize(), |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ true, |
| image_reservation, |
| error_msg); |
| if (map.IsValid()) { |
| const size_t stored_size = image_header.GetDataSize(); |
| MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size, |
| PROT_READ, |
| MAP_PRIVATE, |
| fd, |
| /*start=*/ 0, |
| /*low_4gb=*/ false, |
| image_filename, |
| error_msg); |
| if (!temp_map.IsValid()) { |
| DCHECK(error_msg == nullptr || !error_msg->empty()); |
| return MemMap::Invalid(); |
| } |
| memcpy(map.Begin(), &image_header, sizeof(ImageHeader)); |
| |
| Runtime::ScopedThreadPoolUsage stpu; |
| ThreadPool* const pool = stpu.GetThreadPool(); |
| const uint64_t start = NanoTime(); |
| Thread* const self = Thread::Current(); |
| static constexpr size_t kMinBlocks = 2u; |
| const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks; |
| for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) { |
| auto function = [&](Thread*) { |
| const uint64_t start2 = NanoTime(); |
| ScopedTrace trace("LZ4 decompress block"); |
| bool result = block.Decompress(/*out_ptr=*/map.Begin(), |
| /*in_ptr=*/temp_map.Begin(), |
| error_msg); |
| if (!result && error_msg != nullptr) { |
| *error_msg = "Failed to decompress image block " + *error_msg; |
| } |
| VLOG(image) << "Decompress block " << block.GetDataSize() << " -> " |
| << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2); |
| }; |
| if (use_parallel) { |
| pool->AddTask(self, new FunctionTask(std::move(function))); |
| } else { |
| function(self); |
| } |
| } |
| if (use_parallel) { |
| ScopedTrace trace("Waiting for workers"); |
| pool->Wait(self, true, false); |
| } |
| const uint64_t time = NanoTime() - start; |
| // Add one 1 ns to prevent possible divide by 0. |
| VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " (" |
| << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1)) |
| << "/s)"; |
| } |
| |
| return map; |
| } |
| |
| class EmptyRange { |
| public: |
| ALWAYS_INLINE bool InSource(uintptr_t) const { return false; } |
| ALWAYS_INLINE bool InDest(uintptr_t) const { return false; } |
| ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); } |
| }; |
| |
| template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange> |
| class ForwardAddress { |
| public: |
| ForwardAddress(const Range0& range0 = Range0(), |
| const Range1& range1 = Range1(), |
| const Range2& range2 = Range2()) |
| : range0_(range0), range1_(range1), range2_(range2) {} |
| |
| // Return the relocated address of a heap object. |
| // Null checks must be performed in the caller (for performance reasons). |
| template <typename T> |
| ALWAYS_INLINE T* operator()(T* src) const { |
| DCHECK(src != nullptr); |
| const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); |
| if (range2_.InSource(uint_src)) { |
| return reinterpret_cast<T*>(range2_.ToDest(uint_src)); |
| } |
| if (range1_.InSource(uint_src)) { |
| return reinterpret_cast<T*>(range1_.ToDest(uint_src)); |
| } |
| CHECK(range0_.InSource(uint_src)) |
| << reinterpret_cast<const void*>(src) << " not in " |
| << reinterpret_cast<const void*>(range0_.Source()) << "-" |
| << reinterpret_cast<const void*>(range0_.Source() + range0_.Length()); |
| return reinterpret_cast<T*>(range0_.ToDest(uint_src)); |
| } |
| |
| private: |
| const Range0 range0_; |
| const Range1 range1_; |
| const Range2 range2_; |
| }; |
| |
| template <typename Forward> |
| class FixupRootVisitor { |
| public: |
| template<typename... Args> |
| explicit FixupRootVisitor(Args... args) : forward_(args...) {} |
| |
| ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* ref = root->AsMirrorPtr(); |
| mirror::Object* new_ref = forward_(ref); |
| if (ref != new_ref) { |
| root->Assign(new_ref); |
| } |
| } |
| |
| private: |
| Forward forward_; |
| }; |
| |
| template <typename Forward> |
| class FixupObjectVisitor { |
| public: |
| explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited, |
| const Forward& forward) |
| : visited_(visited), forward_(forward) {} |
| |
| // Fix up separately since we also need to fix up method entrypoints. |
| ALWAYS_INLINE void VisitRootIfNonNull( |
| mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| bool is_static ATTRIBUTE_UNUSED) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| // Space is not yet added to the heap, don't do a read barrier. |
| mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( |
| offset); |
| if (ref != nullptr) { |
| // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the |
| // image. |
| obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref)); |
| } |
| } |
| |
| // java.lang.ref.Reference visitor. |
| void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>(); |
| if (obj != nullptr) { |
| ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( |
| mirror::Reference::ReferentOffset(), |
| forward_(obj)); |
| } |
| } |
| |
| void operator()(mirror::Object* obj) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| if (!visited_->Set(obj)) { |
| // Not already visited. |
| obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>( |
| *this, |
| *this); |
| CHECK(!obj->IsClass()); |
| } |
| } |
| |
| private: |
| gc::accounting::ContinuousSpaceBitmap* const visited_; |
| Forward forward_; |
| }; |
| |
| // Relocate an image space mapped at target_base which possibly used to be at a different base |
| // address. In place means modifying a single ImageSpace in place rather than relocating from |
| // one ImageSpace to another. |
| template <PointerSize kPointerSize> |
| static bool RelocateInPlace(ImageHeader& image_header, |
| uint8_t* target_base, |
| accounting::ContinuousSpaceBitmap* bitmap, |
| const OatFile* app_oat_file, |
| std::string* error_msg) { |
| DCHECK(error_msg != nullptr); |
| // Set up sections. |
| uint32_t boot_image_begin = 0; |
| uint32_t boot_image_end = 0; |
| uint32_t boot_oat_begin = 0; |
| uint32_t boot_oat_end = 0; |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); |
| if (boot_image_begin == boot_image_end) { |
| *error_msg = "Can not relocate app image without boot image space"; |
| return false; |
| } |
| if (boot_oat_begin == boot_oat_end) { |
| *error_msg = "Can not relocate app image without boot oat file"; |
| return false; |
| } |
| const uint32_t boot_image_size = boot_oat_end - boot_image_begin; |
| const uint32_t image_header_boot_image_size = image_header.GetBootImageSize(); |
| if (boot_image_size != image_header_boot_image_size) { |
| *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %" |
| PRIu64, |
| static_cast<uint64_t>(boot_image_size), |
| static_cast<uint64_t>(image_header_boot_image_size)); |
| return false; |
| } |
