blob: fe9cf57ec5fe675fe1614670b88989a53321fe2b [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#include "android-base/macros.h"
#include "instrumentation.h"
#include "interpreter.h"
#include "interpreter_intrinsics.h"
#include "transaction.h"
#include <math.h>
#include <atomic>
#include <iostream>
#include <sstream>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/locks.h"
#include "base/logging.h"
#include "base/macros.h"
#include "class_linker-inl.h"
#include "class_root-inl.h"
#include "common_dex_operations.h"
#include "common_throws.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_instruction-inl.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "handle_scope-inl.h"
#include "interpreter_cache-inl.h"
#include "interpreter_switch_impl.h"
#include "jit/jit-inl.h"
#include "mirror/call_site.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/method.h"
#include "mirror/method_handles_lookup.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "obj_ptr.h"
#include "stack.h"
#include "thread.h"
#include "thread-inl.h"
#include "unstarted_runtime.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
namespace art {
namespace interpreter {
void ThrowNullPointerExceptionFromInterpreter()
REQUIRES_SHARED(Locks::mutator_lock_);
template <bool kMonitorCounting>
static inline void DoMonitorEnter(Thread* self, ShadowFrame* frame, ObjPtr<mirror::Object> ref)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
DCHECK(!ref.IsNull());
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_ref(hs.NewHandle(ref));
h_ref->MonitorEnter(self);
DCHECK(self->HoldsLock(h_ref.Get()));
if (UNLIKELY(self->IsExceptionPending())) {
bool unlocked = h_ref->MonitorExit(self);
DCHECK(unlocked);
return;
}
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
frame->GetLockCountData().AddMonitor(self, h_ref.Get());
}
}
template <bool kMonitorCounting>
static inline void DoMonitorExit(Thread* self, ShadowFrame* frame, ObjPtr<mirror::Object> ref)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_ref(hs.NewHandle(ref));
h_ref->MonitorExit(self);
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
frame->GetLockCountData().RemoveMonitorOrThrow(self, h_ref.Get());
}
}
template <bool kMonitorCounting>
static inline bool DoMonitorCheckOnExit(Thread* self, ShadowFrame* frame)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
return frame->GetLockCountData().CheckAllMonitorsReleasedOrThrow(self);
}
return true;
}
void AbortTransactionF(Thread* self, const char* fmt, ...)
__attribute__((__format__(__printf__, 2, 3)))
REQUIRES_SHARED(Locks::mutator_lock_);
void AbortTransactionV(Thread* self, const char* fmt, va_list args)
REQUIRES_SHARED(Locks::mutator_lock_);
void RecordArrayElementsInTransaction(ObjPtr<mirror::Array> array, int32_t count)
REQUIRES_SHARED(Locks::mutator_lock_);
// Invokes the given method. This is part of the invocation support and is used by DoInvoke,
// DoFastInvoke and DoInvokeVirtualQuick functions.
// Returns true on success, otherwise throws an exception and returns false.
template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result);
// Called by the switch interpreter to know if we can stay in it.
bool ShouldStayInSwitchInterpreter(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_);
// Throws exception if we are getting close to the end of the stack.
NO_INLINE bool CheckStackOverflow(Thread* self, size_t frame_size)
REQUIRES_SHARED(Locks::mutator_lock_);
// Sends the normal method exit event.
// Returns true if the events succeeded and false if there is a pending exception.
template <typename T> bool SendMethodExitEvents(
Thread* self,
const instrumentation::Instrumentation* instrumentation,
ShadowFrame& frame,
ArtMethod* method,
T& result) REQUIRES_SHARED(Locks::mutator_lock_);
static inline ALWAYS_INLINE WARN_UNUSED bool
NeedsMethodExitEvent(const instrumentation::Instrumentation* ins)
REQUIRES_SHARED(Locks::mutator_lock_) {
return ins->HasMethodExitListeners() || ins->HasWatchedFramePopListeners();
}
// NO_INLINE so we won't bloat the interpreter with this very cold lock-release code.
template <bool kMonitorCounting>
static NO_INLINE void UnlockHeldMonitors(Thread* self, ShadowFrame* shadow_frame)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(shadow_frame->GetForcePopFrame() ||
Runtime::Current()->IsTransactionAborted());
// Unlock all monitors.
if (kMonitorCounting && shadow_frame->GetMethod()->MustCountLocks()) {
// Get the monitors from the shadow-frame monitor-count data.
shadow_frame->GetLockCountData().VisitMonitors(
[&](mirror::Object** obj) REQUIRES_SHARED(Locks::mutator_lock_) {
// Since we don't use the 'obj' pointer after the DoMonitorExit everything should be fine
// WRT suspension.
