| // Copyright 2011 Google Inc. All Rights Reserved. |
| |
| #include "heap.h" |
| |
| #include <vector> |
| |
| #include "UniquePtr.h" |
| #include "image.h" |
| #include "mark_sweep.h" |
| #include "object.h" |
| #include "space.h" |
| #include "stl_util.h" |
| |
| namespace art { |
| |
| std::vector<Space*> Heap::spaces_; |
| |
| Space* Heap::boot_space_ = NULL; |
| |
| Space* Heap::alloc_space_ = NULL; |
| |
| size_t Heap::maximum_size_ = 0; |
| |
| size_t Heap::num_bytes_allocated_ = 0; |
| |
| size_t Heap::num_objects_allocated_ = 0; |
| |
| bool Heap::is_gc_running_ = false; |
| |
| HeapBitmap* Heap::mark_bitmap_ = NULL; |
| |
| HeapBitmap* Heap::live_bitmap_ = NULL; |
| |
| MemberOffset Heap::reference_referent_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_queue_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_queueNext_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_pendingNext_offset_ = MemberOffset(0); |
| MemberOffset Heap::finalizer_reference_zombie_offset_ = MemberOffset(0); |
| |
| bool Heap::Init(size_t initial_size, size_t maximum_size, const char* boot_image_file_name) { |
| Space* boot_space; |
| byte* requested_base; |
| if (boot_image_file_name == NULL) { |
| boot_space = NULL; |
| requested_base = NULL; |
| } else { |
| boot_space = Space::Create(boot_image_file_name); |
| if (boot_space == NULL) { |
| return false; |
| } |
| spaces_.push_back(boot_space); |
| requested_base = boot_space->GetBase() + RoundUp(boot_space->Size(), kPageSize); |
| } |
| |
| Space* space = Space::Create(initial_size, maximum_size, requested_base); |
| if (space == NULL) { |
| return false; |
| } |
| |
| if (boot_space == NULL) { |
| boot_space = space; |
| } |
| byte* base = std::min(boot_space->GetBase(), space->GetBase()); |
| byte* limit = std::max(boot_space->GetLimit(), space->GetLimit()); |
| DCHECK_LT(base, limit); |
| size_t num_bytes = limit - base; |
| |
| // Allocate the initial live bitmap. |
| UniquePtr<HeapBitmap> live_bitmap(HeapBitmap::Create(base, num_bytes)); |
| if (live_bitmap.get() == NULL) { |
| return false; |
| } |
| |
| // Allocate the initial mark bitmap. |
| UniquePtr<HeapBitmap> mark_bitmap(HeapBitmap::Create(base, num_bytes)); |
| if (mark_bitmap.get() == NULL) { |
| return false; |
| } |
| |
| alloc_space_ = space; |
| spaces_.push_back(space); |
| maximum_size_ = maximum_size; |
| live_bitmap_ = live_bitmap.release(); |
| mark_bitmap_ = mark_bitmap.release(); |
| |
| num_bytes_allocated_ = 0; |
| num_objects_allocated_ = 0; |
| |
| // TODO: allocate the card table |
| |
| // Make objects in boot_space live (after live_bitmap_ is set) |
| if (boot_image_file_name != NULL) { |
| boot_space_ = boot_space; |
| RecordImageAllocations(boot_space); |
| } |
| |
| return true; |
| } |
| |
| void Heap::Destroy() { |
| STLDeleteElements(&spaces_); |
| if (mark_bitmap_ != NULL) { |
| delete mark_bitmap_; |
| mark_bitmap_ = NULL; |
| } |
| if (live_bitmap_ != NULL) { |
| delete live_bitmap_; |
| } |
| live_bitmap_ = NULL; |
| } |
| |
| Object* Heap::AllocObject(Class* klass, size_t num_bytes) { |
| DCHECK(klass == NULL |
| || klass->GetDescriptor() == NULL |
| || (klass->IsClassClass() && num_bytes >= sizeof(Class)) |
| || (klass->IsVariableSize() || klass->GetObjectSize() == num_bytes)); |
| DCHECK(num_bytes >= sizeof(Object)); |
| Object* obj = Allocate(num_bytes); |
| if (obj != NULL) { |
| obj->SetClass(klass); |
| } |
| return obj; |
| } |
| |
