| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "load_store_elimination.h" |
| |
| #include "base/arena_bit_vector.h" |
| #include "base/array_ref.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "escape.h" |
| #include "load_store_analysis.h" |
| #include "optimizing/optimizing_compiler_stats.h" |
| #include "reference_type_propagation.h" |
| |
| /** |
| * The general algorithm of load-store elimination (LSE). |
| * |
| * We use load-store analysis to collect a list of heap locations and perform |
| * alias analysis of those heap locations. LSE then keeps track of a list of |
| * heap values corresponding to the heap locations and stores that put those |
| * values in these locations. |
| * - In phase 1, we visit basic blocks in reverse post order and for each basic |
| * block, visit instructions sequentially, recording heap values and looking |
| * for loads and stores to eliminate without relying on loop Phis. |
| * - In phase 2, we look for loads that can be replaced by creating loop Phis |
| * or using a loop-invariant value. |
| * - In phase 3, we determine which stores are dead and can be eliminated and |
| * based on that information we re-evaluate whether some kept stores are |
| * storing the same value as the value in the heap location; such stores are |
| * also marked for elimination. |
| * - In phase 4, we commit the changes, replacing loads marked for elimination |
| * in previous processing and removing stores not marked for keeping. We also |
| * remove allocations that are no longer needed. |
| * |
| * 1. Walk over blocks and their instructions. |
| * |
| * The initial set of heap values for a basic block is |
| * - For a loop header of an irreducible loop, all heap values are unknown. |
| * - For a loop header of a normal loop, all values unknown at the end of the |
| * preheader are initialized to unknown, other heap values are set to Phi |
| * placeholders as we cannot determine yet whether these values are known on |
| * all back-edges. We use Phi placeholders also for array heap locations with |
| * index defined inside the loop but this helps only when the value remains |
| * zero from the array allocation throughout the loop. |
| * - For other basic blocks, we merge incoming values from the end of all |
| * predecessors. If any incoming value is unknown, the start value for this |
| * block is also unknown. Otherwise, if all the incoming values are the same |
| * (including the case of a single predecessor), the incoming value is used. |
| * Otherwise, we use a Phi placeholder to indicate different incoming values. |
| * We record whether such Phi placeholder depends on a loop Phi placeholder. |
| * |
| * For each instruction in the block |
| * - If the instruction is a load from a heap location with a known value not |
| * dependent on a loop Phi placeholder, the load can be eliminated, either by |
| * using an existing instruction or by creating new Phi(s) instead. In order |
| * to maintain the validity of all heap locations during the optimization |
| * phase, we only record substitutes at this phase and the real elimination |
| * is delayed till the end of LSE. Loads that require a loop Phi placeholder |
| * replacement are recorded for processing later. |
| * - If the instruction is a store, it updates the heap value for the heap |
| * location with the stored value and records the store itself so that we can |
| * mark it for keeping if the value becomes observable. Heap values are |
| * invalidated for heap locations that may alias with the store instruction's |
| * heap location and their recorded stores are marked for keeping as they are |
| * now potentially observable. The store instruction can be eliminated unless |
| * the value stored is later needed e.g. by a load from the same/aliased heap |
| * location or the heap location persists at method return/deoptimization. |
| * - A store that stores the same value as the heap value is eliminated. |
| * - For newly instantiated instances, their heap values are initialized to |
| * language defined default values. |
| * - Finalizable objects are considered as persisting at method |
| * return/deoptimization. |
| * - Some instructions such as invokes are treated as loading and invalidating |
| * all the heap values, depending on the instruction's side effects. |
| * - SIMD graphs (with VecLoad and VecStore instructions) are also handled. Any |
| * partial overlap access among ArrayGet/ArraySet/VecLoad/Store is seen as |
| * alias and no load/store is eliminated in such case. |
| * - Currently this LSE algorithm doesn't handle graph with try-catch, due to |
| * the special block merging structure. |
| * |
| * The time complexity of the initial phase has several components. The total |
| * time for the initialization of heap values for all blocks is |
| * O(heap_locations * edges) |
| * and the time complexity for simple instruction processing is |
| * O(instructions). |
| * See the description of phase 3 for additional complexity due to matching of |
| * existing Phis for replacing loads. |
| * |
| * 2. Process loads that depend on loop Phi placeholders. |
| * |
| * We go over these loads to determine whether they can be eliminated. We look |
| * for the set of all Phi placeholders that feed the load and depend on a loop |
| * Phi placeholder and, if we find no unknown value, we construct the necessary |
| * Phi(s) or, if all other inputs are identical, i.e. the location does not |
| * change in the loop, just use that input. If we do find an unknown input, this |
| * must be from a loop back-edge and we replace the loop Phi placeholder with |
| * unknown value and re-process loads and stores that previously depended on |
| * loop Phi placeholders. This shall find at least one load of an unknown value |
| * which is now known to be unreplaceable or a new unknown value on a back-edge |
| * and we repeat this process until each load is either marked for replacement |
| * or found to be unreplaceable. As we mark at least one additional loop Phi |
| * placeholder as unreplacable in each iteration, this process shall terminate. |
| * |
| * The depth-first search for Phi placeholders in FindLoopPhisToMaterialize() |
| * is limited by the number of Phi placeholders and their dependencies we need |
| * to search with worst-case time complexity |
| * O(phi_placeholder_dependencies) . |
| * The dependencies are usually just the Phi placeholders' potential inputs, |
| * but if we use TryReplacingLoopPhiPlaceholderWithDefault() for default value |
| * replacement search, there are additional dependencies to consider, see below. |
| * |
| * In the successful case (no unknown inputs found) we use the Floyd-Warshall |
| * algorithm to determine transitive closures for each found Phi placeholder, |
| * and then match or materialize Phis from the smallest transitive closure, |
| * so that we can determine if such subset has a single other input. This has |
| * time complexity |
| * O(phi_placeholders_found^3) . |
| * Note that successful TryReplacingLoopPhiPlaceholderWithDefault() does not |
| * contribute to this as such Phi placeholders are replaced immediately. |
| * The total time of all such successful cases has time complexity |
| * O(phi_placeholders^3) |
| * because the found sets are disjoint and `Sum(n_i^3) <= Sum(n_i)^3`. Similar |
| * argument applies to the searches used to find all successful cases, so their |
| * total contribution is also just an insignificant |
| * O(phi_placeholder_dependencies) . |
| * The materialization of Phis has an insignificant total time complexity |
| * O(phi_placeholders * edges) . |
| * |
| * If we find an unknown input, we re-process heap values and loads with a time |
| * complexity that's the same as the phase 1 in the worst case. Adding this to |
| * the depth-first search time complexity yields |
| * O(phi_placeholder_dependencies + heap_locations * edges + instructions) |
| * for a single iteration. We can ignore the middle term as it's proprotional |
| * to the number of Phi placeholder inputs included in the first term. Using |
| * the upper limit of number of such iterations, the total time complexity is |
| * O((phi_placeholder_dependencies + instructions) * phi_placeholders) . |
| * |
| * The upper bound of Phi placeholder inputs is |
| * heap_locations * edges |
| * but if we use TryReplacingLoopPhiPlaceholderWithDefault(), the dependencies |
| * include other heap locations in predecessor blocks with the upper bound of |
| * heap_locations^2 * edges . |
| * Using the estimate |
| * edges <= blocks^2 |
| * and |
| * phi_placeholders <= heap_locations * blocks , |
| * the worst-case time complexity of the |
| * O(phi_placeholder_dependencies * phi_placeholders) |
| * term from unknown input cases is actually |
| * O(heap_locations^3 * blocks^3) , |
| * exactly as the estimate for the Floyd-Warshall parts of successful cases. |
| * Adding the other term from the unknown input cases (to account for the case |
| * with significantly more instructions than blocks and heap locations), the |
| * phase 2 time complexity is |
| * O(heap_locations^3 * blocks^3 + heap_locations * blocks * instructions) . |
| * |
| * See the description of phase 3 for additional complexity due to matching of |
| * existing Phis for replacing loads. |
| * |
| * 3. Determine which stores to keep and which to eliminate. |
| * |
| * During instruction processing in phase 1 and re-processing in phase 2, we are |
| * keeping a record of the stores and Phi placeholders that become observable |
| * and now propagate the observable Phi placeholders to all actual stores that |
| * feed them. Having determined observable stores, we look for stores that just |
| * overwrite the old value with the same. Since ignoring non-observable stores |
| * actually changes the old values in heap locations, we need to recalculate |
| * Phi placeholder replacements but we proceed similarly to the previous phase. |
| * We look for the set of all Phis that feed the old value replaced by the store |
| * (but ignoring whether they depend on a loop Phi) and, if we find no unknown |
| * value, we try to match existing Phis (we do not create new Phis anymore) or, |
| * if all other inputs are identical, i.e. the location does not change in the |
| * loop, just use that input. If this succeeds and the old value is identical to |
| * the value we're storing, such store shall be eliminated. |
| * |
| * The work is similar to the phase 2, except that we're not re-processing loads |
| * and stores anymore, so the time complexity of phase 3 is |
| * O(heap_locations^3 * blocks^3) . |
| * |
| * There is additional complexity in matching existing Phis shared between the |
| * phases 1, 2 and 3. We are never trying to match two or more Phis at the same |
| * time (this could be difficult and slow), so each matching attempt is just |
| * looking at Phis in the block (both old Phis and newly created Phis) and their |
| * inputs. As we create at most `heap_locations` Phis in each block, the upper |
| * bound on the number of Phis we look at is |
| * heap_locations * (old_phis + heap_locations) |
| * and the worst-case time complexity is |
| * O(heap_locations^2 * edges + heap_locations * old_phis * edges) . |
| * The first term is lower than one term in phase 2, so the relevant part is |
| * O(heap_locations * old_phis * edges) . |
| * |
| * 4. Replace loads and remove unnecessary stores and singleton allocations. |
| * |
| * A special type of objects called singletons are instantiated in the method |
| * and have a single name, i.e. no aliases. Singletons have exclusive heap |
| * locations since they have no aliases. Singletons are helpful in narrowing |
| * down the life span of a heap location such that they do not always need to |
| * participate in merging heap values. Allocation of a singleton can be |
| * eliminated if that singleton is not used and does not persist at method |
| * return/deoptimization. |
| * |
| * The time complexity of this phase is |
| * O(instructions + instruction_uses) . |
| * |
| * FIXME: The time complexity described above assumes that the |
