| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_arm_vixl.h" |
| |
| #include "arch/arm/instruction_set_features_arm.h" |
| #include "art_method.h" |
| #include "code_generator_utils.h" |
| #include "common_arm.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "gc/accounting/card_table.h" |
| #include "intrinsics_arm_vixl.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "thread.h" |
| #include "utils/arm/assembler_arm_vixl.h" |
| #include "utils/arm/managed_register_arm.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| |
| namespace art { |
| namespace arm { |
| |
| namespace vixl32 = vixl::aarch32; |
| using namespace vixl32; // NOLINT(build/namespaces) |
| |
| using helpers::DRegisterFrom; |
| using helpers::DWARFReg; |
| using helpers::HighDRegisterFrom; |
| using helpers::HighRegisterFrom; |
| using helpers::InputOperandAt; |
| using helpers::InputRegister; |
| using helpers::InputRegisterAt; |
| using helpers::InputSRegisterAt; |
| using helpers::InputVRegister; |
| using helpers::InputVRegisterAt; |
| using helpers::Int32ConstantFrom; |
| using helpers::Int64ConstantFrom; |
| using helpers::LocationFrom; |
| using helpers::LowRegisterFrom; |
| using helpers::LowSRegisterFrom; |
| using helpers::OutputRegister; |
| using helpers::OutputSRegister; |
| using helpers::OutputVRegister; |
| using helpers::RegisterFrom; |
| using helpers::SRegisterFrom; |
| using helpers::Uint64ConstantFrom; |
| |
| using vixl::ExactAssemblyScope; |
| using vixl::CodeBufferCheckScope; |
| |
| using RegisterList = vixl32::RegisterList; |
| |
| static bool ExpectedPairLayout(Location location) { |
| // We expected this for both core and fpu register pairs. |
| return ((location.low() & 1) == 0) && (location.low() + 1 == location.high()); |
| } |
| // Use a local definition to prevent copying mistakes. |
| static constexpr size_t kArmWordSize = static_cast<size_t>(kArmPointerSize); |
| static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte; |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; |
| |
| #ifdef __ |
| #error "ARM Codegen VIXL macro-assembler macro already defined." |
| #endif |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value() |
| |
| // Marker that code is yet to be, and must, be implemented. |
| #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented " |
| |
| // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers, |
| // for each live D registers they treat two corresponding S registers as live ones. |
| // |
| // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build |
| // from a list of contiguous S registers a list of contiguous D registers (processing first/last |
| // S registers corner cases) and save/restore this new list treating them as D registers. |
| // - decreasing code size |
| // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is |
| // restored and then used in regular non SlowPath code as D register. |
| // |
| // For the following example (v means the S register is live): |
| // D names: | D0 | D1 | D2 | D4 | ... |
| // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ... |
| // Live? | | v | v | v | v | v | v | | ... |
| // |
| // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed |
| // as D registers. |
| // |
| // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers |
| // for lists of floating-point registers. |
| static size_t SaveContiguousSRegisterList(size_t first, |
| size_t last, |
| CodeGenerator* codegen, |
| size_t stack_offset) { |
| static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes."); |
| static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes."); |
| DCHECK_LE(first, last); |
| if ((first == last) && (first == 0)) { |
| __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset)); |
| return stack_offset + kSRegSizeInBytes; |
| } |
| if (first % 2 == 1) { |
| __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset)); |
| stack_offset += kSRegSizeInBytes; |
| } |
| |
| bool save_last = false; |
| if (last % 2 == 0) { |
| save_last = true; |
| --last; |
| } |
| |
| if (first < last) { |
| vixl32::DRegister d_reg = vixl32::DRegister(first / 2); |
| DCHECK_EQ((last - first + 1) % 2, 0u); |
| size_t number_of_d_regs = (last - first + 1) / 2; |
| |
| if (number_of_d_regs == 1) { |
| __ Vstr(d_reg, MemOperand(sp, stack_offset)); |
| } else if (number_of_d_regs > 1) { |
| UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()); |
| vixl32::Register base = sp; |
| if (stack_offset != 0) { |
| base = temps.Acquire(); |
| __ Add(base, sp, Operand::From(stack_offset)); |
| } |
| __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs)); |
| } |
| stack_offset += number_of_d_regs * kDRegSizeInBytes; |
| } |
| |
| if (save_last) { |
| __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset)); |
| stack_offset += kSRegSizeInBytes; |
| } |
| |
| return stack_offset; |
| } |
| |
| static size_t RestoreContiguousSRegisterList(size_t first, |
| size_t last, |
| CodeGenerator* codegen, |
| size_t stack_offset) { |
| static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes."); |
| static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes."); |
| DCHECK_LE(first, last); |
| if ((first == last) && (first == 0)) { |
| __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset)); |
| return stack_offset + kSRegSizeInBytes; |
| } |
| if (first % 2 == 1) { |
| __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset)); |
| stack_offset += kSRegSizeInBytes; |
| } |
| |
| bool restore_last = false; |
| if (last % 2 == 0) { |
| restore_last = true; |
| --last; |
| } |
| |
| if (first < last) { |
| vixl32::DRegister d_reg = vixl32::DRegister(first / 2); |
| DCHECK_EQ((last - first + 1) % 2, 0u); |
| size_t number_of_d_regs = (last - first + 1) / 2; |
| if (number_of_d_regs == 1) { |
| __ Vldr(d_reg, MemOperand(sp, stack_offset)); |
| } else if (number_of_d_regs > 1) { |
| UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()); |
| vixl32::Register base = sp; |
| if (stack_offset != 0) { |
| base = temps.Acquire(); |
| __ Add(base, sp, Operand::From(stack_offset)); |
| } |
| __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs)); |
| } |
| stack_offset += number_of_d_regs * kDRegSizeInBytes; |
| } |
| |
| if (restore_last) { |
| __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset)); |
| stack_offset += kSRegSizeInBytes; |
| } |
| |
| return stack_offset; |
| } |
| |
| void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| size_t orig_offset = stack_offset; |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += kArmWordSize; |
| } |
| |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset); |
| |
| uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| orig_offset = stack_offset; |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += kArmWordSize; |
| } |
| |
| stack_offset = orig_offset; |
| while (fp_spills != 0u) { |
| uint32_t begin = CTZ(fp_spills); |
| uint32_t tmp = fp_spills + (1u << begin); |
| fp_spills &= tmp; // Clear the contiguous range of 1s. |
| uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. |
| stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset); |
| } |
| DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| } |
| |
| void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| size_t orig_offset = stack_offset; |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| stack_offset += kArmWordSize; |
| } |
| |
| // TODO(VIXL): Check the coherency of stack_offset after this with a test. |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset); |
| |
| uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| while (fp_spills != 0u) { |
| uint32_t begin = CTZ(fp_spills); |
| uint32_t tmp = fp_spills + (1u << begin); |
| fp_spills &= tmp; // Clear the contiguous range of 1s. |
| uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. |
| stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset); |
| } |
| DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| } |
| |
| class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| arm_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARMVIXL"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL); |
| }; |
| |
| class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction) |
| : SlowPathCodeARMVIXL(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARMVIXL"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL); |
| }; |
| |
| class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeARMVIXL(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| if (successor_ == nullptr) { |
| __ B(GetReturnLabel()); |
| } else { |
| __ B(arm_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| vixl32::Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARMVIXL"; } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| vixl32::Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL); |
| }; |
| |
| class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction) |
| : SlowPathCodeARMVIXL(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| codegen->EmitParallelMoves( |
| locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimInt, |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARMVIXL"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL); |
| }; |
| |
| class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) |
| : SlowPathCodeARMVIXL(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ Mov(calling_convention.GetRegisterAt(0), type_index.index_); |
| QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage |
| : kQuickInitializeType; |
| arm_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this); |
| if (do_clinit_) { |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); |
| } else { |
| CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); |
| } |
| |
| // Move the class to the desired location. |
| Location out = locations->Out(); |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| arm_codegen->Move32(locations->Out(), LocationFrom(r0)); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry. |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| if (cls_ == instruction_ && cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { |
| DCHECK(out.IsValid()); |
| // TODO: Change art_quick_initialize_type/art_quick_initialize_static_storage to |
| // kSaveEverything and use a temporary for the .bss entry address in the fast path, |
| // so that we can avoid another calculation here. |
| UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = |
| arm_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index); |
| arm_codegen->EmitMovwMovtPlaceholder(labels, temp); |
| __ Str(OutputRegister(cls_), MemOperand(temp)); |
| } |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARMVIXL"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| // The dex PC of `at_`. |
| const uint32_t dex_pc_; |
| |
| // Whether to initialize the class. |
| const bool do_clinit_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL); |
| }; |
| |
| class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit LoadStringSlowPathARMVIXL(HLoadString* instruction) |
| : SlowPathCodeARMVIXL(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| HLoadString* load = instruction_->AsLoadString(); |
| const dex::StringIndex string_index = load->GetStringIndex(); |
| vixl32::Register out = OutputRegister(load); |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier); |
| |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| // In the unlucky case that the `temp` is R0, we preserve the address in `out` across |
| // the kSaveEverything call (or use `out` for the address after non-kSaveEverything call). |
| bool temp_is_r0 = (temp.Is(calling_convention.GetRegisterAt(0))); |
| vixl32::Register entry_address = temp_is_r0 ? out : temp; |
| DCHECK(!entry_address.Is(calling_convention.GetRegisterAt(0))); |
| if (call_saves_everything_except_r0 && temp_is_r0) { |
| __ Mov(entry_address, temp); |
| } |
| |
| __ Mov(calling_convention.GetRegisterAt(0), string_index.index_); |
| arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| |
| // Store the resolved String to the .bss entry. |
| if (call_saves_everything_except_r0) { |
| // The string entry address was preserved in `entry_address` thanks to kSaveEverything. |
| __ Str(r0, MemOperand(entry_address)); |
| } else { |
| // For non-Baker read barrier, we need to re-calculate the address of the string entry. |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = |
| arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index); |
| arm_codegen->EmitMovwMovtPlaceholder(labels, out); |
| __ Str(r0, MemOperand(entry_address)); |
| } |
| |
| arm_codegen->Move32(locations->Out(), LocationFrom(r0)); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARMVIXL"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL); |
| }; |
| |
| class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| __ Bind(GetEntryLabel()); |
| |
| if (!is_fatal_) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| |
| codegen->EmitParallelMoves(locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot); |
| if (instruction_->IsInstanceOf()) { |
| arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| arm_codegen->Move32(locations->Out(), LocationFrom(r0)); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| arm_codegen->InvokeRuntime(kQuickCheckInstanceOf, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARMVIXL"; } |
| |
| bool IsFatal() const OVERRIDE { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL); |
| }; |
| |
| class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction) |
| : SlowPathCodeARMVIXL(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, void>(); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARMVIXL"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL); |
| }; |
| |
| class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimNot, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARMVIXL"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read |
| // barrier. The field `obj.field` in the object `obj` holding this |
| // reference does not get updated by this slow path after marking (see |
| // ReadBarrierMarkAndUpdateFieldSlowPathARM below for that). |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| ReadBarrierMarkSlowPathARMVIXL(HInstruction* instruction, |
| Location ref, |
| Location entrypoint = Location::NoLocation()) |
| : SlowPathCodeARMVIXL(instruction), ref_(ref), entrypoint_(entrypoint) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARMVIXL"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| vixl32::Register ref_reg = RegisterFrom(ref_); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg.GetCode())) << ref_reg; |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || |
| (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); |
| |
| __ Bind(GetEntryLabel()); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| DCHECK(!ref_reg.Is(sp)); |
| DCHECK(!ref_reg.Is(lr)); |
| DCHECK(!ref_reg.Is(pc)); |
| // IP is used internally by the ReadBarrierMarkRegX entry point |
| // as a temporary, it cannot be the entry point's input/output. |
| DCHECK(!ref_reg.Is(ip)); |
| DCHECK(ref_reg.IsRegister()) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in R0): |
| // |
| // R0 <- ref |
| // R0 <- ReadBarrierMark(R0) |
| // ref <- R0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| if (entrypoint_.IsValid()) { |
| arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); |
| __ Blx(RegisterFrom(entrypoint_)); |
| } else { |
| int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg.GetCode()); |
| // This runtime call does not require a stack map. |
| arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| } |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| |
| // The location of the entrypoint if already loaded. |
| const Location entrypoint_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARMVIXL); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read barrier, |
| // and if needed, atomically updating the field `obj.field` in the |
| // object `obj` holding this reference after marking (contrary to |
| // ReadBarrierMarkSlowPathARM above, which never tries to update |
| // `obj.field`). |
| // |
| // This means that after the execution of this slow path, both `ref` |
| // and `obj.field` will be up-to-date; i.e., after the flip, both will |
| // hold the same to-space reference (unless another thread installed |
| // another object reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkAndUpdateFieldSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| ReadBarrierMarkAndUpdateFieldSlowPathARMVIXL(HInstruction* instruction, |
| Location ref, |
| vixl32::Register obj, |
| Location field_offset, |
| vixl32::Register temp1, |
| vixl32::Register temp2) |
| : SlowPathCodeARMVIXL(instruction), |
| ref_(ref), |
| obj_(obj), |
| field_offset_(field_offset), |
| temp1_(temp1), |
| temp2_(temp2) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "ReadBarrierMarkAndUpdateFieldSlowPathARMVIXL"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| vixl32::Register ref_reg = RegisterFrom(ref_); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg.GetCode())) << ref_reg; |
| // This slow path is only used by the UnsafeCASObject intrinsic. |
| DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking and field updating slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); |
| DCHECK(field_offset_.IsRegisterPair()) << field_offset_; |
| |
| __ Bind(GetEntryLabel()); |
| |
| // Save the old reference. |
| // Note that we cannot use IP to save the old reference, as IP is |
| // used internally by the ReadBarrierMarkRegX entry point, and we |
| // need the old reference after the call to that entry point. |
| DCHECK(!temp1_.Is(ip)); |
| __ Mov(temp1_, ref_reg); |
| |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| DCHECK(!ref_reg.Is(sp)); |
| DCHECK(!ref_reg.Is(lr)); |
| DCHECK(!ref_reg.Is(pc)); |
| // IP is used internally by the ReadBarrierMarkRegX entry point |
| // as a temporary, it cannot be the entry point's input/output. |
| DCHECK(!ref_reg.Is(ip)); |
| DCHECK(ref_reg.IsRegister()) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in R0): |
| // |
| // R0 <- ref |
| // R0 <- ReadBarrierMark(R0) |
| // ref <- R0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg.GetCode()); |
| // This runtime call does not require a stack map. |
| arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| |
| // If the new reference is different from the old reference, |
| // update the field in the holder (`*(obj_ + field_offset_)`). |
| // |
| // Note that this field could also hold a different object, if |
| // another thread had concurrently changed it. In that case, the |
| // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set |
| // (CAS) operation below would abort the CAS, leaving the field |
| // as-is. |
| vixl32::Label done; |
| __ Cmp(temp1_, ref_reg); |
| __ B(eq, &done, /* far_target */ false); |
| |
| // Update the the holder's field atomically. This may fail if |
| // mutator updates before us, but it's OK. This is achieved |
| // using a strong compare-and-set (CAS) operation with relaxed |
| // memory synchronization ordering, where the expected value is |
| // the old reference and the desired value is the new reference. |
| |
| UseScratchRegisterScope temps(arm_codegen->GetVIXLAssembler()); |
| // Convenience aliases. |
| vixl32::Register base = obj_; |
| // The UnsafeCASObject intrinsic uses a register pair as field |
| // offset ("long offset"), of which only the low part contains |
| // data. |
| vixl32::Register offset = LowRegisterFrom(field_offset_); |
| vixl32::Register expected = temp1_; |
| vixl32::Register value = ref_reg; |
| vixl32::Register tmp_ptr = temps.Acquire(); // Pointer to actual memory. |
| vixl32::Register tmp = temp2_; // Value in memory. |
| |
| __ Add(tmp_ptr, base, offset); |
| |
| if (kPoisonHeapReferences) { |
| arm_codegen->GetAssembler()->PoisonHeapReference(expected); |
| if (value.Is(expected)) { |
| // Do not poison `value`, as it is the same register as |
| // `expected`, which has just been poisoned. |
| } else { |
| arm_codegen->GetAssembler()->PoisonHeapReference(value); |
| } |
| } |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); |
| |
| vixl32::Label loop_head, exit_loop; |
| __ Bind(&loop_head); |
| |
| __ Ldrex(tmp, MemOperand(tmp_ptr)); |
| |
| __ Subs(tmp, tmp, expected); |
| |
| { |
| ExactAssemblyScope aas(arm_codegen->GetVIXLAssembler(), |
| 2 * kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| |
| __ it(ne); |
| __ clrex(ne); |
| } |
| |
| __ B(ne, &exit_loop, /* far_target */ false); |
| |
| __ Strex(tmp, value, MemOperand(tmp_ptr)); |
| __ Cmp(tmp, 1); |
| __ B(eq, &loop_head, /* far_target */ false); |
| |
| __ Bind(&exit_loop); |
| |
| if (kPoisonHeapReferences) { |