DoMonitorExit<kMonitorCounting>(self, shadow_frame, *obj);
});
} else {
std::vector<verifier::MethodVerifier::DexLockInfo> locks;
verifier::MethodVerifier::FindLocksAtDexPc(shadow_frame->GetMethod(),
shadow_frame->GetDexPC(),
&locks,
Runtime::Current()->GetTargetSdkVersion());
for (const auto& reg : locks) {
if (UNLIKELY(reg.dex_registers.empty())) {
LOG(ERROR) << "Unable to determine reference locked by "
<< shadow_frame->GetMethod()->PrettyMethod() << " at pc "
<< shadow_frame->GetDexPC();
} else {
DoMonitorExit<kMonitorCounting>(
self, shadow_frame, shadow_frame->GetVRegReference(*reg.dex_registers.begin()));
}
}
}
}
enum class MonitorState {
kNoMonitorsLocked,
kCountingMonitors,
kNormalMonitors,
};
template<MonitorState kMonitorState>
static inline ALWAYS_INLINE void PerformNonStandardReturn(
Thread* self,
ShadowFrame& frame,
JValue& result,
const instrumentation::Instrumentation* instrumentation,
uint16_t num_dex_inst) REQUIRES_SHARED(Locks::mutator_lock_) {
static constexpr bool kMonitorCounting = (kMonitorState == MonitorState::kCountingMonitors);
ObjPtr<mirror::Object> thiz(frame.GetThisObject(num_dex_inst));
StackHandleScope<1u> hs(self);
if (UNLIKELY(self->IsExceptionPending())) {
LOG(WARNING) << "Suppressing exception for non-standard method exit: "
<< self->GetException()->Dump();
self->ClearException();
}
if (kMonitorState != MonitorState::kNoMonitorsLocked) {
UnlockHeldMonitors<kMonitorCounting>(self, &frame);
}
DoMonitorCheckOnExit<kMonitorCounting>(self, &frame);
result = JValue();
if (UNLIKELY(NeedsMethodExitEvent(instrumentation))) {
SendMethodExitEvents(self, instrumentation, frame, frame.GetMethod(), result);
}
}
// Handles all invoke-XXX/range instructions except for invoke-polymorphic[/range].
// Returns true on success, otherwise throws an exception and returns false.
template<InvokeType type, bool is_range, bool do_access_check, bool is_mterp>
static ALWAYS_INLINE bool DoInvoke(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Make sure to check for async exceptions before anything else.
if (UNLIKELY(self->ObserveAsyncException())) {
return false;
}
const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
ArtMethod* sf_method = shadow_frame.GetMethod();
// Try to find the method in small thread-local cache first (only used when
// nterp is not used as mterp and nterp use the cache in an incompatible way).
InterpreterCache* tls_cache = self->GetInterpreterCache();
size_t tls_value;
ArtMethod* resolved_method;
if (!IsNterpSupported() && LIKELY(tls_cache->Get(self, inst, &tls_value))) {
resolved_method = reinterpret_cast<ArtMethod*>(tls_value);
} else {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
constexpr ClassLinker::ResolveMode resolve_mode =
do_access_check ? ClassLinker::ResolveMode::kCheckICCEAndIAE
: ClassLinker::ResolveMode::kNoChecks;
resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, sf_method, type);
if (UNLIKELY(resolved_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
}
if (!IsNterpSupported()) {
tls_cache->Set(self, inst, reinterpret_cast<size_t>(resolved_method));
}
}
// Null pointer check and virtual method resolution.
ArtMethod* called_method = nullptr;
{
// `FindMethodToCall` might suspend, so don't keep `receiver` as a local
// variable after the call.