| * HeapLocationCollector finds a heap location for an instruction in O(1) |
| * time but it is currently O(heap_locations); this can be fixed by adding |
| * a hash map to the HeapLocationCollector. |
| */ |
| |
| namespace art { |
| |
| // Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke(). |
| class LSEVisitor final : private HGraphDelegateVisitor { |
| public: |
| LSEVisitor(HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| OptimizingCompilerStats* stats); |
| |
| void Run(); |
| |
| private: |
| class PhiPlaceholder { |
| public: |
| PhiPlaceholder(uint32_t block_id, uint32_t heap_location) |
| : block_id_(block_id), |
| heap_location_(dchecked_integral_cast<uint32_t>(heap_location)) {} |
| |
| uint32_t GetBlockId() const { |
| return block_id_; |
| } |
| |
| size_t GetHeapLocation() const { |
| return heap_location_; |
| } |
| |
| private: |
| uint32_t block_id_; |
| uint32_t heap_location_; |
| }; |
| |
| class Value { |
| public: |
| enum class Type { |
| kInvalid, |
| kUnknown, |
| kDefault, |
| kInstruction, |
| kNeedsNonLoopPhi, |
| kNeedsLoopPhi, |
| }; |
| |
| static Value Invalid() { |
| Value value; |
| value.type_ = Type::kInvalid; |
| value.instruction_ = nullptr; |
| return value; |
| } |
| |
| // An unknown heap value. Loads with such a value in the heap location cannot be eliminated. |
| // A heap location can be set to an unknown heap value when: |
| // - it is coming from outside the method, |
| // - it is killed due to aliasing, or side effects, or merging with an unknown value. |
| static Value Unknown() { |
| Value value; |
| value.type_ = Type::kUnknown; |
| value.instruction_ = nullptr; |
| return value; |
| } |
| |
| // Default heap value after an allocation. |
| // A heap location can be set to that value right after an allocation. |
| static Value Default() { |
| Value value; |
| value.type_ = Type::kDefault; |
| value.instruction_ = nullptr; |
| return value; |
| } |
| |
| static Value ForInstruction(HInstruction* instruction) { |
| Value value; |
| value.type_ = Type::kInstruction; |
| value.instruction_ = instruction; |
| return value; |
| } |
| |
| static Value ForNonLoopPhiPlaceholder(const PhiPlaceholder* phi_placeholder) { |
| Value value; |
| value.type_ = Type::kNeedsNonLoopPhi; |
| value.phi_placeholder_ = phi_placeholder; |
| return value; |
| } |
| |
| static Value ForLoopPhiPlaceholder(const PhiPlaceholder* phi_placeholder) { |
| Value value; |
| value.type_ = Type::kNeedsLoopPhi; |
| value.phi_placeholder_ = phi_placeholder; |
| return value; |
| } |
| |
| static Value ForPhiPlaceholder(const PhiPlaceholder* phi_placeholder, bool needs_loop_phi) { |
| return needs_loop_phi ? ForLoopPhiPlaceholder(phi_placeholder) |
| : ForNonLoopPhiPlaceholder(phi_placeholder); |
| } |
| |
| bool IsValid() const { |
| return !IsInvalid(); |
| } |
| |
| bool IsInvalid() const { |
| return type_ == Type::kInvalid; |
| } |
| |
| bool IsUnknown() const { |
| return type_ == Type::kUnknown; |
| } |
| |
| bool IsDefault() const { |
| return type_ == Type::kDefault; |
| } |
| |
| bool IsInstruction() const { |
| return type_ == Type::kInstruction; |
| } |
| |
| bool NeedsNonLoopPhi() const { |
| return type_ == Type::kNeedsNonLoopPhi; |
| } |
| |
| bool NeedsLoopPhi() const { |
| return type_ == Type::kNeedsLoopPhi; |
| } |
| |
| bool NeedsPhi() const { |
| return NeedsNonLoopPhi() || NeedsLoopPhi(); |
| } |
| |
| HInstruction* GetInstruction() const { |
| DCHECK(IsInstruction()); |
| return instruction_; |
| } |
| |
| const PhiPlaceholder* GetPhiPlaceholder() const { |
| DCHECK(NeedsPhi()); |
| return phi_placeholder_; |
| } |
| |
| bool Equals(Value other) const { |
| // Only valid values can be compared. |
| DCHECK(IsValid()); |
| DCHECK(other.IsValid()); |
| if (type_ != other.type_) { |
| // Default values are equal to zero bit pattern instructions. |
| return (IsDefault() && other.IsInstruction() && IsZeroBitPattern(other.GetInstruction())) || |
| (other.IsDefault() && IsInstruction() && IsZeroBitPattern(GetInstruction())); |
| } else { |
| // Note: Two unknown values are considered different. |
| return IsDefault() || |
| (IsInstruction() && GetInstruction() == other.GetInstruction()) || |
| (NeedsPhi() && GetPhiPlaceholder() == other.GetPhiPlaceholder()); |
| } |
| } |
| |
| bool Equals(HInstruction* instruction) const { |
| return Equals(ForInstruction(instruction)); |
| } |
| |
| private: |
| Type type_; |
| union { |
| HInstruction* instruction_; |
| const PhiPlaceholder* phi_placeholder_; |
| }; |
| }; |
| |
| // Get Phi placeholder index for access to `phi_placeholder_replacements_` |
| // and "visited" bit vectors during depth-first searches. |
| size_t PhiPlaceholderIndex(const PhiPlaceholder* phi_placeholder) const { |
| return static_cast<size_t>(phi_placeholder - phi_placeholders_.data()); |
| } |
| |
| size_t PhiPlaceholderIndex(Value phi_placeholder) const { |
| return PhiPlaceholderIndex(phi_placeholder.GetPhiPlaceholder()); |
| } |
| |
| const PhiPlaceholder* GetPhiPlaceholder(uint32_t block_id, size_t idx) const { |
| size_t phi_placeholders_begin = phi_placeholders_begin_for_block_[block_id]; |
| const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholders_begin + idx]; |
| DCHECK_EQ(phi_placeholder->GetBlockId(), block_id); |
| DCHECK_EQ(phi_placeholder->GetHeapLocation(), idx); |
| return phi_placeholder; |
| } |
| |
| Value Replacement(Value value) const { |
| DCHECK(value.NeedsPhi()); |
| Value replacement = phi_placeholder_replacements_[PhiPlaceholderIndex(value)]; |
| DCHECK(replacement.IsUnknown() || replacement.IsInstruction()); |
| DCHECK(replacement.IsUnknown() || |
| FindSubstitute(replacement.GetInstruction()) == replacement.GetInstruction()); |
| return replacement; |
| } |
| |
| Value ReplacementOrValue(Value value) const { |
| if (value.NeedsPhi() && phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) { |
| return Replacement(value); |
| } else { |
| DCHECK(!value.IsInstruction() || |
| FindSubstitute(value.GetInstruction()) == value.GetInstruction()); |
| return value; |
| } |
| } |
| |
| static ScopedArenaVector<PhiPlaceholder> CreatePhiPlaceholders( |
| HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| ScopedArenaAllocator* allocator); |
| static ScopedArenaVector<size_t> CreatePhiPlaceholdersBeginForBlock( |
| HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| ScopedArenaAllocator* allocator); |
| |
| // The record of a heap value and instruction(s) that feed that value. |
| struct ValueRecord { |
| Value value; |
| Value stored_by; |
| }; |
| |
| HTypeConversion* FindOrAddTypeConversionIfNecessary(HInstruction* instruction, |
| HInstruction* value, |
| DataType::Type expected_type) { |
| // Should never add type conversion into boolean value. |
| if (expected_type == DataType::Type::kBool || |
| DataType::IsTypeConversionImplicit(value->GetType(), expected_type) || |
| // TODO: This prevents type conversion of default values but we can still insert |
| // type conversion of other constants and there is no constant folding pass after LSE. |
| IsZeroBitPattern(value)) { |
| return nullptr; |
| } |
| |
| // Check if there is already a suitable TypeConversion we can reuse. |
| for (const HUseListNode<HInstruction*>& use : value->GetUses()) { |
| if (use.GetUser()->IsTypeConversion() && |
| use.GetUser()->GetType() == expected_type && |
| // TODO: We could move the TypeConversion to a common dominator |
| // if it does not cross irreducible loop header. |
| use.GetUser()->GetBlock()->Dominates(instruction->GetBlock()) && |
| // Don't share across irreducible loop headers. |
| // TODO: can be more fine-grained than this by testing each dominator. |
| (use.GetUser()->GetBlock() == instruction->GetBlock() || |
| !GetGraph()->HasIrreducibleLoops())) { |
| if (use.GetUser()->GetBlock() == instruction->GetBlock() && |
| use.GetUser()->GetBlock()->GetInstructions().FoundBefore(instruction, use.GetUser())) { |
| // Move the TypeConversion before the instruction. |
| use.GetUser()->MoveBefore(instruction); |
| } |
| DCHECK(use.GetUser()->StrictlyDominates(instruction)); |
| return use.GetUser()->AsTypeConversion(); |
| } |
| } |
| |
| // We must create a new TypeConversion instruction. |
| HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion( |
| expected_type, value, instruction->GetDexPc()); |
| instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction); |
| return type_conversion; |
| } |
| |
| // Find an instruction's substitute if it's a removed load. |
| // Return the same instruction if it should not be removed. |
| HInstruction* FindSubstitute(HInstruction* instruction) const { |
| size_t id = static_cast<size_t>(instruction->GetId()); |
| if (id >= substitute_instructions_for_loads_.size()) { |
| DCHECK(!IsLoad(instruction)); // New Phi (may not be in the graph yet) or default value. |
| return instruction; |
| } |
| HInstruction* substitute = substitute_instructions_for_loads_[id]; |
| DCHECK(substitute == nullptr || IsLoad(instruction)); |
| return (substitute != nullptr) ? substitute : instruction; |
| } |
| |
| void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) { |
| DCHECK(IsLoad(load)); |
| DCHECK_EQ(FindSubstitute(load), load); |
| DCHECK_EQ(FindSubstitute(heap_value), heap_value) << |
| "Unexpected heap_value that has a substitute " << heap_value->DebugName(); |
| |
| // The load expects to load the heap value as type load->GetType(). |
| // However the tracked heap value may not be of that type. An explicit |
| // type conversion may be needed. |
| // There are actually three types involved here: |
| // (1) tracked heap value's type (type A) |
| // (2) heap location (field or element)'s type (type B) |
| // (3) load's type (type C) |
| // We guarantee that type A stored as type B and then fetched out as |
| // type C is the same as casting from type A to type C directly, since |
| // type B and type C will have the same size which is guaranteed in |
| // HInstanceFieldGet/HStaticFieldGet/HArrayGet/HVecLoad's SetType(). |
| // So we only need one type conversion from type A to type C. |
| HTypeConversion* type_conversion = FindOrAddTypeConversionIfNecessary( |
| load, heap_value, load->GetType()); |
| |
| substitute_instructions_for_loads_[load->GetId()] = |
| type_conversion != nullptr ? type_conversion : heap_value; |
| } |
| |
| static bool IsLoad(HInstruction* instruction) { |
| // Unresolved load is not treated as a load. |
| return instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsVecLoad() || |
| instruction->IsArrayGet(); |
| } |
| |
| static bool IsStore(HInstruction* instruction) { |
| // Unresolved store is not treated as a store. |
| return instruction->IsInstanceFieldSet() || |
| instruction->IsArraySet() || |
| instruction->IsVecStore() || |
| instruction->IsStaticFieldSet(); |
| } |
| |
| // Check if it is allowed to use default values or Phis for the specified load. |
| static bool IsDefaultOrPhiAllowedForLoad(HInstruction* instruction) { |
| DCHECK(IsLoad(instruction)); |
| // Using defaults for VecLoads requires to create additional vector operations. |
| // As there are some issues with scheduling vector operations it is better to avoid creating |
| // them. |
| return !instruction->IsVecOperation(); |
| } |
| |
| // Keep the store referenced by the instruction, or all stores that feed a Phi placeholder. |
| // This is necessary if the stored heap value can be observed. |
| void KeepStores(Value value) { |
| if (value.IsUnknown()) { |
| return; |
| } |
| if (value.NeedsPhi()) { |
| phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value)); |
| } else { |
| HInstruction* instruction = value.GetInstruction(); |
| DCHECK(IsStore(instruction)); |
| kept_stores_.SetBit(instruction->GetId()); |
| } |
| } |
| |
| // If a heap location X may alias with heap location at `loc_index` |
| // and heap_values of that heap location X holds a store, keep that store. |
| // It's needed for a dependent load that's not eliminated since any store |
| // that may put value into the load's heap location needs to be kept. |
| void KeepStoresIfAliasedToLocation(ScopedArenaVector<ValueRecord>& heap_values, |