| arm_codegen->GetAssembler()->UnpoisonHeapReference(expected); |
| if (value.Is(expected)) { |
| // Do not unpoison `value`, as it is the same register as |
| // `expected`, which has just been unpoisoned. |
| } else { |
| arm_codegen->GetAssembler()->UnpoisonHeapReference(value); |
| } |
| } |
| |
| __ Bind(&done); |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| // The register containing the object holding the marked object reference field. |
| const vixl32::Register obj_; |
| // The location of the offset of the marked reference field within `obj_`. |
| Location field_offset_; |
| |
| const vixl32::Register temp1_; |
| const vixl32::Register temp2_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathARMVIXL); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCodeARMVIXL(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ LoadFromOffset(kLoadWord, out, out, offset); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| vixl32::Register reg_out = RegisterFrom(out_); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode())); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified()) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| vixl32::Register index_reg = RegisterFrom(index_); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode())); |
| if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to art::arm::Thumb2Assembler::Lsl and |
| // art::arm::Thumb2Assembler::AddConstant below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ Mov(free_reg, index_reg); |
| index_reg = free_reg; |
| index = LocationFrom(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ Lsl(index_reg, index_reg, TIMES_4); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ Add(index_reg, index_reg, offset_); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegisterPair()); |
| // UnsafeGet's offset location is a register pair, the low |
| // part contains the correct offset. |
| index = index_.ToLow(); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove(ref_, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimInt, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| __ Mov(calling_convention.GetRegisterAt(2), offset_); |
| } |
| arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| arm_codegen->Move32(out_, LocationFrom(r0)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "ReadBarrierForHeapReferenceSlowPathARMVIXL"; |
| } |
| |
| private: |
| vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| uint32_t ref = RegisterFrom(ref_).GetCode(); |
| uint32_t obj = RegisterFrom(obj_).GetCode(); |
| for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return vixl32::Register(i); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on ARM |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free caller-save register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| vixl32::Register reg_out = RegisterFrom(out_); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode())); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_); |
| arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| arm_codegen->Move32(out_, LocationFrom(r0)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARMVIXL"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL); |
| }; |
| |
| inline vixl32::Condition ARMCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne; |
| case kCondLT: return lt; |
| case kCondLE: return le; |
| case kCondGT: return gt; |
| case kCondGE: return ge; |
| case kCondB: return lo; |
| case kCondBE: return ls; |
| case kCondA: return hi; |
| case kCondAE: return hs; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| // Maps signed condition to unsigned condition. |
| inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne; |
| // Signed to unsigned. |
| case kCondLT: return lo; |
| case kCondLE: return ls; |
| case kCondGT: return hi; |
| case kCondGE: return hs; |
| // Unsigned remain unchanged. |
| case kCondB: return lo; |
| case kCondBE: return ls; |
| case kCondA: return hi; |
| case kCondAE: return hs; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) { |
| // The ARM condition codes can express all the necessary branches, see the |
| // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual. |
| // There is no dex instruction or HIR that would need the missing conditions |
| // "equal or unordered" or "not equal". |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne /* unordered */; |
| case kCondLT: return gt_bias ? cc : lt /* unordered */; |
| case kCondLE: return gt_bias ? ls : le /* unordered */; |
| case kCondGT: return gt_bias ? hi /* unordered */ : gt; |
| case kCondGE: return gt_bias ? cs /* unordered */ : ge; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << vixl32::Register(reg); |
| } |
| |
| void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << vixl32::SRegister(reg); |
| } |
| |
| static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) { |
| uint32_t mask = 0; |
| for (uint32_t i = regs.GetFirstSRegister().GetCode(); |
| i <= regs.GetLastSRegister().GetCode(); |
| ++i) { |
| mask |= (1 << i); |
| } |
| return mask; |
| } |
| |
| // Saves the register in the stack. Returns the size taken on stack. |
| size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED, |
| uint32_t reg_id ATTRIBUTE_UNUSED) { |
| TODO_VIXL32(FATAL); |
| return 0; |
| } |
| |
| // Restores the register from the stack. Returns the size taken on stack. |
| size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED, |
| uint32_t reg_id ATTRIBUTE_UNUSED) { |
| TODO_VIXL32(FATAL); |
| return 0; |
| } |
| |
| size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, |
| uint32_t reg_id ATTRIBUTE_UNUSED) { |
| TODO_VIXL32(FATAL); |
| return 0; |
| } |
| |
| size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, |
| uint32_t reg_id ATTRIBUTE_UNUSED) { |
| TODO_VIXL32(FATAL); |
| return 0; |
| } |
| |
| #undef __ |
| |
| CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph, |
| const ArmInstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfCoreRegisters, |
| kNumberOfSRegisters, |
| kNumberOfRegisterPairs, |
| kCoreCalleeSaves.GetList(), |
| ComputeSRegisterListMask(kFpuCalleeSaves), |
| compiler_options, |
| stats), |
| block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetArena(), this), |
| assembler_(graph->GetArena()), |
| isa_features_(isa_features), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(StringReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(TypeReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_address_patches_(std::less<uint32_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(StringReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(TypeReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { |
| // Always save the LR register to mimic Quick. |
| AddAllocatedRegister(Location::RegisterLocation(LR)); |
| // Give d14 and d15 as scratch registers to VIXL. |
| // They are removed from the register allocator in `SetupBlockedRegisters()`. |
| // TODO(VIXL): We need two scratch D registers for `EmitSwap` when swapping two double stack |
| // slots. If that is sufficiently rare, and we have pressure on FP registers, we could instead |
| // spill in `EmitSwap`. But if we actually are guaranteed to have 32 D registers, we could give |
| // d30 and d31 to VIXL to avoid removing registers from the allocator. If that is the case, we may |
| // also want to investigate giving those 14 other D registers to the allocator. |
| GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d14); |
| GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d15); |
| } |
| |
| void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) { |
| uint32_t num_entries = switch_instr_->GetNumEntries(); |
| DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); |
| |
| // We are about to use the assembler to place literals directly. Make sure we have enough |
| // underlying code buffer and we have generated a jump table of the right size, using |
| // codegen->GetVIXLAssembler()->GetBuffer().Align(); |
| ExactAssemblyScope aas(codegen->GetVIXLAssembler(), |
| num_entries * sizeof(int32_t), |
| CodeBufferCheckScope::kMaximumSize); |
| // TODO(VIXL): Check that using lower case bind is fine here. |
| codegen->GetVIXLAssembler()->bind(&table_start_); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| codegen->GetVIXLAssembler()->place(bb_addresses_[i].get()); |
| } |
| } |
| |
| void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) { |
| uint32_t num_entries = switch_instr_->GetNumEntries(); |
| DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| vixl32::Label* target_label = codegen->GetLabelOf(successors[i]); |
| DCHECK(target_label->IsBound()); |
| int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation(); |
| // When doing BX to address we need to have lower bit set to 1 in T32. |
| if (codegen->GetVIXLAssembler()->IsUsingT32()) { |
| jump_offset++; |
| } |
| DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min()); |
| DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max()); |
| |
| bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer()); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::FixJumpTables() { |
| for (auto&& jump_table : jump_tables_) { |
| jump_table->FixTable(this); |
| } |
| } |
| |
| #define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()-> // NOLINT |
| |
| void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) { |
| FixJumpTables(); |
| GetAssembler()->FinalizeCode(); |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| void CodeGeneratorARMVIXL::SetupBlockedRegisters() const { |
| // Stack register, LR and PC are always reserved. |
| blocked_core_registers_[SP] = true; |
| blocked_core_registers_[LR] = true; |
| blocked_core_registers_[PC] = true; |
| |
| // Reserve thread register. |
| blocked_core_registers_[TR] = true; |
| |
| // Reserve temp register. |
| blocked_core_registers_[IP] = true; |
| |
| // Registers s28-s31 (d14-d15) are left to VIXL for scratch registers. |
| // (They are given to the `MacroAssembler` in `CodeGeneratorARMVIXL::CodeGeneratorARMVIXL`.) |
| blocked_fpu_registers_[28] = true; |
| blocked_fpu_registers_[29] = true; |
| blocked_fpu_registers_[30] = true; |
| blocked_fpu_registers_[31] = true; |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode(); |
| i <= kFpuCalleeSaves.GetLastSRegister().GetCode(); |
| ++i) { |
| blocked_fpu_registers_[i] = true; |
| } |
| } |
| } |
| |
| InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph, |
| CodeGeneratorARMVIXL* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| void CodeGeneratorARMVIXL::ComputeSpillMask() { |
| core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; |
| DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; |
| // There is no easy instruction to restore just the PC on thumb2. We spill and |
| // restore another arbitrary register. |
| core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister.GetCode()); |
| fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; |
| // We use vpush and vpop for saving and restoring floating point registers, which take |
| // a SRegister and the number of registers to save/restore after that SRegister. We |
| // therefore update the `fpu_spill_mask_` to also contain those registers not allocated, |
| // but in the range. |
| if (fpu_spill_mask_ != 0) { |
| uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_); |
| uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_); |
| for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) { |
| fpu_spill_mask_ |= (1 << i); |
| } |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateFrameEntry() { |
| bool skip_overflow_check = |
| IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| __ Bind(&frame_entry_label_); |
| |
| if (HasEmptyFrame()) { |
| return; |
| } |
| |
| if (!skip_overflow_check) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(kArm))); |
| // The load must immediately precede RecordPcInfo. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ ldr(temp, MemOperand(temp)); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| __ Push(RegisterList(core_spill_mask_)); |
| GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_)); |
| GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister), |
| 0, |
| core_spill_mask_, |
| kArmWordSize); |
| if (fpu_spill_mask_ != 0) { |
| uint32_t first = LeastSignificantBit(fpu_spill_mask_); |
| |
| // Check that list is contiguous. |
| DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_))); |
| |
| __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_))); |
| GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_)); |
| GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0), 0, fpu_spill_mask_, kArmWordSize); |
| } |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| // Initialize should_deoptimize flag to 0. |
| __ Mov(temp, 0); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, -kShouldDeoptimizeFlagSize); |
| } |
| |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ Sub(sp, sp, adjust); |
| GetAssembler()->cfi().AdjustCFAOffset(adjust); |
| |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateFrameExit() { |
| if (HasEmptyFrame()) { |
| __ Bx(lr); |
| return; |
| } |
| GetAssembler()->cfi().RememberState(); |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ Add(sp, sp, adjust); |
| GetAssembler()->cfi().AdjustCFAOffset(-adjust); |
| if (fpu_spill_mask_ != 0) { |
| uint32_t first = LeastSignificantBit(fpu_spill_mask_); |
| |
| // Check that list is contiguous. |
| DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_))); |
| |
| __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_))); |
| GetAssembler()->cfi().AdjustCFAOffset( |
| -static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_)); |
| GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_); |
| } |
| // Pop LR into PC to return. |
| DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U); |
| uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode; |
| __ Pop(RegisterList(pop_mask)); |
| GetAssembler()->cfi().RestoreState(); |
| GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| uint32_t index = gp_index_++; |
| uint32_t stack_index = stack_index_++; |
| if (index < calling_convention.GetNumberOfRegisters()) { |
| return LocationFrom(calling_convention.GetRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t index = gp_index_; |
| uint32_t stack_index = stack_index_; |
| gp_index_ += 2; |
| stack_index_ += 2; |
| if (index + 1 < calling_convention.GetNumberOfRegisters()) { |
| if (calling_convention.GetRegisterAt(index).Is(r1)) { |
| // Skip R1, and use R2_R3 instead. |
| gp_index_++; |
| index++; |
| } |
| } |
| if (index + 1 < calling_convention.GetNumberOfRegisters()) { |
| DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1, |
| calling_convention.GetRegisterAt(index + 1).GetCode()); |
| |
| return LocationFrom(calling_convention.GetRegisterAt(index), |
| calling_convention.GetRegisterAt(index + 1)); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t stack_index = stack_index_++; |
| if (float_index_ % 2 == 0) { |
| float_index_ = std::max(double_index_, float_index_); |
| } |
| if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) { |
| return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimDouble: { |
| double_index_ = std::max(double_index_, RoundUp(float_index_, 2)); |
| uint32_t stack_index = stack_index_; |
| stack_index_ += 2; |
| if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) { |
| uint32_t index = double_index_; |
| double_index_ += 2; |
| Location result = LocationFrom( |
| calling_convention.GetFpuRegisterAt(index), |
| calling_convention.GetFpuRegisterAt(index + 1)); |
| DCHECK(ExpectedPairLayout(result)); |
| return result; |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| break; |
| } |
| return Location::NoLocation(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(Primitive::Type type) const { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| return LocationFrom(r0); |
| } |
| |
| case Primitive::kPrimFloat: { |
| return LocationFrom(s0); |
| } |
| |
| case Primitive::kPrimLong: { |
| return LocationFrom(r0, r1); |
| } |
| |
| case Primitive::kPrimDouble: { |
| return LocationFrom(s0, s1); |
| } |
| |
| case Primitive::kPrimVoid: |
| return Location::NoLocation(); |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const { |
| return LocationFrom(kMethodRegister); |
| } |
| |
| void CodeGeneratorARMVIXL::Move32(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegister()) { |
| if (source.IsRegister()) { |
| __ Mov(RegisterFrom(destination), RegisterFrom(source)); |
| } else if (source.IsFpuRegister()) { |
| __ Vmov(RegisterFrom(destination), SRegisterFrom(source)); |
| } else { |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| RegisterFrom(destination), |
| sp, |
| source.GetStackIndex()); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsRegister()) { |
| __ Vmov(SRegisterFrom(destination), RegisterFrom(source)); |
| } else if (source.IsFpuRegister()) { |
| __ Vmov(SRegisterFrom(destination), SRegisterFrom(source)); |
| } else { |
| GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex()); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| if (source.IsRegister()) { |
| GetAssembler()->StoreToOffset(kStoreWord, |
| RegisterFrom(source), |
| sp, |
| destination.GetStackIndex()); |
| } else if (source.IsFpuRegister()) { |
| GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex()); |
| } else { |
| DCHECK(source.IsStackSlot()) << source; |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex()); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); |
| } |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ Mov(RegisterFrom(location), value); |
| } |
| |
| void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { |
| // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in |
| // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend. |
| HParallelMove move(GetGraph()->GetArena()); |
| move.AddMove(src, dst, dst_type, nullptr); |
| GetMoveResolver()->EmitNativeCode(&move); |
| } |
| |
| void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else if (location.IsRegisterPair()) { |
| locations->AddTemp(LocationFrom(LowRegisterFrom(location))); |
| locations->AddTemp(LocationFrom(HighRegisterFrom(location))); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| __ Ldr(lr, MemOperand(tr, GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value())); |
| // Ensure the pc position is recorded immediately after the `blx` instruction. |
| // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::k16BitT32InstructionSizeInBytes, |
| CodeBufferCheckScope::kExactSize); |
| __ blx(lr); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| __ Ldr(lr, MemOperand(tr, entry_point_offset)); |
| __ Blx(lr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| DCHECK(!successor->IsExitBlock()); |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| HLoopInformation* info = block->GetLoopInformation(); |
| |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(block, successor)) { |
| __ B(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateVcmp(HInstruction* instruction) { |
| Primitive::Type type = instruction->InputAt(0)->GetType(); |
| Location lhs_loc = instruction->GetLocations()->InAt(0); |
| Location rhs_loc = instruction->GetLocations()->InAt(1); |
| if (rhs_loc.IsConstant()) { |
| // 0.0 is the only immediate that can be encoded directly in |
| // a VCMP instruction. |
| // |
| // Both the JLS (section 15.20.1) and the JVMS (section 6.5) |
| // specify that in a floating-point comparison, positive zero |
| // and negative zero are considered equal, so we can use the |
| // literal 0.0 for both cases here. |
| // |
| // Note however that some methods (Float.equal, Float.compare, |
| // Float.compareTo, Double.equal, Double.compare, |
| // Double.compareTo, Math.max, Math.min, StrictMath.max, |
| // StrictMath.min) consider 0.0 to be (strictly) greater than |
| // -0.0. So if we ever translate calls to these methods into a |
| // HCompare instruction, we must handle the -0.0 case with |
| // care here. |
| DCHECK(rhs_loc.GetConstant()->IsArithmeticZero()); |
| if (type == Primitive::kPrimFloat) { |
| __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0); |
| } else { |
| DCHECK_EQ(type, Primitive::kPrimDouble); |
| __ Vcmp(F64, DRegisterFrom(lhs_loc), 0.0); |
| } |
| } else { |
| if (type == Primitive::kPrimFloat) { |
| __ Vcmp(InputSRegisterAt(instruction, 0), InputSRegisterAt(instruction, 1)); |
| } else { |
| DCHECK_EQ(type, Primitive::kPrimDouble); |
| __ Vcmp(DRegisterFrom(lhs_loc), DRegisterFrom(rhs_loc)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateFPJumps(HCondition* cond, |
| vixl32::Label* true_label, |
| vixl32::Label* false_label ATTRIBUTE_UNUSED) { |
| // To branch on the result of the FP compare we transfer FPSCR to APSR (encoded as PC in VMRS). |
| __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); |
| __ B(ARMFPCondition(cond->GetCondition(), cond->IsGtBias()), true_label); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateLongComparesAndJumps(HCondition* cond, |
| vixl32::Label* true_label, |
| vixl32::Label* false_label) { |
| LocationSummary* locations = cond->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| IfCondition if_cond = cond->GetCondition(); |
| |
| vixl32::Register left_high = HighRegisterFrom(left); |
| vixl32::Register left_low = LowRegisterFrom(left); |
| IfCondition true_high_cond = if_cond; |
| IfCondition false_high_cond = cond->GetOppositeCondition(); |
| vixl32::Condition final_condition = ARMUnsignedCondition(if_cond); // unsigned on lower part |
| |
| // Set the conditions for the test, remembering that == needs to be |
| // decided using the low words. |
| // TODO: consider avoiding jumps with temporary and CMP low+SBC high |
| switch (if_cond) { |
| case kCondEQ: |
| case kCondNE: |
| // Nothing to do. |
| break; |
| case kCondLT: |
| false_high_cond = kCondGT; |
| break; |
| case kCondLE: |
| true_high_cond = kCondLT; |
| break; |
| case kCondGT: |
| false_high_cond = kCondLT; |
| break; |
| case kCondGE: |
| true_high_cond = kCondGT; |
| break; |
| case kCondB: |
| false_high_cond = kCondA; |
| break; |
| case kCondBE: |
| true_high_cond = kCondB; |
| break; |
| case kCondA: |
| false_high_cond = kCondB; |
| break; |
| case kCondAE: |
| true_high_cond = kCondA; |
| break; |
| } |
| if (right.IsConstant()) { |
| int64_t value = Int64ConstantFrom(right); |
| int32_t val_low = Low32Bits(value); |
| int32_t val_high = High32Bits(value); |
| |
| __ Cmp(left_high, val_high); |
| if (if_cond == kCondNE) { |
| __ B(ARMCondition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ B(ARMCondition(false_high_cond), false_label); |
| } else { |
| __ B(ARMCondition(true_high_cond), true_label); |
| __ B(ARMCondition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| __ Cmp(left_low, val_low); |
| } else { |
| vixl32::Register right_high = HighRegisterFrom(right); |
| vixl32::Register right_low = LowRegisterFrom(right); |
| |
| __ Cmp(left_high, right_high); |
| if (if_cond == kCondNE) { |
| __ B(ARMCondition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ B(ARMCondition(false_high_cond), false_label); |
| } else { |
| __ B(ARMCondition(true_high_cond), true_label); |
| __ B(ARMCondition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| __ Cmp(left_low, right_low); |
| } |
| // The last comparison might be unsigned. |
| // TODO: optimize cases where this is always true/false |
| __ B(final_condition, true_label); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition, |
| vixl32::Label* true_target_in, |
| vixl32::Label* false_target_in) { |
| // Generated branching requires both targets to be explicit. If either of the |
| // targets is nullptr (fallthrough) use and bind `fallthrough` instead. |
| vixl32::Label fallthrough; |
| vixl32::Label* true_target = (true_target_in == nullptr) ? &fallthrough : true_target_in; |
| vixl32::Label* false_target = (false_target_in == nullptr) ? &fallthrough : false_target_in; |
| |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| switch (type) { |
| case Primitive::kPrimLong: |
| GenerateLongComparesAndJumps(condition, true_target, false_target); |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| GenerateVcmp(condition); |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected compare type " << type; |
| } |
| |
| if (false_target != &fallthrough) { |
| __ B(false_target); |
| } |
| |
| if (true_target_in == nullptr || false_target_in == nullptr) { |
| __ Bind(&fallthrough); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| vixl32::Label* true_target, |
| vixl32::Label* false_target, |
| bool far_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ B(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond); |
| if (false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // Condition has been materialized, compare the output to 0. |
| if (kIsDebugBuild) { |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| } |
| if (true_target == nullptr) { |
| __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index), |
| false_target, |
| far_target); |
| } else { |
| __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index), |
| true_target, |
| far_target); |
| } |
| } else { |
| // Condition has not been materialized. Use its inputs as the comparison and |
| // its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| // If this is a long or FP comparison that has been folded into |
| // the HCondition, generate the comparison directly. |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { |
| GenerateCompareTestAndBranch(condition, true_target, false_target); |
| return; |
| } |
| |
| LocationSummary* locations = cond->GetLocations(); |
| DCHECK(locations->InAt(0).IsRegister()); |
| vixl32::Register left = InputRegisterAt(cond, 0); |
| Location right = locations->InAt(1); |
| if (right.IsRegister()) { |
| __ Cmp(left, InputRegisterAt(cond, 1)); |
| } else { |
| DCHECK(right.IsConstant()); |
| __ Cmp(left, CodeGenerator::GetInt32ValueOf(right.GetConstant())); |
| } |
| if (true_target == nullptr) { |
| __ B(ARMCondition(condition->GetOppositeCondition()), false_target); |
| } else { |
| __ B(ARMCondition(condition->GetCondition()), true_target); |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeARMVIXL* slow_path = |
| deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARMVIXL>(deoptimize); |
| GenerateTestAndBranch(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| OutputRegister(flag), |
| sp, |
| codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) { |
| LocationSummary* locations = select->GetLocations(); |
| vixl32::Label false_target; |
| GenerateTestAndBranch(select, |
| /* condition_input_index */ 2, |
| /* true_target */ nullptr, |
| &false_target, |
| /* far_target */ false); |
| codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); |
| __ Bind(&false_target); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetArena()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateNop() { |
| __ Nop(); |
| } |
| |
| void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); |
| // Handle the long/FP comparisons made in instruction simplification. |
| switch (cond->InputAt(0)->GetType()) { |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1))); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| break; |
| |
| default: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) { |
| if (cond->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| Location right = cond->GetLocations()->InAt(1); |
| vixl32::Register out = OutputRegister(cond); |
| vixl32::Label true_label, false_label; |
| |
| switch (cond->InputAt(0)->GetType()) { |
| default: { |
| // Integer case. |
| if (right.IsRegister()) { |
| __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1)); |
| } else { |
| DCHECK(right.IsConstant()); |
| __ Cmp(InputRegisterAt(cond, 0), |
| CodeGenerator::GetInt32ValueOf(right.GetConstant())); |
| } |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| 3 * vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ ite(ARMCondition(cond->GetCondition())); |
| __ mov(ARMCondition(cond->GetCondition()), OutputRegister(cond), 1); |
| __ mov(ARMCondition(cond->GetOppositeCondition()), OutputRegister(cond), 0); |
| return; |
| } |
| case Primitive::kPrimLong: |
| GenerateLongComparesAndJumps(cond, &true_label, &false_label); |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| GenerateVcmp(cond); |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| } |
| |
| // Convert the jumps into the result. |
| vixl32::Label done_label; |
| |
| // False case: result = 0. |
| __ Bind(&false_label); |
| __ Mov(out, 0); |
| __ B(&done_label); |
| |
| // True case: result = 1. |
| __ Bind(&true_label); |
| __ Mov(out, 1); |
| __ Bind(&done_label); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitFloatConstant( |
| HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant( |
| HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); |
| locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType())); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); |
| } |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| |
| // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. |
| if (invoke->HasPcRelativeDexCache()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); |
| } |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorARMVIXL intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| // Add the hidden argument. |
| invoke->GetLocations()->AddTemp(LocationFrom(r12)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register hidden_reg = RegisterFrom(locations->GetTemp(1)); |
| Location receiver = locations->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| |
| DCHECK(!receiver.IsStackSlot()); |
| |
| // Ensure the pc position is recorded immediately after the `ldr` instruction. |
| { |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| } |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| temp, |
| temp, |
| mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kArmPointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset); |
| uint32_t entry_point = |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value(); |
| // LR = temp->GetEntryPoint(); |
| GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point); |
| |
| // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other |
| // instruction from clobbering it as they might use r12 as a scratch register. |
| DCHECK(hidden_reg.Is(r12)); |
| |
| { |
| // The VIXL macro assembler may clobber any of the scratch registers that are available to it, |
| // so it checks if the application is using them (by passing them to the macro assembler |
| // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of |
| // what is available, and is the opposite of the standard usage: Instead of requesting a |
| // temporary location, it imposes an external constraint (i.e. a specific register is reserved |
| // for the hidden argument). Note that this works even if VIXL needs a scratch register itself |
| // (to materialize the constant), since the destination register becomes available for such use |
| // internally for the duration of the macro instruction. |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| temps.Exclude(hidden_reg); |
| __ Mov(hidden_reg, invoke->GetDexMethodIndex()); |
| } |
| { |
| // Ensure the pc position is recorded immediately after the `blx` instruction. |
| // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::k16BitT32InstructionSizeInBytes, |
| CodeBufferCheckScope::kExactSize); |
| // LR(); |
| __ blx(lr); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0); |
| break; |
| |
| case Primitive::kPrimLong: |
| // out.lo = 0 - in.lo (and update the carry/borrow (C) flag) |
| __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0); |
| // We cannot emit an RSC (Reverse Subtract with Carry) |
| // instruction here, as it does not exist in the Thumb-2 |
| // instruction set. We use the following approach |
| // using SBC and SUB instead. |
| // |
| // out.hi = -C |
| __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out)); |
| // out.hi = out.hi - in.hi |
| __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Vneg(OutputVRegister(neg), InputVRegister(neg)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) { |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| |
| // The float-to-long, double-to-long and long-to-float type conversions |
| // rely on a call to the runtime. |
| LocationSummary::CallKind call_kind = |
| (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) |
| && result_type == Primitive::kPrimLong) |
| || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat)) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); |
| |
| // The Java language does not allow treating boolean as an integral type but |
| // our bit representation makes it safe. |
| |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to byte is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-long' instruction. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(LocationFrom(r0, r1)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-long' instruction. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0), |
| calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(LocationFrom(r0, r1)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to char is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-float' instruction. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0), |
| calling_convention.GetRegisterAt(1))); |
| locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to byte is a result of code transformations. |
| __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8); |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16); |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| DCHECK(out.IsRegister()); |
| if (in.IsRegisterPair()) { |
| __ Mov(OutputRegister(conversion), LowRegisterFrom(in)); |
| } else if (in.IsDoubleStackSlot()) { |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| OutputRegister(conversion), |
| sp, |
| in.GetStackIndex()); |
| } else { |
| DCHECK(in.IsConstant()); |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int32_t value = Int32ConstantFrom(in); |
| __ Mov(OutputRegister(conversion), value); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-int' instruction. |
| vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0)); |
| __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0)); |
| __ Vmov(OutputRegister(conversion), temp); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-int' instruction. |
| vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0)); |
| __ Vcvt(S32, F64, temp_s, DRegisterFrom(in)); |
| __ Vmov(OutputRegister(conversion), temp_s); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| DCHECK(out.IsRegisterPair()); |
| DCHECK(in.IsRegister()); |
| __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0)); |
| // Sign extension. |
| __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-long' instruction. |
| codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickF2l, int64_t, float>(); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-long' instruction. |
| codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickD2l, int64_t, double>(); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to char is a result of code transformations. |
| __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16); |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: { |
| // Processing a Dex `int-to-float' instruction. |
| __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0)); |
| __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion)); |
| break; |
| } |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-float' instruction. |
| codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickL2f, float, int64_t>(); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: { |
| // Processing a Dex `int-to-double' instruction. |
| __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0)); |
| __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out)); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-double' instruction. |
| vixl32::Register low = LowRegisterFrom(in); |
| vixl32::Register high = HighRegisterFrom(in); |
| vixl32::SRegister out_s = LowSRegisterFrom(out); |
| vixl32::DRegister out_d = DRegisterFrom(out); |
| vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0)); |
| vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0)); |
| vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1)); |
| |
| // temp_d = int-to-double(high) |
| __ Vmov(temp_s, high); |
| __ Vcvt(F64, S32, temp_d, temp_s); |
| // constant_d = k2Pow32EncodingForDouble |
| __ Vmov(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble)); |
| // out_d = unsigned-to-double(low) |
| __ Vmov(out_s, low); |
| __ Vcvt(F64, U32, out_d, out_s); |
| // out_d += temp_d * constant_d |
| __ Vmla(F64, out_d, temp_d, constant_d); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) { |
| LocationSummary* locations = add->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1)); |
| } |
| break; |
| |
| case Primitive::kPrimLong: { |
| if (second.IsConstant()) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); |
| GenerateAddLongConst(out, first, value); |
| } else { |
| DCHECK(second.IsRegisterPair()); |
| __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second)); |
| __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitSub(HSub* sub) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) { |
| LocationSummary* locations = sub->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1)); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (second.IsConstant()) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); |
| GenerateAddLongConst(out, first, -value); |
| } else { |
| DCHECK(second.IsRegisterPair()); |
| __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second)); |
| __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) { |
| LocationSummary* locations = mul->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: { |
| __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| vixl32::Register out_hi = HighRegisterFrom(out); |
| vixl32::Register out_lo = LowRegisterFrom(out); |
| vixl32::Register in1_hi = HighRegisterFrom(first); |
| vixl32::Register in1_lo = LowRegisterFrom(first); |
| vixl32::Register in2_hi = HighRegisterFrom(second); |
| vixl32::Register in2_lo = LowRegisterFrom(second); |
| |
| // Extra checks to protect caused by the existence of R1_R2. |
| // The algorithm is wrong if out.hi is either in1.lo or in2.lo: |
| // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2); |
| DCHECK(!out_hi.Is(in1_lo)); |
| DCHECK(!out_hi.Is(in2_lo)); |
| |
| // input: in1 - 64 bits, in2 - 64 bits |
| // output: out |
| // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo |
| // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] |
| // parts: out.lo = (in1.lo * in2.lo)[31:0] |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| // temp <- in1.lo * in2.hi |
| __ Mul(temp, in1_lo, in2_hi); |
| // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ Mla(out_hi, in1_hi, in2_lo, temp); |
| // out.lo <- (in1.lo * in2.lo)[31:0]; |
| __ Umull(out_lo, temp, in1_lo, in2_lo); |
| // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ Add(out_hi, out_hi, temp); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| Location second = instruction->GetLocations()->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| vixl32::Register out = OutputRegister(instruction); |
| vixl32::Register dividend = InputRegisterAt(instruction, 0); |
| int32_t imm = Int32ConstantFrom(second); |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ Mov(out, 0); |
| } else { |
| if (imm == 1) { |
| __ Mov(out, dividend); |
| } else { |
| __ Rsb(out, dividend, 0); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| vixl32::Register out = OutputRegister(instruction); |
| vixl32::Register dividend = InputRegisterAt(instruction, 0); |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| int32_t imm = Int32ConstantFrom(second); |
| uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| |
| if (ctz_imm == 1) { |
| __ Lsr(temp, dividend, 32 - ctz_imm); |
| } else { |
| __ Asr(temp, dividend, 31); |
| __ Lsr(temp, temp, 32 - ctz_imm); |
| } |
| __ Add(out, temp, dividend); |
| |
| if (instruction->IsDiv()) { |
| __ Asr(out, out, ctz_imm); |
| if (imm < 0) { |
| __ Rsb(out, out, 0); |
| } |
| } else { |
| __ Ubfx(out, out, 0, ctz_imm); |
| __ Sub(out, out, temp); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| vixl32::Register out = OutputRegister(instruction); |
| vixl32::Register dividend = InputRegisterAt(instruction, 0); |
| vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1)); |
| int32_t imm = Int32ConstantFrom(second); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); |
| |
| // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed. |
| __ Mov(temp1, static_cast<int32_t>(magic)); |
| __ Smull(temp2, temp1, dividend, temp1); |
| |
| if (imm > 0 && magic < 0) { |
| __ Add(temp1, temp1, dividend); |
| } else if (imm < 0 && magic > 0) { |
| __ Sub(temp1, temp1, dividend); |
| } |
| |
| if (shift != 0) { |
| __ Asr(temp1, temp1, shift); |
| } |
| |
| if (instruction->IsDiv()) { |
| __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31)); |
| } else { |
| __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31)); |
| // TODO: Strength reduction for mls. |
| __ Mov(temp2, imm); |
| __ Mls(out, temp1, temp2, dividend); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral( |
| HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| Location second = instruction->GetLocations()->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| int32_t imm = Int32ConstantFrom(second); |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| DivRemByPowerOfTwo(instruction); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| if (div->GetResultType() == Primitive::kPrimLong) { |
| // pLdiv runtime call. |
| call_kind = LocationSummary::kCallOnMainOnly; |
| } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) { |
| // sdiv will be replaced by other instruction sequence. |
| } else if (div->GetResultType() == Primitive::kPrimInt && |
| !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| // pIdivmod runtime call. |
| call_kind = LocationSummary::kCallOnMainOnly; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (div->InputAt(1)->IsConstant()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| int32_t value = Int32ConstantFrom(div->InputAt(1)); |
| if (value == 1 || value == 0 || value == -1) { |
| // No temp register required. |
| } else { |
| locations->AddTemp(Location::RequiresRegister()); |
| if (!IsPowerOfTwo(AbsOrMin(value))) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but |
| // we only need the former. |
| locations->SetOut(LocationFrom(r0)); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, LocationFrom( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| locations->SetOut(LocationFrom(r0, r1)); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) { |
| Location lhs = div->GetLocations()->InAt(0); |
| Location rhs = div->GetLocations()->InAt(1); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (rhs.IsConstant()) { |
| GenerateDivRemConstantIntegral(div); |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1)); |
| } else { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs))); |
| DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs))); |
| DCHECK(r0.Is(OutputRegister(div))); |
| |
| codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc()); |
| CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>(); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs))); |
| DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs))); |
| DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs))); |
| DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs))); |
| DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0)); |
| DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1)); |
| |
| codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc()); |
| CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| |
| // Most remainders are implemented in the runtime. |
| LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly; |
| if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) { |
| // sdiv will be replaced by other instruction sequence. |
| call_kind = LocationSummary::kNoCall; |
| } else if ((rem->GetResultType() == Primitive::kPrimInt) |
| && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| // Have hardware divide instruction for int, do it with three instructions. |
| call_kind = LocationSummary::kNoCall; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case Primitive::kPrimInt: { |
| if (rem->InputAt(1)->IsConstant()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| int32_t value = Int32ConstantFrom(rem->InputAt(1)); |
| if (value == 1 || value == 0 || value == -1) { |
| // No temp register required. |
| } else { |
| locations->AddTemp(Location::RequiresRegister()); |
| if (!IsPowerOfTwo(AbsOrMin(value))) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but |
| // we only need the latter. |
| locations->SetOut(LocationFrom(r1)); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, LocationFrom( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // The runtime helper puts the output in R2,R3. |
| locations->SetOut(LocationFrom(r2, r3)); |
| break; |
| } |
| case Primitive::kPrimFloat: { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(LocationFrom(s0)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom( |
| calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); |
| locations->SetInAt(1, LocationFrom( |
| calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3))); |
| locations->SetOut(LocationFrom(s0, s1)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) { |
| LocationSummary* locations = rem->GetLocations(); |
| Location second = locations->InAt(1); |
| |
| Primitive::Type type = rem->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: { |
| vixl32::Register reg1 = InputRegisterAt(rem, 0); |
| vixl32::Register out_reg = OutputRegister(rem); |
| if (second.IsConstant()) { |
| GenerateDivRemConstantIntegral(rem); |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| vixl32::Register reg2 = RegisterFrom(second); |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| |
| // temp = reg1 / reg2 (integer division) |
| // dest = reg1 - temp * reg2 |
| __ Sdiv(temp, reg1, reg2); |
| __ Mls(out_reg, temp, reg2, reg1); |
| } else { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| DCHECK(reg1.Is(calling_convention.GetRegisterAt(0))); |
| DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1))); |
| DCHECK(out_reg.Is(r1)); |
| |
| codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>(); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| |
| void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| DivZeroCheckSlowPathARMVIXL* slow_path = |
| new (GetGraph()->GetArena()) DivZeroCheckSlowPathARMVIXL(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location value = locations->InAt(0); |
| |
| switch (instruction->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: { |
| if (value.IsRegister()) { |
| __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (Int32ConstantFrom(value) == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (value.IsRegisterPair()) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value)); |
| __ B(eq, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (Int64ConstantFrom(value) == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) { |
| LocationSummary* locations = ror->GetLocations(); |
| vixl32::Register in = InputRegisterAt(ror, 0); |
| Location rhs = locations->InAt(1); |
| vixl32::Register out = OutputRegister(ror); |
| |
| if (rhs.IsConstant()) { |
| // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31], |
| // so map all rotations to a +ve. equivalent in that range. |
| // (e.g. left *or* right by -2 bits == 30 bits in the same direction.) |
| uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F; |
| if (rot) { |
| // Rotate, mapping left rotations to right equivalents if necessary. |
| // (e.g. left by 2 bits == right by 30.) |
| __ Ror(out, in, rot); |
| } else if (!out.Is(in)) { |
| __ Mov(out, in); |
| } |
| } else { |
| __ Ror(out, in, RegisterFrom(rhs)); |
| } |
| } |
| |
| // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer |
| // rotates by swapping input regs (effectively rotating by the first 32-bits of |
| // a larger rotation) or flipping direction (thus treating larger right/left |
| // rotations as sub-word sized rotations in the other direction) as appropriate. |
| void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) { |
| LocationSummary* locations = ror->GetLocations(); |
| vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); |
| vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); |
| Location rhs = locations->InAt(1); |
| vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out()); |
| vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out()); |
| |
| if (rhs.IsConstant()) { |
| uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant()); |
| // Map all rotations to +ve. equivalents on the interval [0,63]. |
| rot &= kMaxLongShiftDistance; |
| // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate |
| // logic below to a simple pair of binary orr. |
| // (e.g. 34 bits == in_reg swap + 2 bits right.) |
| if (rot >= kArmBitsPerWord) { |
| rot -= kArmBitsPerWord; |
| std::swap(in_reg_hi, in_reg_lo); |
| } |
| // Rotate, or mov to out for zero or word size rotations. |
| if (rot != 0u) { |
| __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot)); |
| __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot)); |
| __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot)); |
| __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot)); |
| } else { |
| __ Mov(out_reg_lo, in_reg_lo); |
| __ Mov(out_reg_hi, in_reg_hi); |
| } |
| } else { |
| vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1)); |
| vixl32::Label end; |
| vixl32::Label shift_by_32_plus_shift_right; |
| |
| __ And(shift_right, RegisterFrom(rhs), 0x1F); |
| __ Lsrs(shift_left, RegisterFrom(rhs), 6); |
| __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord)); |
| __ B(cc, &shift_by_32_plus_shift_right, /* far_target */ false); |
| |
| // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right). |
| // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right). |
| __ Lsl(out_reg_hi, in_reg_hi, shift_left); |
| __ Lsr(out_reg_lo, in_reg_lo, shift_right); |
| __ Add(out_reg_hi, out_reg_hi, out_reg_lo); |
| __ Lsl(out_reg_lo, in_reg_lo, shift_left); |
| __ Lsr(shift_left, in_reg_hi, shift_right); |
| __ Add(out_reg_lo, out_reg_lo, shift_left); |
| __ B(&end); |
| |
| __ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right. |
| // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left). |
| // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left). |
| __ Lsr(out_reg_hi, in_reg_hi, shift_right); |
| __ Lsl(out_reg_lo, in_reg_lo, shift_left); |
| __ Add(out_reg_hi, out_reg_hi, out_reg_lo); |
| __ Lsr(out_reg_lo, in_reg_lo, shift_right); |
| __ Lsl(shift_right, in_reg_hi, shift_left); |
| __ Add(out_reg_lo, out_reg_lo, shift_right); |
| |
| __ Bind(&end); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitRor(HRor* ror) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); |
| switch (ror->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (ror->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) { |
| Primitive::Type type = ror->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: { |
| HandleIntegerRotate(ror); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| HandleLongRotate(ror); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (op->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Make the output overlap, as it will be used to hold the masked |
| // second input. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (op->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); |
| // For simplicity, use kOutputOverlap even though we only require that low registers |
| // don't clash with high registers which the register allocator currently guarantees. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = op->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| Primitive::Type type = op->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: { |
| vixl32::Register out_reg = OutputRegister(op); |
| vixl32::Register first_reg = InputRegisterAt(op, 0); |
| if (second.IsRegister()) { |
| vixl32::Register second_reg = RegisterFrom(second); |
| // ARM doesn't mask the shift count so we need to do it ourselves. |
| __ And(out_reg, second_reg, kMaxIntShiftDistance); |
| if (op->IsShl()) { |
| __ Lsl(out_reg, first_reg, out_reg); |
| } else if (op->IsShr()) { |
| __ Asr(out_reg, first_reg, out_reg); |
| } else { |
| __ Lsr(out_reg, first_reg, out_reg); |
| } |
| } else { |
| int32_t cst = Int32ConstantFrom(second); |
| uint32_t shift_value = cst & kMaxIntShiftDistance; |
| if (shift_value == 0) { // ARM does not support shifting with 0 immediate. |
| __ Mov(out_reg, first_reg); |
| } else if (op->IsShl()) { |
| __ Lsl(out_reg, first_reg, shift_value); |
| } else if (op->IsShr()) { |
| __ Asr(out_reg, first_reg, shift_value); |
| } else { |
| __ Lsr(out_reg, first_reg, shift_value); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| vixl32::Register o_h = HighRegisterFrom(out); |
| vixl32::Register o_l = LowRegisterFrom(out); |
| |
| vixl32::Register high = HighRegisterFrom(first); |
| vixl32::Register low = LowRegisterFrom(first); |
| |
| if (second.IsRegister()) { |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| |
| vixl32::Register second_reg = RegisterFrom(second); |
| |
| if (op->IsShl()) { |
| __ And(o_l, second_reg, kMaxLongShiftDistance); |
| // Shift the high part |
| __ Lsl(o_h, high, o_l); |
| // Shift the low part and `or` what overflew on the high part |
| __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord)); |
| __ Lsr(temp, low, temp); |
| __ Orr(o_h, o_h, temp); |
| // If the shift is > 32 bits, override the high part |
| __ Subs(temp, o_l, Operand::From(kArmBitsPerWord)); |
| { |
| ExactAssemblyScope guard(GetVIXLAssembler(), |
| 2 * vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ it(pl); |
| __ lsl(pl, o_h, low, temp); |
| } |
| // Shift the low part |
| __ Lsl(o_l, low, o_l); |
| } else if (op->IsShr()) { |
| __ And(o_h, second_reg, kMaxLongShiftDistance); |
| // Shift the low part |
| __ Lsr(o_l, low, o_h); |
| // Shift the high part and `or` what underflew on the low part |
| __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord)); |
| __ Lsl(temp, high, temp); |
| __ Orr(o_l, o_l, temp); |
| // If the shift is > 32 bits, override the low part |
| __ Subs(temp, o_h, Operand::From(kArmBitsPerWord)); |
| { |
| ExactAssemblyScope guard(GetVIXLAssembler(), |
| 2 * vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ it(pl); |
| __ asr(pl, o_l, high, temp); |
| } |
| // Shift the high part |
| __ Asr(o_h, high, o_h); |
| } else { |
| __ And(o_h, second_reg, kMaxLongShiftDistance); |
| // same as Shr except we use `Lsr`s and not `Asr`s |
| __ Lsr(o_l, low, o_h); |
| __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord)); |
| __ Lsl(temp, high, temp); |
| __ Orr(o_l, o_l, temp); |
| __ Subs(temp, o_h, Operand::From(kArmBitsPerWord)); |
| { |
| ExactAssemblyScope guard(GetVIXLAssembler(), |
| 2 * vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ it(pl); |
| __ lsr(pl, o_l, high, temp); |
| } |
| __ Lsr(o_h, high, o_h); |
| } |
| } else { |
| // Register allocator doesn't create partial overlap. |
| DCHECK(!o_l.Is(high)); |
| DCHECK(!o_h.Is(low)); |
| int32_t cst = Int32ConstantFrom(second); |
| uint32_t shift_value = cst & kMaxLongShiftDistance; |
| if (shift_value > 32) { |
| if (op->IsShl()) { |
| __ Lsl(o_h, low, shift_value - 32); |
| __ Mov(o_l, 0); |
| } else if (op->IsShr()) { |
| __ Asr(o_l, high, shift_value - 32); |
| __ Asr(o_h, high, 31); |
| } else { |
| __ Lsr(o_l, high, shift_value - 32); |
| __ Mov(o_h, 0); |
| } |
| } else if (shift_value == 32) { |
| if (op->IsShl()) { |
| __ Mov(o_h, low); |
| __ Mov(o_l, 0); |
| } else if (op->IsShr()) { |
| __ Mov(o_l, high); |
| __ Asr(o_h, high, 31); |
| } else { |
| __ Mov(o_l, high); |
| __ Mov(o_h, 0); |
| } |
| } else if (shift_value == 1) { |
| if (op->IsShl()) { |
| __ Lsls(o_l, low, 1); |
| __ Adc(o_h, high, high); |
| } else if (op->IsShr()) { |
| __ Asrs(o_h, high, 1); |
| __ Rrx(o_l, low); |
| } else { |
| __ Lsrs(o_h, high, 1); |
| __ Rrx(o_l, low); |
| } |
| } else { |
| DCHECK(2 <= shift_value && shift_value < 32) << shift_value; |
| if (op->IsShl()) { |
| __ Lsl(o_h, high, shift_value); |
| __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value)); |
| __ Lsl(o_l, low, shift_value); |
| } else if (op->IsShr()) { |
| __ Lsr(o_l, low, shift_value); |
| __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value)); |
| __ Asr(o_h, high, shift_value); |
| } else { |
| __ Lsr(o_l, low, shift_value); |
| __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value)); |
| __ Lsr(o_h, high, shift_value); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| if (instruction->IsStringAlloc()) { |
| locations->AddTemp(LocationFrom(kMethodRegister)); |
| } else { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| locations->SetOut(LocationFrom(r0)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| if (instruction->IsStringAlloc()) { |
| // String is allocated through StringFactory. Call NewEmptyString entry point. |
| vixl32::Register temp = RegisterFrom(instruction->GetLocations()->GetTemp(0)); |
| MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize); |
| GetAssembler()->LoadFromOffset(kLoadWord, temp, tr, QUICK_ENTRY_POINT(pNewEmptyString)); |
| GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, code_offset.Int32Value()); |
| // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::k16BitT32InstructionSizeInBytes, |
| CodeBufferCheckScope::kExactSize); |
| __ blx(lr); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } else { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetOut(LocationFrom(r0)); |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| codegen_->InvokeRuntime(kQuickAllocArrayResolved, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(LocationFrom(kMethodRegister)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod( |
| HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNot(HNot* not_) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) { |
| LocationSummary* locations = not_->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (not_->GetResultType()) { |
| case Primitive::kPrimInt: |
| __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0)); |
| break; |
| |
| case Primitive::kPrimLong: |
| __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in)); |
| __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) { |
| __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); |
| switch (compare->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Output overlaps because it is written before doing the low comparison. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = compare->GetLocations(); |
| vixl32::Register out = OutputRegister(compare); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| vixl32::Label less, greater, done; |
| Primitive::Type type = compare->InputAt(0)->GetType(); |
| vixl32::Condition less_cond = vixl32::Condition(kNone); |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags. |
| __ Mov(out, 0); |
| __ Cmp(RegisterFrom(left), RegisterFrom(right)); // Signed compare. |
| less_cond = lt; |
| break; |
| } |
| case Primitive::kPrimLong: { |
| __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right)); // Signed compare. |
| __ B(lt, &less, /* far_target */ false); |
| __ B(gt, &greater, /* far_target */ false); |
| // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags. |
| __ Mov(out, 0); |
| __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right)); // Unsigned compare. |
| less_cond = lo; |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| __ Mov(out, 0); |
| GenerateVcmp(compare); |
| // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS). |
| __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); |
| less_cond = ARMFPCondition(kCondLT, compare->IsGtBias()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected compare type " << type; |
| UNREACHABLE(); |
| } |
| |
| __ B(eq, &done, /* far_target */ false); |
| __ B(less_cond, &less, /* far_target */ false); |
| |
| __ Bind(&greater); |
| __ Mov(out, 1); |
| __ B(&done); |
| |
| __ Bind(&less); |
| __ Mov(out, -1); |
| |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) { |
| // TODO (ported from quick): revisit ARM barrier kinds. |
| DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings. |
| switch (kind) { |
| case MemBarrierKind::kAnyStore: |
| case MemBarrierKind::kLoadAny: |
| case MemBarrierKind::kAnyAny: { |
| flavor = DmbOptions::ISH; |
| break; |
| } |
| case MemBarrierKind::kStoreStore: { |
| flavor = DmbOptions::ISHST; |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected memory barrier " << kind; |
| } |
| __ Dmb(flavor); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr, |
| uint32_t offset, |
| vixl32::Register out_lo, |
| vixl32::Register out_hi) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| if (offset != 0) { |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, addr, offset); |
| addr = temp; |
| } |
| __ Ldrexd(out_lo, out_hi, MemOperand(addr)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr, |
| uint32_t offset, |
| vixl32::Register value_lo, |
| vixl32::Register value_hi, |
| vixl32::Register temp1, |
| vixl32::Register temp2, |
| HInstruction* instruction) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Label fail; |
| if (offset != 0) { |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, addr, offset); |
| addr = temp; |
| } |
| __ Bind(&fail); |
| { |
| // Ensure the pc position is recorded immediately after the `ldrexd` instruction. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| // We need a load followed by store. (The address used in a STREX instruction must |
| // be the same as the address in the most recently executed LDREX instruction.) |
| __ ldrexd(temp1, temp2, MemOperand(addr)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| __ Strexd(temp1, value_lo, value_hi, MemOperand(addr)); |
| __ CompareAndBranchIfNonZero(temp1, &fail); |
| } |
| |
| void LocationsBuilderARMVIXL::HandleFieldSet( |
| HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| Primitive::Type field_type = field_info.GetFieldType(); |
| if (Primitive::IsFloatingPointType(field_type)) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble; |
| bool generate_volatile = field_info.IsVolatile() |
| && is_wide |
| && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); |
| // Temporary registers for the write barrier. |
| // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark. |
| if (needs_write_barrier) { |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else if (generate_volatile) { |
| // ARM encoding have some additional constraints for ldrexd/strexd: |
| // - registers need to be consecutive |
| // - the first register should be even but not R14. |
| // We don't test for ARM yet, and the assertion makes sure that we |
| // revisit this if we ever enable ARM encoding. |
| DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| if (field_type == Primitive::kPrimDouble) { |
| // For doubles we need two more registers to copy the value. |
| locations->AddTemp(LocationFrom(r2)); |
| locations->AddTemp(LocationFrom(r3)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| vixl32::Register base = InputRegisterAt(instruction, 0); |
| Location value = locations->InAt(1); |
| |
| bool is_volatile = field_info.IsVolatile(); |
| bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| GetAssembler()->StoreToOffset(kStoreByte, RegisterFrom(value), base, offset); |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| GetAssembler()->StoreToOffset(kStoreHalfword, RegisterFrom(value), base, offset); |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| if (kPoisonHeapReferences && needs_write_barrier) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| DCHECK_EQ(field_type, Primitive::kPrimNot); |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| __ Mov(temp, RegisterFrom(value)); |
| GetAssembler()->PoisonHeapReference(temp); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, base, offset); |
| } else { |
| GetAssembler()->StoreToOffset(kStoreWord, RegisterFrom(value), base, offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (is_volatile && !atomic_ldrd_strd) { |
| GenerateWideAtomicStore(base, |
| offset, |
| LowRegisterFrom(value), |
| HighRegisterFrom(value), |
| RegisterFrom(locations->GetTemp(0)), |
| RegisterFrom(locations->GetTemp(1)), |
| instruction); |
| } else { |
| GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| vixl32::DRegister value_reg = DRegisterFrom(value); |
| if (is_volatile && !atomic_ldrd_strd) { |
| vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1)); |
| |
| __ Vmov(value_reg_lo, value_reg_hi, value_reg); |
| |
| GenerateWideAtomicStore(base, |
| offset, |
| value_reg_lo, |
| value_reg_hi, |
| RegisterFrom(locations->GetTemp(2)), |
| RegisterFrom(locations->GetTemp(3)), |
| instruction); |
| } else { |
| GetAssembler()->StoreDToOffset(value_reg, base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| // Longs and doubles are handled in the switch. |
| if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) { |
| // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method, we |
| // should use a scope and the assembler to emit the store instruction to guarantee that we |
| // record the pc at the correct position. But the `Assembler` does not automatically handle |
| // unencodable offsets. Practically, everything is fine because the helper and VIXL, at the time |
| // of writing, do generate the store instruction last. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register card = RegisterFrom(locations->GetTemp(1)); |
| codegen_->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null); |
| } |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_field_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| bool volatile_for_double = field_info.IsVolatile() |
| && (field_info.GetFieldType() == Primitive::kPrimDouble) |
| && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| // The output overlaps in case of volatile long: we don't want the |
| // code generated by GenerateWideAtomicLoad to overwrite the |
| // object's location. Likewise, in the case of an object field get |
| // with read barriers enabled, we do not want the load to overwrite |
| // the object's location, as we need it to emit the read barrier. |
| bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) || |
| object_field_get_with_read_barrier; |
| |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), |
| (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| } |
| if (volatile_for_double) { |
| // ARM encoding have some additional constraints for ldrexd/strexd: |
| // - registers need to be consecutive |
| // - the first register should be even but not R14. |
| // We don't test for ARM yet, and the assertion makes sure that we |
| // revisit this if we ever enable ARM encoding. |
| DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) { |
| DCHECK(Primitive::IsFloatingPointType(input->GetType())) << input->GetType(); |
| if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) || |
| (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) { |
| return Location::ConstantLocation(input->AsConstant()); |
| } else { |
| return Location::RequiresFpuRegister(); |
| } |
| } |
| |
| Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant, |
| Opcode opcode) { |
| DCHECK(!Primitive::IsFloatingPointType(constant->GetType())); |
| if (constant->IsConstant() && |
| CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) { |
| return Location::ConstantLocation(constant->AsConstant()); |
| } |
| return Location::RequiresRegister(); |
| } |
| |
| bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst, |
| Opcode opcode) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst)); |
| if (Primitive::Is64BitType(input_cst->GetType())) { |
| Opcode high_opcode = opcode; |
| SetCc low_set_cc = kCcDontCare; |
| switch (opcode) { |
| case SUB: |
| // Flip the operation to an ADD. |
| value = -value; |
| opcode = ADD; |
| FALLTHROUGH_INTENDED; |
| case ADD: |
| if (Low32Bits(value) == 0u) { |
| return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare); |
| } |
| high_opcode = ADC; |
| low_set_cc = kCcSet; |
| break; |
| default: |
| break; |
| } |
| return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) && |
| CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare); |
| } else { |
| return CanEncodeConstantAsImmediate(Low32Bits(value), opcode); |
| } |
| } |
| |
| // TODO(VIXL): Replace art::arm::SetCc` with `vixl32::FlagsUpdate after flags set optimization |
| // enabled. |
| bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(uint32_t value, |
| Opcode opcode, |
| SetCc set_cc) { |
| ArmVIXLAssembler* assembler = codegen_->GetAssembler(); |
| if (assembler->ShifterOperandCanHold(opcode, value, set_cc)) { |
| return true; |
| } |
| Opcode neg_opcode = kNoOperand; |
| switch (opcode) { |
| case AND: neg_opcode = BIC; value = ~value; break; |
| case ORR: neg_opcode = ORN; value = ~value; break; |
| case ADD: neg_opcode = SUB; value = -value; break; |
| case ADC: neg_opcode = SBC; value = ~value; break; |
| case SUB: neg_opcode = ADD; value = -value; break; |
| case SBC: neg_opcode = ADC; value = ~value; break; |
| default: |
| return false; |
| } |
| return assembler->ShifterOperandCanHold(neg_opcode, value, set_cc); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| vixl32::Register base = InputRegisterAt(instruction, 0); |
| Location out = locations->Out(); |
| bool is_volatile = field_info.IsVolatile(); |
| bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: |
| GetAssembler()->LoadFromOffset(kLoadUnsignedByte, RegisterFrom(out), base, offset); |
| break; |
| |
| case Primitive::kPrimByte: |
| GetAssembler()->LoadFromOffset(kLoadSignedByte, RegisterFrom(out), base, offset); |
| break; |
| |
| case Primitive::kPrimShort: |
| GetAssembler()->LoadFromOffset(kLoadSignedHalfword, RegisterFrom(out), base, offset); |
| break; |
| |
| case Primitive::kPrimChar: |
| GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, RegisterFrom(out), base, offset); |
| break; |
| |
| case Primitive::kPrimInt: |
| GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset); |
| break; |
| |
| case Primitive::kPrimNot: { |
| // /* HeapReference<Object> */ out = *(base + offset) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp_loc = locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, base, offset, temp_loc, /* needs_null_check */ true); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } else { |
| GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, locations->InAt(0), offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: |
| if (is_volatile && !atomic_ldrd_strd) { |
| GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out)); |
| } else { |
| GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset); |
| break; |
| |
| case Primitive::kPrimDouble: { |
| vixl32::DRegister out_dreg = DRegisterFrom(out); |
| if (is_volatile && !atomic_ldrd_strd) { |
| vixl32::Register lo = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register hi = RegisterFrom(locations->GetTemp(1)); |
| GenerateWideAtomicLoad(base, offset, lo, hi); |
| // TODO(VIXL): Do we need to be immediately after the ldrexd instruction? If so we need a |
| // scope. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ Vmov(out_dreg, lo, hi); |
| } else { |
| GetAssembler()->LoadDFromOffset(out_dreg, base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) { |
| // Potential implicit null checks, in the case of reference or |
| // double fields, are handled in the previous switch statement. |
| } else { |
| // Address cases other than reference and double that may require an implicit null check. |
| // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method, we |
| // should use a scope and the assembler to emit the load instruction to guarantee that we |
| // record the pc at the correct position. But the `Assembler` does not automatically handle |
| // unencodable offsets. Practically, everything is fine because the helper and VIXL, at the time |
| // of writing, do generate the store instruction last. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (is_volatile) { |
| if (field_type == Primitive::kPrimNot) { |
| // Memory barriers, in the case of references, are also handled |
| // in the previous switch statement. |
| } else { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARMVIXL calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| // Ensure the pc position is recorded immediately after the `ldr` instruction. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0))); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| NullCheckSlowPathARMVIXL* slow_path = |
| new (GetGraph()->GetArena()) NullCheckSlowPathARMVIXL(instruction); |
| AddSlowPath(slow_path); |
| __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| static LoadOperandType GetLoadOperandType(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimNot: |
| return kLoadWord; |
| case Primitive::kPrimBoolean: |
| return kLoadUnsignedByte; |
| case Primitive::kPrimByte: |
| return kLoadSignedByte; |
| case Primitive::kPrimChar: |
| return kLoadUnsignedHalfword; |
| case Primitive::kPrimShort: |
| return kLoadSignedHalfword; |
| case Primitive::kPrimInt: |
| return kLoadWord; |
| case Primitive::kPrimLong: |
| return kLoadWordPair; |
| case Primitive::kPrimFloat: |
| return kLoadSWord; |
| case Primitive::kPrimDouble: |
| return kLoadDWord; |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static StoreOperandType GetStoreOperandType(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimNot: |
| return kStoreWord; |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| return kStoreByte; |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| return kStoreHalfword; |
| case Primitive::kPrimInt: |
| return kStoreWord; |
| case Primitive::kPrimLong: |
| return kStoreWordPair; |
| case Primitive::kPrimFloat: |
| return kStoreSWord; |
| case Primitive::kPrimDouble: |
| return kStoreDWord; |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(Primitive::Type type, |
| Location out_loc, |
| vixl32::Register base, |
| vixl32::Register reg_index, |
| vixl32::Condition cond) { |
| uint32_t shift_count = Primitive::ComponentSizeShift(type); |
| MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count); |
| |
| switch (type) { |
| case Primitive::kPrimByte: |
| __ Ldrsb(cond, RegisterFrom(out_loc), mem_address); |
| break; |
| case Primitive::kPrimBoolean: |
| __ Ldrb(cond, RegisterFrom(out_loc), mem_address); |
| break; |
| case Primitive::kPrimShort: |
| __ Ldrsh(cond, RegisterFrom(out_loc), mem_address); |
| break; |
| case Primitive::kPrimChar: |
| __ Ldrh(cond, RegisterFrom(out_loc), mem_address); |
| break; |
| case Primitive::kPrimNot: |
| case Primitive::kPrimInt: |
| __ Ldr(cond, RegisterFrom(out_loc), mem_address); |
| break; |
| // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types. |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(Primitive::Type type, |
| Location loc, |
| vixl32::Register base, |
| vixl32::Register reg_index, |
| vixl32::Condition cond) { |
| uint32_t shift_count = Primitive::ComponentSizeShift(type); |
| MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count); |
| |
| switch (type) { |
| case Primitive::kPrimByte: |
| case Primitive::kPrimBoolean: |
| __ Strb(cond, RegisterFrom(loc), mem_address); |
| break; |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| __ Strh(cond, RegisterFrom(loc), mem_address); |
| break; |
| case Primitive::kPrimNot: |
| case Primitive::kPrimInt: |
| __ Str(cond, RegisterFrom(loc), mem_address); |
| break; |
| // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types. |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_array_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier. |
| // Also need for String compression feature. |
| if ((object_array_get_with_read_barrier && kUseBakerReadBarrier) |
| || (mirror::kUseStringCompression && instruction->IsStringCharAt())) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| vixl32::Register obj = InputRegisterAt(instruction, 0); |
| Location index = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| Primitive::Type type = instruction->GetType(); |
| const bool maybe_compressed_char_at = mirror::kUseStringCompression && |
| instruction->IsStringCharAt(); |
| HInstruction* array_instr = instruction->GetArray(); |
| bool has_intermediate_address = array_instr->IsIntermediateAddress(); |
| |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| vixl32::Register length; |
| if (maybe_compressed_char_at) { |
| length = RegisterFrom(locations->GetTemp(0)); |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| if (index.IsConstant()) { |
| int32_t const_index = Int32ConstantFrom(index); |
| if (maybe_compressed_char_at) { |
| vixl32::Label uncompressed_load, done; |
| __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ B(cs, &uncompressed_load, /* far_target */ false); |
| GetAssembler()->LoadFromOffset(kLoadUnsignedByte, |
| RegisterFrom(out_loc), |
| obj, |
| data_offset + const_index); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| GetAssembler()->LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar), |
| RegisterFrom(out_loc), |
| obj, |
| data_offset + (const_index << 1)); |
| __ Bind(&done); |
| } else { |
| uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type)); |
| |
| LoadOperandType load_type = GetLoadOperandType(type); |
| GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset); |
| } |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| |
| if (has_intermediate_address) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); |
| DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset); |
| } |
| temp = obj; |
| } else { |
| __ Add(temp, obj, data_offset); |
| } |
| if (maybe_compressed_char_at) { |
| vixl32::Label uncompressed_load, done; |
| __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ B(cs, &uncompressed_load, /* far_target */ false); |
| __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0)); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1)); |
| __ Bind(&done); |
| } else { |
| codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index)); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier)); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp = locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call. |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true); |
| } else { |
| vixl32::Register out = OutputRegister(instruction); |
| if (index.IsConstant()) { |
| size_t offset = |
| (Int32ConstantFrom(index) << TIMES_4) + data_offset; |
| GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset); |
| // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method, |
| // we should use a scope and the assembler to emit the load instruction to guarantee that |
| // we record the pc at the correct position. But the `Assembler` does not automatically |
| // handle unencodable offsets. Practically, everything is fine because the helper and |
| // VIXL, at the time of writing, do generate the store instruction last. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| |
| if (has_intermediate_address) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); |
| DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset); |
| } |
| temp = obj; |
| } else { |
| __ Add(temp, obj, data_offset); |
| } |
| codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index)); |
| temps.Close(); |
| // TODO(VIXL): Use a scope to ensure that we record the pc position immediately after the |
| // load instruction. Practically, everything is fine because the helper and VIXL, at the |
| // time of writing, do generate the store instruction last. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow( |
| instruction, out_loc, out_loc, obj_loc, data_offset, index); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (index.IsConstant()) { |
| size_t offset = |
| (Int32ConstantFrom(index) << TIMES_8) + data_offset; |
| GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); |
| GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| vixl32::SRegister out = SRegisterFrom(out_loc); |
| if (index.IsConstant()) { |
| size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset; |
| GetAssembler()->LoadSFromOffset(out, obj, offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4)); |
| GetAssembler()->LoadSFromOffset(out, temp, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (index.IsConstant()) { |
| size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset; |
| GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); |
| GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (type == Primitive::kPrimNot) { |
| // Potential implicit null checks, in the case of reference |
| // arrays, are handled in the previous switch statement. |
| } else if (!maybe_compressed_char_at) { |
| // TODO(VIXL): Use a scope to ensure we record the pc info immediately after |
| // the preceding load instruction. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, |
| may_need_runtime_call_for_type_check ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| if (needs_write_barrier) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| vixl32::Register array = InputRegisterAt(instruction, 0); |
| Location index = locations->InAt(1); |
| Primitive::Type value_type = instruction->GetComponentType(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| uint32_t data_offset = |
| mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value(); |
| Location value_loc = locations->InAt(2); |
| HInstruction* array_instr = instruction->GetArray(); |
| bool has_intermediate_address = array_instr->IsIntermediateAddress(); |
| |
| switch (value_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| if (index.IsConstant()) { |
| int32_t const_index = Int32ConstantFrom(index); |
| uint32_t full_offset = |
| data_offset + (const_index << Primitive::ComponentSizeShift(value_type)); |
| StoreOperandType store_type = GetStoreOperandType(value_type); |
| GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| |
| if (has_intermediate_address) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); |
| DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset); |
| } |
| temp = array; |
| } else { |
| __ Add(temp, array, data_offset); |
| } |
| codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| vixl32::Register value = RegisterFrom(value_loc); |
| // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet. |
| // See the comment in instruction_simplifier_shared.cc. |
| DCHECK(!has_intermediate_address); |
| |
| if (instruction->InputAt(2)->IsNullConstant()) { |
| // Just setting null. |
| if (index.IsConstant()) { |
| size_t offset = |
| (Int32ConstantFrom(index) << TIMES_4) + data_offset; |
| GetAssembler()->StoreToOffset(kStoreWord, value, array, offset); |
| } else { |
| DCHECK(index.IsRegister()) << index; |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, array, data_offset); |
| codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index)); |
| } |
| // TODO(VIXL): Use a scope to ensure we record the pc info immediately after the preceding |
| // store instruction. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| DCHECK(!needs_write_barrier); |
| DCHECK(!may_need_runtime_call_for_type_check); |
| break; |
| } |
| |
| DCHECK(needs_write_barrier); |
| Location temp1_loc = locations->GetTemp(0); |
| vixl32::Register temp1 = RegisterFrom(temp1_loc); |
| Location temp2_loc = locations->GetTemp(1); |
| vixl32::Register temp2 = RegisterFrom(temp2_loc); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| vixl32::Label done; |
| SlowPathCodeARMVIXL* slow_path = nullptr; |
| |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARMVIXL(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| vixl32::Label non_zero; |
| __ CompareAndBranchIfNonZero(value, &non_zero); |
| if (index.IsConstant()) { |
| size_t offset = |
| (Int32ConstantFrom(index) << TIMES_4) + data_offset; |
| GetAssembler()->StoreToOffset(kStoreWord, value, array, offset); |
| } else { |
| DCHECK(index.IsRegister()) << index; |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, array, data_offset); |
| codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index)); |
| } |
| // TODO(VIXL): Use a scope to ensure we record the pc info immediately after the preceding |
| // store instruction. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ B(&done); |
| __ Bind(&non_zero); |
| } |
| |
| // Note that when read barriers are enabled, the type checks |
| // are performed without read barriers. This is fine, even in |
| // the case where a class object is in the from-space after |
| // the flip, as a comparison involving such a type would not |
| // produce a false positive; it may of course produce a false |
| // negative, in which case we would take the ArraySet slow |
| // path. |
| |
| { |
| // Ensure we record the pc position immediately after the `ldr` instruction. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| // /* HeapReference<Class> */ temp1 = array->klass_ |
| __ ldr(temp1, MemOperand(array, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset); |
| // /* HeapReference<Class> */ temp2 = value->klass_ |
| GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset); |
| // If heap poisoning is enabled, no need to unpoison `temp1` |
| // nor `temp2`, as we are comparing two poisoned references. |
| __ Cmp(temp1, temp2); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| vixl32::Label do_put; |
| __ B(eq, &do_put, /* far_target */ false); |
| // If heap poisoning is enabled, the `temp1` reference has |
| // not been unpoisoned yet; unpoison it now. |
| GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp1`, as we are comparing against null below. |
| __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ B(ne, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| vixl32::Register source = value; |
| if (kPoisonHeapReferences) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| DCHECK_EQ(value_type, Primitive::kPrimNot); |
| __ Mov(temp1, value); |
| GetAssembler()->PoisonHeapReference(temp1); |
| source = temp1; |
| } |
| |
| if (index.IsConstant()) { |
| size_t offset = |
| (Int32ConstantFrom(index) << TIMES_4) + data_offset; |
| GetAssembler()->StoreToOffset(kStoreWord, source, array, offset); |
| } else { |
| DCHECK(index.IsRegister()) << index; |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, array, data_offset); |
| codegen_->StoreToShiftedRegOffset(value_type, |
| LocationFrom(source), |
| temp, |
| RegisterFrom(index)); |
| } |
| |
| if (!may_need_runtime_call_for_type_check) { |
| // TODO(VIXL): Ensure we record the pc position immediately after the preceding store |
| // instruction. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull()); |
| |
| if (done.IsReferenced()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| Location value = locations->InAt(2); |
| if (index.IsConstant()) { |
| size_t offset = |
| (Int32ConstantFrom(index) << TIMES_8) + data_offset; |
| GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); |
| GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| Location value = locations->InAt(2); |
| DCHECK(value.IsFpuRegister()); |
| if (index.IsConstant()) { |
| size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset; |
| GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4)); |
| GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| Location value = locations->InAt(2); |
| DCHECK(value.IsFpuRegisterPair()); |
| if (index.IsConstant()) { |
| size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset; |
| GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); |
| GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << value_type; |
| UNREACHABLE(); |
| } |
| |
| // Objects are handled in the switch. |
| if (value_type != Primitive::kPrimNot) { |
| // TODO(VIXL): Ensure we record the pc position immediately after the preceding store |
| // instruction. |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) { |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| vixl32::Register obj = InputRegisterAt(instruction, 0); |
| vixl32::Register out = OutputRegister(instruction); |
| { |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ ldr(out, MemOperand(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| // Mask out compression flag from String's array length. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ Lsr(out, out, 1u); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| vixl32::Register out = OutputRegister(instruction); |
| vixl32::Register first = InputRegisterAt(instruction, 0); |
| Location second = instruction->GetLocations()->InAt(1); |
| |
| if (second.IsRegister()) { |
| __ Add(out, first, RegisterFrom(second)); |
| } else { |
| __ Add(out, first, Int32ConstantFrom(second)); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0))); |
| caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1))); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) { |
| SlowPathCodeARMVIXL* slow_path = |
| new (GetGraph()->GetArena()) BoundsCheckSlowPathARMVIXL(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| vixl32::Register index = InputRegisterAt(instruction, 0); |
| vixl32::Register length = InputRegisterAt(instruction, 1); |
| |
| __ Cmp(index, length); |
| __ B(hs, slow_path->GetEntryLabel()); |
| } |
| |
| void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp, |
| vixl32::Register card, |
| vixl32::Register object, |
| vixl32::Register value, |
| bool can_be_null) { |
| vixl32::Label is_null; |
| if (can_be_null) { |
| __ CompareAndBranchIfZero(value, &is_null); |
| } |
| GetAssembler()->LoadFromOffset( |
| kLoadWord, card, tr, Thread::CardTableOffset<kArmPointerSize>().Int32Value()); |
| __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift)); |
| __ Strb(card, MemOperand(card, temp)); |
| if (can_be_null) { |
| __ Bind(&is_null); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) { |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathARMVIXL* slow_path = |
| down_cast<SuspendCheckSlowPathARMVIXL*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARMVIXL(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| GetAssembler()->LoadFromOffset( |
| kLoadUnsignedHalfword, temp, tr, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value()); |
| if (successor == nullptr) { |
| __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ CompareAndBranchIfZero(temp, codegen_->GetLabelOf(successor)); |
| __ B(slow_path->GetEntryLabel()); |
| } |
| } |
| |
| ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverARMVIXL::EmitMove(size_t index) { |
| UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ Mov(RegisterFrom(destination), RegisterFrom(source)); |
| } else if (destination.IsFpuRegister()) { |
| __ Vmov(SRegisterFrom(destination), RegisterFrom(source)); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| GetAssembler()->StoreToOffset(kStoreWord, |
| RegisterFrom(source), |
| sp, |
| destination.GetStackIndex()); |
| } |
| } else if (source.IsStackSlot()) { |
| if (destination.IsRegister()) { |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| RegisterFrom(destination), |
| sp, |
| source.GetStackIndex()); |
| } else if (destination.IsFpuRegister()) { |
| GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex()); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| vixl32::Register temp = temps.Acquire(); |
| GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex()); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); |
| } |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsRegister()) { |
| __ Vmov(RegisterFrom(destination), SRegisterFrom(source)); |
| } else if (destination.IsFpuRegister()) { |
| __ Vmov(SRegisterFrom(destination), SRegisterFrom(source)); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex()); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| if (destination.IsDoubleStackSlot()) { |
| vixl32::DRegister temp = temps.AcquireD(); |
| GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex()); |
| GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex()); |
| } else if (destination.IsRegisterPair()) { |
| DCHECK(ExpectedPairLayout(destination)); |
| GetAssembler()->LoadFromOffset( |
| kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex()); |
| } else { |
| DCHECK(destination.IsFpuRegisterPair()) << destination; |
| GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex()); |
| } |
| } else if (source.IsRegisterPair()) { |
| if (destination.IsRegisterPair()) { |
| __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source)); |
| __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source)); |
| } else if (destination.IsFpuRegisterPair()) { |
| __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source)); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| DCHECK(ExpectedPairLayout(source)); |
| GetAssembler()->StoreToOffset(kStoreWordPair, |
| LowRegisterFrom(source), |
| sp, |
| destination.GetStackIndex()); |
| } |
| } else if (source.IsFpuRegisterPair()) { |
| if (destination.IsRegisterPair()) { |
| __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source)); |
| } else if (destination.IsFpuRegisterPair()) { |
| __ Vmov(DRegisterFrom(destination), DRegisterFrom(source)); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex()); |
| } |
| } else { |
| DCHECK(source.IsConstant()) << source; |
| HConstant* constant = source.GetConstant(); |
| if (constant->IsIntConstant() || constant->IsNullConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(constant); |
| if (destination.IsRegister()) { |
| __ Mov(RegisterFrom(destination), value); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Mov(temp, value); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); |
| } |
| } else if (constant->IsLongConstant()) { |
| int64_t value = Int64ConstantFrom(source); |
| if (destination.IsRegisterPair()) { |
| __ Mov(LowRegisterFrom(destination), Low32Bits(value)); |
| __ Mov(HighRegisterFrom(destination), High32Bits(value)); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| vixl32::Register temp = temps.Acquire(); |
| __ Mov(temp, Low32Bits(value)); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); |
| __ Mov(temp, High32Bits(value)); |
| GetAssembler()->StoreToOffset(kStoreWord, |
| temp, |
| sp, |
| destination.GetHighStackIndex(kArmWordSize)); |
| } |
| } else if (constant->IsDoubleConstant()) { |
| double value = constant->AsDoubleConstant()->GetValue(); |
| if (destination.IsFpuRegisterPair()) { |
| __ Vmov(DRegisterFrom(destination), value); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| uint64_t int_value = bit_cast<uint64_t, double>(value); |
| vixl32::Register temp = temps.Acquire(); |
| __ Mov(temp, Low32Bits(int_value)); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); |
| __ Mov(temp, High32Bits(int_value)); |
| GetAssembler()->StoreToOffset(kStoreWord, |
| temp, |
| sp, |
| destination.GetHighStackIndex(kArmWordSize)); |
| } |
| } else { |
| DCHECK(constant->IsFloatConstant()) << constant->DebugName(); |
| float value = constant->AsFloatConstant()->GetValue(); |
| if (destination.IsFpuRegister()) { |
| __ Vmov(SRegisterFrom(destination), value); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Mov(temp, bit_cast<int32_t, float>(value)); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); |
| } |
| } |
| } |
| } |
| |
| void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) { |
| UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Mov(temp, reg); |
| GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem); |
| } |
| |
| void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) { |
| // TODO(VIXL32): Double check the performance of this implementation. |
| UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); |
| vixl32::SRegister temp_1 = temps.AcquireS(); |
| vixl32::SRegister temp_2 = temps.AcquireS(); |
| |
| __ Vldr(temp_1, MemOperand(sp, mem1)); |
| __ Vldr(temp_2, MemOperand(sp, mem2)); |
| __ Vstr(temp_1, MemOperand(sp, mem2)); |
| __ Vstr(temp_2, MemOperand(sp, mem1)); |
| } |
| |
| void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); |
| |
| if (source.IsRegister() && destination.IsRegister()) { |
| vixl32::Register temp = temps.Acquire(); |
| DCHECK(!RegisterFrom(source).Is(temp)); |
| DCHECK(!RegisterFrom(destination).Is(temp)); |
| __ Mov(temp, RegisterFrom(destination)); |
| __ Mov(RegisterFrom(destination), RegisterFrom(source)); |
| __ Mov(RegisterFrom(source), temp); |
| } else if (source.IsRegister() && destination.IsStackSlot()) { |
| Exchange(RegisterFrom(source), destination.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsRegister()) { |
| Exchange(RegisterFrom(destination), source.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsStackSlot()) { |
| Exchange(source.GetStackIndex(), destination.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { |
| vixl32::SRegister temp = temps.AcquireS(); |
| __ Vmov(temp, SRegisterFrom(source)); |
| __ Vmov(SRegisterFrom(source), SRegisterFrom(destination)); |
| __ Vmov(SRegisterFrom(destination), temp); |
| } else if (source.IsRegisterPair() && destination.IsRegisterPair()) { |
| vixl32::DRegister temp = temps.AcquireD(); |
| __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source)); |
| __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination)); |
| __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination)); |
| __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp); |
| } else if (source.IsRegisterPair() || destination.IsRegisterPair()) { |
| vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination); |
| int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex(); |
| DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination)); |
| vixl32::DRegister temp = temps.AcquireD(); |
| __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1)); |
| GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem); |
| GetAssembler()->StoreDToOffset(temp, sp, mem); |
| } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) { |
| vixl32::DRegister first = DRegisterFrom(source); |
| vixl32::DRegister second = DRegisterFrom(destination); |
| vixl32::DRegister temp = temps.AcquireD(); |
| __ Vmov(temp, first); |
| __ Vmov(first, second); |
| __ Vmov(second, temp); |
| } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) { |
| vixl32::DRegister reg = source.IsFpuRegisterPair() |
| ? DRegisterFrom(source) |
| : DRegisterFrom(destination); |
| int mem = source.IsFpuRegisterPair() |
| ? destination.GetStackIndex() |
| : source.GetStackIndex(); |
| vixl32::DRegister temp = temps.AcquireD(); |
| __ Vmov(temp, reg); |
| GetAssembler()->LoadDFromOffset(reg, sp, mem); |
| GetAssembler()->StoreDToOffset(temp, sp, mem); |
| } else if (source.IsFpuRegister() || destination.IsFpuRegister()) { |
| vixl32::SRegister reg = source.IsFpuRegister() |
| ? SRegisterFrom(source) |
| : SRegisterFrom(destination); |
| int mem = source.IsFpuRegister() |
| ? destination.GetStackIndex() |
| : source.GetStackIndex(); |
| vixl32::Register temp = temps.Acquire(); |
| __ Vmov(temp, reg); |
| GetAssembler()->LoadSFromOffset(reg, sp, mem); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem); |
| } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { |
| vixl32::DRegister temp1 = temps.AcquireD(); |
| vixl32::DRegister temp2 = temps.AcquireD(); |
| __ Vldr(temp1, MemOperand(sp, source.GetStackIndex())); |
| __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex())); |
| __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex())); |
| __ Vstr(temp2, MemOperand(sp, source.GetStackIndex())); |
| } else { |
| LOG(FATAL) << "Unimplemented" << source << " <-> " << destination; |
| } |
| } |
| |
| void ParallelMoveResolverARMVIXL::SpillScratch(int reg ATTRIBUTE_UNUSED) { |
| TODO_VIXL32(FATAL); |
| } |
| |
| void ParallelMoveResolverARMVIXL::RestoreScratch(int reg ATTRIBUTE_UNUSED) { |
| TODO_VIXL32(FATAL); |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadClass::LoadKind::kBootImageAddress: |
| break; |
| case HLoadClass::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kDexCacheViaMethod: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( |
| cls, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| LocationFrom(r0)); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| LocationSummary* locations = cls->GetLocations(); |
| Location out_loc = locations->Out(); |
| vixl32::Register out = OutputRegister(cls); |
| |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : kCompilerReadBarrierOption; |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| vixl32::Register current_method = InputRegisterAt(cls, 0); |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| current_method, |
| ArtMethod::DeclaringClassOffset().Int32Value(), |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimeAddress: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| __ Ldr(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(), |
| cls->GetTypeIndex())); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| codegen_->EmitMovwMovtPlaceholder(labels, out); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(cls->GetClass().Get())); |
| DCHECK_NE(address, 0u); |
| __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address)); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: { |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = |
| codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| codegen_->EmitMovwMovtPlaceholder(labels, out); |
| GenerateGcRootFieldLoad(cls, out_loc, out, 0, kCompilerReadBarrierOption); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: { |
| __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), |
| cls->GetTypeIndex(), |
| cls->GetClass())); |
| // /* GcRoot<mirror::Class> */ out = *out |
| GenerateGcRootFieldLoad(cls, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption); |
| break; |
| } |
| case HLoadClass::LoadKind::kDexCacheViaMethod: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| if (generate_null_check || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| LoadClassSlowPathARMVIXL* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARMVIXL( |
| cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class is not null. |
| LoadClassSlowPathARMVIXL* slow_path = |
| new (GetGraph()->GetArena()) LoadClassSlowPathARMVIXL(check->GetLoadClass(), |
| check, |
| check->GetDexPc(), |
| /* do_clinit */ true); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck( |
| LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| temp, |
| class_reg, |
| mirror::Class::StatusOffset().Int32Value()); |
| __ Cmp(temp, mirror::Class::kStatusInitialized); |
| __ B(lt, slow_path->GetEntryLabel()); |
| // Even if the initialized flag is set, we may be in a situation where caches are not synced |
| // properly. Therefore, we do a memory fence. |
| __ Dmb(ISH); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadString::LoadKind::kBootImageAddress: |
| break; |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kDexCacheViaMethod: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) { |