ObjPtr<mirror::Object> receiver =
(type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC);
called_method = FindMethodToCall<type, do_access_check>(
method_idx, resolved_method, &receiver, sf_method, self);
if (UNLIKELY(called_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
}
}
if (UNLIKELY(!called_method->IsInvokable())) {
called_method->ThrowInvocationTimeError(
(type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC));
result->SetJ(0);
return false;
}
jit::Jit* jit = Runtime::Current()->GetJit();
if (is_mterp && !is_range && called_method->IsIntrinsic()) {
if (MterpHandleIntrinsic(&shadow_frame, called_method, inst, inst_data,
shadow_frame.GetResultRegister())) {
if (jit != nullptr && sf_method != nullptr) {
jit->NotifyInterpreterToCompiledCodeTransition(self, sf_method);
}
return !self->IsExceptionPending();
}
}
return DoCall<is_range, do_access_check>(called_method, self, shadow_frame, inst, inst_data,
result);
}
static inline ObjPtr<mirror::MethodHandle> ResolveMethodHandle(Thread* self,
uint32_t method_handle_index,
ArtMethod* referrer)
REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
return class_linker->ResolveMethodHandle(self, method_handle_index, referrer);
}
static inline ObjPtr<mirror::MethodType> ResolveMethodType(Thread* self,
dex::ProtoIndex method_type_index,
ArtMethod* referrer)
REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
return class_linker->ResolveMethodType(self, method_type_index, referrer);
}
#define DECLARE_SIGNATURE_POLYMORPHIC_HANDLER(Name, ...) \
bool Do ## Name(Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data, \
JValue* result) REQUIRES_SHARED(Locks::mutator_lock_);
#include "intrinsics_list.h"
INTRINSICS_LIST(DECLARE_SIGNATURE_POLYMORPHIC_HANDLER)
#undef INTRINSICS_LIST
#undef DECLARE_SIGNATURE_POLYMORPHIC_HANDLER
// Performs a invoke-polymorphic or invoke-polymorphic-range.
template<bool is_range>
bool DoInvokePolymorphic(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_);
bool DoInvokeCustom(Thread* self,
ShadowFrame& shadow_frame,
uint32_t call_site_idx,
const InstructionOperands* operands,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_);
// Performs a custom invoke (invoke-custom/invoke-custom-range).
template<bool is_range>
bool DoInvokeCustom(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
if (is_range) {
RangeInstructionOperands operands(inst->VRegC_3rc(), inst->VRegA_3rc());
return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result);
} else {
uint32_t args[Instruction::kMaxVarArgRegs];
inst->GetVarArgs(args, inst_data);
VarArgsInstructionOperands operands(args, inst->VRegA_35c());
return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result);
}
}
template<Primitive::Type field_type>
ALWAYS_INLINE static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg)
REQUIRES_SHARED(Locks::mutator_lock_) {
JValue field_value;
switch (field_type) {
case Primitive::kPrimBoolean:
field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimByte:
field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimChar:
field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimShort:
field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimInt:
field_value.SetI(shadow_frame.GetVReg(vreg));
break;
case Primitive::kPrimLong:
field_value.SetJ(shadow_frame.GetVRegLong(vreg));
break;
case Primitive::kPrimNot:
field_value.SetL(shadow_frame.GetVRegReference(vreg));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return field_value;
}
// Handles iget-XXX and sget-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active = false>
ALWAYS_INLINE bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) {
const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead);
const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtMethod* method = shadow_frame.GetMethod();
ArtField* f = FindFieldFromCode<find_type, do_access_check>(
field_idx, method, self, Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<mirror::Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
if (transaction_active) {
if (Runtime::Current()->GetTransaction()->ReadConstraint(obj)) {
Runtime::Current()->AbortTransactionAndThrowAbortError(self, "Can't read static fields of "
+ obj->PrettyTypeOf() + " since it does not belong to clinit's class.");
return false;
}
}
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, method, true);
return false;
}
}
JValue result;
if (UNLIKELY(!DoFieldGetCommon<field_type>(self, shadow_frame, obj, f, &result))) {
// Instrumentation threw an error!