| bool Heap::IsHeapAddress(const Object* obj) { |
| if (!IsAligned(obj, kObjectAlignment)) { |
| return false; |
| } |
| // TODO |
| return true; |
| } |
| |
| bool Heap::verify_object_disabled_; |
| |
| #if VERIFY_OBJECT_ENABLED |
| void Heap::VerifyObject(const Object* obj) { |
| if (obj != NULL && !verify_object_disabled_) { |
| if (!IsAligned(obj, kObjectAlignment)) { |
| LOG(FATAL) << "Object isn't aligned: " << obj; |
| } else if (!live_bitmap_->Test(obj)) { |
| // TODO: we don't hold a lock here as it is assumed the live bit map |
| // isn't changing if the mutator is running. |
| LOG(FATAL) << "Object is dead: " << obj; |
| } |
| // Ignore early dawn of the universe verifications |
| if(num_objects_allocated_ > 10) { |
| const byte* raw_addr = reinterpret_cast<const byte*>(obj) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c = *reinterpret_cast<Class* const *>(raw_addr); |
| if (c == NULL) { |
| LOG(FATAL) << "Null class" << " in object: " << obj; |
| } else if (!IsAligned(c, kObjectAlignment)) { |
| LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj; |
| } else if (!live_bitmap_->Test(c)) { |
| LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj; |
| } |
| // Check obj.getClass().getClass() == obj.getClass().getClass().getClass() |
| // NB we don't use the accessors here as they have internal sanity checks |
| // that we don't want to run |
| raw_addr = reinterpret_cast<const byte*>(c) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| raw_addr = reinterpret_cast<const byte*>(c_c) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| CHECK_EQ(c_c, c_c_c); |
| } |
| } |
| } |
| #endif |
| |
| static void HeapVerifyCallback(Object* obj, void *arg) { |
| DCHECK(obj != NULL); |
| Heap::VerifyObject(obj); |
| } |
| |
| void Heap::VerifyHeap() { |
| live_bitmap_->Walk(HeapVerifyCallback, NULL); |
| } |
| |
| void Heap::RecordAllocation(Space* space, const Object* obj) { |
| size_t size = space->AllocationSize(obj); |
| DCHECK_NE(size, 0u); |
| num_bytes_allocated_ += size; |
| num_objects_allocated_ += 1; |
| live_bitmap_->Set(obj); |
| } |
| |
| void Heap::RecordFree(Space* space, const Object* obj) { |
| size_t size = space->AllocationSize(obj); |
| DCHECK_NE(size, 0u); |
| if (size < num_bytes_allocated_) { |
| num_bytes_allocated_ -= size; |
| } else { |
| num_bytes_allocated_ = 0; |
| } |
| live_bitmap_->Clear(obj); |
| if (num_objects_allocated_ > 0) { |
| num_objects_allocated_ -= 1; |
| } |
| } |
| |
| void Heap::RecordImageAllocations(Space* space) { |
| CHECK(space != NULL); |
| CHECK(live_bitmap_ != NULL); |
| byte* current = space->GetBase() + RoundUp(sizeof(ImageHeader), kObjectAlignment); |
| while (current < space->GetLimit()) { |
| DCHECK(IsAligned(current, kObjectAlignment)); |
| const Object* obj = reinterpret_cast<const Object*>(current); |
| live_bitmap_->Set(obj); |
| current += RoundUp(obj->SizeOf(), kObjectAlignment); |
| } |
| } |
| |
| Object* Heap::Allocate(size_t size) { |
| DCHECK(alloc_space_ != NULL); |
| Space* space = alloc_space_; |
| Object* obj = Allocate(space, size); |
| if (obj != NULL) { |
| RecordAllocation(space, obj); |
| } |
| return obj; |
| } |
| |
| Object* Heap::Allocate(Space* space, size_t size) { |
| // Fail impossible allocations. TODO: collect soft references. |
| if (size > maximum_size_) { |
| return NULL; |
| } |
| |
| Object* ptr = space->AllocWithoutGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // The allocation failed. If the GC is running, block until it |