| const ImageSection& objects_section = image_header.GetObjectsSection(); |
| // Where the app image objects are mapped to. |
| uint8_t* objects_location = target_base + objects_section.Offset(); |
| TimingLogger logger(__FUNCTION__, true, false); |
| RelocationRange boot_image(image_header.GetBootImageBegin(), |
| boot_image_begin, |
| boot_image_size); |
| // Metadata is everything after the objects section, use exclusion to be safe. |
| RelocationRange app_image_metadata( |
| reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.End(), |
| reinterpret_cast<uintptr_t>(target_base) + objects_section.End(), |
| image_header.GetImageSize() - objects_section.End()); |
| // App image heap objects, may be mapped in the heap. |
| RelocationRange app_image_objects( |
| reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.Offset(), |
| reinterpret_cast<uintptr_t>(objects_location), |
| objects_section.Size()); |
| // Use the oat data section since this is where the OatFile::Begin is. |
| RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()), |
| // Not necessarily in low 4GB. |
| reinterpret_cast<uintptr_t>(app_oat_file->Begin()), |
| image_header.GetOatDataEnd() - image_header.GetOatDataBegin()); |
| VLOG(image) << "App image metadata " << app_image_metadata; |
| VLOG(image) << "App image objects " << app_image_objects; |
| VLOG(image) << "App oat " << app_oat; |
| VLOG(image) << "Boot image " << boot_image; |
| // True if we need to fixup any heap pointers. |
| const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 || |
| app_image_objects.Delta() != 0; |
| if (!fixup_image) { |
| // Nothing to fix up. |
| return true; |
| } |
| ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); |
| |
| using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>; |
| ForwardObject forward_object(boot_image, app_image_objects); |
| ForwardObject forward_metadata(boot_image, app_image_metadata); |
| using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>; |
| ForwardCode forward_code(boot_image, app_oat); |
| PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor( |
| forward_object, |
| forward_metadata); |
| if (fixup_image) { |
| // Two pass approach, fix up all classes first, then fix up non class-objects. |
| // The visited bitmap is used to ensure that pointer arrays are not forwarded twice. |
| std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap( |
| gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap", |
| target_base, |
| image_header.GetImageSize())); |
| { |
| TimingLogger::ScopedTiming timing("Fixup classes", &logger); |
| const auto& class_table_section = image_header.GetClassTableSection(); |
| if (class_table_section.Size() > 0u) { |
| ScopedObjectAccess soa(Thread::Current()); |
| ClassTableVisitor class_table_visitor(forward_object); |
| size_t read_count = 0u; |
| const uint8_t* data = target_base + class_table_section.Offset(); |
| // We avoid making a copy of the data since we want modifications to be propagated to the |
| // memory map. |
| ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); |
| for (ClassTable::TableSlot& slot : temp_set) { |
| slot.VisitRoot(class_table_visitor); |
| mirror::Class* klass = slot.Read<kWithoutReadBarrier>(); |
| if (!app_image_objects.InDest(klass)) { |
| continue; |
| } |
| const bool already_marked = visited_bitmap->Set(klass); |
| CHECK(!already_marked) << "App image class already visited"; |
| patch_object_visitor.VisitClass(klass); |
| // Then patch the non-embedded vtable and iftable. |
| ObjPtr<mirror::PointerArray> vtable = |
| klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (vtable != nullptr && |
| app_image_objects.InDest(vtable.Ptr()) && |
| !visited_bitmap->Set(vtable.Ptr())) { |
| patch_object_visitor.VisitPointerArray(vtable); |
| } |
| ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) { |
| // Avoid processing the fields of iftable since we will process them later anyways |
| // below. |
| int32_t ifcount = klass->GetIfTableCount<kVerifyNone>(); |
| for (int32_t i = 0; i != ifcount; ++i) { |
| ObjPtr<mirror::PointerArray> unpatched_ifarray = |
| iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i); |
| if (unpatched_ifarray != nullptr) { |
| // The iftable has not been patched, so we need to explicitly adjust the pointer. |
| ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr()); |
| if (app_image_objects.InDest(ifarray.Ptr()) && |
| !visited_bitmap->Set(ifarray.Ptr())) { |
| patch_object_visitor.VisitPointerArray(ifarray); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. |
| // Though its probably not required. |
| TimingLogger::ScopedTiming timing("Fixup objects", &logger); |
| ScopedObjectAccess soa(Thread::Current()); |
| // Need to update the image to be at the target base. |
| uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset()); |
| uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End()); |
| FixupObjectVisitor<ForwardObject> fixup_object_visitor(visited_bitmap.get(), forward_object); |
| bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor); |
| // Fixup image roots. |
| CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>( |
| image_header.GetImageRoots<kWithoutReadBarrier>().Ptr()))); |
| image_header.RelocateImageObjects(app_image_objects.Delta()); |
| CHECK_EQ(image_header.GetImageBegin(), target_base); |
| // Fix up dex cache DexFile pointers. |
| auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)-> |
| AsObjectArray<mirror::DexCache, kVerifyNone>(); |
| for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) { |
| mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i); |
| CHECK(dex_cache != nullptr); |
| patch_object_visitor.VisitDexCacheArrays(dex_cache); |
| } |
| } |
| { |
| // Only touches objects in the app image, no need for mutator lock. |
| TimingLogger::ScopedTiming timing("Fixup methods", &logger); |
| image_header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS { |
| // TODO: Consider a separate visitor for runtime vs normal methods. |
| if (UNLIKELY(method.IsRuntimeMethod())) { |
| ImtConflictTable* table = method.GetImtConflictTable(kPointerSize); |
| if (table != nullptr) { |
| ImtConflictTable* new_table = forward_metadata(table); |
| if (table != new_table) { |
| method.SetImtConflictTable(new_table, kPointerSize); |
| } |
| } |
| const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize); |
| const void* new_code = forward_code(old_code); |
| if (old_code != new_code) { |
| method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize); |
| } |
| } else { |
| method.UpdateObjectsForImageRelocation(forward_object); |
| method.UpdateEntrypoints(forward_code, kPointerSize); |
| } |
| }, target_base, kPointerSize); |