| size_t loc_index) { |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| if (i == loc_index) { |
| // We use this function when reading a location with unknown value and |
| // therefore we cannot know what exact store wrote that unknown value. |
| // But we can have a phi placeholder here marking multiple stores to keep. |
| DCHECK(!heap_values[i].stored_by.IsInstruction()); |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::Unknown(); |
| } else if (heap_location_collector_.MayAlias(i, loc_index)) { |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::Unknown(); |
| } |
| } |
| } |
| |
| // `instruction` is being removed. Try to see if the null check on it |
| // can be removed. This can happen if the same value is set in two branches |
| // but not in dominators. Such as: |
| // int[] a = foo(); |
| // if () { |
| // a[0] = 2; |
| // } else { |
| // a[0] = 2; |
| // } |
| // // a[0] can now be replaced with constant 2, and the null check on it can be removed. |
| void TryRemovingNullCheck(HInstruction* instruction) { |
| HInstruction* prev = instruction->GetPrevious(); |
| if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) { |
| // Previous instruction is a null check for this instruction. Remove the null check. |
| prev->ReplaceWith(prev->InputAt(0)); |
| prev->GetBlock()->RemoveInstruction(prev); |
| } |
| } |
| |
| HInstruction* GetDefaultValue(DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kReference: |
| return GetGraph()->GetNullConstant(); |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| return GetGraph()->GetIntConstant(0); |
| case DataType::Type::kInt64: |
| return GetGraph()->GetLongConstant(0); |
| case DataType::Type::kFloat32: |
| return GetGraph()->GetFloatConstant(0); |
| case DataType::Type::kFloat64: |
| return GetGraph()->GetDoubleConstant(0); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| bool CanValueBeKeptIfSameAsNew(Value value, |
| HInstruction* new_value, |
| HInstruction* new_value_set_instr) { |
| // For field/array set location operations, if the value is the same as the new_value |
| // it can be kept even if aliasing happens. All aliased operations will access the same memory |
| // range. |
| // For vector values, this is not true. For example: |
| // packed_data = [0xA, 0xB, 0xC, 0xD]; <-- Different values in each lane. |
| // VecStore array[i ,i+1,i+2,i+3] = packed_data; |
| // VecStore array[i+1,i+2,i+3,i+4] = packed_data; <-- We are here (partial overlap). |
| // VecLoad vx = array[i,i+1,i+2,i+3]; <-- Cannot be eliminated because the value |
| // here is not packed_data anymore. |
| // |
| // TODO: to allow such 'same value' optimization on vector data, |
| // LSA needs to report more fine-grain MAY alias information: |
| // (1) May alias due to two vector data partial overlap. |
| // e.g. a[i..i+3] and a[i+1,..,i+4]. |
| // (2) May alias due to two vector data may complete overlap each other. |
| // e.g. a[i..i+3] and b[i..i+3]. |
| // (3) May alias but the exact relationship between two locations is unknown. |
| // e.g. a[i..i+3] and b[j..j+3], where values of a,b,i,j are all unknown. |
| // This 'same value' optimization can apply only on case (2). |
| if (new_value_set_instr->IsVecOperation()) { |
| return false; |
| } |
| |
| return value.Equals(new_value); |
| } |
| |
| Value PrepareLoopValue(HBasicBlock* block, size_t idx); |
| Value PrepareLoopStoredBy(HBasicBlock* block, size_t idx); |
| void PrepareLoopRecords(HBasicBlock* block); |
| Value MergePredecessorValues(HBasicBlock* block, size_t idx); |
| void MergePredecessorRecords(HBasicBlock* block); |
| |
| void MaterializeNonLoopPhis(const PhiPlaceholder* phi_placeholder, DataType::Type type); |
| |
| void VisitGetLocation(HInstruction* instruction, size_t idx); |
| void VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value); |
| |
| void VisitBasicBlock(HBasicBlock* block) override; |
| |
| enum class Phase { |
| kLoadElimination, |
| kStoreElimination |
| }; |
| |
| bool TryReplacingLoopPhiPlaceholderWithDefault( |
| const PhiPlaceholder* phi_placeholder, |
| DataType::Type type, |
| /*inout*/ArenaBitVector* phi_placeholders_to_materialize); |
| bool TryReplacingLoopPhiPlaceholderWithSingleInput( |
| const PhiPlaceholder* phi_placeholder, |
| /*inout*/ArenaBitVector* phi_placeholders_to_materialize); |
| const PhiPlaceholder* FindLoopPhisToMaterialize( |
| const PhiPlaceholder* phi_placeholder, |
| /*out*/ArenaBitVector* phi_placeholders_to_materialize, |
| DataType::Type type, |
| bool can_use_default_or_phi); |
| bool MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes, |
| DataType::Type type, |
| Phase phase); |
| bool MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize, |
| DataType::Type type, |
| Phase phase); |
| const PhiPlaceholder* TryToMaterializeLoopPhis(const PhiPlaceholder* phi_placeholder, |
| HInstruction* load); |
| void ProcessLoopPhiWithUnknownInput(const PhiPlaceholder* loop_phi_with_unknown_input); |
| void ProcessLoadsRequiringLoopPhis(); |
| |
| void SearchPhiPlaceholdersForKeptStores(); |
| void UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record); |
| void FindOldValueForPhiPlaceholder(const PhiPlaceholder* phi_placeholder, DataType::Type type); |
| void FindStoresWritingOldValues(); |
| |
| void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override { |
| HInstruction* object = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(object, &field)); |
| } |
| |
| void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override { |
| HInstruction* object = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| HInstruction* value = instruction->InputAt(1); |
| size_t idx = heap_location_collector_.GetFieldHeapLocation(object, &field); |
| VisitSetLocation(instruction, idx, value); |
| } |
| |
| void VisitStaticFieldGet(HStaticFieldGet* instruction) override { |
| HInstruction* cls = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(cls, &field)); |
| } |
| |
| void VisitStaticFieldSet(HStaticFieldSet* instruction) override { |
| HInstruction* cls = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| HInstruction* value = instruction->InputAt(1); |
| size_t idx = heap_location_collector_.GetFieldHeapLocation(cls, &field); |
| VisitSetLocation(instruction, idx, value); |
| } |
| |
| void VisitArrayGet(HArrayGet* instruction) override { |
| VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
| } |
| |
| void VisitArraySet(HArraySet* instruction) override { |
| size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
| VisitSetLocation(instruction, idx, instruction->GetValue()); |
| } |
| |
| void VisitVecLoad(HVecLoad* instruction) override { |
| VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
| } |
| |
| void VisitVecStore(HVecStore* instruction) override { |
| size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
| VisitSetLocation(instruction, idx, instruction->GetValue()); |
| } |
| |
| void VisitDeoptimize(HDeoptimize* instruction) override { |
| ScopedArenaVector<ValueRecord>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| Value* stored_by = &heap_values[i].stored_by; |
| if (stored_by->IsUnknown()) { |
| continue; |
| } |
| // Stores are generally observeable after deoptimization, except |
| // for singletons that don't escape in the deoptimization environment. |
| bool observable = true; |
| ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (info->IsSingleton()) { |
| HInstruction* reference = info->GetReference(); |
| // Finalizable objects always escape. |
| if (!reference->IsNewInstance() || !reference->AsNewInstance()->IsFinalizable()) { |
| // Check whether the reference for a store is used by an environment local of |
| // the HDeoptimize. If not, the singleton is not observed after deoptimization. |
| const HUseList<HEnvironment*>& env_uses = reference->GetEnvUses(); |
| observable = std::any_of( |
| env_uses.begin(), |
| env_uses.end(), |
| [instruction](const HUseListNode<HEnvironment*>& use) { |
| return use.GetUser()->GetHolder() == instruction; |
| }); |
| } |
| } |
| if (observable) { |
| KeepStores(*stored_by); |
| *stored_by = Value::Unknown(); |
| } |
| } |
| } |
| |
| // Keep necessary stores before exiting a method via return/throw. |
| void HandleExit(HBasicBlock* block) { |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (!ref_info->IsSingletonAndRemovable()) { |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::Unknown(); |
| } |
| } |
| } |
| |
| void VisitReturn(HReturn* instruction) override { |
| HandleExit(instruction->GetBlock()); |
| } |
| |
| void VisitReturnVoid(HReturnVoid* return_void) override { |
| HandleExit(return_void->GetBlock()); |
| } |
| |
| void VisitThrow(HThrow* throw_instruction) override { |
| HandleExit(throw_instruction->GetBlock()); |
| } |
| |
| void HandleInvoke(HInstruction* instruction) { |
| SideEffects side_effects = instruction->GetSideEffects(); |
| ScopedArenaVector<ValueRecord>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (ref_info->IsSingleton()) { |
| // Singleton references cannot be seen by the callee. |
| } else { |
| if (side_effects.DoesAnyRead() || side_effects.DoesAnyWrite()) { |
| // Previous stores may become visible (read) and/or impossible for LSE to track (write). |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::Unknown(); |
| } |
| if (side_effects.DoesAnyWrite()) { |
| // The value may be clobbered. |
| heap_values[i].value = Value::Unknown(); |
| } |
| } |
| } |
| } |
| |
| void VisitInvoke(HInvoke* invoke) override { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitClinitCheck(HClinitCheck* clinit) override { |
| // Class initialization check can result in class initializer calling arbitrary methods. |
| HandleInvoke(clinit); |
| } |
| |
| void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitNewInstance(HNewInstance* new_instance) override { |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance); |
| if (ref_info == nullptr) { |
| // new_instance isn't used for field accesses. No need to process it. |
| return; |
| } |
| if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) { |
| DCHECK(!new_instance->IsFinalizable()); |
| // new_instance can potentially be eliminated. |
| singleton_new_instances_.push_back(new_instance); |
| } |
| ScopedArenaVector<ValueRecord>& heap_values = |
| heap_values_for_[new_instance->GetBlock()->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| HInstruction* ref = |
| heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference(); |
| size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset(); |
| if (ref == new_instance && offset >= mirror::kObjectHeaderSize) { |
| // Instance fields except the header fields are set to default heap values. |
| heap_values[i].value = Value::Default(); |
| heap_values[i].stored_by = Value::Unknown(); |
| } |
| } |
| } |
| |
| void VisitNewArray(HNewArray* new_array) override { |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array); |
| if (ref_info == nullptr) { |
| // new_array isn't used for array accesses. No need to process it. |
| return; |
| } |
| if (ref_info->IsSingletonAndRemovable()) { |
| if (new_array->GetLength()->IsIntConstant() && |
| new_array->GetLength()->AsIntConstant()->GetValue() >= 0) { |
| // new_array can potentially be eliminated. |
| singleton_new_instances_.push_back(new_array); |
| } else { |
| // new_array may throw NegativeArraySizeException. Keep it. |
| } |
| } |
| ScopedArenaVector<ValueRecord>& heap_values = |
| heap_values_for_[new_array->GetBlock()->GetBlockId()]; |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| HeapLocation* location = heap_location_collector_.GetHeapLocation(i); |
| HInstruction* ref = location->GetReferenceInfo()->GetReference(); |
| if (ref == new_array && location->GetIndex() != nullptr) { |
| // Array elements are set to default heap values. |
| heap_values[i].value = Value::Default(); |
| heap_values[i].stored_by = Value::Unknown(); |
| } |
| } |
| } |
| |
| const HeapLocationCollector& heap_location_collector_; |
| |
| // Use local allocator for allocating memory. |
| ScopedArenaAllocator allocator_; |
| |
| // Phi placeholders used for keeping track of values and stores for multiple predecessors. |
| ScopedArenaVector<PhiPlaceholder> phi_placeholders_; |
| |
| // The start of the Phi placeholders in the `phi_placeholders_` |
| // for each block with multiple predecessors. |
| ScopedArenaVector<size_t> phi_placeholders_begin_for_block_; |
| |
| // One array of heap value records for each block. |
| ScopedArenaVector<ScopedArenaVector<ValueRecord>> heap_values_for_; |
| |
| // We record loads and stores for re-processing when we find a loop Phi placeholder |
| // with unknown value from a predecessor, and also for removing stores that are |
| // found to be dead, i.e. not marked in `kept_stores_` at the end. |
| struct LoadStoreRecord { |
| HInstruction* load_or_store; |
| size_t heap_location_index; |
| }; |
| ScopedArenaVector<LoadStoreRecord> loads_and_stores_; |
| |
| // We record the substitute instructions for loads that should be |
| // eliminated but may be used by heap locations. They'll be removed |
| // in the end. These are indexed by the load's id. |
| ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_; |
| |
| // Record stores to keep in a bit vector indexed by instruction ID. |
| ArenaBitVector kept_stores_; |
| // When we need to keep all stores that feed a Phi placeholder, we just record the |
| // index of that placeholder for processing after graph traversal. |
| ArenaBitVector phi_placeholders_to_search_for_kept_stores_; |
| |
| // Loads that would require a loop Phi to replace are recorded for processing |
| // later as we do not have enough information from back-edges to determine if |
| // a suitable Phi can be found or created when we visit these loads. |
| ScopedArenaHashMap<HInstruction*, ValueRecord> loads_requiring_loop_phi_; |
| |
| // For stores, record the old value records that were replaced and the stored values. |
| struct StoreRecord { |
| ValueRecord old_value_record; |
| HInstruction* stored_value; |
| }; |
| ScopedArenaHashMap<HInstruction*, StoreRecord> store_records_; |
| |
| // Replacements for Phi placeholders. |
| // The unknown heap value is used to mark Phi placeholders that cannot be replaced. |
| ScopedArenaVector<Value> phi_placeholder_replacements_; |
| |
| ScopedArenaVector<HInstruction*> singleton_new_instances_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LSEVisitor); |
| }; |
| |
| ScopedArenaVector<LSEVisitor::PhiPlaceholder> LSEVisitor::CreatePhiPlaceholders( |
| HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| ScopedArenaAllocator* allocator) { |
| size_t num_phi_placeholders = 0u; |
| size_t num_heap_locations = heap_location_collector.GetNumberOfHeapLocations(); |
| for (HBasicBlock* block : graph->GetReversePostOrder()) { |
| if (block->GetPredecessors().size() >= 2u) { |
| num_phi_placeholders += num_heap_locations; |
| } |
| } |
| ScopedArenaVector<PhiPlaceholder> phi_placeholders(allocator->Adapter(kArenaAllocLSE)); |
| phi_placeholders.reserve(num_phi_placeholders); |
| for (HBasicBlock* block : graph->GetReversePostOrder()) { |
| if (block->GetPredecessors().size() >= 2u) { |
| // Create Phi placeholders referencing the block by the block ID. |
| DCHECK_LE(num_heap_locations, phi_placeholders.capacity() - phi_placeholders.size()); |
| uint32_t block_id = block->GetBlockId(); |
| for (size_t idx = 0; idx != num_heap_locations; ++idx) { |
| phi_placeholders.push_back(PhiPlaceholder(block_id, idx)); |
| } |
| } |
| } |
| return phi_placeholders; |
| } |
| |
| ScopedArenaVector<size_t> LSEVisitor::CreatePhiPlaceholdersBeginForBlock( |
| HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| ScopedArenaAllocator* allocator) { |
| size_t num_phi_placeholders = 0u; |
| size_t num_heap_locations = heap_location_collector.GetNumberOfHeapLocations(); |
| ScopedArenaVector<size_t> phi_placeholders_begin_for_block(graph->GetBlocks().size(), |
| allocator->Adapter(kArenaAllocLSE)); |
| for (HBasicBlock* block : graph->GetReversePostOrder()) { |
| if (block->GetPredecessors().size() >= 2u) { |
| phi_placeholders_begin_for_block[block->GetBlockId()] = num_phi_placeholders; |
| num_phi_placeholders += num_heap_locations; |
| } |
| } |
| return phi_placeholders_begin_for_block; |
| } |
| |
| LSEVisitor::LSEVisitor(HGraph* graph, |
| const HeapLocationCollector& heap_location_collector, |
| OptimizingCompilerStats* stats) |
| : HGraphDelegateVisitor(graph, stats), |
| heap_location_collector_(heap_location_collector), |
| allocator_(graph->GetArenaStack()), |
| phi_placeholders_(CreatePhiPlaceholders(graph, heap_location_collector, &allocator_)), |
| phi_placeholders_begin_for_block_( |
| CreatePhiPlaceholdersBeginForBlock(graph, heap_location_collector, &allocator_)), |
| heap_values_for_(graph->GetBlocks().size(), |
| ScopedArenaVector<ValueRecord>(allocator_.Adapter(kArenaAllocLSE)), |
| allocator_.Adapter(kArenaAllocLSE)), |
| loads_and_stores_(allocator_.Adapter(kArenaAllocLSE)), |
| // We may add new instructions (default values, Phis) but we're not adding loads |
| // or stores, so we shall not need to resize following vector and BitVector. |
| substitute_instructions_for_loads_(graph->GetCurrentInstructionId(), |
| nullptr, |
| allocator_.Adapter(kArenaAllocLSE)), |
| kept_stores_(&allocator_, |
| /*start_bits=*/ graph->GetCurrentInstructionId(), |
| /*expandable=*/ false, |
| kArenaAllocLSE), |
| phi_placeholders_to_search_for_kept_stores_(&allocator_, |
| phi_placeholders_.size(), |
| /*expandable=*/ false, |
| kArenaAllocLSE), |
| loads_requiring_loop_phi_(allocator_.Adapter(kArenaAllocLSE)), |
| store_records_(allocator_.Adapter(kArenaAllocLSE)), |
| phi_placeholder_replacements_(phi_placeholders_.size(), |
| Value::Invalid(), |
| allocator_.Adapter(kArenaAllocLSE)), |
| singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)) { |
| // Clear bit vectors. |
| phi_placeholders_to_search_for_kept_stores_.ClearAllBits(); |
| kept_stores_.ClearAllBits(); |
| } |
| |
| LSEVisitor::Value LSEVisitor::PrepareLoopValue(HBasicBlock* block, size_t idx) { |
| // If the pre-header value is known (which implies that the reference dominates this |
| // block), use a Phi placeholder for the value in the loop header. If all predecessors |
| // are later found to have a known value, we can replace loads from this location, |
| // either with the pre-header value or with a new Phi. For array locations, the index |
| // may be defined inside the loop but the only known value in that case should be the |
| // default value or a Phi placeholder that can be replaced only with the default value. |
| HLoopInformation* loop_info = block->GetLoopInformation(); |
| uint32_t pre_header_block_id = loop_info->GetPreHeader()->GetBlockId(); |
| Value pre_header_value = ReplacementOrValue(heap_values_for_[pre_header_block_id][idx].value); |
| if (pre_header_value.IsUnknown()) { |
| return Value::Unknown(); |
| } |
| if (kIsDebugBuild) { |
| // Check that the reference indeed dominates this loop. |
| HeapLocation* location = heap_location_collector_.GetHeapLocation(idx); |
| HInstruction* ref = location->GetReferenceInfo()->GetReference(); |
| CHECK(ref->GetBlock() != block && ref->GetBlock()->Dominates(block)); |
| // Check that the index, if defined inside the loop, tracks a default value |
| // or a Phi placeholder requiring a loop Phi. |
| HInstruction* index = location->GetIndex(); |
| if (index != nullptr && loop_info->Contains(*index->GetBlock())) { |
| CHECK(pre_header_value.NeedsLoopPhi() || pre_header_value.Equals(Value::Default())); |
| } |
| } |
| const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| return ReplacementOrValue(Value::ForLoopPhiPlaceholder(phi_placeholder)); |
| } |
| |
| LSEVisitor::Value LSEVisitor::PrepareLoopStoredBy(HBasicBlock* block, size_t idx) { |
| // Use the Phi placeholder for `stored_by` to make sure all incoming stores are kept |
| // if the value in the location escapes. This is not applicable to singletons that are |
| // defined inside the loop as they shall be dead in the loop header. |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo(); |
| if (ref_info->IsSingleton() && |
| block->GetLoopInformation()->Contains(*ref_info->GetReference()->GetBlock())) { |
| return Value::Unknown(); |
| } |
| const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| return Value::ForLoopPhiPlaceholder(phi_placeholder); |
| } |
| |
| void LSEVisitor::PrepareLoopRecords(HBasicBlock* block) { |
| DCHECK(block->IsLoopHeader()); |
| int block_id = block->GetBlockId(); |
| HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader(); |
| ScopedArenaVector<ValueRecord>& pre_header_heap_values = |
| heap_values_for_[pre_header->GetBlockId()]; |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| DCHECK_EQ(num_heap_locations, pre_header_heap_values.size()); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id]; |
| DCHECK(heap_values.empty()); |
| |
| // Don't eliminate loads in irreducible loops. |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| heap_values.resize(num_heap_locations, |
| { /*value=*/ Value::Unknown(), /*stored_by=*/ Value::Unknown() }); |
| // Also keep the stores before the loop header, including in blocks that were not visited yet. |
| for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| KeepStores(Value::ForLoopPhiPlaceholder(GetPhiPlaceholder(block->GetBlockId(), idx))); |
| } |
| return; |
| } |
| |
| // Fill `heap_values` based on values from pre-header. |
| heap_values.reserve(num_heap_locations); |
| for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| heap_values.push_back({ PrepareLoopValue(block, idx), PrepareLoopStoredBy(block, idx) }); |
| } |
| } |
| |
| LSEVisitor::Value LSEVisitor::MergePredecessorValues(HBasicBlock* block, size_t idx) { |
| ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| DCHECK(!predecessors.empty()); |
| Value merged_value = |
| ReplacementOrValue(heap_values_for_[predecessors[0]->GetBlockId()][idx].value); |
| for (size_t i = 1u, size = predecessors.size(); i != size; ++i) { |
| if (merged_value.IsUnknown()) { |
| break; |
| } |
| Value pred_value = |
| ReplacementOrValue(heap_values_for_[predecessors[i]->GetBlockId()][idx].value); |
| if (pred_value.IsUnknown()) { |
| merged_value = Value::Unknown(); |
| } else if (!pred_value.Equals(merged_value)) { |
| // There are conflicting known values. We may still be able to replace loads with a Phi. |
| const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| // Propagate the need for a new loop Phi from all predecessors. |
| bool needs_loop_phi = merged_value.NeedsLoopPhi() || pred_value.NeedsLoopPhi(); |
| merged_value = ReplacementOrValue(Value::ForPhiPlaceholder(phi_placeholder, needs_loop_phi)); |
| } |
| } |
| return merged_value; |
| } |
| |
| void LSEVisitor::MergePredecessorRecords(HBasicBlock* block) { |
| if (block->IsExitBlock()) { |
| // Exit block doesn't really merge values since the control flow ends in |
| // its predecessors. Each predecessor needs to make sure stores are kept |
| // if necessary. |
| return; |
| } |
| |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| DCHECK(heap_values.empty()); |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| if (block->GetPredecessors().empty()) { |
| DCHECK(block->IsEntryBlock()); |
| heap_values.resize(num_heap_locations, |
| { /*value=*/ Value::Unknown(), /*stored_by=*/ Value::Unknown() }); |
| return; |
| } |
| |
| heap_values.reserve(num_heap_locations); |
| for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| Value merged_value = MergePredecessorValues(block, idx); |
| if (kIsDebugBuild) { |
| if (merged_value.NeedsPhi()) { |
| uint32_t block_id = merged_value.GetPhiPlaceholder()->GetBlockId(); |
| CHECK(GetGraph()->GetBlocks()[block_id]->Dominates(block)); |
| } else if (merged_value.IsInstruction()) { |
| CHECK(merged_value.GetInstruction()->GetBlock()->Dominates(block)); |
| } |
| } |
| ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| Value merged_stored_by = heap_values_for_[predecessors[0]->GetBlockId()][idx].stored_by; |
| for (size_t predecessor_idx = 1u; predecessor_idx != predecessors.size(); ++predecessor_idx) { |
| uint32_t predecessor_block_id = predecessors[predecessor_idx]->GetBlockId(); |
| Value stored_by = heap_values_for_[predecessor_block_id][idx].stored_by; |
| if ((!stored_by.IsUnknown() || !merged_stored_by.IsUnknown()) && |
| !merged_stored_by.Equals(stored_by)) { |
| // Use the Phi placeholder to track that we need to keep stores from all predecessors. |
| const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| merged_stored_by = Value::ForNonLoopPhiPlaceholder(phi_placeholder); |
| break; |
| } |
| } |
| heap_values.push_back({ merged_value, merged_stored_by }); |
| } |
| } |
| |
| static HInstruction* FindOrConstructNonLoopPhi( |
| HBasicBlock* block, |
| const ScopedArenaVector<HInstruction*>& phi_inputs, |
| DataType::Type type) { |
| for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HInstruction* phi = phi_it.Current(); |
| DCHECK_EQ(phi->InputCount(), phi_inputs.size()); |
| auto cmp = [](HInstruction* lhs, const HUserRecord<HInstruction*>& rhs) { |
| return lhs == rhs.GetInstruction(); |
| }; |
| if (std::equal(phi_inputs.begin(), phi_inputs.end(), phi->GetInputRecords().begin(), cmp)) { |
| return phi; |
| } |
| } |
| ArenaAllocator* allocator = block->GetGraph()->GetAllocator(); |
| HPhi* phi = new (allocator) HPhi(allocator, kNoRegNumber, phi_inputs.size(), type); |
| for (size_t i = 0, size = phi_inputs.size(); i != size; ++i) { |
| DCHECK_NE(phi_inputs[i]->GetType(), DataType::Type::kVoid) << phi_inputs[i]->DebugName(); |
| phi->SetRawInputAt(i, phi_inputs[i]); |
| } |
| block->AddPhi(phi); |
| if (type == DataType::Type::kReference) { |
| // Update reference type information. Pass invalid handles, these are not used for Phis. |
| ReferenceTypePropagation rtp_fixup(block->GetGraph(), |
| Handle<mirror::ClassLoader>(), |
| Handle<mirror::DexCache>(), |
| /* is_first_run= */ false); |
| rtp_fixup.Visit(phi); |
| } |
| return phi; |
| } |
| |
| void LSEVisitor::MaterializeNonLoopPhis(const PhiPlaceholder* phi_placeholder, |
| DataType::Type type) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| size_t idx = phi_placeholder->GetHeapLocation(); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| // Reuse the same vector for collecting phi inputs. |
| ScopedArenaVector<HInstruction*> phi_inputs(allocator.Adapter(kArenaAllocLSE)); |
| |
| ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| if (phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].IsValid()) { |
| // This Phi placeholder was pushed to the `work_queue` followed by another Phi placeholder |
| // that directly or indirectly depends on it, so it was already processed as part of the |
| // other Phi placeholder's dependencies before this one got back to the top of the stack. |
| work_queue.pop_back(); |
| continue; |
| } |
| uint32_t current_block_id = current_phi_placeholder->GetBlockId(); |
| HBasicBlock* current_block = blocks[current_block_id]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| |
| // Non-loop Phis cannot depend on a loop Phi, so we should not see any loop header here. |
| // And the only way for such merged value to reach a different heap location is through |
| // a load at which point we materialize the Phi. Therefore all non-loop Phi placeholders |
| // seen here are tied to one heap location. |
| DCHECK(!current_block->IsLoopHeader()); |
| DCHECK_EQ(current_phi_placeholder->GetHeapLocation(), idx); |
| |
| phi_inputs.clear(); |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| DCHECK(!pred_value.IsUnknown()); |
| if (pred_value.NeedsNonLoopPhi()) { |
| // We need to process the Phi placeholder first. |
| work_queue.push_back(pred_value.GetPhiPlaceholder()); |
| } else if (pred_value.IsDefault()) { |
| phi_inputs.push_back(GetDefaultValue(type)); |
| } else { |
| phi_inputs.push_back(pred_value.GetInstruction()); |
| } |
| } |
| if (phi_inputs.size() == current_block->GetPredecessors().size()) { |
| // All inputs are available. Find or construct the Phi replacement. |
| phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)] = |
| Value::ForInstruction(FindOrConstructNonLoopPhi(current_block, phi_inputs, type)); |
| // Remove the block from the queue. |
| DCHECK_EQ(current_phi_placeholder, work_queue.back()); |
| work_queue.pop_back(); |
| } |
| } |
| } |
| |
| void LSEVisitor::VisitGetLocation(HInstruction* instruction, size_t idx) { |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| uint32_t block_id = instruction->GetBlock()->GetBlockId(); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id]; |
| ValueRecord& record = heap_values[idx]; |
| DCHECK(record.value.IsUnknown() || record.value.Equals(ReplacementOrValue(record.value))); |
| loads_and_stores_.push_back({ instruction, idx }); |
| if ((record.value.IsDefault() || record.value.NeedsNonLoopPhi()) && |
| !IsDefaultOrPhiAllowedForLoad(instruction)) { |
| record.value = Value::Unknown(); |
| } |
| if (record.value.IsDefault()) { |
| KeepStores(record.stored_by); |
| HInstruction* constant = GetDefaultValue(instruction->GetType()); |
| AddRemovedLoad(instruction, constant); |
| record.value = Value::ForInstruction(constant); |
| } else if (record.value.IsUnknown()) { |
| // Load isn't eliminated. Put the load as the value into the HeapLocation. |
| // This acts like GVN but with better aliasing analysis. |
| record.value = Value::ForInstruction(instruction); |
| KeepStoresIfAliasedToLocation(heap_values, idx); |
| } else if (record.value.NeedsLoopPhi()) { |
| // We do not know yet if the value is known for all back edges. Record for future processing. |
| loads_requiring_loop_phi_.insert(std::make_pair(instruction, record)); |
| } else { |
| // This load can be eliminated but we may need to construct non-loop Phis. |
| if (record.value.NeedsNonLoopPhi()) { |
| MaterializeNonLoopPhis(record.value.GetPhiPlaceholder(), instruction->GetType()); |
| record.value = Replacement(record.value); |
| } |
| HInstruction* heap_value = FindSubstitute(record.value.GetInstruction()); |
| AddRemovedLoad(instruction, heap_value); |
| TryRemovingNullCheck(instruction); |
| } |
| } |
| |
| void LSEVisitor::VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value) { |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| DCHECK(!IsStore(value)) << value->DebugName(); |
| // value may already have a substitute. |
| value = FindSubstitute(value); |
| HBasicBlock* block = instruction->GetBlock(); |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| ValueRecord& record = heap_values[idx]; |
| DCHECK(!record.value.IsInstruction() || |
| FindSubstitute(record.value.GetInstruction()) == record.value.GetInstruction()); |
| |
| if (record.value.Equals(value)) { |
| // Store into the heap location with the same value. |
| // This store can be eliminated right away. |
| block->RemoveInstruction(instruction); |
| return; |
| } |
| |
| store_records_.insert(std::make_pair(instruction, StoreRecord{record, value})); |
| loads_and_stores_.push_back({ instruction, idx }); |
| |
| // If the `record.stored_by` specified a store from this block, it shall be removed |
| // at the end, except for throwing ArraySet; it cannot be marked for keeping in |
| // `kept_stores_` anymore after we update the `record.stored_by` below. |
| DCHECK(!record.stored_by.IsInstruction() || |
| record.stored_by.GetInstruction()->GetBlock() != block || |
| record.stored_by.GetInstruction()->CanThrow() || |
| !kept_stores_.IsBitSet(record.stored_by.GetInstruction()->GetId())); |
| |
| if (instruction->CanThrow()) { |
| // Previous stores can become visible. |
| HandleExit(instruction->GetBlock()); |
| // We cannot remove a possibly throwing store. |
| // After marking it as kept, it does not matter if we track it in `stored_by` or not. |
| kept_stores_.SetBit(instruction->GetId()); |
| } |
| |
| // Update the record. |
| auto it = loads_requiring_loop_phi_.find(value); |
| if (it != loads_requiring_loop_phi_.end()) { |
| // Propapate the Phi placeholder to the record. |
| record.value = it->second.value; |
| DCHECK(record.value.NeedsLoopPhi()); |
| } else { |
| record.value = Value::ForInstruction(value); |
| } |
| // Track the store in the value record. If the value is loaded or needed after |
| // return/deoptimization later, this store isn't really redundant. |
| record.stored_by = Value::ForInstruction(instruction); |
| |
| // This store may kill values in other heap locations due to aliasing. |
| for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| if (i == idx || |
| heap_values[i].value.IsUnknown() || |
| CanValueBeKeptIfSameAsNew(heap_values[i].value, value, instruction) || |
| !heap_location_collector_.MayAlias(i, idx)) { |
| continue; |
| } |
| // Kill heap locations that may alias and keep previous stores to these locations. |
| KeepStores(heap_values[i].stored_by); |
| heap_values[i].stored_by = Value::Unknown(); |
| heap_values[i].value = Value::Unknown(); |
| } |
| } |
| |
| void LSEVisitor::VisitBasicBlock(HBasicBlock* block) { |
| // Populate the heap_values array for this block. |
| // TODO: try to reuse the heap_values array from one predecessor if possible. |
| if (block->IsLoopHeader()) { |
| PrepareLoopRecords(block); |
| } else { |
| MergePredecessorRecords(block); |
| } |
| // Visit instructions. |
| HGraphVisitor::VisitBasicBlock(block); |
| } |
| |
| bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithDefault( |
| const PhiPlaceholder* phi_placeholder, |
| DataType::Type type, |
| /*inout*/ArenaBitVector* phi_placeholders_to_materialize) { |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ArenaBitVector visited(&allocator, |
| /*start_bits=*/ phi_placeholders_.size(), |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| visited.ClearAllBits(); |
| ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| |
| // Use depth first search to check if any non-Phi input is unknown. |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| visited.SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| work_queue.pop_back(); |
| HBasicBlock* block = blocks[current_phi_placeholder->GetBlockId()]; |
| DCHECK_GE(block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder->GetHeapLocation(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (value.NeedsPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| visited.SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| } |
| } else if (!value.Equals(Value::Default())) { |
| return false; // Report failure. |
| } |
| } |
| if (block->IsLoopHeader()) { |
| // For back-edges we need to check all locations that write to the same array, |
| // even those that LSA declares non-aliasing, such as `a[i]` and `a[i + 1]` |
| // as they may actually refer to the same locations for different iterations. |
| for (size_t i = 0; i != num_heap_locations; ++i) { |
| if (i == idx || |
| heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo() != |
| heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()) { |
| continue; |
| } |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| // Check if there were any writes to this location. |
| // Note: We could simply process the values but due to the vector operation |
| // carve-out (see `IsDefaultOrPhiAllowedForLoad()`), a vector load can cause |
| // the value to change and not be equal to default. To work around this and |
| // allow replacing the non-vector load of loop-invariant default values |
| // anyway, skip over paths that do not have any writes. |
| ValueRecord record = heap_values_for_[predecessor->GetBlockId()][i]; |
| while (record.stored_by.NeedsLoopPhi() && |
| blocks[record.stored_by.GetPhiPlaceholder()->GetBlockId()]->IsLoopHeader()) { |
| HLoopInformation* loop_info = |
| blocks[record.stored_by.GetPhiPlaceholder()->GetBlockId()]->GetLoopInformation(); |
| record = heap_values_for_[loop_info->GetPreHeader()->GetBlockId()][i]; |
| } |
| Value value = ReplacementOrValue(record.value); |
| if (value.NeedsPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| visited.SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| } |
| } else if (!value.Equals(Value::Default())) { |
| return false; // Report failure. |
| } |
| } |
| } |
| } |
| } |
| |
| // Record replacement and report success. |
| HInstruction* replacement = GetDefaultValue(type); |
| for (uint32_t phi_placeholder_index : visited.Indexes()) { |
| DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid()); |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| } |
| phi_placeholders_to_materialize->Subtract(&visited); |
| return true; |
| } |
| |
| bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithSingleInput( |
| const PhiPlaceholder* phi_placeholder, |
| /*inout*/ArenaBitVector* phi_placeholders_to_materialize) { |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ArenaBitVector visited(&allocator, |
| /*start_bits=*/ phi_placeholders_.size(), |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| visited.ClearAllBits(); |
| ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| |
| // Use depth first search to check if any non-Phi input is unknown. |
| HInstruction* replacement = nullptr; |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| visited.SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| work_queue.pop_back(); |
| HBasicBlock* current_block = blocks[current_phi_placeholder->GetBlockId()]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder->GetHeapLocation(); |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (value.NeedsPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| visited.SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| } |
| } else { |
| if (!value.IsInstruction() || |
| (replacement != nullptr && replacement != value.GetInstruction())) { |
| return false; // Report failure. |
| } |
| replacement = value.GetInstruction(); |
| } |
| } |
| } |
| |
| // Record replacement and report success. |
| DCHECK(replacement != nullptr); |
| for (uint32_t phi_placeholder_index : visited.Indexes()) { |
| DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid()); |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| } |
| phi_placeholders_to_materialize->Subtract(&visited); |
| return true; |
| } |
| |
| const LSEVisitor::PhiPlaceholder* LSEVisitor::FindLoopPhisToMaterialize( |
| const PhiPlaceholder* phi_placeholder, |
| /*inout*/ArenaBitVector* phi_placeholders_to_materialize, |
| DataType::Type type, |
| bool can_use_default_or_phi) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| |
| // Use depth first search to check if any non-Phi input is unknown. |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| phi_placeholders_to_materialize->ClearAllBits(); |
| phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| work_queue.push_back(phi_placeholder); |
| while (!work_queue.empty()) { |
| const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| work_queue.pop_back(); |
| if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(current_phi_placeholder))) { |
| // Replaced by `TryReplacingLoopPhiPlaceholderWith{Default,SingleInput}()`. |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].Equals( |
| Value::Default())); |
| continue; |
| } |
| HBasicBlock* current_block = blocks[current_phi_placeholder->GetBlockId()]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder->GetHeapLocation(); |
| if (current_block->IsLoopHeader()) { |
| // If the index is defined inside the loop, it may reference different elements of the |
| // array on each iteration. Since we do not track if all elements of an array are set |
| // to the same value explicitly, the only known value in pre-header can be the default |
| // value from NewArray or a Phi placeholder depending on a default value from some outer |
| // loop pre-header. This Phi placeholder can be replaced only by the default value. |
| HInstruction* index = heap_location_collector_.GetHeapLocation(idx)->GetIndex(); |
| if (index != nullptr && current_block->GetLoopInformation()->Contains(*index->GetBlock())) { |
| if (can_use_default_or_phi && |
| TryReplacingLoopPhiPlaceholderWithDefault(current_phi_placeholder, |
| type, |
| phi_placeholders_to_materialize)) { |
| continue; |
| } else { |
| return current_phi_placeholder; // Report the loop Phi placeholder. |
| } |
| } |
| // A similar situation arises with the index defined outside the loop if we cannot use |
| // default values or Phis, i.e. for vector loads, as we can only replace the Phi |
| // placeholder with a single instruction defined before the loop. |
| if (!can_use_default_or_phi) { |
| if (TryReplacingLoopPhiPlaceholderWithSingleInput(current_phi_placeholder, |
| phi_placeholders_to_materialize)) { |
| continue; |
| } else { |
| return current_phi_placeholder; // Report the loop Phi placeholder. |
| } |
| } |
| } |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (value.IsUnknown()) { |
| // We cannot create a Phi for this loop Phi placeholder. |
| return current_phi_placeholder; // Report the loop Phi placeholder. |
| } |
| if (value.NeedsLoopPhi()) { |
| // Visit the predecessor Phi placeholder if it's not visited yet. |
| if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(value))) { |
| phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(value)); |
| work_queue.push_back(value.GetPhiPlaceholder()); |
| } |
| } |
| } |
| } |
| |
| // There are no unknown values feeding this Phi, so we can construct the Phis if needed. |
| return nullptr; |
| } |
| |
| bool LSEVisitor::MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes, |
| DataType::Type type, |
| Phase phase) { |
| // Materialize all predecessors that do not need a loop Phi and determine if all inputs |
| // other than loop Phis are the same. |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| Value other_value = Value::Invalid(); |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| DCHECK_GE(block->GetPredecessors().size(), 2u); |
| size_t idx = phi_placeholder->GetHeapLocation(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (value.NeedsNonLoopPhi()) { |
| DCHECK(phase == Phase::kLoadElimination); |
| MaterializeNonLoopPhis(value.GetPhiPlaceholder(), type); |
| value = Replacement(value); |
| } |
| if (!value.NeedsLoopPhi()) { |
| if (other_value.IsInvalid()) { |
| // The first other value we found. |
| other_value = value; |
| } else if (!other_value.IsUnknown()) { |
| // Check if the current `value` differs from the previous `other_value`. |
| if (!value.Equals(other_value)) { |
| other_value = Value::Unknown(); |
| } |
| } |
| } |
| } |
| } |
| |
| DCHECK(other_value.IsValid()); |
| if (!other_value.IsUnknown()) { |
| HInstruction* replacement = |
| (other_value.IsDefault()) ? GetDefaultValue(type) : other_value.GetInstruction(); |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| } |
| return true; |
| } |
| |
| // If we're materializing only a single Phi, try to match it with an existing Phi. |
| // (Matching multiple Phis would need investigation. It may be prohibitively slow.) |
| // This also covers the case when after replacing a previous set of Phi placeholders, |
| // we continue with a Phi placeholder that does not really need a loop Phi anymore. |
| if (phi_placeholder_indexes.size() == 1u) { |
| const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_indexes[0]]; |
| size_t idx = phi_placeholder->GetHeapLocation(); |
| HBasicBlock* block = GetGraph()->GetBlocks()[phi_placeholder->GetBlockId()]; |
| ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HInstruction* phi = phi_it.Current(); |
| DCHECK_EQ(phi->InputCount(), predecessors.size()); |
| ArrayRef<HUserRecord<HInstruction*>> phi_inputs = phi->GetInputRecords(); |
| auto cmp = [=](const HUserRecord<HInstruction*>& lhs, HBasicBlock* rhs) { |
| Value value = ReplacementOrValue(heap_values_for_[rhs->GetBlockId()][idx].value); |
| if (value.NeedsPhi()) { |
| DCHECK(value.GetPhiPlaceholder() == phi_placeholder); |
| return lhs.GetInstruction() == phi; |
| } else { |
| DCHECK(value.IsDefault() || value.IsInstruction()); |
| return value.Equals(lhs.GetInstruction()); |
| } |
| }; |
| if (std::equal(phi_inputs.begin(), phi_inputs.end(), predecessors.begin(), cmp)) { |
| phi_placeholder_replacements_[phi_placeholder_indexes[0]] = Value::ForInstruction(phi); |
| return true; |
| } |
| } |
| } |
| |
| if (phase == Phase::kStoreElimination) { |
| // We're not creating Phis during the final store elimination phase. |
| return false; |
| } |
| |
| // There are different inputs to the Phi chain. Create the Phis. |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction( |
| new (allocator) HPhi(allocator, kNoRegNumber, block->GetPredecessors().size(), type)); |
| } |
| // Fill the Phi inputs. |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| size_t idx = phi_placeholder->GetHeapLocation(); |
| HInstruction* phi = phi_placeholder_replacements_[phi_placeholder_index].GetInstruction(); |
| for (size_t i = 0, size = block->GetPredecessors().size(); i != size; ++i) { |
| HBasicBlock* predecessor = block->GetPredecessors()[i]; |
| Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| HInstruction* input = value.IsDefault() ? GetDefaultValue(type) : value.GetInstruction(); |
| DCHECK_NE(input->GetType(), DataType::Type::kVoid); |
| phi->SetRawInputAt(i, input); |
| } |
| } |
| // Add the Phis to their blocks. |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| block->AddPhi(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()->AsPhi()); |
| } |
| if (type == DataType::Type::kReference) { |
| ScopedArenaAllocator local_allocator(allocator_.GetArenaStack()); |
| ScopedArenaVector<HInstruction*> phis(local_allocator.Adapter(kArenaAllocLSE)); |
| for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| phis.push_back(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()); |
| } |
| // Update reference type information. Pass invalid handles, these are not used for Phis. |
| ReferenceTypePropagation rtp_fixup(GetGraph(), |
| Handle<mirror::ClassLoader>(), |
| Handle<mirror::DexCache>(), |
| /* is_first_run= */ false); |
| rtp_fixup.Visit(ArrayRef<HInstruction* const>(phis)); |
| } |
| |
| return true; |
| } |
| |
| bool LSEVisitor::MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize, |
| DataType::Type type, |
| Phase phase) { |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| |
| // We want to recognize when a subset of these loop Phis that do not need other |
| // loop Phis, i.e. a transitive closure, has only one other instruction as an input, |
| // i.e. that instruction can be used instead of each Phi in the set. See for example |
| // Main.testLoop{5,6,7,8}() in the test 530-checker-lse. To do that, we shall |
| // materialize these loop Phis from the smallest transitive closure. |
| |
| // Construct a matrix of loop phi placeholder dependencies. To reduce the memory usage, |
| // assign new indexes to the Phi placeholders, making the matrix dense. |
| ScopedArenaVector<size_t> matrix_indexes(phi_placeholders_.size(), |
| static_cast<size_t>(-1), // Invalid. |
| allocator.Adapter(kArenaAllocLSE)); |
| ScopedArenaVector<size_t> phi_placeholder_indexes(allocator.Adapter(kArenaAllocLSE)); |
| size_t num_phi_placeholders = phi_placeholders_to_materialize.NumSetBits(); |
| phi_placeholder_indexes.reserve(num_phi_placeholders); |
| for (uint32_t marker_index : phi_placeholders_to_materialize.Indexes()) { |
| matrix_indexes[marker_index] = phi_placeholder_indexes.size(); |
| phi_placeholder_indexes.push_back(marker_index); |
| } |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| ScopedArenaVector<ArenaBitVector*> dependencies(allocator.Adapter(kArenaAllocLSE)); |
| dependencies.reserve(num_phi_placeholders); |
| for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| static constexpr bool kExpandable = false; |
| dependencies.push_back( |
| ArenaBitVector::Create(&allocator, num_phi_placeholders, kExpandable, kArenaAllocLSE)); |
| ArenaBitVector* current_dependencies = dependencies.back(); |
| current_dependencies->ClearAllBits(); |
| current_dependencies->SetBit(matrix_index); // Count the Phi placeholder as its own dependency. |
| const PhiPlaceholder* current_phi_placeholder = |
| &phi_placeholders_[phi_placeholder_indexes[matrix_index]]; |
| HBasicBlock* current_block = blocks[current_phi_placeholder->GetBlockId()]; |
| DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| size_t idx = current_phi_placeholder->GetHeapLocation(); |
| for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| if (pred_value.NeedsLoopPhi()) { |
| size_t pred_value_index = PhiPlaceholderIndex(pred_value); |
| DCHECK(phi_placeholder_replacements_[pred_value_index].IsInvalid()); |
| DCHECK_NE(matrix_indexes[pred_value_index], static_cast<size_t>(-1)); |
| current_dependencies->SetBit(matrix_indexes[PhiPlaceholderIndex(pred_value)]); |
| } |
| } |
| } |
| |
| // Use the Floyd-Warshall algorithm to determine all transitive dependencies. |
| for (size_t k = 0; k != num_phi_placeholders; ++k) { |
| for (size_t i = 0; i != num_phi_placeholders; ++i) { |
| for (size_t j = 0; j != num_phi_placeholders; ++j) { |
| if (dependencies[i]->IsBitSet(k) && dependencies[k]->IsBitSet(j)) { |
| dependencies[i]->SetBit(j); |
| } |
| } |
| } |
| } |
| |
| // Count the number of transitive dependencies for each replaceable Phi placeholder. |
| ScopedArenaVector<size_t> num_dependencies(allocator.Adapter(kArenaAllocLSE)); |
| num_dependencies.reserve(num_phi_placeholders); |
| for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| num_dependencies.push_back(dependencies[matrix_index]->NumSetBits()); |
| } |
| |
| // Pick a Phi placeholder with the smallest number of transitive dependencies and |
| // materialize it and its dependencies. Repeat until we have materialized all. |
| ScopedArenaVector<size_t> current_subset(allocator.Adapter(kArenaAllocLSE)); |
| current_subset.reserve(num_phi_placeholders); |
| size_t remaining_phi_placeholders = num_phi_placeholders; |
| while (remaining_phi_placeholders != 0u) { |
| auto it = std::min_element(num_dependencies.begin(), num_dependencies.end()); |
| DCHECK_LE(*it, remaining_phi_placeholders); |
| size_t current_matrix_index = std::distance(num_dependencies.begin(), it); |
| ArenaBitVector* current_dependencies = dependencies[current_matrix_index]; |
| size_t current_num_dependencies = num_dependencies[current_matrix_index]; |
| current_subset.clear(); |
| for (uint32_t matrix_index : current_dependencies->Indexes()) { |
| current_subset.push_back(phi_placeholder_indexes[matrix_index]); |
| } |
| if (!MaterializeLoopPhis(current_subset, type, phase)) { |
| DCHECK(phase == Phase::kStoreElimination); |
| // This is the final store elimination phase and we shall not be able to eliminate any |
| // stores that depend on the current subset, so mark these Phi placeholders unreplaceable. |
| for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) { |
| DCHECK(phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]].IsInvalid()); |
| phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]] = Value::Unknown(); |
| } |
| } |
| return false; |
| } |
| for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| if (current_dependencies->IsBitSet(matrix_index)) { |
| // Mark all dependencies as done by incrementing their `num_dependencies[.]`, |
| // so that they shall never be the minimum again. |
| num_dependencies[matrix_index] = num_phi_placeholders; |
| } else if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) { |
| // Remove dependencies from other Phi placeholders. |
| dependencies[matrix_index]->Subtract(current_dependencies); |
| num_dependencies[matrix_index] -= current_num_dependencies; |
| } |
| } |
| remaining_phi_placeholders -= current_num_dependencies; |
| } |
| return true; |
| } |
| |
| const LSEVisitor::PhiPlaceholder* LSEVisitor::TryToMaterializeLoopPhis( |
| const PhiPlaceholder* phi_placeholder, |
| HInstruction* load) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| |
| // Find Phi placeholders to materialize. |
| ArenaBitVector phi_placeholders_to_materialize( |
| &allocator, phi_placeholders_.size(), /*expandable=*/ false, kArenaAllocLSE); |
| phi_placeholders_to_materialize.ClearAllBits(); |
| DataType::Type type = load->GetType(); |
| bool can_use_default_or_phi = IsDefaultOrPhiAllowedForLoad(load); |
| const PhiPlaceholder* loop_phi_with_unknown_input = FindLoopPhisToMaterialize( |
| phi_placeholder, &phi_placeholders_to_materialize, type, can_use_default_or_phi); |
| if (loop_phi_with_unknown_input != nullptr) { |
| return loop_phi_with_unknown_input; // Return failure. |
| } |
| |
| bool success = |
| MaterializeLoopPhis(phi_placeholders_to_materialize, type, Phase::kLoadElimination); |
| DCHECK(success); |
| |
| // Report success. |
| return nullptr; |
| } |
| |
| // Re-process loads and stores in successors from the `loop_phi_with_unknown_input`. This may |
| // find one or more loads from `loads_requiring_loop_phi_` which cannot be replaced by Phis and |
| // propagate the load(s) as the new value(s) to successors; this may uncover new elimination |
| // opportunities. If we find no such load, we shall at least propagate an unknown value to some |
| // heap location that is needed by another loop Phi placeholder. |
| void LSEVisitor::ProcessLoopPhiWithUnknownInput(const PhiPlaceholder* loop_phi_with_unknown_input) { |
| size_t loop_phi_with_unknown_input_index = PhiPlaceholderIndex(loop_phi_with_unknown_input); |
| DCHECK(phi_placeholder_replacements_[loop_phi_with_unknown_input_index].IsInvalid()); |
| phi_placeholder_replacements_[loop_phi_with_unknown_input_index] = Value::Unknown(); |
| |
| uint32_t block_id = loop_phi_with_unknown_input->GetBlockId(); |
| const ArenaVector<HBasicBlock*> reverse_post_order = GetGraph()->GetReversePostOrder(); |
| size_t reverse_post_order_index = 0; |
| size_t reverse_post_order_size = reverse_post_order.size(); |
| size_t loads_and_stores_index = 0u; |
| size_t loads_and_stores_size = loads_and_stores_.size(); |
| |
| // Skip blocks and instructions before the block containing the loop phi with unknown input. |
| DCHECK_NE(reverse_post_order_index, reverse_post_order_size); |
| while (reverse_post_order[reverse_post_order_index]->GetBlockId() != block_id) { |
| HBasicBlock* block = reverse_post_order[reverse_post_order_index]; |
| while (loads_and_stores_index != loads_and_stores_size && |
| loads_and_stores_[loads_and_stores_index].load_or_store->GetBlock() == block) { |
| ++loads_and_stores_index; |
| } |
| ++reverse_post_order_index; |
| DCHECK_NE(reverse_post_order_index, reverse_post_order_size); |
| } |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| // Reuse one temporary vector for all remaining blocks. |
| size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| ScopedArenaVector<Value> local_heap_values(allocator.Adapter(kArenaAllocLSE)); |
| |
| auto get_initial_value = [this](HBasicBlock* block, size_t idx) { |
| Value value; |
| if (block->IsLoopHeader()) { |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| value = Value::Unknown(); |
| } else { |
| value = PrepareLoopValue(block, idx); |
| } |
| } else { |
| value = MergePredecessorValues(block, idx); |
| } |
| DCHECK(value.IsUnknown() || ReplacementOrValue(value).Equals(value)); |
| return value; |
| }; |
| |
| // Process remaining blocks and instructions. |
| bool found_unreplaceable_load = false; |
| bool replaced_heap_value_with_unknown = false; |
| for (; reverse_post_order_index != reverse_post_order_size; ++reverse_post_order_index) { |
| HBasicBlock* block = reverse_post_order[reverse_post_order_index]; |
| if (block->IsExitBlock()) { |
| continue; |
| } |
| |
| // We shall reconstruct only the heap values that we need for processing loads and stores. |
| local_heap_values.clear(); |
| local_heap_values.resize(num_heap_locations, Value::Invalid()); |
| |
| for (; loads_and_stores_index != loads_and_stores_size; ++loads_and_stores_index) { |
| HInstruction* load_or_store = loads_and_stores_[loads_and_stores_index].load_or_store; |
| size_t idx = loads_and_stores_[loads_and_stores_index].heap_location_index; |
| if (load_or_store->GetBlock() != block) { |
| break; // End of instructions from the current block. |
| } |
| bool is_store = load_or_store->GetSideEffects().DoesAnyWrite(); |
| DCHECK_EQ(is_store, IsStore(load_or_store)); |
| HInstruction* stored_value = nullptr; |
| if (is_store) { |
| auto it = store_records_.find(load_or_store); |
| DCHECK(it != store_records_.end()); |
| stored_value = it->second.stored_value; |
| } |
| auto it = loads_requiring_loop_phi_.find( |
| stored_value != nullptr ? stored_value : load_or_store); |
| if (it == loads_requiring_loop_phi_.end()) { |
| continue; // This load or store never needed a loop Phi. |
| } |
| ValueRecord& record = it->second; |
| if (is_store) { |
| // Process the store by updating `local_heap_values[idx]`. The last update shall |
| // be propagated to the `heap_values[idx].value` if it previously needed a loop Phi |
| // at the end of the block. |
| Value replacement = ReplacementOrValue(record.value); |
| if (replacement.NeedsLoopPhi()) { |
| // No replacement yet, use the Phi placeholder from the load. |
| DCHECK(record.value.NeedsLoopPhi()); |
| local_heap_values[idx] = record.value; |
| } else { |
| // If the load fetched a known value, use it, otherwise use the load. |
| local_heap_values[idx] = Value::ForInstruction( |
| replacement.IsUnknown() ? stored_value : replacement.GetInstruction()); |
| } |
| } else { |
| // Process the load unless it has previously been marked unreplaceable. |
| if (record.value.NeedsLoopPhi()) { |
| if (local_heap_values[idx].IsInvalid()) { |
| local_heap_values[idx] = get_initial_value(block, idx); |
| } |
| if (local_heap_values[idx].IsUnknown()) { |
| // This load cannot be replaced. Keep stores that feed the Phi placeholder |
| // (no aliasing since then, otherwise the Phi placeholder would not have been |
| // propagated as a value to this load) and store the load as the new heap value. |
| found_unreplaceable_load = true; |
| KeepStores(record.value); |
| record.value = Value::Unknown(); |
| local_heap_values[idx] = Value::ForInstruction(load_or_store); |
| } else if (local_heap_values[idx].NeedsLoopPhi()) { |
| // The load may still be replaced with a Phi later. |
| DCHECK(local_heap_values[idx].Equals(record.value)); |
| } else { |
| // This load can be eliminated but we may need to construct non-loop Phis. |
| if (local_heap_values[idx].NeedsNonLoopPhi()) { |
| MaterializeNonLoopPhis(local_heap_values[idx].GetPhiPlaceholder(), |
| load_or_store->GetType()); |
| local_heap_values[idx] = Replacement(local_heap_values[idx]); |
| } |
| record.value = local_heap_values[idx]; |
| HInstruction* heap_value = local_heap_values[idx].GetInstruction(); |
| AddRemovedLoad(load_or_store, heap_value); |
| TryRemovingNullCheck(load_or_store); |
| } |
| } |
| } |
| } |
| |
| // All heap values that previously needed a loop Phi at the end of the block |
| // need to be updated for processing successors. |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t idx = 0; idx != num_heap_locations; ++idx) { |
| if (heap_values[idx].value.NeedsLoopPhi()) { |
| if (local_heap_values[idx].IsValid()) { |
| heap_values[idx].value = local_heap_values[idx]; |
| } else { |
| heap_values[idx].value = get_initial_value(block, idx); |
| } |
| if (heap_values[idx].value.IsUnknown()) { |
| replaced_heap_value_with_unknown = true; |
| } |
| } |
| } |
| } |
| DCHECK(found_unreplaceable_load || replaced_heap_value_with_unknown); |
| } |
| |
| void LSEVisitor::ProcessLoadsRequiringLoopPhis() { |
| // Note: The vector operations carve-out (see `IsDefaultOrPhiAllowedForLoad()`) can possibly |
| // make the result of the processing depend on the order in which we process these loads. |
| // To make sure the result is deterministic, iterate over `loads_and_stores_` instead of the |
| // `loads_requiring_loop_phi_` indexed by non-deterministic pointers. |
| for (const LoadStoreRecord& load_store_record : loads_and_stores_) { |
| auto it = loads_requiring_loop_phi_.find(load_store_record.load_or_store); |
| if (it == loads_requiring_loop_phi_.end()) { |
| continue; |
| } |
| HInstruction* load = it->first; |
| ValueRecord& record = it->second; |
| while (record.value.NeedsLoopPhi() && |
| phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()) { |
| const PhiPlaceholder* loop_phi_with_unknown_input = |
| TryToMaterializeLoopPhis(record.value.GetPhiPlaceholder(), load); |
| DCHECK_EQ(loop_phi_with_unknown_input != nullptr, |
| phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()); |
| if (loop_phi_with_unknown_input != nullptr) { |
| ProcessLoopPhiWithUnknownInput(loop_phi_with_unknown_input); |
| } |
| } |
| // The load could have been marked as unreplaceable (and stores marked for keeping) |
| // or marked for replacement with an instruction in ProcessLoopPhiWithUnknownInput(). |
| DCHECK(record.value.IsUnknown() || record.value.IsInstruction() || record.value.NeedsLoopPhi()); |
| if (record.value.NeedsLoopPhi()) { |
| record.value = Replacement(record.value); |
| HInstruction* heap_value = record.value.GetInstruction(); |
| AddRemovedLoad(load, heap_value); |
| TryRemovingNullCheck(load); |
| } |
| } |
| } |
| |
| void LSEVisitor::SearchPhiPlaceholdersForKeptStores() { |
| ScopedArenaVector<uint32_t> work_queue(allocator_.Adapter(kArenaAllocLSE)); |
| size_t start_size = phi_placeholders_to_search_for_kept_stores_.NumSetBits(); |
| work_queue.reserve(((start_size * 3u) + 1u) / 2u); // Reserve 1.5x start size, rounded up. |
| for (uint32_t index : phi_placeholders_to_search_for_kept_stores_.Indexes()) { |
| work_queue.push_back(index); |
| } |
| const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| while (!work_queue.empty()) { |
| const PhiPlaceholder* phi_placeholder = &phi_placeholders_[work_queue.back()]; |
| work_queue.pop_back(); |
| size_t idx = phi_placeholder->GetHeapLocation(); |
| HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()]; |
| // For loop back-edges we must also preserve all stores to locations that |
| // may alias with the location `idx`. |
| // TODO: Review whether we need to keep stores to aliased locations from pre-header. |
| // TODO: Add tests cases around this. |
| bool is_back_edge = |
| block->IsLoopHeader() && predecessor != block->GetLoopInformation()->GetPreHeader(); |
| size_t start = is_back_edge ? 0u : idx; |
| size_t end = is_back_edge ? heap_values.size() : idx + 1u; |
| for (size_t i = start; i != end; ++i) { |
| Value stored_by = heap_values[i].stored_by; |
| auto may_alias = [this, block, idx](size_t i) { |
| DCHECK_NE(i, idx); |
| DCHECK(block->IsLoopHeader()); |
| if (heap_location_collector_.MayAlias(i, idx)) { |
| return true; |
| } |
| // For array locations with index defined inside the loop, include |
| // all other locations in the array, even those that LSA declares |
| // non-aliasing, such as `a[i]` and `a[i + 1]`, as they may actually |
| // refer to the same locations for different iterations. (LSA's |
| // `ComputeMayAlias()` does not consider different loop iterations.) |
| HeapLocation* heap_loc = heap_location_collector_.GetHeapLocation(idx); |
| HeapLocation* other_loc = heap_location_collector_.GetHeapLocation(i); |
| if (heap_loc->IsArray() && |
| other_loc->IsArray() && |
| heap_loc->GetReferenceInfo() == other_loc->GetReferenceInfo() && |
| block->GetLoopInformation()->Contains(*heap_loc->GetIndex()->GetBlock())) { |
| // If one location has index defined inside and the other index defined outside |
| // of the loop, LSA considers them aliasing and we take an early return above. |
| DCHECK(block->GetLoopInformation()->Contains(*other_loc->GetIndex()->GetBlock())); |
| return true; |
| } |
| return false; |
| }; |
| if (!stored_by.IsUnknown() && (i == idx || may_alias(i))) { |
| if (stored_by.NeedsPhi()) { |
| size_t phi_placeholder_index = PhiPlaceholderIndex(stored_by); |
| if (!phi_placeholders_to_search_for_kept_stores_.IsBitSet(phi_placeholder_index)) { |
| phi_placeholders_to_search_for_kept_stores_.SetBit(phi_placeholder_index); |
| work_queue.push_back(phi_placeholder_index); |
| } |
| } else { |
| DCHECK(IsStore(stored_by.GetInstruction())); |
| kept_stores_.SetBit(stored_by.GetInstruction()->GetId()); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void LSEVisitor::UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record) { |
| while (value_record->stored_by.IsInstruction() && |
| !kept_stores_.IsBitSet(value_record->stored_by.GetInstruction()->GetId())) { |
| auto it = store_records_.find(value_record->stored_by.GetInstruction()); |
| DCHECK(it != store_records_.end()); |
| *value_record = it->second.old_value_record; |
| } |
| if (value_record->stored_by.NeedsPhi() && |
| !phi_placeholders_to_search_for_kept_stores_.IsBitSet( |
| PhiPlaceholderIndex(value_record->stored_by))) { |
| // Some stores feeding this heap location may have been eliminated. Use the `stored_by` |
| // Phi placeholder to recalculate the actual value. |
| value_record->value = value_record->stored_by; |
| } |
| value_record->value = ReplacementOrValue(value_record->value); |
| if (value_record->value.NeedsNonLoopPhi()) { |
| // Treat all Phi placeholders as requiring loop Phis at this point. |
| // We do not want MaterializeLoopPhis() to call MaterializeNonLoopPhis(). |
| value_record->value = Value::ForLoopPhiPlaceholder(value_record->value.GetPhiPlaceholder()); |
| } |
| } |
| |
| void LSEVisitor::FindOldValueForPhiPlaceholder(const PhiPlaceholder* phi_placeholder, |
| DataType::Type type) { |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| ArenaBitVector visited(&allocator, |
| /*start_bits=*/ phi_placeholders_.size(), |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| visited.ClearAllBits(); |
| |
| // Find Phi placeholders to try and match against existing Phis or other replacement values. |
| ArenaBitVector phi_placeholders_to_materialize( |
| &allocator, phi_placeholders_.size(), /*expandable=*/ false, kArenaAllocLSE); |
| phi_placeholders_to_materialize.ClearAllBits(); |
| const PhiPlaceholder* loop_phi_with_unknown_input = FindLoopPhisToMaterialize( |
| phi_placeholder, &phi_placeholders_to_materialize, type, /*can_use_default_or_phi=*/ true); |
| if (loop_phi_with_unknown_input != nullptr) { |
| // Mark the unreplacable placeholder as well as the input Phi placeholder as unreplaceable. |
| phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)] = Value::Unknown(); |
| phi_placeholder_replacements_[PhiPlaceholderIndex(loop_phi_with_unknown_input)] = |
| Value::Unknown(); |
| return; |
| } |
| |
| bool success = |
| MaterializeLoopPhis(phi_placeholders_to_materialize, type, Phase::kStoreElimination); |
| DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsValid()); |
| DCHECK_EQ(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsUnknown(), |
| !success); |
| } |
| |
| void LSEVisitor::FindStoresWritingOldValues() { |
| // The Phi placeholder replacements have so far been used for eliminating loads, |
| // tracking values that would be stored if all stores were kept. As we want to |
| // compare actual old values after removing unmarked stores, prune the Phi |
| // placeholder replacements that can be fed by values we may not actually store. |
| // Replacements marked as unknown can be kept as they are fed by some unknown |
| // value and would end up as unknown again if we recalculated them. |
| for (size_t i = 0, size = phi_placeholder_replacements_.size(); i != size; ++i) { |
| if (!phi_placeholder_replacements_[i].IsUnknown() && |
| !phi_placeholders_to_search_for_kept_stores_.IsBitSet(i)) { |
| phi_placeholder_replacements_[i] = Value::Invalid(); |
| } |
| } |
| |
| // Update heap values at end of blocks. |
| for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) { |
| for (ValueRecord& value_record : heap_values_for_[block->GetBlockId()]) { |
| UpdateValueRecordForStoreElimination(&value_record); |
| } |
| } |
| |
| // Use local allocator to reduce peak memory usage. |
| ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| // Mark the stores we want to eliminate in a separate bit vector. |
| ArenaBitVector eliminated_stores(&allocator, |
| /*start_bits=*/ GetGraph()->GetCurrentInstructionId(), |
| /*expandable=*/ false, |
| kArenaAllocLSE); |
| eliminated_stores.ClearAllBits(); |
| |
| for (auto& entry : store_records_) { |
| HInstruction* store = entry.first; |
| StoreRecord& store_record = entry.second; |
| if (!kept_stores_.IsBitSet(store->GetId())) { |
| continue; // Ignore stores that are not kept. |
| } |
| UpdateValueRecordForStoreElimination(&store_record.old_value_record); |
| if (store_record.old_value_record.value.NeedsPhi()) { |
| DataType::Type type = store_record.stored_value->GetType(); |
| FindOldValueForPhiPlaceholder(store_record.old_value_record.value.GetPhiPlaceholder(), type); |
| store_record.old_value_record.value = ReplacementOrValue(store_record.old_value_record.value); |
| } |
| DCHECK(!store_record.old_value_record.value.NeedsPhi()); |
| HInstruction* stored_value = FindSubstitute(store_record.stored_value); |
| if (store_record.old_value_record.value.Equals(stored_value)) { |
| eliminated_stores.SetBit(store->GetId()); |
| } |
| } |
| |
| // Commit the stores to eliminate by removing them from `kept_stores_`. |
| kept_stores_.Subtract(&eliminated_stores); |
| } |
| |
| void LSEVisitor::Run() { |
| // 1. Process blocks and instructions in reverse post order. |
| for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) { |
| VisitBasicBlock(block); |
| } |
| |
| // 2. Process loads that require loop Phis, trying to find/create replacements. |
| ProcessLoadsRequiringLoopPhis(); |
| |
| // 3. Determine which stores to keep and which to eliminate. |
| |
| // Finish marking stores for keeping. |
| SearchPhiPlaceholdersForKeptStores(); |
| |
| // Find stores that write the same value as is already present in the location. |
| FindStoresWritingOldValues(); |
| |
| // 4. Replace loads and remove unnecessary stores and singleton allocations. |
| |
| // Remove recorded load instructions that should be eliminated. |
| for (const LoadStoreRecord& record : loads_and_stores_) { |
| size_t id = dchecked_integral_cast<size_t>(record.load_or_store->GetId()); |
| HInstruction* substitute = substitute_instructions_for_loads_[id]; |
| if (substitute == nullptr) { |
| continue; |
| } |
| HInstruction* load = record.load_or_store; |
| DCHECK(load != nullptr); |
| DCHECK(IsLoad(load)); |
| DCHECK(load->GetBlock() != nullptr) << load->DebugName() << "@" << load->GetDexPc(); |
| // We proactively retrieve the substitute for a removed load, so |
| // a load that has a substitute should not be observed as a heap |
| // location value. |
| DCHECK_EQ(FindSubstitute(substitute), substitute); |
| |
| load->ReplaceWith(substitute); |
| load->GetBlock()->RemoveInstruction(load); |
| } |
| |
| // Remove all the stores we can. |
| for (const LoadStoreRecord& record : loads_and_stores_) { |
| bool is_store = record.load_or_store->GetSideEffects().DoesAnyWrite(); |
| DCHECK_EQ(is_store, IsStore(record.load_or_store)); |
| if (is_store && !kept_stores_.IsBitSet(record.load_or_store->GetId())) { |
| record.load_or_store->GetBlock()->RemoveInstruction(record.load_or_store); |
| } |
| } |
| |
| // Eliminate singleton-classified instructions: |
| // * - Constructor fences (they never escape this thread). |
| // * - Allocations (if they are unused). |
| for (HInstruction* new_instance : singleton_new_instances_) { |
| size_t removed = HConstructorFence::RemoveConstructorFences(new_instance); |
| MaybeRecordStat(stats_, |
| MethodCompilationStat::kConstructorFenceRemovedLSE, |
| removed); |
| |
| if (!new_instance->HasNonEnvironmentUses()) { |
| new_instance->RemoveEnvironmentUsers(); |
| new_instance->GetBlock()->RemoveInstruction(new_instance); |
| } |
| } |
| } |
| |
| bool LoadStoreElimination::Run() { |
| if (graph_->IsDebuggable() || graph_->HasTryCatch()) { |
| // Debugger may set heap values or trigger deoptimization of callers. |
| // Try/catch support not implemented yet. |
| // Skip this optimization. |
| return false; |
| } |
| ScopedArenaAllocator allocator(graph_->GetArenaStack()); |
| LoadStoreAnalysis lsa(graph_, &allocator); |
| lsa.Run(); |
| const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector(); |
| if (heap_location_collector.GetNumberOfHeapLocations() == 0) { |
| // No HeapLocation information from LSA, skip this optimization. |
| return false; |
| } |
| |
| LSEVisitor lse_visitor(graph_, heap_location_collector, stats_); |
| lse_visitor.Run(); |
| return true; |
| } |
| |
| } // namespace art |