| locations->SetOut(LocationFrom(r0)); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadString::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString and/or marking to save everything, including temps. |
| // Note that IP may theoretically be clobbered by saving/restoring the live register |
| // (only one thanks to the custom calling convention), so we request a different temp. |
| locations->AddTemp(Location::RequiresRegister()); |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0))); |
| // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK() |
| // that the the kPrimNot result register is the same as the first argument register. |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| LocationSummary* locations = load->GetLocations(); |
| Location out_loc = locations->Out(); |
| vixl32::Register out = OutputRegister(load); |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| |
| switch (load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: { |
| __ Ldr(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(), |
| load->GetStringIndex())); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex()); |
| codegen_->EmitMovwMovtPlaceholder(labels, out); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageAddress: { |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(load->GetString().Get())); |
| DCHECK_NE(address, 0u); |
| __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address)); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex()); |
| codegen_->EmitMovwMovtPlaceholder(labels, temp); |
| GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption); |
| LoadStringSlowPathARMVIXL* slow_path = |
| new (GetGraph()->GetArena()) LoadStringSlowPathARMVIXL(load); |
| codegen_->AddSlowPath(slow_path); |
| __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: { |
| __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), |
| load->GetStringIndex(), |
| load->GetString())); |
| // /* GcRoot<mirror::String> */ out = *out |
| GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption); |
| return; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Re-add the compiler code to do string dex cache lookup again. |
| DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kDexCacheViaMethod); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_); |
| codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| static int32_t GetExceptionTlsOffset() { |
| return Thread::ExceptionOffset<kArmPointerSize>().Int32Value(); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) { |
| vixl32::Register out = OutputRegister(load); |
| GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset()); |
| } |
| |
| |
| void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| __ Mov(temp, 0); |
| GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { |
| if (kEmitCompilerReadBarrier && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Interface case has 3 temps, one for holding the number of interfaces, one for the current |
| // interface pointer, one for loading the current interface. |
| // The other checks have one temp for loading the object's class. |
| static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| return 3; |
| } |
| return 1 + NumberOfInstanceOfTemps(type_check_kind); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = |
| kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier; |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // The "out" register is used as a temporary, so it overlaps with the inputs. |
| // Note that TypeCheckSlowPathARM uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| vixl32::Register obj = InputRegisterAt(instruction, 0); |
| vixl32::Register cls = InputRegisterAt(instruction, 1); |
| Location out_loc = locations->Out(); |
| vixl32::Register out = OutputRegister(instruction); |
| const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| vixl32::Label done, zero; |
| SlowPathCodeARMVIXL* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ CompareAndBranchIfZero(obj, &zero, /* far_target */ false); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| __ Cmp(out, cls); |
| // Classes must be equal for the instanceof to succeed. |
| __ B(ne, &zero, /* far_target */ false); |
| __ Mov(out, 1); |
| __ B(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl32::Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ CompareAndBranchIfZero(out, &done, /* far_target */ false); |
| __ Cmp(out, cls); |
| __ B(ne, &loop, /* far_target */ false); |
| __ Mov(out, 1); |
| if (zero.IsReferenced()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // Walk over the class hierarchy to find a match. |
| vixl32::Label loop, success; |
| __ Bind(&loop); |
| __ Cmp(out, cls); |
| __ B(eq, &success, /* far_target */ false); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| __ CompareAndBranchIfNonZero(out, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ B(&done); |
| __ Bind(&success); |
| __ Mov(out, 1); |
| if (zero.IsReferenced()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // Do an exact check. |
| vixl32::Label exact_check; |
| __ Cmp(out, cls); |
| __ B(eq, &exact_check, /* far_target */ false); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ CompareAndBranchIfZero(out, &done, /* far_target */ false); |
| GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ CompareAndBranchIfNonZero(out, &zero, /* far_target */ false); |
| __ Bind(&exact_check); |
| __ Mov(out, 1); |
| __ B(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| __ Cmp(out, cls); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(ne, slow_path->GetEntryLabel()); |
| __ Mov(out, 1); |
| if (zero.IsReferenced()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| if (zero.IsReferenced()) { |
| __ B(&done); |
| } |
| break; |
| } |
| } |
| |
| if (zero.IsReferenced()) { |
| __ Bind(&zero); |
| __ Mov(out, 0); |
| } |
| |
| if (done.IsReferenced()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); |
| |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path. |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| vixl32::Register obj = InputRegisterAt(instruction, 0); |
| vixl32::Register cls = InputRegisterAt(instruction, 1); |
| Location temp_loc = locations->GetTemp(0); |
| vixl32::Register temp = RegisterFrom(temp_loc); |
| const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); |
| DCHECK_LE(num_temps, 3u); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| |
| // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases |
| // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding |
| // read barriers is done for performance and code size reasons. |
| bool is_type_check_slow_path_fatal = false; |
| if (!kEmitCompilerReadBarrier) { |
| is_type_check_slow_path_fatal = |
| (type_check_kind == TypeCheckKind::kExactCheck || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck) && |
| !instruction->CanThrowIntoCatchBlock(); |
| } |
| SlowPathCodeARMVIXL* type_check_slow_path = |
| new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction, |
| is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| vixl32::Label done; |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ CompareAndBranchIfZero(obj, &done, /* far_target */ false); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| __ Cmp(temp, cls); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ B(ne, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl32::Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); |
| |
| // Otherwise, compare the classes. |
| __ Cmp(temp, cls); |
| __ B(ne, &loop, /* far_target */ false); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Walk over the class hierarchy to find a match. |
| vixl32::Label loop; |
| __ Bind(&loop); |
| __ Cmp(temp, cls); |
| __ B(eq, &done, /* far_target */ false); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise, jump to the beginning of the loop. |
| __ B(&loop); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Do an exact check. |
| __ Cmp(temp, cls); |
| __ B(eq, &done, /* far_target */ false); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the component type is null, jump to the slow path to throw the exception. |
| __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type` |
| // to further check that this component type is not a primitive type. |
| GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot"); |
| __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check case. |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| |
| case TypeCheckKind::kInterfaceCheck: { |
| // Avoid read barriers to improve performance of the fast path. We can not get false |
| // positives by doing this. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset)); |
| // Loop through the iftable and check if any class matches. |
| vixl32::Label start_loop; |
| __ Bind(&start_loop); |
| __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc), |
| type_check_slow_path->GetEntryLabel()); |
| __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc)); |
| // Go to next interface. |
| __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize)); |
| __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2); |
| // Compare the classes and continue the loop if they do not match. |
| __ Cmp(cls, RegisterFrom(maybe_temp3_loc)); |
| __ B(ne, &start_loop, /* far_target */ false); |
| break; |
| } |
| } |
| __ Bind(&done); |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) { |
| HandleBitwiseOperation(instruction, AND); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) { |
| HandleBitwiseOperation(instruction, ORR); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) { |
| HandleBitwiseOperation(instruction, EOR); |
| } |
| |
| void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt |
| || instruction->GetResultType() == Primitive::kPrimLong); |
| // Note: GVN reorders commutative operations to have the constant on the right hand side. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt |
| || instruction->GetResultType() == Primitive::kPrimLong); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| vixl32::Register first_reg = RegisterFrom(first); |
| vixl32::Register second_reg = RegisterFrom(second); |
| vixl32::Register out_reg = RegisterFrom(out); |
| |
| switch (instruction->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ Bic(out_reg, first_reg, second_reg); |
| break; |
| case HInstruction::kOr: |
| __ Orn(out_reg, first_reg, second_reg); |
| break; |
| // There is no EON on arm. |
| case HInstruction::kXor: |
| default: |
| LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); |
| UNREACHABLE(); |
| } |
| return; |
| |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| vixl32::Register first_low = LowRegisterFrom(first); |
| vixl32::Register first_high = HighRegisterFrom(first); |
| vixl32::Register second_low = LowRegisterFrom(second); |
| vixl32::Register second_high = HighRegisterFrom(second); |
| vixl32::Register out_low = LowRegisterFrom(out); |
| vixl32::Register out_high = HighRegisterFrom(out); |
| |
| switch (instruction->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ Bic(out_low, first_low, second_low); |
| __ Bic(out_high, first_high, second_high); |
| break; |
| case HInstruction::kOr: |
| __ Orn(out_low, first_low, second_low); |
| __ Orn(out_high, first_high, second_high); |
| break; |
| // There is no EON on arm. |
| case HInstruction::kXor: |
| default: |
| LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl. |
| void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out, |
| vixl32::Register first, |
| uint32_t value) { |
| // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier). |
| if (value == 0xffffffffu) { |
| if (!out.Is(first)) { |
| __ Mov(out, first); |
| } |
| return; |
| } |
| if (value == 0u) { |
| __ Mov(out, 0); |
| return; |
| } |
| if (GetAssembler()->ShifterOperandCanHold(AND, value)) { |
| __ And(out, first, value); |
| } else { |
| DCHECK(GetAssembler()->ShifterOperandCanHold(BIC, ~value)); |
| __ Bic(out, first, ~value); |
| } |
| } |
| |
| // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl. |
| void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out, |
| vixl32::Register first, |
| uint32_t value) { |
| // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier). |
| if (value == 0u) { |
| if (!out.Is(first)) { |
| __ Mov(out, first); |
| } |
| return; |
| } |
| if (value == 0xffffffffu) { |
| __ Mvn(out, 0); |
| return; |
| } |
| if (GetAssembler()->ShifterOperandCanHold(ORR, value)) { |
| __ Orr(out, first, value); |
| } else { |
| DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value)); |
| __ Orn(out, first, ~value); |
| } |
| } |
| |
| // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl. |
| void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out, |
| vixl32::Register first, |
| uint32_t value) { |
| // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier). |
| if (value == 0u) { |
| if (!out.Is(first)) { |
| __ Mov(out, first); |
| } |
| return; |
| } |
| __ Eor(out, first, value); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out, |
| Location first, |
| uint64_t value) { |
| vixl32::Register out_low = LowRegisterFrom(out); |
| vixl32::Register out_high = HighRegisterFrom(out); |
| vixl32::Register first_low = LowRegisterFrom(first); |
| vixl32::Register first_high = HighRegisterFrom(first); |
| uint32_t value_low = Low32Bits(value); |
| uint32_t value_high = High32Bits(value); |
| if (value_low == 0u) { |
| if (!out_low.Is(first_low)) { |
| __ Mov(out_low, first_low); |
| } |
| __ Add(out_high, first_high, value_high); |
| return; |
| } |
| __ Adds(out_low, first_low, value_low); |
| if (GetAssembler()->ShifterOperandCanHold(ADC, value_high, kCcDontCare)) { |
| __ Adc(out_high, first_high, value_high); |
| } else if (GetAssembler()->ShifterOperandCanHold(SBC, ~value_high, kCcDontCare)) { |
| __ Sbc(out_high, first_high, ~value_high); |
| } else { |
| LOG(FATAL) << "Unexpected constant " << value_high; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| if (second.IsConstant()) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); |
| uint32_t value_low = Low32Bits(value); |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| vixl32::Register first_reg = InputRegisterAt(instruction, 0); |
| vixl32::Register out_reg = OutputRegister(instruction); |
| if (instruction->IsAnd()) { |
| GenerateAndConst(out_reg, first_reg, value_low); |
| } else if (instruction->IsOr()) { |
| GenerateOrrConst(out_reg, first_reg, value_low); |
| } else { |
| DCHECK(instruction->IsXor()); |
| GenerateEorConst(out_reg, first_reg, value_low); |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| uint32_t value_high = High32Bits(value); |
| vixl32::Register first_low = LowRegisterFrom(first); |
| vixl32::Register first_high = HighRegisterFrom(first); |
| vixl32::Register out_low = LowRegisterFrom(out); |
| vixl32::Register out_high = HighRegisterFrom(out); |
| if (instruction->IsAnd()) { |
| GenerateAndConst(out_low, first_low, value_low); |
| GenerateAndConst(out_high, first_high, value_high); |
| } else if (instruction->IsOr()) { |
| GenerateOrrConst(out_low, first_low, value_low); |
| GenerateOrrConst(out_high, first_high, value_high); |
| } else { |
| DCHECK(instruction->IsXor()); |
| GenerateEorConst(out_low, first_low, value_low); |
| GenerateEorConst(out_high, first_high, value_high); |
| } |
| } |
| return; |
| } |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| vixl32::Register first_reg = InputRegisterAt(instruction, 0); |
| vixl32::Register second_reg = InputRegisterAt(instruction, 1); |
| vixl32::Register out_reg = OutputRegister(instruction); |
| if (instruction->IsAnd()) { |
| __ And(out_reg, first_reg, second_reg); |
| } else if (instruction->IsOr()) { |
| __ Orr(out_reg, first_reg, second_reg); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ Eor(out_reg, first_reg, second_reg); |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| vixl32::Register first_low = LowRegisterFrom(first); |
| vixl32::Register first_high = HighRegisterFrom(first); |
| vixl32::Register second_low = LowRegisterFrom(second); |
| vixl32::Register second_high = HighRegisterFrom(second); |
| vixl32::Register out_low = LowRegisterFrom(out); |
| vixl32::Register out_high = HighRegisterFrom(out); |
| if (instruction->IsAnd()) { |
| __ And(out_low, first_low, second_low); |
| __ And(out_high, first_high, second_high); |
| } else if (instruction->IsOr()) { |
| __ Orr(out_low, first_low, second_low); |
| __ Orr(out_high, first_high, second_high); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ Eor(out_low, first_low, second_low); |
| __ Eor(out_high, first_high, second_high); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| vixl32::Register out_reg = RegisterFrom(out); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| __ Mov(RegisterFrom(maybe_temp), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| vixl32::Register out_reg = RegisterFrom(out); |
| vixl32::Register obj_reg = RegisterFrom(obj); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::GenerateGcRootFieldLoad( |
| HInstruction* instruction, |
| Location root, |
| vixl32::Register obj, |
| uint32_t offset, |
| ReadBarrierOption read_barrier_option) { |
| vixl32::Register root_reg = RegisterFrom(root); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used: |
| // |
| // root = obj.field; |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp != null) { |
| // root = temp(root) |
| // } |
| |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset); |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Slow path marking the GC root `root`. |
| Location temp = LocationFrom(lr); |
| SlowPathCodeARMVIXL* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARMVIXL( |
| instruction, |
| root, |
| /*entrypoint*/ temp); |
| codegen_->AddSlowPath(slow_path); |
| |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(root.reg()); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, entry_point_offset); |
| // The entrypoint is null when the GC is not marking, this prevents one load compared to |
| // checking GetIsGcMarking. |
| __ CompareAndBranchIfNonZero(RegisterFrom(temp), slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| __ Add(root_reg, obj, offset); |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset); |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| vixl32::Register obj, |
| uint32_t offset, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Location no_index = Location::NoLocation(); |
| ScaleFactor no_scale_factor = TIMES_1; |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check); |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| vixl32::Register obj, |
| uint32_t data_offset, |
| Location index, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| ScaleFactor scale_factor = TIMES_4; |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check); |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| vixl32::Register obj, |
| uint32_t offset, |
| Location index, |
| ScaleFactor scale_factor, |
| Location temp, |
| bool needs_null_check, |
| bool always_update_field, |
| vixl32::Register* temp2) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // In slow path based read barriers, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as it performs additional checks that we do |
| // not do here for performance reasons. |
| |
| vixl32::Register ref_reg = RegisterFrom(ref); |
| vixl32::Register temp_reg = RegisterFrom(temp); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including the rb_state, |
| // which shall prevent load-load reordering without using |
| // a memory barrier (which would be more expensive). |
| // `obj` is unchanged by this operation, but its value now depends |
| // on `temp_reg`. |
| __ Add(obj, obj, Operand(temp_reg, ShiftType::LSR, 32)); |
| |
| // The actual reference load. |
| if (index.IsValid()) { |
| // Load types involving an "index": ArrayGet, |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics. |
| // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor)) |
| if (index.IsConstant()) { |
| size_t computed_offset = |
| (Int32ConstantFrom(index) << scale_factor) + offset; |
| GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset); |
| } else { |
| // Handle the special case of the |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics, which use a register pair as index ("long |
| // offset"), of which only the low part contains data. |
| vixl32::Register index_reg = index.IsRegisterPair() |
| ? LowRegisterFrom(index) |
| : RegisterFrom(index); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| const vixl32::Register temp3 = temps.Acquire(); |
| __ Add(temp3, obj, Operand(index_reg, ShiftType::LSL, scale_factor)); |
| GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, temp3, offset); |