| } |
| if (fixup_image) { |
| { |
| // Only touches objects in the app image, no need for mutator lock. |
| TimingLogger::ScopedTiming timing("Fixup fields", &logger); |
| image_header.VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS { |
| field.UpdateObjects(forward_object); |
| }, target_base); |
| } |
| { |
| TimingLogger::ScopedTiming timing("Fixup imt", &logger); |
| image_header.VisitPackedImTables(forward_metadata, target_base, kPointerSize); |
| } |
| { |
| TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger); |
| image_header.VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize); |
| } |
| // In the app image case, the image methods are actually in the boot image. |
| image_header.RelocateImageMethods(boot_image.Delta()); |
| // Fix up the intern table. |
| const auto& intern_table_section = image_header.GetInternedStringsSection(); |
| if (intern_table_section.Size() > 0u) { |
| TimingLogger::ScopedTiming timing("Fixup intern table", &logger); |
| ScopedObjectAccess soa(Thread::Current()); |
| // Fixup the pointers in the newly written intern table to contain image addresses. |
| InternTable temp_intern_table; |
| // Note that we require that ReadFromMemory does not make an internal copy of the elements |
| // so that the VisitRoots() will update the memory directly rather than the copies. |
| temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(), |
| [&](InternTable::UnorderedSet& strings) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| for (GcRoot<mirror::String>& root : strings) { |
| root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>())); |
| } |
| }, /*is_boot_image=*/ false); |
| } |
| } |
| if (VLOG_IS_ON(image)) { |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return true; |
| } |
| }; |
| |
| class ImageSpace::BootImageLoader { |
| public: |
| BootImageLoader(const std::vector<std::string>& boot_class_path, |
| const std::vector<std::string>& boot_class_path_locations, |
| const std::string& image_location, |
| InstructionSet image_isa, |
| bool relocate, |
| bool executable, |
| bool is_zygote) |
| : boot_class_path_(boot_class_path), |
| boot_class_path_locations_(boot_class_path_locations), |
| image_location_(image_location), |
| image_isa_(image_isa), |
| relocate_(relocate), |
| executable_(executable), |
| is_zygote_(is_zygote), |
| has_system_(false), |
| has_cache_(false), |
| is_global_cache_(true), |
| dalvik_cache_exists_(false), |
| dalvik_cache_(), |
| cache_filename_() { |
| } |
| |
| bool IsZygote() const { return is_zygote_; } |
| |
| void FindImageFiles() { |
| std::string system_filename; |
| bool found_image = FindImageFilenameImpl(image_location_.c_str(), |
| image_isa_, |
| &has_system_, |
| &system_filename, |
| &dalvik_cache_exists_, |
| &dalvik_cache_, |
| &is_global_cache_, |
| &has_cache_, |
| &cache_filename_); |
| DCHECK(!dalvik_cache_exists_ || !dalvik_cache_.empty()); |
| DCHECK_EQ(found_image, has_system_ || has_cache_); |
| } |
| |
| bool HasSystem() const { return has_system_; } |
| bool HasCache() const { return has_cache_; } |
| |
| bool DalvikCacheExists() const { return dalvik_cache_exists_; } |
| bool IsGlobalCache() const { return is_global_cache_; } |
| |
| const std::string& GetDalvikCache() const { |
| return dalvik_cache_; |
| } |
| |
| const std::string& GetCacheFilename() const { |
| return cache_filename_; |
| } |
| |
| bool LoadFromSystem(bool validate_oat_file, |
| size_t extra_reservation_size, |
| /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image)); |
| std::string filename = GetSystemImageFilename(image_location_.c_str(), image_isa_); |
| |
| if (!LoadFromFile(filename, |
| validate_oat_file, |
| extra_reservation_size, |
| &logger, |
| boot_image_spaces, |
| extra_reservation, |
| error_msg)) { |
| return false; |
| } |
| |
| if (VLOG_IS_ON(image)) { |
| LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting " |
| << boot_image_spaces->front(); |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return true; |
| } |
| |
| bool LoadFromDalvikCache( |
| bool validate_oat_file, |
| size_t extra_reservation_size, |
| /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image)); |
| DCHECK(DalvikCacheExists()); |
| |
| if (!LoadFromFile(cache_filename_, |
| validate_oat_file, |
| extra_reservation_size, |
| &logger, |
| boot_image_spaces, |
| extra_reservation, |
| error_msg)) { |
| return false; |
| } |
| |
| if (VLOG_IS_ON(image)) { |
| LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromDalvikCache exiting " |
| << boot_image_spaces->front(); |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return true; |
| } |
| |
| private: |
| bool LoadFromFile( |
| const std::string& filename, |
| bool validate_oat_file, |
| size_t extra_reservation_size, |
| TimingLogger* logger, |
| /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ImageHeader system_hdr; |
| if (!ReadSpecificImageHeader(filename.c_str(), &system_hdr)) { |
| *error_msg = StringPrintf("Cannot read header of %s", filename.c_str()); |
| return false; |
| } |
| if (system_hdr.GetComponentCount() == 0u || |
| system_hdr.GetComponentCount() > boot_class_path_.size()) { |
| *error_msg = StringPrintf("Unexpected component count in %s, received %u, " |
| "expected non-zero and <= %zu", |
| filename.c_str(), |
| system_hdr.GetComponentCount(), |
| boot_class_path_.size()); |
| return false; |
| } |
| MemMap image_reservation; |
| MemMap local_extra_reservation; |
| if (!ReserveBootImageMemory(system_hdr.GetImageReservationSize(), |
| reinterpret_cast32<uint32_t>(system_hdr.GetImageBegin()), |
| extra_reservation_size, |
| &image_reservation, |
| &local_extra_reservation, |
| error_msg)) { |
| return false; |
| } |
| |
| ArrayRef<const std::string> provided_locations(boot_class_path_locations_.data(), |
| system_hdr.GetComponentCount()); |
| std::vector<std::string> locations = |
| ExpandMultiImageLocations(provided_locations, image_location_); |
| std::vector<std::string> filenames = |
| ExpandMultiImageLocations(provided_locations, filename); |
| DCHECK_EQ(locations.size(), filenames.size()); |
| std::vector<std::unique_ptr<ImageSpace>> spaces; |
| spaces.reserve(locations.size()); |
| for (std::size_t i = 0u, size = locations.size(); i != size; ++i) { |
| spaces.push_back(Load(locations[i], filenames[i], logger, &image_reservation, error_msg)); |
| const ImageSpace* space = spaces.back().get(); |
| if (space == nullptr) { |
| return false; |
| } |
| uint32_t expected_component_count = (i == 0u) ? system_hdr.GetComponentCount() : 0u; |
| uint32_t expected_reservation_size = (i == 0u) ? system_hdr.GetImageReservationSize() : 0u; |
| if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) || |
