blob: a63d4ab5ff073e6394240163d2a8caae4e739bcd [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include "class_linker.h"
#include "class_loader.h"
#include "compiler.h"
#include "file.h"
#include "image_writer.h"
#include "leb128.h"
#include "oat_writer.h"
#include "object_utils.h"
#include "os.h"
#include "runtime.h"
#include "stringpiece.h"
namespace art {
static void usage() {
fprintf(stderr,
"Usage: dex2oat [options]...\n"
"\n");
fprintf(stderr,
" --dex-file=<dex-file>: specifies a .dex file to compile. At least one .dex\n"
" file must be specified. \n"
" Example: --dex-file=/system/framework/core.jar\n"
"\n");
fprintf(stderr,
" --oat=<file.oat>: specifies the required oat filename.\n"
" Example: --oat=/system/framework/boot.oat\n"
"\n");
fprintf(stderr,
" --image=<file.art>: specifies the output image filename.\n"
" Example: --image=/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --image-classes=<classname-file>: specifies classes to include in an image.\n"
" Example: --image=frameworks/base/preloaded-classes\n"
"\n");
fprintf(stderr,
" --base=<hex-address>: specifies the base address when creating a boot image.\n"
" Example: --base=0x50000000\n"
"\n");
fprintf(stderr,
" --boot-image=<file.art>: provide the image file for the boot class path.\n"
" Example: --boot-image=/system/framework/boot.art\n"
" Default: <host-prefix>/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --host-prefix may be used to translate host paths to target paths during\n"
" cross compilation.\n"
" Example: --host-prefix=out/target/product/crespo\n"
" Default: $ANDROID_PRODUCT_OUT\n"
"\n");
fprintf(stderr,
" --runtime-arg <argument>: used to specify various arguments for the runtime,\n"
" such as initial heap size, maximum heap size, and verbose output.\n"
" Use a separate --runtime-arg switch for each argument.\n"
" Example: --runtime-arg -Xms256m\n"
"\n");
exit(EXIT_FAILURE);
}
class Dex2Oat {
public:
static Dex2Oat* Create(Runtime::Options& options) {
UniquePtr<Runtime> runtime(CreateRuntime(options));
if (runtime.get() == NULL) {
return NULL;
}
return new Dex2Oat(runtime.release());
}
~Dex2Oat() {
delete runtime_;
}
// Make a list of descriptors for classes to include in the image
const std::set<std::string>* GetImageClassDescriptors(const char* image_classes_filename) {
UniquePtr<std::ifstream> image_classes_file(new std::ifstream(image_classes_filename, std::ifstream::in));
if (image_classes_file.get() == NULL) {
LOG(ERROR) << "Failed to open image classes file " << image_classes_filename;
return NULL;
}
// Load all the classes specified in the file
ClassLinker* class_linker = runtime_->GetClassLinker();
while (image_classes_file->good()) {
std::string dot;
std::getline(*image_classes_file.get(), dot);
if (StringPiece(dot).starts_with("#") || dot.empty()) {
continue;
}
std::string descriptor(DotToDescriptor(dot.c_str()));
SirtRef<Class> klass(class_linker->FindSystemClass(descriptor.c_str()));
if (klass.get() == NULL) {
LOG(WARNING) << "Failed to find class " << descriptor;
Thread::Current()->ClearException();
}
}
image_classes_file->close();
// Resolve exception classes referenced by the loaded classes. The catch logic assumes
// exceptions are resolved by the verifier when there is a catch block in an interested method.
// Do this here so that exception classes appear to have been specified image classes.
std::set<std::pair<uint16_t, const DexFile*> > unresolved_exception_types;
do {
unresolved_exception_types.clear();
class_linker->VisitClasses(ResolveCatchBlockExceptionsClassVisitor,
&unresolved_exception_types);
typedef std::set<std::pair<uint16_t, const DexFile*> >::const_iterator It; // TODO: C++0x auto
for (It it = unresolved_exception_types.begin(),
end = unresolved_exception_types.end();
it != end; ++it) {
uint16_t exception_type_idx = it->first;
const DexFile* dex_file = it->second;
DexCache* dex_cache = class_linker->FindDexCache(*dex_file);
ClassLoader* class_loader = NULL;
SirtRef<Class> klass(class_linker->ResolveType(*dex_file, exception_type_idx, dex_cache,
class_loader));
if (klass.get() == NULL) {
const DexFile::TypeId& type_id = dex_file->GetTypeId(exception_type_idx);
const char* descriptor = dex_file->GetTypeDescriptor(type_id);
LOG(FATAL) << "Failed to resolve class " << descriptor;
}
DCHECK(klass->IsThrowableClass());
}
// Resolving exceptions may load classes that reference more exceptions, iterate until no
// more are found
} while (!unresolved_exception_types.empty());
// We walk the roots looking for classes so that we'll pick up the
// above classes plus any classes them depend on such super
// classes, interfaces, and the required ClassLinker roots.