| } |
| } else { |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, obj, offset); |
| } |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| GetAssembler()->MaybeUnpoisonHeapReference(ref_reg); |
| |
| // Slow path marking the object `ref` when it is gray. |
| SlowPathCodeARMVIXL* slow_path; |
| if (always_update_field) { |
| DCHECK(temp2 != nullptr); |
| // ReadBarrierMarkAndUpdateFieldSlowPathARMVIXL only supports address |
| // of the form `obj + field_offset`, where `obj` is a register and |
| // `field_offset` is a register pair (of which only the lower half |
| // is used). Thus `offset` and `scale_factor` above are expected |
| // to be null in this code path. |
| DCHECK_EQ(offset, 0u); |
| DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1); |
| slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathARMVIXL( |
| instruction, ref, obj, /* field_offset */ index, temp_reg, *temp2); |
| } else { |
| slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARMVIXL(instruction, ref); |
| } |
| AddSlowPath(slow_path); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // Given the numeric representation, it's enough to check the low bit of the |
| // rb_state. We do that by shifting the bit out of the lock word with LSRS |
| // which can be a 16-bit instruction unlike the TST immediate. |
| static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Lsrs(temp_reg, temp_reg, LockWord::kReadBarrierStateShift + 1); |
| __ B(cs, slow_path->GetEntryLabel()); // Carry flag is the last bit shifted out by LSRS. |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCodeARMVIXL* slow_path = new (GetGraph()->GetArena()) |
| ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| GetAssembler()->UnpoisonHeapReference(RegisterFrom(out)); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeARMVIXL* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| // Check if the desired_dispatch_info is supported. If it is, return it, |
| // otherwise return a fall-back info that should be used instead. |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) { |
| return desired_dispatch_info; |
| } |
| |
| vixl32::Register CodeGeneratorARMVIXL::GetInvokeStaticOrDirectExtraParameter( |
| HInvokeStaticOrDirect* invoke, vixl32::Register temp) { |
| DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); |
| Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| if (!invoke->GetLocations()->Intrinsified()) { |
| return RegisterFrom(location); |
| } |
| // For intrinsics we allow any location, so it may be on the stack. |
| if (!location.IsRegister()) { |
| GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, location.GetStackIndex()); |
| return temp; |
| } |
| // For register locations, check if the register was saved. If so, get it from the stack. |
| // Note: There is a chance that the register was saved but not overwritten, so we could |
| // save one load. However, since this is just an intrinsic slow path we prefer this |
| // simple and more robust approach rather that trying to determine if that's the case. |
| SlowPathCode* slow_path = GetCurrentSlowPath(); |
| DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path. |
| if (slow_path->IsCoreRegisterSaved(RegisterFrom(location).GetCode())) { |
| int stack_offset = slow_path->GetStackOffsetOfCoreRegister(RegisterFrom(location).GetCode()); |
| GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, stack_offset); |
| return temp; |
| } |
| return RegisterFrom(location); |
| } |
| |
| Location CodeGeneratorARMVIXL::GenerateCalleeMethodStaticOrDirectCall( |
| HInvokeStaticOrDirect* invoke, Location temp) { |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { |
| uint32_t offset = |
| GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| // temp = thread->string_init_entrypoint |
| GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| __ Mov(RegisterFrom(temp), Operand::From(invoke->GetMethodAddress())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { |
| HArmDexCacheArraysBase* base = |
| invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase(); |
| vixl32::Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, RegisterFrom(temp)); |
| int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset(); |
| GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), base_reg, offset); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { |
| Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| vixl32::Register method_reg; |
| vixl32::Register reg = RegisterFrom(temp); |
| if (current_method.IsRegister()) { |
| method_reg = RegisterFrom(current_method); |
| } else { |
| DCHECK(invoke->GetLocations()->Intrinsified()); |
| DCHECK(!current_method.IsValid()); |
| method_reg = reg; |
| GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, kCurrentMethodStackOffset); |
| } |
| // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; |
| GetAssembler()->LoadFromOffset( |
| kLoadWord, |
| reg, |
| method_reg, |
| ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value()); |
| // temp = temp[index_in_cache]; |
| // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. |
| uint32_t index_in_cache = invoke->GetDexMethodIndex(); |
| GetAssembler()->LoadFromOffset( |
| kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache)); |
| break; |
| } |
| } |
| return callee_method; |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, |
| Location temp) { |
| Location callee_method = GenerateCalleeMethodStaticOrDirectCall(invoke, temp); |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ Bl(GetFrameEntryLabel()); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // LR = callee_method->entry_point_from_quick_compiled_code_ |
| GetAssembler()->LoadFromOffset( |
| kLoadWord, |
| lr, |
| RegisterFrom(callee_method), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value()); |
| { |
| // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::k16BitT32InstructionSizeInBytes, |
| CodeBufferCheckScope::kExactSize); |
| // LR() |
| __ blx(lr); |
| } |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorARMVIXL::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) { |
| vixl32::Register temp = RegisterFrom(temp_location); |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kArmPointerSize).Uint32Value(); |
| |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConventionARMVIXL calling_convention; |
| vixl32::Register receiver = calling_convention.GetRegisterAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| { |
| // Make sure the pc is recorded immediately after the `ldr` instruction. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ ldr(temp, MemOperand(receiver, class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| } |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| |
| // temp = temp->GetMethodAt(method_offset); |
| uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArmPointerSize).Int32Value(); |
| GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset); |
| // LR = temp->GetEntryPoint(); |
| GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point); |
| // LR(); |
| // This `blx` *must* be the *last* instruction generated by this stub, so that calls to |
| // `RecordPcInfo()` immediately following record the correct pc. Use a scope to help guarantee |
| // that. |
| // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| vixl32::k16BitT32InstructionSizeInBytes, |
| CodeBufferCheckScope::kExactSize); |
| __ blx(lr); |
| } |
| |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeStringPatch( |
| const DexFile& dex_file, dex::StringIndex string_index) { |
| return NewPcRelativePatch(dex_file, string_index.index_, &pc_relative_string_patches_); |
| } |
| |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeTypePatch( |
| const DexFile& dex_file, dex::TypeIndex type_index) { |
| return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_); |
| } |
| |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch( |
| const DexFile& dex_file, dex::TypeIndex type_index) { |
| return NewPcRelativePatch(dex_file, type_index.index_, &type_bss_entry_patches_); |
| } |
| |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeDexCacheArrayPatch( |
| const DexFile& dex_file, uint32_t element_offset) { |
| return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_); |
| } |
| |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch( |
| const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) { |
| patches->emplace_back(dex_file, offset_or_index); |
| return &patches->back(); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageStringLiteral( |
| const DexFile& dex_file, |
| dex::StringIndex string_index) { |
| return boot_image_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { |
| return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); |
| }); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageTypeLiteral( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index) { |
| return boot_image_type_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { |
| return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); |
| }); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) { |
| bool needs_patch = GetCompilerOptions().GetIncludePatchInformation(); |
| Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_; |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateDexCacheAddressLiteral(uint32_t address) { |
| return DeduplicateUint32Literal(address, &uint32_literals_); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| Handle<mirror::String> handle) { |
| jit_string_roots_.Overwrite(StringReference(&dex_file, string_index), |
| reinterpret_cast64<uint64_t>(handle.GetReference())); |
| return jit_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { |
| return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); |
| }); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| Handle<mirror::Class> handle) { |
| jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index), |
| reinterpret_cast64<uint64_t>(handle.GetReference())); |
| return jit_class_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { |
| return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); |
| }); |
| } |
| |
| template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PcRelativePatchInfo>& infos, |
| ArenaVector<LinkerPatch>* linker_patches) { |
| for (const PcRelativePatchInfo& info : infos) { |
| const DexFile& dex_file = info.target_dex_file; |
| size_t offset_or_index = info.offset_or_index; |
| DCHECK(info.add_pc_label.IsBound()); |
| uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.GetLocation()); |
| // Add MOVW patch. |
| DCHECK(info.movw_label.IsBound()); |
| uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.GetLocation()); |
| linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index)); |
| // Add MOVT patch. |
| DCHECK(info.movt_label.IsBound()); |
| uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.GetLocation()); |
| linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index)); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() + |
| boot_image_string_patches_.size() + |
| /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() + |
| boot_image_type_patches_.size() + |
| /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() + |
| /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() + |
| boot_image_address_patches_.size(); |
| linker_patches->reserve(size); |
| EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_, |
| linker_patches); |
| for (const auto& entry : boot_image_string_patches_) { |
| const StringReference& target_string = entry.first; |
| VIXLUInt32Literal* literal = entry.second; |
| DCHECK(literal->IsBound()); |
| uint32_t literal_offset = literal->GetLocation(); |
| linker_patches->push_back(LinkerPatch::StringPatch(literal_offset, |
| target_string.dex_file, |
| target_string.string_index.index_)); |
| } |
| if (!GetCompilerOptions().IsBootImage()) { |
| DCHECK(pc_relative_type_patches_.empty()); |
| EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_, |
| linker_patches); |
| } else { |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_, |
| linker_patches); |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_, |
| linker_patches); |
| } |
| EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_, |
| linker_patches); |
| for (const auto& entry : boot_image_type_patches_) { |
| const TypeReference& target_type = entry.first; |
| VIXLUInt32Literal* literal = entry.second; |
| DCHECK(literal->IsBound()); |
| uint32_t literal_offset = literal->GetLocation(); |
| linker_patches->push_back(LinkerPatch::TypePatch(literal_offset, |
| target_type.dex_file, |
| target_type.type_index.index_)); |
| } |
| for (const auto& entry : boot_image_address_patches_) { |
| DCHECK(GetCompilerOptions().GetIncludePatchInformation()); |
| VIXLUInt32Literal* literal = entry.second; |
| DCHECK(literal->IsBound()); |
| uint32_t literal_offset = literal->GetLocation(); |
| linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset)); |
| } |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal( |
| uint32_t value, |
| Uint32ToLiteralMap* map) { |
| return map->GetOrCreate( |
| value, |
| [this, value]() { |
| return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ value); |
| }); |
| } |
| |
| VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateMethodLiteral( |
| MethodReference target_method, |
| MethodToLiteralMap* map) { |
| return map->GetOrCreate( |
| target_method, |
| [this]() { |
| return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); |
| }); |
| } |
| |
| void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall); |
| locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, |
| Location::RequiresRegister()); |
| locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); |
| locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| vixl32::Register res = OutputRegister(instr); |
| vixl32::Register accumulator = |
| InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); |
| vixl32::Register mul_left = |
| InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); |
| vixl32::Register mul_right = |
| InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); |
| |
| if (instr->GetOpKind() == HInstruction::kAdd) { |
| __ Mla(res, mul_left, mul_right, accumulator); |
| } else { |
| __ Mls(res, mul_left, mul_right, accumulator); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold && |
| codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) { |
| locations->AddTemp(Location::RequiresRegister()); // We need a temp for the table base. |
| if (switch_instr->GetStartValue() != 0) { |
| locations->AddTemp(Location::RequiresRegister()); // We need a temp for the bias. |
| } |
| } |
| } |
| |
| // TODO(VIXL): Investigate and reach the parity with old arm codegen. |
| void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| vixl32::Register value_reg = InputRegisterAt(switch_instr, 0); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| if (num_entries <= kPackedSwitchCompareJumpThreshold || |
| !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) { |
| // Create a series of compare/jumps. |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register temp_reg = temps.Acquire(); |
| // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store |
| // the immediate, because IP is used as the destination register. For the other |
| // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant, |
| // and they can be encoded in the instruction without making use of IP register. |
| __ Adds(temp_reg, value_reg, -lower_bound); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); |
| // Jump to successors[0] if value == lower_bound. |
| __ B(eq, codegen_->GetLabelOf(successors[0])); |
| int32_t last_index = 0; |
| for (; num_entries - last_index > 2; last_index += 2) { |
| __ Adds(temp_reg, temp_reg, -2); |
| // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. |
| __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); |
| // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); |
| } |
| if (num_entries - last_index == 2) { |
| // The last missing case_value. |
| __ Cmp(temp_reg, 1); |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { |
| __ B(codegen_->GetLabelOf(default_block)); |
| } |
| } else { |
| // Create a table lookup. |
| vixl32::Register table_base = RegisterFrom(locations->GetTemp(0)); |
| |
| JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr); |
| |
| // Remove the bias. |
| vixl32::Register key_reg; |
| if (lower_bound != 0) { |
| key_reg = RegisterFrom(locations->GetTemp(1)); |
| __ Sub(key_reg, value_reg, lower_bound); |
| } else { |
| key_reg = value_reg; |
| } |
| |
| // Check whether the value is in the table, jump to default block if not. |
| __ Cmp(key_reg, num_entries - 1); |
| __ B(hi, codegen_->GetLabelOf(default_block)); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| vixl32::Register jump_offset = temps.Acquire(); |
| |
| // Load jump offset from the table. |
| { |
| const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t); |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size, |
| CodeBufferCheckScope::kMaximumSize); |
| __ adr(table_base, jump_table->GetTableStartLabel()); |
| __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2)); |
| |
| // Jump to target block by branching to table_base(pc related) + offset. |
| vixl32::Register target_address = table_base; |
| __ add(target_address, table_base, jump_offset); |
| __ bx(target_address); |
| |
| jump_table->EmitTable(codegen_); |
| } |
| } |
| } |
| void LocationsBuilderARMVIXL::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) { |
| vixl32::Register base_reg = OutputRegister(base); |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset()); |
| codegen_->EmitMovwMovtPlaceholder(labels, base_reg); |
| } |
| |
| // Copy the result of a call into the given target. |
| void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, Primitive::Type type) { |
| if (!trg.IsValid()) { |
| DCHECK_EQ(type, Primitive::kPrimVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, Primitive::kPrimVoid); |
| |
| Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type); |
| if (return_loc.Equals(trg)) { |
| return; |
| } |
| |
| // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged |
| // with the last branch. |
| if (type == Primitive::kPrimLong) { |
| TODO_VIXL32(FATAL); |
| } else if (type == Primitive::kPrimDouble) { |
| TODO_VIXL32(FATAL); |
| } else { |
| // Let the parallel move resolver take care of all of this. |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(return_loc, trg, type, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| } |
| |
| void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) { |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kArmPointerSize).SizeValue(); |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| OutputRegister(instruction), |
| InputRegisterAt(instruction, 0), |
| method_offset); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kArmPointerSize)); |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| OutputRegister(instruction), |
| InputRegisterAt(instruction, 0), |
| mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); |
| GetAssembler()->LoadFromOffset(kLoadWord, |
| OutputRegister(instruction), |
| OutputRegister(instruction), |
| method_offset); |
| } |
| } |
| |
| static void PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| VIXLUInt32Literal* literal, |
| uint64_t index_in_table) { |
| DCHECK(literal->IsBound()); |
| uint32_t literal_offset = literal->GetLocation(); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| uint8_t* data = code + literal_offset; |
| reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const auto& entry : jit_string_patches_) { |
| const auto& it = jit_string_roots_.find(entry.first); |
| DCHECK(it != jit_string_roots_.end()); |
| PatchJitRootUse(code, roots_data, entry.second, it->second); |
| } |
| for (const auto& entry : jit_class_patches_) { |
| const auto& it = jit_class_roots_.find(entry.first); |
| DCHECK(it != jit_class_roots_.end()); |
| PatchJitRootUse(code, roots_data, entry.second, it->second); |
| } |
| } |
| |
| void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder( |
| CodeGeneratorARMVIXL::PcRelativePatchInfo* labels, |
| vixl32::Register out) { |
| ExactAssemblyScope aas(GetVIXLAssembler(), |
| 3 * vixl32::kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| // TODO(VIXL): Think about using mov instead of movw. |
| __ bind(&labels->movw_label); |
| __ movw(out, /* placeholder */ 0u); |
| __ bind(&labels->movt_label); |
| __ movt(out, /* placeholder */ 0u); |
| __ bind(&labels->add_pc_label); |
| __ add(out, out, pc); |
| } |
| |
| #undef __ |
| #undef QUICK_ENTRY_POINT |
| #undef TODO_VIXL32 |
| |
| } // namespace arm |
| } // namespace art |