| !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) { |
| return false; |
| } |
| } |
| for (size_t i = 0u, size = spaces.size(); i != size; ++i) { |
| std::string expected_boot_class_path = |
| (i == 0u) ? android::base::Join(provided_locations, ':') : std::string(); |
| if (!OpenOatFile(spaces[i].get(), |
| boot_class_path_[i], |
| expected_boot_class_path, |
| validate_oat_file, |
| logger, |
| &image_reservation, |
| error_msg)) { |
| return false; |
| } |
| } |
| if (!CheckReservationExhausted(image_reservation, error_msg)) { |
| return false; |
| } |
| |
| MaybeRelocateSpaces(spaces, logger); |
| boot_image_spaces->swap(spaces); |
| *extra_reservation = std::move(local_extra_reservation); |
| return true; |
| } |
| |
| private: |
| class RelocateVisitor { |
| public: |
| explicit RelocateVisitor(uint32_t diff) : diff_(diff) {} |
| |
| template <typename T> |
| ALWAYS_INLINE T* operator()(T* src) const { |
| DCHECK(src != nullptr); |
| return reinterpret_cast32<T*>(reinterpret_cast32<uint32_t>(src) + diff_); |
| } |
| |
| private: |
| const uint32_t diff_; |
| }; |
| |
| static void** PointerAddress(ArtMethod* method, MemberOffset offset) { |
| return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value()); |
| } |
| |
| template <PointerSize kPointerSize> |
| static void DoRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces, |
| uint32_t diff) REQUIRES_SHARED(Locks::mutator_lock_) { |
| std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> patched_objects( |
| gc::accounting::ContinuousSpaceBitmap::Create( |
| "Marked objects", |
| spaces.front()->Begin(), |
| spaces.back()->End() - spaces.front()->Begin())); |
| using PatchRelocateVisitor = PatchObjectVisitor<kPointerSize, RelocateVisitor, RelocateVisitor>; |
| RelocateVisitor relocate_visitor(diff); |
| PatchRelocateVisitor patch_object_visitor(relocate_visitor, relocate_visitor); |
| |
| mirror::Class* dcheck_class_class = nullptr; // Used only for a DCHECK(). |
| for (const std::unique_ptr<ImageSpace>& space : spaces) { |
| // First patch the image header. The `diff` is OK for patching 32-bit fields but |
| // the 64-bit method fields in the ImageHeader may need a negative `delta`. |
| reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImage( |
| (reinterpret_cast32<uint32_t>(space->Begin()) >= -diff) // Would `begin+diff` overflow? |
| ? -static_cast<int64_t>(-diff) : static_cast<int64_t>(diff)); |
| |
| // Patch fields and methods. |
| const ImageHeader& image_header = space->GetImageHeader(); |
| image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) { |
| patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>( |
| &field.DeclaringClassRoot()); |
| }, space->Begin()); |
| image_header.VisitPackedArtMethods([&](ArtMethod& method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot()); |
| void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize)); |
| patch_object_visitor.PatchNativePointer(data_address); |
| void** entrypoint_address = |
| PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize)); |
| patch_object_visitor.PatchNativePointer(entrypoint_address); |
| }, space->Begin(), kPointerSize); |
| auto method_table_visitor = [&](ArtMethod* method) { |
| DCHECK(method != nullptr); |
| return relocate_visitor(method); |
| }; |
| image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize); |
| image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize); |
| |
| // Patch the intern table. |
| if (image_header.GetInternedStringsSection().Size() != 0u) { |
| const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset(); |
| size_t read_count; |
| InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); |
| for (GcRoot<mirror::String>& slot : temp_set) { |
| patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot); |
| } |
| } |
| |
| // Patch the class table and classes, so that we can traverse class hierarchy to |
| // determine the types of other objects when we visit them later. |
| if (image_header.GetClassTableSection().Size() != 0u) { |
| uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset(); |
| size_t read_count; |
| ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); |
| DCHECK(!temp_set.empty()); |
| ClassTableVisitor class_table_visitor(relocate_visitor); |
| for (ClassTable::TableSlot& slot : temp_set) { |
| slot.VisitRoot(class_table_visitor); |
| mirror::Class* klass = slot.Read<kWithoutReadBarrier>(); |
| DCHECK(klass != nullptr); |
| patched_objects->Set(klass); |
| patch_object_visitor.VisitClass(klass); |
| if (kIsDebugBuild) { |
| mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| if (dcheck_class_class == nullptr) { |
| dcheck_class_class = class_class; |
| } else { |
| CHECK_EQ(class_class, dcheck_class_class); |
| } |
| } |
| // Then patch the non-embedded vtable and iftable. |
| ObjPtr<mirror::PointerArray> vtable = |
| klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (vtable != nullptr && !patched_objects->Set(vtable.Ptr())) { |
| patch_object_visitor.VisitPointerArray(vtable); |
| } |
| ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (iftable != nullptr) { |
| int32_t ifcount = klass->GetIfTableCount<kVerifyNone>(); |
| for (int32_t i = 0; i != ifcount; ++i) { |
| ObjPtr<mirror::PointerArray> unpatched_ifarray = |
| iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i); |
| if (unpatched_ifarray != nullptr) { |
| // The iftable has not been patched, so we need to explicitly adjust the pointer. |
| ObjPtr<mirror::PointerArray> ifarray = relocate_visitor(unpatched_ifarray.Ptr()); |
| if (!patched_objects->Set(ifarray.Ptr())) { |
| patch_object_visitor.VisitPointerArray(ifarray); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Patch class roots now, so that we can recognize mirror::Method and mirror::Constructor. |
| ObjPtr<mirror::Class> method_class; |
| ObjPtr<mirror::Class> constructor_class; |
| { |
| const ImageSpace* space = spaces.front().get(); |
| const ImageHeader& image_header = space->GetImageHeader(); |
| |
| ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = |
| image_header.GetImageRoots<kWithoutReadBarrier>(); |
| patched_objects->Set(image_roots.Ptr()); |
| patch_object_visitor.VisitObject(image_roots.Ptr()); |
| |
| ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = |
| ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(MakeObjPtr( |
| image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kClassRoots))); |
| patched_objects->Set(class_roots.Ptr()); |
| patch_object_visitor.VisitObject(class_roots.Ptr()); |
| |
| method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots); |
| constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots); |