| // completes and retry. |
| if (is_gc_running_) { |
| // The GC is concurrently tracing the heap. Release the heap |
| // lock, wait for the GC to complete, and retrying allocating. |
| WaitForConcurrentGcToComplete(); |
| ptr = space->AllocWithoutGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| } |
| |
| // Another failure. Our thread was starved or there may be too many |
| // live objects. Try a foreground GC. This will have no effect if |
| // the concurrent GC is already running. |
| CollectGarbageInternal(); |
| ptr = space->AllocWithoutGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // Even that didn't work; this is an exceptional state. |
| // Try harder, growing the heap if necessary. |
| ptr = space->AllocWithGrowth(size); |
| if (ptr != NULL) { |
| //size_t new_footprint = dvmHeapSourceGetIdealFootprint(); |
| size_t new_footprint = space->MaxAllowedFootprint(); |
| // TODO: may want to grow a little bit more so that the amount of |
| // free space is equal to the old free space + the |
| // utilization slop for the new allocation. |
| LOG(INFO) << "Grow heap (frag case) to " << new_footprint / MB |
| << "for " << size << "-byte allocation"; |
| return ptr; |
| } |
| |
| // Most allocations should have succeeded by now, so the heap is |
| // really full, really fragmented, or the requested size is really |
| // big. Do another GC, collecting SoftReferences this time. The VM |
| // spec requires that all SoftReferences have been collected and |
| // cleared before throwing an OOME. |
| |
| // TODO: wait for the finalizers from the previous GC to finish |
| LOG(INFO) << "Forcing collection of SoftReferences for " |
| << size << "-byte allocation"; |
| CollectGarbageInternal(); |
| ptr = space->AllocWithGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| LOG(ERROR) << "Out of memory on a " << size << " byte allocation"; |
| |
| // TODO: tell the HeapSource to dump its state |
| // TODO: dump stack traces for all threads |
| |
| return NULL; |
| } |
| |
| int64_t Heap::GetMaxMemory() { |
| UNIMPLEMENTED(WARNING); |
| return 0; |
| } |
| |
| int64_t Heap::GetTotalMemory() { |
| UNIMPLEMENTED(WARNING); |
| return 0; |
| } |
| |
| int64_t Heap::GetFreeMemory() { |
| UNIMPLEMENTED(WARNING); |
| return 0; |
| } |
| |
| void Heap::CollectGarbage() { |
| CollectGarbageInternal(); |
| } |
| |
| void Heap::CollectGarbageInternal() { |
| // TODO: check that heap lock is held |
| |
| // TODO: Suspend all threads |
| { |
| MarkSweep mark_sweep; |
| |
| mark_sweep.Init(); |
| |
| mark_sweep.MarkRoots(); |
| |
| // Push marked roots onto the mark stack |
| |
| // TODO: if concurrent |
| // unlock heap |
| // resume threads |
| |
| mark_sweep.RecursiveMark(); |
| |
| // TODO: if concurrent |
| // lock heap |
| // suspend threads |
| // re-mark root set |
| // scan dirty objects |
| |
| mark_sweep.ProcessReferences(false); |
| |
| // TODO: swap bitmaps |
| |
| mark_sweep.Sweep(); |
| } |
| |
| GrowForUtilization(); |
| |
| // TODO: Resume all threads |
| } |
| |
| void Heap::WaitForConcurrentGcToComplete() { |
| } |
| |
| // Given the current contents of the active heap, increase the allowed |
| // heap footprint to match the target utilization ratio. This should |
| // only be called immediately after a full garbage collection. |
| void Heap::GrowForUtilization() { |
| UNIMPLEMENTED(ERROR); |
| } |
| |
| } // namespace art |