CHECK(self->IsExceptionPending());
return false;
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, result.GetZ());
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, result.GetB());
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, result.GetC());
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, result.GetS());
break;
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, result.GetI());
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, result.GetJ());
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, result.GetL());
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
static inline bool CheckWriteConstraint(Thread* self, ObjPtr<mirror::Object> obj)
REQUIRES_SHARED(Locks::mutator_lock_) {
Runtime* runtime = Runtime::Current();
if (runtime->GetTransaction()->WriteConstraint(obj)) {
DCHECK(runtime->GetHeap()->ObjectIsInBootImageSpace(obj) || obj->IsClass());
const char* base_msg = runtime->GetHeap()->ObjectIsInBootImageSpace(obj)
? "Can't set fields of boot image "
: "Can't set fields of ";
runtime->AbortTransactionAndThrowAbortError(self, base_msg + obj->PrettyTypeOf());
return false;
}
return true;
}
static inline bool CheckWriteValueConstraint(Thread* self, ObjPtr<mirror::Object> value)
REQUIRES_SHARED(Locks::mutator_lock_) {
Runtime* runtime = Runtime::Current();
if (runtime->GetTransaction()->WriteValueConstraint(value)) {
DCHECK(value != nullptr);
std::string msg = value->IsClass()
? "Can't store reference to class " + value->AsClass()->PrettyDescriptor()
: "Can't store reference to instance of " + value->GetClass()->PrettyDescriptor();
runtime->AbortTransactionAndThrowAbortError(self, msg);
return false;
}
return true;
}
// Handles iput-XXX and sput-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
ALWAYS_INLINE bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
const bool do_assignability_check = do_access_check;
bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite);
uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtMethod* method = shadow_frame.GetMethod();
ArtField* f = FindFieldFromCode<find_type, do_access_check>(
field_idx, method, self, Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<mirror::Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, method, false);
return false;
}
}
if (transaction_active && !CheckWriteConstraint(self, obj)) {
return false;
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
JValue value = GetFieldValue<field_type>(shadow_frame, vregA);
if (transaction_active &&
field_type == Primitive::kPrimNot &&
!CheckWriteValueConstraint(self, value.GetL())) {
return false;
}
return DoFieldPutCommon<field_type, do_assignability_check, transaction_active>(self,
shadow_frame,
obj,
f,
value);
}
// Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the
// java.lang.String class is initialized.
static inline ObjPtr<mirror::String> ResolveString(Thread* self,
ShadowFrame& shadow_frame,
dex::StringIndex string_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> java_lang_string_class = GetClassRoot<mirror::String>();
if (UNLIKELY(!java_lang_string_class->IsVisiblyInitialized())) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(java_lang_string_class));
if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(
self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true))) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
DCHECK(h_class->IsInitializing());
}
ArtMethod* method = shadow_frame.GetMethod();
ObjPtr<mirror::String> string_ptr =
Runtime::Current()->GetClassLinker()->ResolveString(string_idx, method);
return string_ptr;
}
// Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, kMinInt);
} else {
shadow_frame.SetVReg(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, 0);
} else {
shadow_frame.SetVReg(result_reg, dividend % divisor);
}
return true;
}
// Handles div-long and div-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongDivide(ShadowFrame& shadow_frame,
size_t result_reg,
int64_t dividend,
int64_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, kMinLong);
} else {
shadow_frame.SetVRegLong(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-long and rem-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongRemainder(ShadowFrame& shadow_frame,
size_t result_reg,
int64_t dividend,
int64_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, 0);
} else {
shadow_frame.SetVRegLong(result_reg, dividend % divisor);
}
return true;
}
// Handles filled-new-array and filled-new-array-range instructions.
// Returns true on success, otherwise throws an exception and returns false.
template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame,
Thread* self, JValue* result);
// Handles packed-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
uint16_t size = switch_data[1];
if (size == 0) {
// Empty packed switch, move forward by 3 (size of PACKED_SWITCH).