| } |
| |
| for (size_t s = 0u, size = spaces.size(); s != size; ++s) { |
| const ImageSpace* space = spaces[s].get(); |
| const ImageHeader& image_header = space->GetImageHeader(); |
| |
| static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check"); |
| uint32_t objects_end = image_header.GetObjectsSection().Size(); |
| DCHECK_ALIGNED(objects_end, kObjectAlignment); |
| for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) { |
| mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos); |
| if (!patched_objects->Test(object)) { |
| // This is the last pass over objects, so we do not need to Set(). |
| patch_object_visitor.VisitObject(object); |
| mirror::Class* klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| if (klass->IsDexCacheClass<kVerifyNone>()) { |
| // Patch dex cache array pointers and elements. |
| mirror::DexCache* dex_cache = object->AsDexCache<kVerifyNone, kWithoutReadBarrier>(); |
| patch_object_visitor.VisitDexCacheArrays(dex_cache); |
| } else if (klass == method_class || klass == constructor_class) { |
| // Patch the ArtMethod* in the mirror::Executable subobject. |
| ObjPtr<mirror::Executable> as_executable = |
| ObjPtr<mirror::Executable>::DownCast(MakeObjPtr(object)); |
| ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>(); |
| ArtMethod* patched_method = relocate_visitor(unpatched_method); |
| as_executable->SetArtMethod</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ true, |
| kVerifyNone>(patched_method); |
| } |
| } |
| pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment); |
| } |
| } |
| } |
| |
| void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces, |
| TimingLogger* logger) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger); |
| ImageSpace* first_space = spaces.front().get(); |
| const ImageHeader& first_space_header = first_space->GetImageHeader(); |
| uint32_t diff = |
| static_cast<uint32_t>(first_space->Begin() - first_space_header.GetImageBegin()); |
| if (!relocate_) { |
| DCHECK_EQ(diff, 0u); |
| return; |
| } |
| |
| PointerSize pointer_size = first_space_header.GetPointerSize(); |
| if (pointer_size == PointerSize::k64) { |
| DoRelocateSpaces<PointerSize::k64>(spaces, diff); |
| } else { |
| DoRelocateSpaces<PointerSize::k32>(spaces, diff); |
| } |
| } |
| |
| std::unique_ptr<ImageSpace> Load(const std::string& image_location, |
| const std::string& image_filename, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Should this be a RDWR lock? This is only a defensive measure, as at |
| // this point the image should exist. |
| // However, only the zygote can write into the global dalvik-cache, so |
| // restrict to zygote processes, or any process that isn't using |
| // /data/dalvik-cache (which we assume to be allowed to write there). |
| const bool rw_lock = is_zygote_ || !is_global_cache_; |
| |
| // Note that we must not use the file descriptor associated with |
| // ScopedFlock::GetFile to Init the image file. We want the file |
| // descriptor (and the associated exclusive lock) to be released when |
| // we leave Create. |
| ScopedFlock image = LockedFile::Open(image_filename.c_str(), |
| /*flags=*/ rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY, |
| /*block=*/ true, |
| error_msg); |
| |
| VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " |
| << image_location; |
| // If we are in /system we can assume the image is good. We can also |
| // assume this if we are using a relocated image (i.e. image checksum |
| // matches) since this is only different by the offset. We need this to |
| // make sure that host tests continue to work. |
| // Since we are the boot image, pass null since we load the oat file from the boot image oat |
| // file name. |
| return Loader::Init(image_filename.c_str(), |
| image_location.c_str(), |
| /*oat_file=*/ nullptr, |
| logger, |
| image_reservation, |
| error_msg); |
| } |
| |
| bool OpenOatFile(ImageSpace* space, |
| const std::string& dex_filename, |
| const std::string& expected_boot_class_path, |
| bool validate_oat_file, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) { |
| // VerifyImageAllocations() will be called later in Runtime::Init() |
| // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ |
| // and ArtField::java_lang_reflect_ArtField_, which are used from |
| // Object::SizeOf() which VerifyImageAllocations() calls, are not |
| // set yet at this point. |
| DCHECK(image_reservation != nullptr); |
| std::unique_ptr<OatFile> oat_file; |
| { |
| TimingLogger::ScopedTiming timing("OpenOatFile", logger); |
| std::string oat_filename = |
| ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename()); |
| std::string oat_location = |
| ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation()); |
| |
| oat_file.reset(OatFile::Open(/*zip_fd=*/ -1, |
| oat_filename, |
| oat_location, |
| executable_, |
| /*low_4gb=*/ false, |
| /*abs_dex_location=*/ dex_filename.c_str(), |
| image_reservation, |
| error_msg)); |
| if (oat_file == nullptr) { |
| *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", |
| oat_filename.c_str(), |
| space->GetName(), |
| error_msg->c_str()); |
| return false; |
| } |
| const ImageHeader& image_header = space->GetImageHeader(); |
| uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); |
| uint32_t image_oat_checksum = image_header.GetOatChecksum(); |
| if (oat_checksum != image_oat_checksum) { |
| *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum" |
| " 0x%x in image %s", |
| oat_checksum, |
| image_oat_checksum, |
| space->GetName()); |
| return false; |
| } |
| const char* oat_boot_class_path = |
| oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey); |
| oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : ""; |
| if (expected_boot_class_path != oat_boot_class_path) { |
| *error_msg = StringPrintf("Failed to match oat boot class path %s to expected " |
| "boot class path %s in image %s", |
| oat_boot_class_path, |
| expected_boot_class_path.c_str(), |
| space->GetName()); |
| return false; |
| } |
| ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin(); |
| CHECK(image_header.GetOatDataBegin() != nullptr); |
| uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff; |
| if (oat_file->Begin() != oat_data_begin) { |
| *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin" |
| " %p v. %p", |
| oat_filename.c_str(), |
| space->GetName(), |
| oat_file->Begin(), |
| oat_data_begin); |
| return false; |
| } |
| } |
| if (validate_oat_file) { |
| TimingLogger::ScopedTiming timing("ValidateOatFile", logger); |
| if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) { |
| DCHECK(!error_msg->empty()); |
| return false; |
| } |