UniquePtr<std::set<std::string> > image_classes(new std::set<std::string>());
class_linker->VisitClasses(RecordImageClassesVisitor, image_classes.get());
CHECK_NE(image_classes->size(), 0U);
return image_classes.release();
}
bool CreateOatFile(const std::string& boot_image_option,
const std::vector<const char*>& dex_filenames,
const std::string& host_prefix,
File* oat_file,
bool image,
const std::set<std::string>* image_classes) {
// SirtRef and ClassLoader creation needs to come after Runtime::Create
UniquePtr<SirtRef<ClassLoader> > class_loader(new SirtRef<ClassLoader>(NULL));
if (class_loader.get() == NULL) {
LOG(ERROR) << "Failed to create SirtRef for class loader";
return false;
}
std::vector<const DexFile*> dex_files;
if (!boot_image_option.empty()) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
DexFile::OpenDexFiles(dex_filenames, dex_files, host_prefix);
std::vector<const DexFile*> class_path_files(dex_files);
OpenClassPathFiles(runtime_->GetClassPath(), class_path_files);
for (size_t i = 0; i < class_path_files.size(); i++) {
class_linker->RegisterDexFile(*class_path_files[i]);
}
class_loader.get()->reset(PathClassLoader::AllocCompileTime(class_path_files));
} else {
dex_files = runtime_->GetClassLinker()->GetBootClassPath();
}
Compiler compiler(instruction_set_, image, image_classes);
compiler.CompileAll(class_loader->get(), dex_files);
if (!OatWriter::Create(oat_file, class_loader->get(), compiler)) {
LOG(ERROR) << "Failed to create oat file " << oat_file->name();
return false;
}
return true;
}
bool CreateImageFile(const char* image_filename,
uintptr_t image_base,
const std::set<std::string>* image_classes,
const std::string& oat_filename,
const std::string& host_prefix) {
// If we have an existing boot image, position new space after its oat file
if (Heap::GetSpaces().size() > 1) {
Space* last_image_space = Heap::GetSpaces()[Heap::GetSpaces().size()-2];
CHECK(last_image_space != NULL);
CHECK(last_image_space->IsImageSpace());
CHECK(!Heap::GetSpaces()[Heap::GetSpaces().size()-1]->IsImageSpace());
byte* oat_limit_addr = last_image_space->GetImageHeader().GetOatLimitAddr();
image_base = RoundUp(reinterpret_cast<uintptr_t>(oat_limit_addr), kPageSize);
}
ImageWriter image_writer(image_classes);
if (!image_writer.Write(image_filename, image_base, oat_filename, host_prefix)) {
LOG(ERROR) << "Failed to create image file " << image_filename;
return false;
}
return true;
}
private:
Dex2Oat(Runtime* runtime) : runtime_(runtime) {}
static Runtime* CreateRuntime(Runtime::Options& options) {
Runtime* runtime = Runtime::Create(options, false);
if (runtime == NULL) {
LOG(ERROR) << "Failed to create runtime";
return NULL;
}
// if we loaded an existing image, we will reuse values from the image roots.
if (!runtime->HasJniDlsymLookupStub()) {
runtime->SetJniDlsymLookupStub(Compiler::CreateJniDlysmLookupStub(instruction_set_));
}
if (!runtime->HasAbstractMethodErrorStubArray()) {
runtime->SetAbstractMethodErrorStubArray(Compiler::CreateAbstractMethodErrorStub(instruction_set_));
}
for (int i = 0; i < Runtime::kLastTrampolineMethodType; i++) {
Runtime::TrampolineType type = Runtime::TrampolineType(i);
if (!runtime->HasResolutionStubArray(type)) {
runtime->SetResolutionStubArray(Compiler::CreateResolutionStub(instruction_set_, type), type);
}
}
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
if (!runtime->HasCalleeSaveMethod(type)) {
runtime->SetCalleeSaveMethod(runtime->CreateCalleeSaveMethod(instruction_set_, type), type);
}
}
return runtime;
}
static void ResolveExceptionsForMethod(MethodHelper* mh,
std::set<std::pair<uint16_t, const DexFile*> >& exceptions_to_resolve) {
const DexFile::CodeItem* code_item = mh->GetCodeItem();
if (code_item == NULL) {
return; // native or abstract method
}
if (code_item->tries_size_ == 0) {
return; // nothing to process
}
const byte* encoded_catch_handler_list = DexFile::GetCatchHandlerData(*code_item, 0);
size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list);
for (size_t i = 0; i < num_encoded_catch_handlers; i++) {
int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list);
bool has_catch_all = false;
if (encoded_catch_handler_size <= 0) {
encoded_catch_handler_size = -encoded_catch_handler_size;
has_catch_all = true;
}
for (int32_t j = 0; j < encoded_catch_handler_size; j++) {
uint16_t encoded_catch_handler_handlers_type_idx =
DecodeUnsignedLeb128(&encoded_catch_handler_list);
// Add to set of types to resolve if not already in the dex cache resolved types
if (!mh->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) {
exceptions_to_resolve.insert(
std::pair<uint16_t, const DexFile*>(encoded_catch_handler_handlers_type_idx,
&mh->GetDexFile()));
}
// ignore address associated with catch handler
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
if (has_catch_all) {
// ignore catch all address
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
}
}
static bool ResolveCatchBlockExceptionsClassVisitor(Class* c, void* arg) {
std::set<std::pair<uint16_t, const DexFile*> >* exceptions_to_resolve =
reinterpret_cast<std::set<std::pair<uint16_t, const DexFile*> >*>(arg);
MethodHelper mh;
for (size_t i = 0; i < c->NumVirtualMethods(); ++i) {
Method* m = c->GetVirtualMethod(i);
mh.ChangeMethod(m);
ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
}
for (size_t i = 0; i < c->NumDirectMethods(); ++i) {
Method* m = c->GetDirectMethod(i);
mh.ChangeMethod(m);
ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
}
return true;
}
static bool RecordImageClassesVisitor(Class* klass, void* arg) {
std::set<std::string>* image_classes = reinterpret_cast<std::set<std::string>*>(arg);
if (klass->IsArrayClass() || klass->IsPrimitive()) {
return true;
}
image_classes->insert(ClassHelper(klass).GetDescriptor());
return true;
}
// Appends to dex_files any elements of class_path that it doesn't already
// contain. This will open those dex files as necessary.
static void OpenClassPathFiles(const std::string& class_path, std::vector<const DexFile*>& dex_files) {
std::vector<std::string> parsed;
Split(class_path, ':', parsed);
for (size_t i = 0; i < parsed.size(); ++i) {
if (DexFilesContains(dex_files, parsed[i])) {
continue;
}
const DexFile* dex_file = DexFile::Open(parsed[i], Runtime::Current()->GetHostPrefix());
if (dex_file == NULL) {
LOG(WARNING) << "Failed to open dex file " << parsed[i];
} else {
dex_files.push_back(dex_file);
}
}
}
// Returns true if dex_files has a dex with the named location.
static bool DexFilesContains(const std::vector<const DexFile*>& dex_files, const std::string& location) {
for (size_t i = 0; i < dex_files.size(); ++i) {
if (dex_files[i]->GetLocation() == location) {
return true;
}
}
return false;
}
Runtime* runtime_;
static const InstructionSet instruction_set_ = kThumb2;
DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat);
};
int dex2oat(int argc, char** argv) {
// Skip over argv[0].
argv++;
argc--;
if (argc == 0) {
fprintf(stderr, "no arguments specified\n");
usage();
}
std::vector<const char*> dex_filenames;
std::string oat_filename;
const char* image_filename = NULL;
const char* image_classes_filename = NULL;
std::string boot_image_filename;
uintptr_t image_base = 0;
std::string host_prefix;
std::vector<const char*> runtime_args;
for (int i = 0; i < argc; i++) {
const StringPiece option(argv[i]);
if (false) {
LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
}
if (option.starts_with("--dex-file=")) {
dex_filenames.push_back(option.substr(strlen("--dex-file=")).data());
} else if (option.starts_with("--oat=")) {
oat_filename = option.substr(strlen("--oat=")).data();
} else if (option.starts_with("--image=")) {
image_filename = option.substr(strlen("--image=")).data();
} else if (option.starts_with("--image-classes=")) {
image_classes_filename = option.substr(strlen("--image-classes=")).data();
} else if (option.starts_with("--base=")) {
const char* image_base_str = option.substr(strlen("--base=")).data();
char* end;
image_base = strtoul(image_base_str, &end, 16);
if (end == image_base_str || *end != '\0') {
fprintf(stderr, "Failed to parse hexadecimal value for option %s\n", option.data());
usage();
}
} else if (option.starts_with("--boot-image=")) {
boot_image_filename = option.substr(strlen("--boot-image=")).data();
} else if (option.starts_with("--host-prefix=")) {
host_prefix = option.substr(strlen("--host-prefix=")).data();
} else if (option == "--runtime-arg") {
if (++i >= argc) {
fprintf(stderr, "Missing required argument for --runtime-arg\n");
usage();
}
runtime_args.push_back(argv[i]);
} else {
fprintf(stderr, "unknown argument %s\n", option.data());
usage();
}
}
if (oat_filename.empty()) {
fprintf(stderr, "--oat file name not specified\n");
return EXIT_FAILURE;
}
if (host_prefix.empty()) {
const char* android_product_out = getenv("ANDROID_PRODUCT_OUT");
if (android_product_out != NULL) {
host_prefix = android_product_out;
}
}
bool image = (image_filename != NULL);
if (!image && boot_image_filename.empty()) {
boot_image_filename += host_prefix;
boot_image_filename += "/data/art-cache/boot.art";
}
std::string boot_image_option;
if (boot_image_filename != NULL) {
boot_image_option += "-Ximage:";
boot_image_option += boot_image_filename;
}
if (image_classes_filename != NULL && !image) {
fprintf(stderr, "--image-classes should only be used with --image\n");
return EXIT_FAILURE;
}
if (image_classes_filename != NULL && !boot_image_option.empty()) {
fprintf(stderr, "--image-classes should not be used with --boot-image\n");
return EXIT_FAILURE;
}
if (boot_image_option.empty()) {
if (image_base == 0) {
fprintf(stderr, "non-zero --base not specified\n");
return EXIT_FAILURE;
}
}
// Check early that the result of compilation can be written
UniquePtr<File> oat_file(OS::OpenFile(oat_filename.c_str(), true));
if (oat_file.get() == NULL) {
PLOG(ERROR) << "Unable to create oat file " << oat_filename;
return EXIT_FAILURE;
}
LOG(INFO) << "dex2oat: " << oat_filename;
Runtime::Options options;
options.push_back(std::make_pair("compiler", reinterpret_cast<void*>(NULL)));
std::string boot_class_path_string;
if (boot_image_option.empty()) {
boot_class_path_string += "-Xbootclasspath:";
for (size_t i = 0; i < dex_filenames.size()-1; i++) {
boot_class_path_string += dex_filenames[i];
boot_class_path_string += ":";
}
boot_class_path_string += dex_filenames[dex_filenames.size()-1];
options.push_back(std::make_pair(boot_class_path_string.c_str(), reinterpret_cast<void*>(NULL)));
} else {
options.push_back(std::make_pair(boot_image_option.c_str(), reinterpret_cast<void*>(NULL)));
}
if (!host_prefix.empty()) {
options.push_back(std::make_pair("host-prefix", host_prefix.c_str()));
}
for (size_t i = 0; i < runtime_args.size(); i++) {
options.push_back(std::make_pair(runtime_args[i], reinterpret_cast<void*>(NULL)));
}
UniquePtr<Dex2Oat> dex2oat(Dex2Oat::Create(options));
// If --image-classes was specified, calculate the full list classes to include in the image
UniquePtr<const std::set<std::string> > image_classes(NULL);
if (image_classes_filename != NULL) {
image_classes.reset(dex2oat->GetImageClassDescriptors(image_classes_filename));
if (image_classes.get() == NULL) {
LOG(ERROR) << "Failed to create list of image classes from " << image_classes_filename;
return EXIT_FAILURE;
}
}
if (!dex2oat->CreateOatFile(boot_image_option,
dex_filenames,
host_prefix,
oat_file.get(),
image,
image_classes.get())) {
LOG(ERROR) << "Failed to create oat file" << oat_filename;
return EXIT_FAILURE;
}
if (!image) {
LOG(INFO) << "Oat file written successfully " << oat_filename;
return EXIT_SUCCESS;
}
if (!dex2oat->CreateImageFile(image_filename,
image_base,
image_classes.get(),
oat_filename,
host_prefix)) {
return EXIT_FAILURE;
}
// We wrote the oat file successfully, and want to keep it.
LOG(INFO) << "Oat file written successfully " << oat_filename;
LOG(INFO) << "Image written successfully " << image_filename;
return EXIT_SUCCESS;
}
} // namespace art
int main(int argc, char** argv) {
return art::dex2oat(argc, argv);
}