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK_ALIGNED(keys, 4);
int32_t first_key = keys[0];
const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]);
DCHECK_ALIGNED(targets, 4);
int32_t index = test_val - first_key;
if (index >= 0 && index < size) {
return targets[index];
} else {
// No corresponding value: move forward by 3 (size of PACKED_SWITCH).
return 3;
}
}
// Handles sparse-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
uint16_t size = switch_data[1];
// Return length of SPARSE_SWITCH if size is 0.
if (size == 0) {
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK_ALIGNED(keys, 4);
const int32_t* entries = keys + size;
DCHECK_ALIGNED(entries, 4);
int lo = 0;
int hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
int32_t foundVal = keys[mid];
if (test_val < foundVal) {
hi = mid - 1;
} else if (test_val > foundVal) {
lo = mid + 1;
} else {
return entries[mid];
}
}
// No corresponding value: move forward by 3 (size of SPARSE_SWITCH).
return 3;
}
// We execute any instrumentation events triggered by throwing and/or handing the pending exception
// and change the shadow_frames dex_pc to the appropriate exception handler if the current method
// has one. If the exception has been handled and the shadow_frame is now pointing to a catch clause
// we return true. If the current method is unable to handle the exception we return false.
// This function accepts a null Instrumentation* as a way to cause instrumentation events not to be
// reported.
// TODO We might wish to reconsider how we cause some events to be ignored.
bool MoveToExceptionHandler(Thread* self,
ShadowFrame& shadow_frame,
bool skip_listeners,
bool skip_throw_listener) REQUIRES_SHARED(Locks::mutator_lock_);
NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame)
__attribute__((cold))
REQUIRES_SHARED(Locks::mutator_lock_);
// Set true if you want TraceExecution invocation before each bytecode execution.
constexpr bool kTraceExecutionEnabled = false;
static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst,
const uint32_t dex_pc)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kTraceExecutionEnabled) {
#define TRACE_LOG std::cerr
std::ostringstream oss;
oss << shadow_frame.GetMethod()->PrettyMethod()
<< android::base::StringPrintf("\n0x%x: ", dex_pc)
<< inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n";
for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) {
uint32_t raw_value = shadow_frame.GetVReg(i);
ObjPtr<mirror::Object> ref_value = shadow_frame.GetVRegReference(i);
oss << android::base::StringPrintf(" vreg%u=0x%08X", i, raw_value);
if (ref_value != nullptr) {
if (ref_value->GetClass()->IsStringClass() &&
!ref_value->AsString()->IsValueNull()) {
oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\"";
} else {
oss << "/" << ref_value->PrettyTypeOf();
}
}
}
TRACE_LOG << oss.str() << "\n";
#undef TRACE_LOG
}
}
static inline bool IsBackwardBranch(int32_t branch_offset) {
return branch_offset <= 0;
}
// The arg_offset is the offset to the first input register in the frame.
void ArtInterpreterToCompiledCodeBridge(Thread* self,
ArtMethod* caller,
ShadowFrame* shadow_frame,
uint16_t arg_offset,
JValue* result);
static inline bool IsStringInit(const DexFile* dex_file, uint32_t method_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
const dex::MethodId& method_id = dex_file->GetMethodId(method_idx);
const char* class_name = dex_file->StringByTypeIdx(method_id.class_idx_);
const char* method_name = dex_file->GetMethodName(method_id);
// Instead of calling ResolveMethod() which has suspend point and can trigger
// GC, look up the method symbolically.
// Compare method's class name and method name against string init.
// It's ok since it's not allowed to create your own java/lang/String.
// TODO: verify that assumption.
if ((strcmp(class_name, "Ljava/lang/String;") == 0) &&
(strcmp(method_name, "<init>") == 0)) {
return true;
}
return false;
}
static inline bool IsStringInit(const Instruction* instr, ArtMethod* caller)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (instr->Opcode() == Instruction::INVOKE_DIRECT ||
instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) {
uint16_t callee_method_idx = (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ?
instr->VRegB_3rc() : instr->VRegB_35c();
return IsStringInit(caller->GetDexFile(), callee_method_idx);
}
return false;
}
// Set string value created from StringFactory.newStringFromXXX() into all aliases of
// StringFactory.newEmptyString().
void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame,
uint16_t this_obj_vreg,
JValue result);
} // namespace interpreter
} // namespace art
#endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_