| } |
| space->oat_file_ = std::move(oat_file); |
| space->oat_file_non_owned_ = space->oat_file_.get(); |
| return true; |
| } |
| |
| bool ReserveBootImageMemory(uint32_t reservation_size, |
| uint32_t image_start, |
| size_t extra_reservation_size, |
| /*out*/MemMap* image_reservation, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) { |
| DCHECK_ALIGNED(reservation_size, kPageSize); |
| DCHECK_ALIGNED(image_start, kPageSize); |
| DCHECK(!image_reservation->IsValid()); |
| DCHECK_LT(extra_reservation_size, std::numeric_limits<uint32_t>::max() - reservation_size); |
| size_t total_size = reservation_size + extra_reservation_size; |
| // If relocating, choose a random address for ALSR. |
| uint32_t addr = relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : image_start; |
| *image_reservation = |
| MemMap::MapAnonymous("Boot image reservation", |
| reinterpret_cast32<uint8_t*>(addr), |
| total_size, |
| PROT_NONE, |
| /*low_4gb=*/ true, |
| /*reuse=*/ false, |
| /*reservation=*/ nullptr, |
| error_msg); |
| if (!image_reservation->IsValid()) { |
| return false; |
| } |
| DCHECK(!extra_reservation->IsValid()); |
| if (extra_reservation_size != 0u) { |
| DCHECK_ALIGNED(extra_reservation_size, kPageSize); |
| DCHECK_LT(extra_reservation_size, image_reservation->Size()); |
| uint8_t* split = image_reservation->End() - extra_reservation_size; |
| *extra_reservation = image_reservation->RemapAtEnd(split, |
| "Boot image extra reservation", |
| PROT_NONE, |
| error_msg); |
| if (!extra_reservation->IsValid()) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool CheckReservationExhausted(const MemMap& image_reservation, /*out*/std::string* error_msg) { |
| if (image_reservation.IsValid()) { |
| *error_msg = StringPrintf("Excessive image reservation after loading boot image: %p-%p", |
| image_reservation.Begin(), |
| image_reservation.End()); |
| return false; |
| } |
| return true; |
| } |
| |
| const std::vector<std::string>& boot_class_path_; |
| const std::vector<std::string>& boot_class_path_locations_; |
| const std::string& image_location_; |
| InstructionSet image_isa_; |
| bool relocate_; |
| bool executable_; |
| bool is_zygote_; |
| bool has_system_; |
| bool has_cache_; |
| bool is_global_cache_; |
| bool dalvik_cache_exists_; |
| std::string dalvik_cache_; |
| std::string cache_filename_; |
| }; |
| |
| static constexpr uint64_t kLowSpaceValue = 50 * MB; |
| static constexpr uint64_t kTmpFsSentinelValue = 384 * MB; |
| |
| // Read the free space of the cache partition and make a decision whether to keep the generated |
| // image. This is to try to mitigate situations where the system might run out of space later. |
| static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) { |
| // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes. |
| struct statvfs buf; |
| |
| int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf)); |
| if (res != 0) { |
| // Could not stat. Conservatively tell the system to delete the image. |
| *error_msg = "Could not stat the filesystem, assuming low-memory situation."; |
| return false; |
| } |
| |
| uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks); |
| // Zygote is privileged, but other things are not. Use bavail. |
| uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail); |
| |
| // Take the overall size as an indicator for a tmpfs, which is being used for the decryption |
| // environment. We do not want to fail quickening the boot image there, as it is beneficial |
| // for time-to-UI. |
| if (fs_overall_size > kTmpFsSentinelValue) { |
| if (fs_free_size < kLowSpaceValue) { |
| *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at " |
| "least %" PRIu64 ".", |
| static_cast<double>(fs_free_size) / MB, |
| kLowSpaceValue / MB); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ImageSpace::LoadBootImage( |
| const std::vector<std::string>& boot_class_path, |
| const std::vector<std::string>& boot_class_path_locations, |
| const std::string& image_location, |
| const InstructionSet image_isa, |
| ImageSpaceLoadingOrder order, |
| bool relocate, |
| bool executable, |
| bool is_zygote, |
| size_t extra_reservation_size, |
| /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation) { |
| ScopedTrace trace(__FUNCTION__); |
| |
| DCHECK(boot_image_spaces != nullptr); |
| DCHECK(boot_image_spaces->empty()); |
| DCHECK_ALIGNED(extra_reservation_size, kPageSize); |
| DCHECK(extra_reservation != nullptr); |
| DCHECK_NE(image_isa, InstructionSet::kNone); |
| |
| if (image_location.empty()) { |
| return false; |
| } |
| |
| BootImageLoader loader(boot_class_path, |
| boot_class_path_locations, |
| image_location, |
| image_isa, |
| relocate, |
| executable, |
| is_zygote); |
| |
| // Step 0: Extra zygote work. |
| |
| // Step 0.a: If we're the zygote, mark boot. |
| if (loader.IsZygote() && CanWriteToDalvikCache(image_isa)) { |
| MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots()); |
| } |
| |
| loader.FindImageFiles(); |
| |
| // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively, |
| // if necessary. While the runtime may be fine (it is pretty tolerant to |
| // out-of-disk-space situations), other parts of the platform are not. |
| // |
| // The advantage of doing this proactively is that the later steps are simplified, |
| // i.e., we do not need to code retries. |
| bool low_space = false; |
| if (loader.IsZygote() && loader.DalvikCacheExists()) { |
| // Extra checks for the zygote. These only apply when loading the first image, explained below. |
| const std::string& dalvik_cache = loader.GetDalvikCache(); |
| DCHECK(!dalvik_cache.empty()); |
| std::string local_error_msg; |
| bool check_space = CheckSpace(dalvik_cache, &local_error_msg); |
| if (!check_space) { |
| LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache."; |
| PruneDalvikCache(image_isa); |
| |
| // Re-evaluate the image. |
| loader.FindImageFiles(); |
| |
| // Disable compilation/patching - we do not want to fill up the space again. |
| low_space = true; |
| } |
| } |
| |
| // Collect all the errors. |
| std::vector<std::string> error_msgs; |
| |
| auto try_load_from = [&](auto has_fn, auto load_fn, bool validate_oat_file) { |
| if ((loader.*has_fn)()) { |
| std::string local_error_msg; |
| if ((loader.*load_fn)(validate_oat_file, |
| extra_reservation_size, |
| boot_image_spaces, |
| extra_reservation, |
| &local_error_msg)) { |
| return true; |
| } |
| error_msgs.push_back(local_error_msg); |
| } |
| return false; |
| }; |
| |
| auto try_load_from_system = [&]() { |
| return try_load_from(&BootImageLoader::HasSystem, &BootImageLoader::LoadFromSystem, false); |
| }; |
| auto try_load_from_cache = [&]() { |
| return try_load_from(&BootImageLoader::HasCache, &BootImageLoader::LoadFromDalvikCache, true); |
| }; |
| |
| auto invoke_sequentially = [](auto first, auto second) { |
| return first() || second(); |
| }; |
| |
| // Step 1+2: Check system and cache images in the asked-for order. |
| if (order == ImageSpaceLoadingOrder::kSystemFirst) { |
| if (invoke_sequentially(try_load_from_system, try_load_from_cache)) { |
| return true; |
| } |
| } else { |
| if (invoke_sequentially(try_load_from_cache, try_load_from_system)) { |
| return true; |
| } |
| } |
| |
| // Step 3: We do not have an existing image in /system, |
| // so generate an image into the dalvik cache. |
| if (!loader.HasSystem() && loader.DalvikCacheExists()) { |
| std::string local_error_msg; |
| if (low_space || !Runtime::Current()->IsImageDex2OatEnabled()) { |
| local_error_msg = "Image compilation disabled."; |
| } else if (ImageCreationAllowed(loader.IsGlobalCache(), |
| image_isa, |
| is_zygote, |
| &local_error_msg)) { |
| bool compilation_success = |
| GenerateImage(loader.GetCacheFilename(), image_isa, &local_error_msg); |
| if (compilation_success) { |
| if (loader.LoadFromDalvikCache(/*validate_oat_file=*/ false, |
| extra_reservation_size, |
| boot_image_spaces, |
| extra_reservation, |
| &local_error_msg)) { |
| return true; |
| } |
| } |
| } |
| error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s", |
| loader.GetCacheFilename().c_str(), |
| local_error_msg.c_str())); |
| } |
| |
| // We failed. Prune the cache the free up space, create a compound error message |
| // and return false. |
| if (loader.DalvikCacheExists()) { |
| PruneDalvikCache(image_isa); |
| } |
| |
| std::ostringstream oss; |
| bool first = true; |
| for (const auto& msg : error_msgs) { |
| if (!first) { |
| oss << "\n "; |
| } |
| oss << msg; |
| } |
| |
| LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. " |
| << "Attempting to fall back to imageless running. Error was: " << oss.str(); |
| |
| return false; |
| } |
| |
| ImageSpace::~ImageSpace() { |
| // Everything done by member destructors. Classes forward-declared in header are now defined. |
| } |
| |
| std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image, |
| const OatFile* oat_file, |
| std::string* error_msg) { |
| // Note: The oat file has already been validated. |
| return Loader::InitAppImage(image, |
| image, |
| oat_file, |
| /*image_reservation=*/ nullptr, |
| error_msg); |
| } |
| |
| const OatFile* ImageSpace::GetOatFile() const { |
| return oat_file_non_owned_; |
| } |
| |
| std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() { |
| CHECK(oat_file_ != nullptr); |
| return std::move(oat_file_); |
| } |
| |
| void ImageSpace::Dump(std::ostream& os) const { |
| os << GetType() |
| << " begin=" << reinterpret_cast<void*>(Begin()) |
| << ",end=" << reinterpret_cast<void*>(End()) |
| << ",size=" << PrettySize(Size()) |
| << ",name=\"" << GetName() << "\"]"; |
| } |
| |
| bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) { |
| const ArtDexFileLoader dex_file_loader; |
| for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) { |
| const std::string& dex_file_location = oat_dex_file->GetDexFileLocation(); |
| |
| // Skip multidex locations - These will be checked when we visit their |
| // corresponding primary non-multidex location. |
| if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) { |
| continue; |
| } |
| |
| std::vector<uint32_t> checksums; |
| if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) { |
| *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' " |
| "referenced by oat file %s: %s", |
| dex_file_location.c_str(), |
| oat_file.GetLocation().c_str(), |
| error_msg->c_str()); |
| return false; |
| } |
| CHECK(!checksums.empty()); |
| if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) { |
| *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " |
| "'%s' and dex file '%s' (0x%x != 0x%x)", |
| oat_file.GetLocation().c_str(), |
| dex_file_location.c_str(), |
| oat_dex_file->GetDexFileLocationChecksum(), |
| checksums[0]); |
| return false; |
| } |
| |
| // Verify checksums for any related multidex entries. |
| for (size_t i = 1; i < checksums.size(); i++) { |
| std::string multi_dex_location = DexFileLoader::GetMultiDexLocation( |
| i, |
| dex_file_location.c_str()); |
| const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(), |
| nullptr, |
| error_msg); |
| if (multi_dex == nullptr) { |
| *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'", |
| oat_file.GetLocation().c_str(), |
| multi_dex_location.c_str()); |
| return false; |
| } |
| |
| if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) { |
| *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " |
| "'%s' and dex file '%s' (0x%x != 0x%x)", |
| oat_file.GetLocation().c_str(), |
| multi_dex_location.c_str(), |
| multi_dex->GetDexFileLocationChecksum(), |
| checksums[i]); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| std::string ImageSpace::GetBootClassPathChecksums(ArrayRef<const std::string> boot_class_path, |
| const std::string& image_location, |
| InstructionSet image_isa, |
| ImageSpaceLoadingOrder order, |
| /*out*/std::string* error_msg) { |
| std::string system_filename; |
| bool has_system = false; |
| std::string cache_filename; |
| bool has_cache = false; |
| bool dalvik_cache_exists = false; |
| bool is_global_cache = false; |
| if (!FindImageFilename(image_location.c_str(), |
| image_isa, |
| &system_filename, |
| &has_system, |
| &cache_filename, |
| &dalvik_cache_exists, |
| &has_cache, |
| &is_global_cache)) { |
| *error_msg = StringPrintf("Unable to find image file for %s and %s", |
| image_location.c_str(), |
| GetInstructionSetString(image_isa)); |
| return std::string(); |
| } |
| |
| DCHECK(has_system || has_cache); |
| const std::string& filename = (order == ImageSpaceLoadingOrder::kSystemFirst) |
| ? (has_system ? system_filename : cache_filename) |
| : (has_cache ? cache_filename : system_filename); |
| std::unique_ptr<ImageHeader> header = ReadSpecificImageHeader(filename.c_str(), error_msg); |
| if (header == nullptr) { |
| return std::string(); |
| } |
| if (header->GetComponentCount() == 0u || header->GetComponentCount() > boot_class_path.size()) { |
| *error_msg = StringPrintf("Unexpected component count in %s, received %u, " |
| "expected non-zero and <= %zu", |
| filename.c_str(), |
| header->GetComponentCount(), |
| boot_class_path.size()); |
| return std::string(); |
| } |
| |
| std::string boot_image_checksum = |
| StringPrintf("i;%d/%08x", header->GetComponentCount(), header->GetImageChecksum()); |
| ArrayRef<const std::string> boot_class_path_tail = |
| ArrayRef<const std::string>(boot_class_path).SubArray(header->GetComponentCount()); |
| for (const std::string& bcp_filename : boot_class_path_tail) { |
| std::vector<std::unique_ptr<const DexFile>> dex_files; |
| const ArtDexFileLoader dex_file_loader; |
| if (!dex_file_loader.Open(bcp_filename.c_str(), |
| bcp_filename, // The location does not matter here. |
| /*verify=*/ false, |
| /*verify_checksum=*/ false, |
| error_msg, |
| &dex_files)) { |
| return std::string(); |
| } |
| DCHECK(!dex_files.empty()); |
| StringAppendF(&boot_image_checksum, ":d"); |
| for (const std::unique_ptr<const DexFile>& dex_file : dex_files) { |
| StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum()); |
| } |
| } |
| return boot_image_checksum; |
| } |
| |
| std::string ImageSpace::GetBootClassPathChecksums( |
| const std::vector<ImageSpace*>& image_spaces, |
| const std::vector<const DexFile*>& boot_class_path) { |
| DCHECK(!image_spaces.empty()); |
| const ImageHeader& primary_header = image_spaces.front()->GetImageHeader(); |
| uint32_t component_count = primary_header.GetComponentCount(); |
| DCHECK_EQ(component_count, image_spaces.size()); |
| std::string boot_image_checksum = |
| StringPrintf("i;%d/%08x", component_count, primary_header.GetImageChecksum()); |
| size_t pos = 0u; |
| for (const ImageSpace* space : image_spaces) { |
| size_t num_dex_files = space->oat_file_non_owned_->GetOatDexFiles().size(); |
| if (kIsDebugBuild) { |
| CHECK_NE(num_dex_files, 0u); |
| CHECK_LE(space->oat_file_non_owned_->GetOatDexFiles().size(), boot_class_path.size() - pos); |
| for (size_t i = 0; i != num_dex_files; ++i) { |
| CHECK_EQ(space->oat_file_non_owned_->GetOatDexFiles()[i]->GetDexFileLocation(), |
| boot_class_path[pos + i]->GetLocation()); |
| } |
| } |
| pos += num_dex_files; |
| } |
| ArrayRef<const DexFile* const> boot_class_path_tail = |
| ArrayRef<const DexFile* const>(boot_class_path).SubArray(pos); |
| DCHECK(boot_class_path_tail.empty() || |
| !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str())); |
| for (const DexFile* dex_file : boot_class_path_tail) { |
| if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) { |
| StringAppendF(&boot_image_checksum, ":d"); |
| } |
| StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum()); |
| } |
| return boot_image_checksum; |
| } |
| |
| std::vector<std::string> ImageSpace::ExpandMultiImageLocations( |
| const std::vector<std::string>& dex_locations, |
| const std::string& image_location) { |
| return ExpandMultiImageLocations(ArrayRef<const std::string>(dex_locations), image_location); |
| } |
| |
| std::vector<std::string> ImageSpace::ExpandMultiImageLocations( |
| ArrayRef<const std::string> dex_locations, |
| const std::string& image_location) { |
| DCHECK(!dex_locations.empty()); |
| |
| // Find the path. |
| size_t last_slash = image_location.rfind('/'); |
| CHECK_NE(last_slash, std::string::npos); |
| |
| // We also need to honor path components that were encoded through '@'. Otherwise the loading |
| // code won't be able to find the images. |
| if (image_location.find('@', last_slash) != std::string::npos) { |
| last_slash = image_location.rfind('@'); |
| } |
| |
| // Find the dot separating the primary image name from the extension. |
| size_t last_dot = image_location.rfind('.'); |
| // Extract the extension and base (the path and primary image name). |
| std::string extension; |
| std::string base = image_location; |
| if (last_dot != std::string::npos && last_dot > last_slash) { |
| extension = image_location.substr(last_dot); // Including the dot. |
| base.resize(last_dot); |
| } |
| // For non-empty primary image name, add '-' to the `base`. |
| if (last_slash + 1u != base.size()) { |
| base += '-'; |
| } |
| |
| std::vector<std::string> locations; |
| locations.reserve(dex_locations.size()); |
| locations.push_back(image_location); |
| |
| // Now create the other names. Use a counted loop to skip the first one. |
| for (size_t i = 1u; i < dex_locations.size(); ++i) { |
| // Replace path with `base` (i.e. image path and prefix) and replace the original |
| // extension (if any) with `extension`. |
| std::string name = dex_locations[i]; |
| size_t last_dex_slash = name.rfind('/'); |
| if (last_dex_slash != std::string::npos) { |
| name = name.substr(last_dex_slash + 1); |
| } |
| size_t last_dex_dot = name.rfind('.'); |
| if (last_dex_dot != std::string::npos) { |
| name.resize(last_dex_dot); |
| } |
| locations.push_back(base + name + extension); |
| } |
| return locations; |
| } |
| |
| void ImageSpace::DumpSections(std::ostream& os) const { |
| const uint8_t* base = Begin(); |
| const ImageHeader& header = GetImageHeader(); |
| for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { |
| auto section_type = static_cast<ImageHeader::ImageSections>(i); |
| const ImageSection& section = header.GetImageSection(section_type); |
| os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset()) |
| << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n"; |
| } |
| } |
| |
| void ImageSpace::DisablePreResolvedStrings() { |
| // Clear dex cache pointers. |
| ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches = |
| GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>(); |
| for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) { |
| ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i); |
| dex_cache->ClearPreResolvedStrings(); |
| } |
| } |
| |
| void ImageSpace::ReleaseMetadata() { |
| const ImageSection& metadata = GetImageHeader().GetMetadataSection(); |
| VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes"; |
| // In the case where new app images may have been added around the checkpoint, ensure that we |
| // don't madvise the cache for these. |
| ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches = |
| GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>(); |
| bool have_startup_cache = false; |
| for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) { |
| ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i); |
| if (dex_cache->NumPreResolvedStrings() != 0u) { |
| have_startup_cache = true; |
| } |
| } |
| // Only safe to do for images that have their preresolved strings caches disabled. This is because |
| // uncompressed images madvise to the original unrelocated image contents. |
| if (!have_startup_cache) { |
| // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic. |
| uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize); |
| uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize); |
| if (page_begin < page_end) { |
| CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed"; |
| } |
| } |
| } |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |