| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "assembler_mips.h" |
| |
| #include "base/bit_utils.h" |
| #include "base/casts.h" |
| #include "base/memory_region.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "thread.h" |
| |
| namespace art { |
| namespace mips { |
| |
| static_assert(static_cast<size_t>(kMipsPointerSize) == kMipsWordSize, |
| "Unexpected Mips pointer size."); |
| static_assert(kMipsPointerSize == PointerSize::k32, "Unexpected Mips pointer size."); |
| |
| |
| std::ostream& operator<<(std::ostream& os, const DRegister& rhs) { |
| if (rhs >= D0 && rhs < kNumberOfDRegisters) { |
| os << "d" << static_cast<int>(rhs); |
| } else { |
| os << "DRegister[" << static_cast<int>(rhs) << "]"; |
| } |
| return os; |
| } |
| |
| MipsAssembler::DelaySlot::DelaySlot() |
| : instruction_(0), |
| patcher_label_(nullptr) {} |
| |
| InOutRegMasks& MipsAssembler::DsFsmInstr(uint32_t instruction, MipsLabel* patcher_label) { |
| if (!reordering_) { |
| CHECK_EQ(ds_fsm_state_, kExpectingLabel); |
| CHECK_EQ(delay_slot_.instruction_, 0u); |
| return delay_slot_.masks_; |
| } |
| switch (ds_fsm_state_) { |
| case kExpectingLabel: |
| break; |
| case kExpectingInstruction: |
| CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size()); |
| // If the last instruction is not suitable for delay slots, drop |
| // the PC of the label preceding it so that no unconditional branch |
| // uses this instruction to fill its delay slot. |
| if (instruction == 0) { |
| DsFsmDropLabel(); // Sets ds_fsm_state_ = kExpectingLabel. |
| } else { |
| // Otherwise wait for another instruction or label before we can |
| // commit the label PC. The label PC will be dropped if instead |
| // of another instruction or label there's a call from the code |
| // generator to CodePosition() to record the buffer size. |
| // Instructions after which the buffer size is recorded cannot |
| // be moved into delay slots or anywhere else because they may |
| // trigger signals and the signal handlers expect these signals |
| // to be coming from the instructions immediately preceding the |
| // recorded buffer locations. |
| ds_fsm_state_ = kExpectingCommit; |
| } |
| break; |
| case kExpectingCommit: |
| CHECK_EQ(ds_fsm_target_pc_ + 2 * sizeof(uint32_t), buffer_.Size()); |
| DsFsmCommitLabel(); // Sets ds_fsm_state_ = kExpectingLabel. |
| break; |
| } |
| delay_slot_.instruction_ = instruction; |
| delay_slot_.masks_ = InOutRegMasks(); |
| delay_slot_.patcher_label_ = patcher_label; |
| return delay_slot_.masks_; |
| } |
| |
| void MipsAssembler::DsFsmLabel() { |
| if (!reordering_) { |
| CHECK_EQ(ds_fsm_state_, kExpectingLabel); |
| CHECK_EQ(delay_slot_.instruction_, 0u); |
| return; |
| } |
| switch (ds_fsm_state_) { |
| case kExpectingLabel: |
| ds_fsm_target_pc_ = buffer_.Size(); |
| ds_fsm_state_ = kExpectingInstruction; |
| break; |
| case kExpectingInstruction: |
| // Allow consecutive labels. |
| CHECK_EQ(ds_fsm_target_pc_, buffer_.Size()); |
| break; |
| case kExpectingCommit: |
| CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size()); |
| DsFsmCommitLabel(); |
| ds_fsm_target_pc_ = buffer_.Size(); |
| ds_fsm_state_ = kExpectingInstruction; |
| break; |
| } |
| // We cannot move instructions into delay slots across labels. |
| delay_slot_.instruction_ = 0; |
| } |
| |
| void MipsAssembler::DsFsmCommitLabel() { |
| if (ds_fsm_state_ == kExpectingCommit) { |
| ds_fsm_target_pcs_.emplace_back(ds_fsm_target_pc_); |
| } |
| ds_fsm_state_ = kExpectingLabel; |
| } |
| |
| void MipsAssembler::DsFsmDropLabel() { |
| ds_fsm_state_ = kExpectingLabel; |
| } |
| |
| bool MipsAssembler::SetReorder(bool enable) { |
| bool last_state = reordering_; |
| if (last_state != enable) { |
| DsFsmCommitLabel(); |
| DsFsmInstrNop(0); |
| } |
| reordering_ = enable; |
| return last_state; |
| } |
| |
| size_t MipsAssembler::CodePosition() { |
| // The last instruction cannot be used in a delay slot, do not commit |
| // the label before it (if any) and clear the delay slot. |
| DsFsmDropLabel(); |
| DsFsmInstrNop(0); |
| size_t size = buffer_.Size(); |
| // In theory we can get the following sequence: |
| // label1: |
| // instr |
| // label2: # label1 gets committed when label2 is seen |
| // CodePosition() call |
| // and we need to uncommit label1. |
| if (ds_fsm_target_pcs_.size() != 0 && ds_fsm_target_pcs_.back() + sizeof(uint32_t) == size) { |
| ds_fsm_target_pcs_.pop_back(); |
| } |
| return size; |
| } |
| |
| void MipsAssembler::DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED) { |
| DsFsmInstr(0); |
| } |
| |
| void MipsAssembler::FinalizeCode() { |
| for (auto& exception_block : exception_blocks_) { |
| EmitExceptionPoll(&exception_block); |
| } |
| // Commit the last branch target label (if any) and disable instruction reordering. |
| DsFsmCommitLabel(); |
| SetReorder(false); |
| EmitLiterals(); |
| ReserveJumpTableSpace(); |
| PromoteBranches(); |
| } |
| |
| void MipsAssembler::FinalizeInstructions(const MemoryRegion& region) { |
| size_t number_of_delayed_adjust_pcs = cfi().NumberOfDelayedAdvancePCs(); |
| EmitBranches(); |
| EmitJumpTables(); |
| Assembler::FinalizeInstructions(region); |
| PatchCFI(number_of_delayed_adjust_pcs); |
| } |
| |
| void MipsAssembler::PatchCFI(size_t number_of_delayed_adjust_pcs) { |
| if (cfi().NumberOfDelayedAdvancePCs() == 0u) { |
| DCHECK_EQ(number_of_delayed_adjust_pcs, 0u); |
| return; |
| } |
| |
| using DelayedAdvancePC = DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC; |
| const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC(); |
| const std::vector<uint8_t>& old_stream = data.first; |
| const std::vector<DelayedAdvancePC>& advances = data.second; |
| |
| // PCs recorded before EmitBranches() need to be adjusted. |
| // PCs recorded during EmitBranches() are already adjusted. |
| // Both ranges are separately sorted but they may overlap. |
| if (kIsDebugBuild) { |
| auto cmp = [](const DelayedAdvancePC& lhs, const DelayedAdvancePC& rhs) { |
| return lhs.pc < rhs.pc; |
| }; |
| CHECK(std::is_sorted(advances.begin(), advances.begin() + number_of_delayed_adjust_pcs, cmp)); |
| CHECK(std::is_sorted(advances.begin() + number_of_delayed_adjust_pcs, advances.end(), cmp)); |
| } |
| |
| // Append initial CFI data if any. |
| size_t size = advances.size(); |
| DCHECK_NE(size, 0u); |
| cfi().AppendRawData(old_stream, 0u, advances[0].stream_pos); |
| // Emit PC adjustments interleaved with the old CFI stream. |
| size_t adjust_pos = 0u; |
| size_t late_emit_pos = number_of_delayed_adjust_pcs; |
| while (adjust_pos != number_of_delayed_adjust_pcs || late_emit_pos != size) { |
| size_t adjusted_pc = (adjust_pos != number_of_delayed_adjust_pcs) |
| ? GetAdjustedPosition(advances[adjust_pos].pc) |
| : static_cast<size_t>(-1); |
| size_t late_emit_pc = (late_emit_pos != size) |
| ? advances[late_emit_pos].pc |
| : static_cast<size_t>(-1); |
| size_t advance_pc = std::min(adjusted_pc, late_emit_pc); |
| DCHECK_NE(advance_pc, static_cast<size_t>(-1)); |
| size_t entry = (adjusted_pc <= late_emit_pc) ? adjust_pos : late_emit_pos; |
| if (adjusted_pc <= late_emit_pc) { |
| ++adjust_pos; |
| } else { |
| ++late_emit_pos; |
| } |
| cfi().AdvancePC(advance_pc); |
| size_t end_pos = (entry + 1u == size) ? old_stream.size() : advances[entry + 1u].stream_pos; |
| cfi().AppendRawData(old_stream, advances[entry].stream_pos, end_pos); |
| } |
| } |
| |
| void MipsAssembler::EmitBranches() { |
| CHECK(!overwriting_); |
| CHECK(!reordering_); |
| // Now that everything has its final position in the buffer (the branches have |
| // been promoted), adjust the target label PCs. |
| for (size_t cnt = ds_fsm_target_pcs_.size(), i = 0; i < cnt; i++) { |
| ds_fsm_target_pcs_[i] = GetAdjustedPosition(ds_fsm_target_pcs_[i]); |
| } |
| // Switch from appending instructions at the end of the buffer to overwriting |
| // existing instructions (branch placeholders) in the buffer. |
| overwriting_ = true; |
| for (size_t id = 0; id < branches_.size(); id++) { |
| EmitBranch(id); |
| } |
| overwriting_ = false; |
| } |
| |
| void MipsAssembler::Emit(uint32_t value) { |
| if (overwriting_) { |
| // Branches to labels are emitted into their placeholders here. |
| buffer_.Store<uint32_t>(overwrite_location_, value); |
| overwrite_location_ += sizeof(uint32_t); |
| } else { |
| // Other instructions are simply appended at the end here. |
| AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| buffer_.Emit<uint32_t>(value); |
| } |
| } |
| |
| uint32_t MipsAssembler::EmitR(int opcode, |
| Register rs, |
| Register rt, |
| Register rd, |
| int shamt, |
| int funct) { |
| CHECK_NE(rs, kNoRegister); |
| CHECK_NE(rt, kNoRegister); |
| CHECK_NE(rd, kNoRegister); |
| uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | |
| static_cast<uint32_t>(rs) << kRsShift | |
| static_cast<uint32_t>(rt) << kRtShift | |
| static_cast<uint32_t>(rd) << kRdShift | |
| shamt << kShamtShift | |
| funct; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) { |
| CHECK_NE(rs, kNoRegister); |
| CHECK_NE(rt, kNoRegister); |
| uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | |
| static_cast<uint32_t>(rs) << kRsShift | |
| static_cast<uint32_t>(rt) << kRtShift | |
| imm; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitI21(int opcode, Register rs, uint32_t imm21) { |
| CHECK_NE(rs, kNoRegister); |
| CHECK(IsUint<21>(imm21)) << imm21; |
| uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | |
| static_cast<uint32_t>(rs) << kRsShift | |
| imm21; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitI26(int opcode, uint32_t imm26) { |
| CHECK(IsUint<26>(imm26)) << imm26; |
| uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitFR(int opcode, |
| int fmt, |
| FRegister ft, |
| FRegister fs, |
| FRegister fd, |
| int funct) { |
| CHECK_NE(ft, kNoFRegister); |
| CHECK_NE(fs, kNoFRegister); |
| CHECK_NE(fd, kNoFRegister); |
| uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | |
| fmt << kFmtShift | |
| static_cast<uint32_t>(ft) << kFtShift | |
| static_cast<uint32_t>(fs) << kFsShift | |
| static_cast<uint32_t>(fd) << kFdShift | |
| funct; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitFI(int opcode, int fmt, FRegister ft, uint16_t imm) { |
| CHECK_NE(ft, kNoFRegister); |
| uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | |
| fmt << kFmtShift | |
| static_cast<uint32_t>(ft) << kFtShift | |
| imm; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitMsa3R(int operation, |
| int df, |
| VectorRegister wt, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode) { |
| CHECK_NE(wt, kNoVectorRegister); |
| CHECK_NE(ws, kNoVectorRegister); |
| CHECK_NE(wd, kNoVectorRegister); |
| uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | |
| operation << kMsaOperationShift | |
| df << kDfShift | |
| static_cast<uint32_t>(wt) << kWtShift | |
| static_cast<uint32_t>(ws) << kWsShift | |
| static_cast<uint32_t>(wd) << kWdShift | |
| minor_opcode; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitMsaBIT(int operation, |
| int df_m, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode) { |
| CHECK_NE(ws, kNoVectorRegister); |
| CHECK_NE(wd, kNoVectorRegister); |
| uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | |
| operation << kMsaOperationShift | |
| df_m << kDfMShift | |
| static_cast<uint32_t>(ws) << kWsShift | |
| static_cast<uint32_t>(wd) << kWdShift | |
| minor_opcode; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitMsaELM(int operation, |
| int df_n, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode) { |
| CHECK_NE(ws, kNoVectorRegister); |
| CHECK_NE(wd, kNoVectorRegister); |
| uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | |
| operation << kMsaELMOperationShift | |
| df_n << kDfNShift | |
| static_cast<uint32_t>(ws) << kWsShift | |
| static_cast<uint32_t>(wd) << kWdShift | |
| minor_opcode; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitMsaMI10(int s10, |
| Register rs, |
| VectorRegister wd, |
| int minor_opcode, |
| int df) { |
| CHECK_NE(rs, kNoRegister); |
| CHECK_NE(wd, kNoVectorRegister); |
| CHECK(IsUint<10>(s10)) << s10; |
| uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | |
| s10 << kS10Shift | |
| static_cast<uint32_t>(rs) << kWsShift | |
| static_cast<uint32_t>(wd) << kWdShift | |
| minor_opcode << kS10MinorShift | |
| df; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitMsaI10(int operation, |
| int df, |
| int i10, |
| VectorRegister wd, |
| int minor_opcode) { |
| CHECK_NE(wd, kNoVectorRegister); |
| CHECK(IsUint<10>(i10)) << i10; |
| uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | |
| operation << kMsaOperationShift | |
| df << kDfShift | |
| i10 << kI10Shift | |
| static_cast<uint32_t>(wd) << kWdShift | |
| minor_opcode; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitMsa2R(int operation, |
| int df, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode) { |
| CHECK_NE(ws, kNoVectorRegister); |
| CHECK_NE(wd, kNoVectorRegister); |
| uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | |
| operation << kMsa2ROperationShift | |
| df << kDf2RShift | |
| static_cast<uint32_t>(ws) << kWsShift | |
| static_cast<uint32_t>(wd) << kWdShift | |
| minor_opcode; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| uint32_t MipsAssembler::EmitMsa2RF(int operation, |
| int df, |
| VectorRegister ws, |
| VectorRegister wd, |
| int minor_opcode) { |
| CHECK_NE(ws, kNoVectorRegister); |
| CHECK_NE(wd, kNoVectorRegister); |
| uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | |
| operation << kMsa2RFOperationShift | |
| df << kDf2RShift | |
| static_cast<uint32_t>(ws) << kWsShift | |
| static_cast<uint32_t>(wd) << kWdShift | |
| minor_opcode; |
| Emit(encoding); |
| return encoding; |
| } |
| |
| void MipsAssembler::Addu(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x21)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) { |
| if (patcher_label != nullptr) { |
| Bind(patcher_label); |
| } |
| DsFsmInstr(EmitI(0x9, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) { |
| Addiu(rt, rs, imm16, /* patcher_label */ nullptr); |
| } |
| |
| void MipsAssembler::Subu(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x23)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::MultR2(Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x18)).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::MultuR2(Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x19)).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::DivR2(Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1a)).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::DivuR2(Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1b)).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::MulR2(Register rd, Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0x1c, rs, rt, rd, 0, 2)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::DivR2(Register rd, Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DivR2(rs, rt); |
| Mflo(rd); |
| } |
| |
| void MipsAssembler::ModR2(Register rd, Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DivR2(rs, rt); |
| Mfhi(rd); |
| } |
| |
| void MipsAssembler::DivuR2(Register rd, Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DivuR2(rs, rt); |
| Mflo(rd); |
| } |
| |
| void MipsAssembler::ModuR2(Register rd, Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DivuR2(rs, rt); |
| Mfhi(rd); |
| } |
| |
| void MipsAssembler::MulR6(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x18)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::MuhR6(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x18)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::MuhuR6(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x19)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::DivR6(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1a)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::ModR6(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1a)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::DivuR6(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1b)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::ModuR6(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1b)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::And(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x24)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0xc, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Or(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x25)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0xd, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Xor(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x26)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0xe, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Nor(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x27)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Movz(Register rd, Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0A)).GprInOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Movn(Register rd, Register rs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0B)).GprInOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Seleqz(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x35)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Selnez(Register rd, Register rs, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x37)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::ClzR6(Register rd, Register rs) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x10)).GprOuts(rd).GprIns(rs); |
| } |
| |
| void MipsAssembler::ClzR2(Register rd, Register rs) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x20)).GprOuts(rd).GprIns(rs); |
| } |
| |
| void MipsAssembler::CloR6(Register rd, Register rs) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x11)).GprOuts(rd).GprIns(rs); |
| } |
| |
| void MipsAssembler::CloR2(Register rd, Register rs) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x21)).GprOuts(rd).GprIns(rs); |
| } |
| |
| void MipsAssembler::Seb(Register rd, Register rt) { |
| DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x10, 0x20)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Seh(Register rd, Register rt) { |
| DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x18, 0x20)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Wsbh(Register rd, Register rt) { |
| DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 2, 0x20)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Bitswap(Register rd, Register rt) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x0, 0x20)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Sll(Register rd, Register rt, int shamt) { |
| CHECK(IsUint<5>(shamt)) << shamt; |
| DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x00)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Srl(Register rd, Register rt, int shamt) { |
| CHECK(IsUint<5>(shamt)) << shamt; |
| DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Rotr(Register rd, Register rt, int shamt) { |
| CHECK(IsUint<5>(shamt)) << shamt; |
| DsFsmInstr(EmitR(0, static_cast<Register>(1), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Sra(Register rd, Register rt, int shamt) { |
| CHECK(IsUint<5>(shamt)) << shamt; |
| DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x03)).GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Sllv(Register rd, Register rt, Register rs) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x04)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Srlv(Register rd, Register rt, Register rs) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x06)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Rotrv(Register rd, Register rt, Register rs) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 1, 0x06)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Srav(Register rd, Register rt, Register rs) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x07)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Ext(Register rd, Register rt, int pos, int size) { |
| CHECK(IsUint<5>(pos)) << pos; |
| CHECK(0 < size && size <= 32) << size; |
| CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size; |
| DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(size - 1), pos, 0x00)) |
| .GprOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Ins(Register rd, Register rt, int pos, int size) { |
| CHECK(IsUint<5>(pos)) << pos; |
| CHECK(0 < size && size <= 32) << size; |
| CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size; |
| DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(pos + size - 1), pos, 0x04)) |
| .GprInOuts(rd).GprIns(rt); |
| } |
| |
| void MipsAssembler::Lsa(Register rd, Register rs, Register rt, int saPlusOne) { |
| CHECK(IsR6() || HasMsa()); |
| CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne; |
| int sa = saPlusOne - 1; |
| DsFsmInstr(EmitR(0x0, rs, rt, rd, sa, 0x05)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::ShiftAndAdd(Register dst, |
| Register src_idx, |
| Register src_base, |
| int shamt, |
| Register tmp) { |
| CHECK(0 <= shamt && shamt <= 4) << shamt; |
| CHECK_NE(src_base, tmp); |
| if (shamt == TIMES_1) { |
| // Catch the special case where the shift amount is zero (0). |
| Addu(dst, src_base, src_idx); |
| } else if (IsR6() || HasMsa()) { |
| Lsa(dst, src_idx, src_base, shamt); |
| } else { |
| Sll(tmp, src_idx, shamt); |
| Addu(dst, src_base, tmp); |
| } |
| } |
| |
| void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x20, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x21, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) { |
| if (patcher_label != nullptr) { |
| Bind(patcher_label); |
| } |
| DsFsmInstr(EmitI(0x23, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) { |
| Lw(rt, rs, imm16, /* patcher_label */ nullptr); |
| } |
| |
| void MipsAssembler::Lwl(Register rt, Register rs, uint16_t imm16) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitI(0x22, rs, rt, imm16)).GprInOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Lwr(Register rt, Register rs, uint16_t imm16) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitI(0x26, rs, rt, imm16)).GprInOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x24, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x25, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Lwpc(Register rs, uint32_t imm19) { |
| CHECK(IsR6()); |
| CHECK(IsUint<19>(imm19)) << imm19; |
| DsFsmInstrNop(EmitI21(0x3B, rs, (0x01 << 19) | imm19)); |
| } |
| |
| void MipsAssembler::Lui(Register rt, uint16_t imm16) { |
| DsFsmInstr(EmitI(0xf, static_cast<Register>(0), rt, imm16)).GprOuts(rt); |
| } |
| |
| void MipsAssembler::Aui(Register rt, Register rs, uint16_t imm16) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitI(0xf, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::AddUpper(Register rt, Register rs, uint16_t imm16, Register tmp) { |
| bool increment = (rs == rt); |
| if (increment) { |
| CHECK_NE(rs, tmp); |
| } |
| if (IsR6()) { |
| Aui(rt, rs, imm16); |
| } else if (increment) { |
| Lui(tmp, imm16); |
| Addu(rt, rs, tmp); |
| } else { |
| Lui(rt, imm16); |
| Addu(rt, rs, rt); |
| } |
| } |
| |
| void MipsAssembler::Sync(uint32_t stype) { |
| DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, stype & 0x1f, 0xf)); |
| } |
| |
| void MipsAssembler::Mfhi(Register rd) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x10)).GprOuts(rd); |
| } |
| |
| void MipsAssembler::Mflo(Register rd) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x12)).GprOuts(rd); |
| } |
| |
| void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x28, rs, rt, imm16)).GprIns(rt, rs); |
| } |
| |
| void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x29, rs, rt, imm16)).GprIns(rt, rs); |
| } |
| |
| void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) { |
| if (patcher_label != nullptr) { |
| Bind(patcher_label); |
| } |
| DsFsmInstr(EmitI(0x2b, rs, rt, imm16), patcher_label).GprIns(rt, rs); |
| } |
| |
| void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) { |
| Sw(rt, rs, imm16, /* patcher_label */ nullptr); |
| } |
| |
| void MipsAssembler::Swl(Register rt, Register rs, uint16_t imm16) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitI(0x2a, rs, rt, imm16)).GprIns(rt, rs); |
| } |
| |
| void MipsAssembler::Swr(Register rt, Register rs, uint16_t imm16) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitI(0x2e, rs, rt, imm16)).GprIns(rt, rs); |
| } |
| |
| void MipsAssembler::LlR2(Register rt, Register base, int16_t imm16) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitI(0x30, base, rt, imm16)).GprOuts(rt).GprIns(base); |
| } |
| |
| void MipsAssembler::ScR2(Register rt, Register base, int16_t imm16) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitI(0x38, base, rt, imm16)).GprInOuts(rt).GprIns(base); |
| } |
| |
| void MipsAssembler::LlR6(Register rt, Register base, int16_t imm9) { |
| CHECK(IsR6()); |
| CHECK(IsInt<9>(imm9)); |
| DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x36)).GprOuts(rt).GprIns(base); |
| } |
| |
| void MipsAssembler::ScR6(Register rt, Register base, int16_t imm9) { |
| CHECK(IsR6()); |
| CHECK(IsInt<9>(imm9)); |
| DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x26)).GprInOuts(rt).GprIns(base); |
| } |
| |
| void MipsAssembler::Slt(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2a)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Sltu(Register rd, Register rs, Register rt) { |
| DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2b)).GprOuts(rd).GprIns(rs, rt); |
| } |
| |
| void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0xa, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0xb, rs, rt, imm16)).GprOuts(rt).GprIns(rs); |
| } |
| |
| void MipsAssembler::B(uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x4, static_cast<Register>(0), static_cast<Register>(0), imm16)); |
| } |
| |
| void MipsAssembler::Bal(uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x11), imm16)); |
| } |
| |
| void MipsAssembler::Beq(Register rs, Register rt, uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x4, rs, rt, imm16)); |
| } |
| |
| void MipsAssembler::Bne(Register rs, Register rt, uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x5, rs, rt, imm16)); |
| } |
| |
| void MipsAssembler::Beqz(Register rt, uint16_t imm16) { |
| Beq(rt, ZERO, imm16); |
| } |
| |
| void MipsAssembler::Bnez(Register rt, uint16_t imm16) { |
| Bne(rt, ZERO, imm16); |
| } |
| |
| void MipsAssembler::Bltz(Register rt, uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0), imm16)); |
| } |
| |
| void MipsAssembler::Bgez(Register rt, uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0x1), imm16)); |
| } |
| |
| void MipsAssembler::Blez(Register rt, uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x6, rt, static_cast<Register>(0), imm16)); |
| } |
| |
| void MipsAssembler::Bgtz(Register rt, uint16_t imm16) { |
| DsFsmInstrNop(EmitI(0x7, rt, static_cast<Register>(0), imm16)); |
| } |
| |
| void MipsAssembler::Bc1f(uint16_t imm16) { |
| Bc1f(0, imm16); |
| } |
| |
| void MipsAssembler::Bc1f(int cc, uint16_t imm16) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstrNop(EmitI(0x11, static_cast<Register>(0x8), static_cast<Register>(cc << 2), imm16)); |
| } |
| |
| void MipsAssembler::Bc1t(uint16_t imm16) { |
| Bc1t(0, imm16); |
| } |
| |
| void MipsAssembler::Bc1t(int cc, uint16_t imm16) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstrNop(EmitI(0x11, |
| static_cast<Register>(0x8), |
| static_cast<Register>((cc << 2) | 1), |
| imm16)); |
| } |
| |
| void MipsAssembler::J(uint32_t addr26) { |
| DsFsmInstrNop(EmitI26(0x2, addr26)); |
| } |
| |
| void MipsAssembler::Jal(uint32_t addr26) { |
| DsFsmInstrNop(EmitI26(0x3, addr26)); |
| } |
| |
| void MipsAssembler::Jalr(Register rd, Register rs) { |
| uint32_t last_instruction = delay_slot_.instruction_; |
| MipsLabel* patcher_label = delay_slot_.patcher_label_; |
| bool exchange = (last_instruction != 0 && |
| (delay_slot_.masks_.gpr_outs_ & (1u << rs)) == 0 && |
| ((delay_slot_.masks_.gpr_ins_ | delay_slot_.masks_.gpr_outs_) & (1u << rd)) == 0); |
| if (exchange) { |
| // The last instruction cannot be used in a different delay slot, |
| // do not commit the label before it (if any). |
| DsFsmDropLabel(); |
| } |
| DsFsmInstrNop(EmitR(0, rs, static_cast<Register>(0), rd, 0, 0x09)); |
| if (exchange) { |
| // Exchange the last two instructions in the assembler buffer. |
| size_t size = buffer_.Size(); |
| CHECK_GE(size, 2 * sizeof(uint32_t)); |
| size_t pos1 = size - 2 * sizeof(uint32_t); |
| size_t pos2 = size - sizeof(uint32_t); |
| uint32_t instr1 = buffer_.Load<uint32_t>(pos1); |
| uint32_t instr2 = buffer_.Load<uint32_t>(pos2); |
| CHECK_EQ(instr1, last_instruction); |
| buffer_.Store<uint32_t>(pos1, instr2); |
| buffer_.Store<uint32_t>(pos2, instr1); |
| // Move the patcher label along with the patched instruction. |
| if (patcher_label != nullptr) { |
| patcher_label->AdjustBoundPosition(sizeof(uint32_t)); |
| } |
| } else if (reordering_) { |
| Nop(); |
| } |
| } |
| |
| void MipsAssembler::Jalr(Register rs) { |
| Jalr(RA, rs); |
| } |
| |
| void MipsAssembler::Jr(Register rs) { |
| Jalr(ZERO, rs); |
| } |
| |
| void MipsAssembler::Nal() { |
| DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x10), 0)); |
| } |
| |
| void MipsAssembler::Auipc(Register rs, uint16_t imm16) { |
| CHECK(IsR6()); |
| DsFsmInstrNop(EmitI(0x3B, rs, static_cast<Register>(0x1E), imm16)); |
| } |
| |
| void MipsAssembler::Addiupc(Register rs, uint32_t imm19) { |
| CHECK(IsR6()); |
| CHECK(IsUint<19>(imm19)) << imm19; |
| DsFsmInstrNop(EmitI21(0x3B, rs, imm19)); |
| } |
| |
| void MipsAssembler::Bc(uint32_t imm26) { |
| CHECK(IsR6()); |
| DsFsmInstrNop(EmitI26(0x32, imm26)); |
| } |
| |
| void MipsAssembler::Balc(uint32_t imm26) { |
| CHECK(IsR6()); |
| DsFsmInstrNop(EmitI26(0x3A, imm26)); |
| } |
| |
| void MipsAssembler::Jic(Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| DsFsmInstrNop(EmitI(0x36, static_cast<Register>(0), rt, imm16)); |
| } |
| |
| void MipsAssembler::Jialc(Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| DsFsmInstrNop(EmitI(0x3E, static_cast<Register>(0), rt, imm16)); |
| } |
| |
| void MipsAssembler::Bltc(Register rs, Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| CHECK_NE(rt, ZERO); |
| CHECK_NE(rs, rt); |
| DsFsmInstrNop(EmitI(0x17, rs, rt, imm16)); |
| } |
| |
| void MipsAssembler::Bltzc(Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rt, ZERO); |
| DsFsmInstrNop(EmitI(0x17, rt, rt, imm16)); |
| } |
| |
| void MipsAssembler::Bgtzc(Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rt, ZERO); |
| DsFsmInstrNop(EmitI(0x17, static_cast<Register>(0), rt, imm16)); |
| } |
| |
| void MipsAssembler::Bgec(Register rs, Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| CHECK_NE(rt, ZERO); |
| CHECK_NE(rs, rt); |
| DsFsmInstrNop(EmitI(0x16, rs, rt, imm16)); |
| } |
| |
| void MipsAssembler::Bgezc(Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rt, ZERO); |
| DsFsmInstrNop(EmitI(0x16, rt, rt, imm16)); |
| } |
| |
| void MipsAssembler::Blezc(Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rt, ZERO); |
| DsFsmInstrNop(EmitI(0x16, static_cast<Register>(0), rt, imm16)); |
| } |
| |
| void MipsAssembler::Bltuc(Register rs, Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| CHECK_NE(rt, ZERO); |
| CHECK_NE(rs, rt); |
| DsFsmInstrNop(EmitI(0x7, rs, rt, imm16)); |
| } |
| |
| void MipsAssembler::Bgeuc(Register rs, Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| CHECK_NE(rt, ZERO); |
| CHECK_NE(rs, rt); |
| DsFsmInstrNop(EmitI(0x6, rs, rt, imm16)); |
| } |
| |
| void MipsAssembler::Beqc(Register rs, Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| CHECK_NE(rt, ZERO); |
| CHECK_NE(rs, rt); |
| DsFsmInstrNop(EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16)); |
| } |
| |
| void MipsAssembler::Bnec(Register rs, Register rt, uint16_t imm16) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| CHECK_NE(rt, ZERO); |
| CHECK_NE(rs, rt); |
| DsFsmInstrNop(EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16)); |
| } |
| |
| void MipsAssembler::Beqzc(Register rs, uint32_t imm21) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| DsFsmInstrNop(EmitI21(0x36, rs, imm21)); |
| } |
| |
| void MipsAssembler::Bnezc(Register rs, uint32_t imm21) { |
| CHECK(IsR6()); |
| CHECK_NE(rs, ZERO); |
| DsFsmInstrNop(EmitI21(0x3E, rs, imm21)); |
| } |
| |
| void MipsAssembler::Bc1eqz(FRegister ft, uint16_t imm16) { |
| CHECK(IsR6()); |
| DsFsmInstrNop(EmitFI(0x11, 0x9, ft, imm16)); |
| } |
| |
| void MipsAssembler::Bc1nez(FRegister ft, uint16_t imm16) { |
| CHECK(IsR6()); |
| DsFsmInstrNop(EmitFI(0x11, 0xD, ft, imm16)); |
| } |
| |
| void MipsAssembler::EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16) { |
| switch (cond) { |
| case kCondLTZ: |
| CHECK_EQ(rt, ZERO); |
| Bltz(rs, imm16); |
| break; |
| case kCondGEZ: |
| CHECK_EQ(rt, ZERO); |
| Bgez(rs, imm16); |
| break; |
| case kCondLEZ: |
| CHECK_EQ(rt, ZERO); |
| Blez(rs, imm16); |
| break; |
| case kCondGTZ: |
| CHECK_EQ(rt, ZERO); |
| Bgtz(rs, imm16); |
| break; |
| case kCondEQ: |
| Beq(rs, rt, imm16); |
| break; |
| case kCondNE: |
| Bne(rs, rt, imm16); |
| break; |
| case kCondEQZ: |
| CHECK_EQ(rt, ZERO); |
| Beqz(rs, imm16); |
| break; |
| case kCondNEZ: |
| CHECK_EQ(rt, ZERO); |
| Bnez(rs, imm16); |
| break; |
| case kCondF: |
| CHECK_EQ(rt, ZERO); |
| Bc1f(static_cast<int>(rs), imm16); |
| break; |
| case kCondT: |
| CHECK_EQ(rt, ZERO); |
| Bc1t(static_cast<int>(rs), imm16); |
| break; |
| case kCondLT: |
| case kCondGE: |
| case kCondLE: |
| case kCondGT: |
| case kCondLTU: |
| case kCondGEU: |
| case kUncond: |
| // We don't support synthetic R2 branches (preceded with slt[u]) at this level |
| // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). |
| LOG(FATAL) << "Unexpected branch condition " << cond; |
| UNREACHABLE(); |
| } |
| } |
| |
| void MipsAssembler::EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21) { |
| switch (cond) { |
| case kCondLT: |
| Bltc(rs, rt, imm16_21); |
| break; |
| case kCondGE: |
| Bgec(rs, rt, imm16_21); |
| break; |
| case kCondLE: |
| Bgec(rt, rs, imm16_21); |
| break; |
| case kCondGT: |
| Bltc(rt, rs, imm16_21); |
| break; |
| case kCondLTZ: |
| CHECK_EQ(rt, ZERO); |
| Bltzc(rs, imm16_21); |
| break; |
| case kCondGEZ: |
| CHECK_EQ(rt, ZERO); |
| Bgezc(rs, imm16_21); |
| break; |
| case kCondLEZ: |
| CHECK_EQ(rt, ZERO); |
| Blezc(rs, imm16_21); |
| break; |
| case kCondGTZ: |
| CHECK_EQ(rt, ZERO); |
| Bgtzc(rs, imm16_21); |
| break; |
| case kCondEQ: |
| Beqc(rs, rt, imm16_21); |
| break; |
| case kCondNE: |
| Bnec(rs, rt, imm16_21); |
| break; |
| case kCondEQZ: |
| CHECK_EQ(rt, ZERO); |
| Beqzc(rs, imm16_21); |
| break; |
| case kCondNEZ: |
| CHECK_EQ(rt, ZERO); |
| Bnezc(rs, imm16_21); |
| break; |
| case kCondLTU: |
| Bltuc(rs, rt, imm16_21); |
| break; |
| case kCondGEU: |
| Bgeuc(rs, rt, imm16_21); |
| break; |
| case kCondF: |
| CHECK_EQ(rt, ZERO); |
| Bc1eqz(static_cast<FRegister>(rs), imm16_21); |
| break; |
| case kCondT: |
| CHECK_EQ(rt, ZERO); |
| Bc1nez(static_cast<FRegister>(rs), imm16_21); |
| break; |
| case kUncond: |
| LOG(FATAL) << "Unexpected branch condition " << cond; |
| UNREACHABLE(); |
| } |
| } |
| |
| void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::AddD(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SubD(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::MulD(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::DivD(FRegister fd, FRegister fs, FRegister ft) { |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SqrtS(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::SqrtD(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::AbsS(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::AbsD(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::MovS(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::MovD(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::NegS(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::NegD(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::CunS(FRegister fs, FRegister ft) { |
| CunS(0, fs, ft); |
| } |
| |
| void MipsAssembler::CunS(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x31)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CeqS(FRegister fs, FRegister ft) { |
| CeqS(0, fs, ft); |
| } |
| |
| void MipsAssembler::CeqS(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x32)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CueqS(FRegister fs, FRegister ft) { |
| CueqS(0, fs, ft); |
| } |
| |
| void MipsAssembler::CueqS(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x33)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::ColtS(FRegister fs, FRegister ft) { |
| ColtS(0, fs, ft); |
| } |
| |
| void MipsAssembler::ColtS(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x34)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CultS(FRegister fs, FRegister ft) { |
| CultS(0, fs, ft); |
| } |
| |
| void MipsAssembler::CultS(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x35)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::ColeS(FRegister fs, FRegister ft) { |
| ColeS(0, fs, ft); |
| } |
| |
| void MipsAssembler::ColeS(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x36)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CuleS(FRegister fs, FRegister ft) { |
| CuleS(0, fs, ft); |
| } |
| |
| void MipsAssembler::CuleS(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x37)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CunD(FRegister fs, FRegister ft) { |
| CunD(0, fs, ft); |
| } |
| |
| void MipsAssembler::CunD(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x31)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CeqD(FRegister fs, FRegister ft) { |
| CeqD(0, fs, ft); |
| } |
| |
| void MipsAssembler::CeqD(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x32)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CueqD(FRegister fs, FRegister ft) { |
| CueqD(0, fs, ft); |
| } |
| |
| void MipsAssembler::CueqD(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x33)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::ColtD(FRegister fs, FRegister ft) { |
| ColtD(0, fs, ft); |
| } |
| |
| void MipsAssembler::ColtD(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x34)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CultD(FRegister fs, FRegister ft) { |
| CultD(0, fs, ft); |
| } |
| |
| void MipsAssembler::CultD(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x35)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::ColeD(FRegister fs, FRegister ft) { |
| ColeD(0, fs, ft); |
| } |
| |
| void MipsAssembler::ColeD(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x36)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CuleD(FRegister fs, FRegister ft) { |
| CuleD(0, fs, ft); |
| } |
| |
| void MipsAssembler::CuleD(int cc, FRegister fs, FRegister ft) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x37)) |
| .CcOuts(cc).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUnS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpEqS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUeqS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpLtS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUltS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpLeS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUleS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpOrS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUneS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpNeS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUnD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpEqD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUeqD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpLtD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUltD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpLeD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUleD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpOrD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpUneD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::CmpNeD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::Movf(Register rd, Register rs, int cc) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitR(0, rs, static_cast<Register>(cc << 2), rd, 0, 0x01)) |
| .GprInOuts(rd).GprIns(rs).CcIns(cc); |
| } |
| |
| void MipsAssembler::Movt(Register rd, Register rs, int cc) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitR(0, rs, static_cast<Register>((cc << 2) | 1), rd, 0, 0x01)) |
| .GprInOuts(rd).GprIns(rs).CcIns(cc); |
| } |
| |
| void MipsAssembler::MovfS(FRegister fd, FRegister fs, int cc) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(cc << 2), fs, fd, 0x11)) |
| .FprInOuts(fd).FprIns(fs).CcIns(cc); |
| } |
| |
| void MipsAssembler::MovfD(FRegister fd, FRegister fs, int cc) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(cc << 2), fs, fd, 0x11)) |
| .FprInOuts(fd).FprIns(fs).CcIns(cc); |
| } |
| |
| void MipsAssembler::MovtS(FRegister fd, FRegister fs, int cc) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11)) |
| .FprInOuts(fd).FprIns(fs).CcIns(cc); |
| } |
| |
| void MipsAssembler::MovtD(FRegister fd, FRegister fs, int cc) { |
| CHECK(!IsR6()); |
| CHECK(IsUint<3>(cc)) << cc; |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11)) |
| .FprInOuts(fd).FprIns(fs).CcIns(cc); |
| } |
| |
| void MipsAssembler::MovzS(FRegister fd, FRegister fs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x12)) |
| .FprInOuts(fd).FprIns(fs).GprIns(rt); |
| } |
| |
| void MipsAssembler::MovzD(FRegister fd, FRegister fs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x12)) |
| .FprInOuts(fd).FprIns(fs).GprIns(rt); |
| } |
| |
| void MipsAssembler::MovnS(FRegister fd, FRegister fs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x13)) |
| .FprInOuts(fd).FprIns(fs).GprIns(rt); |
| } |
| |
| void MipsAssembler::MovnD(FRegister fd, FRegister fs, Register rt) { |
| CHECK(!IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x13)) |
| .FprInOuts(fd).FprIns(fs).GprIns(rt); |
| } |
| |
| void MipsAssembler::SelS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SelD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SeleqzS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SeleqzD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SelnezS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::SelnezD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::ClassS(FRegister fd, FRegister fs) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::ClassD(FRegister fd, FRegister fs) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::MinS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::MinD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::MaxS(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::MaxD(FRegister fd, FRegister fs, FRegister ft) { |
| CHECK(IsR6()); |
| DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft); |
| } |
| |
| void MipsAssembler::TruncLS(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::TruncLD(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::TruncWS(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::TruncWD(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::Cvtsw(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::Cvtdw(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::Cvtsd(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::Cvtds(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::Cvtsl(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::Cvtdl(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::FloorWS(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs); |
| } |
| |
| void MipsAssembler::FloorWD(FRegister fd, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs); |
| } |
| |
| FRegister MipsAssembler::GetFpuRegLow(FRegister reg) { |
| // If FPRs are 32-bit (and get paired to hold 64-bit values), accesses to |
| // odd-numbered FPRs are reattributed to even-numbered FPRs. This lets us |
| // use only even-numbered FPRs irrespective of whether we're doing single- |
| // or double-precision arithmetic. (We don't use odd-numbered 32-bit FPRs |
| // to hold single-precision values). |
| return Is32BitFPU() ? static_cast<FRegister>(reg & ~1u) : reg; |
| } |
| |
| void MipsAssembler::Mfc1(Register rt, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x00, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0)) |
| .GprOuts(rt).FprIns(GetFpuRegLow(fs)); |
| } |
| |
| // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs |
| // when loading the value as 32-bit halves. |
| void MipsAssembler::Mtc1(Register rt, FRegister fs) { |
| uint32_t encoding = |
| EmitFR(0x11, 0x04, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0); |
| if (Is32BitFPU() && (fs % 2 != 0)) { |
| // If mtc1 is used to simulate mthc1 by writing to the odd-numbered FPR in |
| // a pair of 32-bit FPRs, the associated even-numbered FPR is an in/out. |
| DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(fs)).GprIns(rt); |
| } else { |
| // Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out. |
| DsFsmInstr(encoding).FprOuts(fs).GprIns(rt); |
| } |
| } |
| |
| void MipsAssembler::Mfhc1(Register rt, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x03, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0)) |
| .GprOuts(rt).FprIns(fs); |
| } |
| |
| // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs |
| // when loading the value as 32-bit halves. |
| void MipsAssembler::Mthc1(Register rt, FRegister fs) { |
| DsFsmInstr(EmitFR(0x11, 0x07, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0)) |
| .FprInOuts(fs).GprIns(rt); |
| } |
| |
| void MipsAssembler::MoveFromFpuHigh(Register rt, FRegister fs) { |
| if (Is32BitFPU()) { |
| CHECK_EQ(fs % 2, 0) << fs; |
| Mfc1(rt, static_cast<FRegister>(fs + 1)); |
| } else { |
| Mfhc1(rt, fs); |
| } |
| } |
| |
| void MipsAssembler::MoveToFpuHigh(Register rt, FRegister fs) { |
| if (Is32BitFPU()) { |
| CHECK_EQ(fs % 2, 0) << fs; |
| Mtc1(rt, static_cast<FRegister>(fs + 1)); |
| } else { |
| Mthc1(rt, fs); |
| } |
| } |
| |
| // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs |
| // when loading the value as 32-bit halves. |
| void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) { |
| uint32_t encoding = EmitI(0x31, rs, static_cast<Register>(ft), imm16); |
| if (Is32BitFPU() && (ft % 2 != 0)) { |
| // If lwc1 is used to load the odd-numbered FPR in a pair of 32-bit FPRs, |
| // the associated even-numbered FPR is an in/out. |
| DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(ft)).GprIns(rs); |
| } else { |
| // Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out. |
| DsFsmInstr(encoding).FprOuts(ft).GprIns(rs); |
| } |
| } |
| |
| void MipsAssembler::Ldc1(FRegister ft, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x35, rs, static_cast<Register>(ft), imm16)).FprOuts(ft).GprIns(rs); |
| } |
| |
| void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x39, rs, static_cast<Register>(ft), imm16)).FprIns(GetFpuRegLow(ft)).GprIns(rs); |
| } |
| |
| void MipsAssembler::Sdc1(FRegister ft, Register rs, uint16_t imm16) { |
| DsFsmInstr(EmitI(0x3d, rs, static_cast<Register>(ft), imm16)).FprIns(ft).GprIns(rs); |
| } |
| |
| void MipsAssembler::Break() { |
| DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, 0, 0xD)); |
| } |
| |
| void MipsAssembler::Nop() { |
| DsFsmInstrNop(EmitR(0x0, ZERO, ZERO, ZERO, 0, 0x0)); |
| } |
| |
| void MipsAssembler::NopIfNoReordering() { |
| if (!reordering_) { |
| Nop(); |
| } |
| } |
| |
| void MipsAssembler::Move(Register rd, Register rs) { |
| Or(rd, rs, ZERO); |
| } |
| |
| void MipsAssembler::Clear(Register rd) { |
| Move(rd, ZERO); |
| } |
| |
| void MipsAssembler::Not(Register rd, Register rs) { |
| Nor(rd, rs, ZERO); |
| } |
| |
| void MipsAssembler::Push(Register rs) { |
| IncreaseFrameSize(kStackAlignment); |
| Sw(rs, SP, 0); |
| } |
| |
| void MipsAssembler::Pop(Register rd) { |
| Lw(rd, SP, 0); |
| DecreaseFrameSize(kStackAlignment); |
| } |
| |
| void MipsAssembler::PopAndReturn(Register rd, Register rt) { |
| bool reordering = SetReorder(false); |
| Lw(rd, SP, 0); |
| Jr(rt); |
| DecreaseFrameSize(kStackAlignment); // Single instruction in delay slot. |
| SetReorder(reordering); |
| } |
| |
| void MipsAssembler::AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x3, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x3, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x3, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x3, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Ffint_sW(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2RF(0x19e, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Ffint_sD(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2RF(0x19e, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Ftint_sW(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2RF(0x19c, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Ftint_sD(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2RF(0x19c, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::SlliB(VectorRegister wd, VectorRegister ws, int shamt3) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<3>(shamt3)) << shamt3; |
| DsFsmInstr(EmitMsaBIT(0x0, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SlliH(VectorRegister wd, VectorRegister ws, int shamt4) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<4>(shamt4)) << shamt4; |
| DsFsmInstr(EmitMsaBIT(0x0, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SlliW(VectorRegister wd, VectorRegister ws, int shamt5) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<5>(shamt5)) << shamt5; |
| DsFsmInstr(EmitMsaBIT(0x0, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SlliD(VectorRegister wd, VectorRegister ws, int shamt6) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<6>(shamt6)) << shamt6; |
| DsFsmInstr(EmitMsaBIT(0x0, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SraiB(VectorRegister wd, VectorRegister ws, int shamt3) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<3>(shamt3)) << shamt3; |
| DsFsmInstr(EmitMsaBIT(0x1, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SraiH(VectorRegister wd, VectorRegister ws, int shamt4) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<4>(shamt4)) << shamt4; |
| DsFsmInstr(EmitMsaBIT(0x1, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SraiW(VectorRegister wd, VectorRegister ws, int shamt5) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<5>(shamt5)) << shamt5; |
| DsFsmInstr(EmitMsaBIT(0x1, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SraiD(VectorRegister wd, VectorRegister ws, int shamt6) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<6>(shamt6)) << shamt6; |
| DsFsmInstr(EmitMsaBIT(0x1, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SrliB(VectorRegister wd, VectorRegister ws, int shamt3) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<3>(shamt3)) << shamt3; |
| DsFsmInstr(EmitMsaBIT(0x2, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SrliH(VectorRegister wd, VectorRegister ws, int shamt4) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<4>(shamt4)) << shamt4; |
| DsFsmInstr(EmitMsaBIT(0x2, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SrliW(VectorRegister wd, VectorRegister ws, int shamt5) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<5>(shamt5)) << shamt5; |
| DsFsmInstr(EmitMsaBIT(0x2, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SrliD(VectorRegister wd, VectorRegister ws, int shamt6) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<6>(shamt6)) << shamt6; |
| DsFsmInstr(EmitMsaBIT(0x2, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::MoveV(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsaBIT(0x1, 0x3e, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SplatiB(VectorRegister wd, VectorRegister ws, int n4) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<4>(n4)) << n4; |
| DsFsmInstr(EmitMsaELM(0x1, n4 | kMsaDfNByteMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SplatiH(VectorRegister wd, VectorRegister ws, int n3) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<3>(n3)) << n3; |
| DsFsmInstr(EmitMsaELM(0x1, n3 | kMsaDfNHalfwordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SplatiW(VectorRegister wd, VectorRegister ws, int n2) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<2>(n2)) << n2; |
| DsFsmInstr(EmitMsaELM(0x1, n2 | kMsaDfNWordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::SplatiD(VectorRegister wd, VectorRegister ws, int n1) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<1>(n1)) << n1; |
| DsFsmInstr(EmitMsaELM(0x1, n1 | kMsaDfNDoublewordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Copy_sB(Register rd, VectorRegister ws, int n4) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<4>(n4)) << n4; |
| DsFsmInstr(EmitMsaELM(0x2, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19)) |
| .GprOuts(rd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Copy_sH(Register rd, VectorRegister ws, int n3) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<3>(n3)) << n3; |
| DsFsmInstr(EmitMsaELM(0x2, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19)) |
| .GprOuts(rd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Copy_sW(Register rd, VectorRegister ws, int n2) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<2>(n2)) << n2; |
| DsFsmInstr(EmitMsaELM(0x2, n2 | kMsaDfNWordMask, ws, static_cast<VectorRegister>(rd), 0x19)) |
| .GprOuts(rd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Copy_uB(Register rd, VectorRegister ws, int n4) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<4>(n4)) << n4; |
| DsFsmInstr(EmitMsaELM(0x3, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19)) |
| .GprOuts(rd).FprIns(ws); |
| } |
| |
| void MipsAssembler::Copy_uH(Register rd, VectorRegister ws, int n3) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<3>(n3)) << n3; |
| DsFsmInstr(EmitMsaELM(0x3, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19)) |
| .GprOuts(rd).FprIns(ws); |
| } |
| |
| void MipsAssembler::InsertB(VectorRegister wd, Register rs, int n4) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<4>(n4)) << n4; |
| DsFsmInstr(EmitMsaELM(0x4, n4 | kMsaDfNByteMask, static_cast<VectorRegister>(rs), wd, 0x19)) |
| .FprInOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::InsertH(VectorRegister wd, Register rs, int n3) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<3>(n3)) << n3; |
| DsFsmInstr(EmitMsaELM(0x4, n3 | kMsaDfNHalfwordMask, static_cast<VectorRegister>(rs), wd, 0x19)) |
| .FprInOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::InsertW(VectorRegister wd, Register rs, int n2) { |
| CHECK(HasMsa()); |
| CHECK(IsUint<2>(n2)) << n2; |
| DsFsmInstr(EmitMsaELM(0x4, n2 | kMsaDfNWordMask, static_cast<VectorRegister>(rs), wd, 0x19)) |
| .FprInOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::FillB(VectorRegister wd, Register rs) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2R(0xc0, 0x0, static_cast<VectorRegister>(rs), wd, 0x1e)) |
| .FprOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::FillH(VectorRegister wd, Register rs) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2R(0xc0, 0x1, static_cast<VectorRegister>(rs), wd, 0x1e)) |
| .FprOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::FillW(VectorRegister wd, Register rs) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2R(0xc0, 0x2, static_cast<VectorRegister>(rs), wd, 0x1e)) |
| .FprOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::LdiB(VectorRegister wd, int imm8) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<8>(imm8)) << imm8; |
| DsFsmInstr(EmitMsaI10(0x6, 0x0, imm8 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); |
| } |
| |
| void MipsAssembler::LdiH(VectorRegister wd, int imm10) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<10>(imm10)) << imm10; |
| DsFsmInstr(EmitMsaI10(0x6, 0x1, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); |
| } |
| |
| void MipsAssembler::LdiW(VectorRegister wd, int imm10) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<10>(imm10)) << imm10; |
| DsFsmInstr(EmitMsaI10(0x6, 0x2, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); |
| } |
| |
| void MipsAssembler::LdiD(VectorRegister wd, int imm10) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<10>(imm10)) << imm10; |
| DsFsmInstr(EmitMsaI10(0x6, 0x3, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); |
| } |
| |
| void MipsAssembler::LdB(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<10>(offset)) << offset; |
| DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x8, 0x0)).FprOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::LdH(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<11>(offset)) << offset; |
| CHECK_ALIGNED(offset, kMipsHalfwordSize); |
| DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x8, 0x1)) |
| .FprOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::LdW(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<12>(offset)) << offset; |
| CHECK_ALIGNED(offset, kMipsWordSize); |
| DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x8, 0x2)) |
| .FprOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::LdD(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<13>(offset)) << offset; |
| CHECK_ALIGNED(offset, kMipsDoublewordSize); |
| DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x8, 0x3)) |
| .FprOuts(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::StB(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<10>(offset)) << offset; |
| DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x9, 0x0)).FprIns(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::StH(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<11>(offset)) << offset; |
| CHECK_ALIGNED(offset, kMipsHalfwordSize); |
| DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x9, 0x1)) |
| .FprIns(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::StW(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<12>(offset)) << offset; |
| CHECK_ALIGNED(offset, kMipsWordSize); |
| DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x9, 0x2)) |
| .FprIns(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::StD(VectorRegister wd, Register rs, int offset) { |
| CHECK(HasMsa()); |
| CHECK(IsInt<13>(offset)) << offset; |
| CHECK_ALIGNED(offset, kMipsDoublewordSize); |
| DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x9, 0x3)) |
| .FprIns(wd).GprIns(rs); |
| } |
| |
| void MipsAssembler::IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); |
| } |
| |
| void MipsAssembler::PcntB(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2R(0xc1, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::PcntH(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2R(0xc1, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::PcntW(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2R(0xc1, 0x2, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::PcntD(VectorRegister wd, VectorRegister ws) { |
| CHECK(HasMsa()); |
| DsFsmInstr(EmitMsa2R(0xc1, 0x3, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); |
| } |
| |
| void MipsAssembler::ReplicateFPToVectorRegister(VectorRegister dst, |
| FRegister src, |
| bool is_double) { |
| // Float or double in FPU register Fx can be considered as 0th element in vector register Wx. |
| if (is_double) { |
| SplatiD(dst, static_cast<VectorRegister>(src), 0); |
| } else { |
| SplatiW(dst, static_cast<VectorRegister>(src), 0); |
| } |
| } |
| |
| void MipsAssembler::LoadConst32(Register rd, int32_t value) { |
| if (IsUint<16>(value)) { |
| // Use OR with (unsigned) immediate to encode 16b unsigned int. |
| Ori(rd, ZERO, value); |
| } else if (IsInt<16>(value)) { |
| // Use ADD with (signed) immediate to encode 16b signed int. |
| Addiu(rd, ZERO, value); |
| } else { |
| Lui(rd, High16Bits(value)); |
| if (value & 0xFFFF) |
| Ori(rd, rd, Low16Bits(value)); |
| } |
| } |
| |
| void MipsAssembler::LoadConst64(Register reg_hi, Register reg_lo, int64_t value) { |
| uint32_t low = Low32Bits(value); |
| uint32_t high = High32Bits(value); |
| LoadConst32(reg_lo, low); |
| if (high != low) { |
| LoadConst32(reg_hi, high); |
| } else { |
| Move(reg_hi, reg_lo); |
| } |
| } |
| |
| void MipsAssembler::LoadSConst32(FRegister r, int32_t value, Register temp) { |
| if (value == 0) { |
| temp = ZERO; |
| } else { |
| LoadConst32(temp, value); |
| } |
| Mtc1(temp, r); |
| } |
| |
| void MipsAssembler::LoadDConst64(FRegister rd, int64_t value, Register temp) { |
| uint32_t low = Low32Bits(value); |
| uint32_t high = High32Bits(value); |
| if (low == 0) { |
| Mtc1(ZERO, rd); |
| } else { |
| LoadConst32(temp, low); |
| Mtc1(temp, rd); |
| } |
| if (high == 0) { |
| MoveToFpuHigh(ZERO, rd); |
| } else { |
| LoadConst32(temp, high); |
| MoveToFpuHigh(temp, rd); |
| } |
| } |
| |
| void MipsAssembler::Addiu32(Register rt, Register rs, int32_t value, Register temp) { |
| CHECK_NE(rs, temp); // Must not overwrite the register `rs` while loading `value`. |
| if (IsInt<16>(value)) { |
| Addiu(rt, rs, value); |
| } else if (IsR6()) { |
| int16_t high = High16Bits(value); |
| int16_t low = Low16Bits(value); |
| high += (low < 0) ? 1 : 0; // Account for sign extension in addiu. |
| if (low != 0) { |
| Aui(temp, rs, high); |
| Addiu(rt, temp, low); |
| } else { |
| Aui(rt, rs, high); |
| } |
| } else { |
| // Do not load the whole 32-bit `value` if it can be represented as |
| // a sum of two 16-bit signed values. This can save an instruction. |
| constexpr int32_t kMinValueForSimpleAdjustment = std::numeric_limits<int16_t>::min() * 2; |
| constexpr int32_t kMaxValueForSimpleAdjustment = std::numeric_limits<int16_t>::max() * 2; |
| if (0 <= value && value <= kMaxValueForSimpleAdjustment) { |
| Addiu(temp, rs, kMaxValueForSimpleAdjustment / 2); |
| Addiu(rt, temp, value - kMaxValueForSimpleAdjustment / 2); |
| } else if (kMinValueForSimpleAdjustment <= value && value < 0) { |
| Addiu(temp, rs, kMinValueForSimpleAdjustment / 2); |
| Addiu(rt, temp, value - kMinValueForSimpleAdjustment / 2); |
| } else { |
| // Now that all shorter options have been exhausted, load the full 32-bit value. |
| LoadConst32(temp, value); |
| Addu(rt, rs, temp); |
| } |
| } |
| } |
| |
| void MipsAssembler::Branch::InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size, |
| MipsAssembler::Branch::Type short_type, |
| MipsAssembler::Branch::Type long_type) { |
| type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type; |
| } |
| |
| void MipsAssembler::Branch::InitializeType(Type initial_type, bool is_r6) { |
| OffsetBits offset_size_needed = GetOffsetSizeNeeded(location_, target_); |
| if (is_r6) { |
| // R6 |
| switch (initial_type) { |
| case kLabel: |
| CHECK(!IsResolved()); |
| type_ = kR6Label; |
| break; |
| case kLiteral: |
| CHECK(!IsResolved()); |
| type_ = kR6Literal; |
| break; |
| case kCall: |
| InitShortOrLong(offset_size_needed, kR6Call, kR6LongCall); |
| break; |
| case kCondBranch: |
| switch (condition_) { |
| case kUncond: |
| InitShortOrLong(offset_size_needed, kR6UncondBranch, kR6LongUncondBranch); |
| break; |
| case kCondEQZ: |
| case kCondNEZ: |
| // Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions. |
| type_ = (offset_size_needed <= kOffset23) ? kR6CondBranch : kR6LongCondBranch; |
| break; |
| default: |
| InitShortOrLong(offset_size_needed, kR6CondBranch, kR6LongCondBranch); |
| break; |
| } |
| break; |
| case kBareCall: |
| type_ = kR6BareCall; |
| CHECK_LE(offset_size_needed, GetOffsetSize()); |
| break; |
| case kBareCondBranch: |
| type_ = (condition_ == kUncond) ? kR6BareUncondBranch : kR6BareCondBranch; |
| CHECK_LE(offset_size_needed, GetOffsetSize()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected branch type " << initial_type; |
| UNREACHABLE(); |
| } |
| } else { |
| // R2 |
| switch (initial_type) { |
| case kLabel: |
| CHECK(!IsResolved()); |
| type_ = kLabel; |
| break; |
| case kLiteral: |
| CHECK(!IsResolved()); |
| type_ = kLiteral; |
| break; |
| case kCall: |
| InitShortOrLong(offset_size_needed, kCall, kLongCall); |
| break; |
| case kCondBranch: |
| switch (condition_) { |
| case kUncond: |
| InitShortOrLong(offset_size_needed, kUncondBranch, kLongUncondBranch); |
| break; |
| default: |
| InitShortOrLong(offset_size_needed, kCondBranch, kLongCondBranch); |
| break; |
| } |
| break; |
| case kBareCall: |
| type_ = kBareCall; |
| CHECK_LE(offset_size_needed, GetOffsetSize()); |
| break; |
| case kBareCondBranch: |
| type_ = (condition_ == kUncond) ? kBareUncondBranch : kBareCondBranch; |
| CHECK_LE(offset_size_needed, GetOffsetSize()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected branch type " << initial_type; |
| UNREACHABLE(); |
| } |
| } |
| old_type_ = type_; |
| } |
| |
| bool MipsAssembler::Branch::IsNop(BranchCondition condition, Register lhs, Register rhs) { |
| switch (condition) { |
| case kCondLT: |
| case kCondGT: |
| case kCondNE: |
| case kCondLTU: |
| return lhs == rhs; |
| default: |
| return false; |
| } |
| } |
| |
| bool MipsAssembler::Branch::IsUncond(BranchCondition condition, Register lhs, Register rhs) { |
| switch (condition) { |
| case kUncond: |
| return true; |
| case kCondGE: |
| case kCondLE: |
| case kCondEQ: |
| case kCondGEU: |
| return lhs == rhs; |
| default: |
| return false; |
| } |
| } |
| |
| MipsAssembler::Branch::Branch(bool is_r6, |
| uint32_t location, |
| uint32_t target, |
| bool is_call, |
| bool is_bare) |
| : old_location_(location), |
| location_(location), |
| target_(target), |
| lhs_reg_(0), |
| rhs_reg_(0), |
| condition_(kUncond), |
| delayed_instruction_(kUnfilledDelaySlot), |
| patcher_label_(nullptr) { |
| InitializeType( |
| (is_call ? (is_bare ? kBareCall : kCall) : (is_bare ? kBareCondBranch : kCondBranch)), |
| is_r6); |
| } |
| |
| MipsAssembler::Branch::Branch(bool is_r6, |
| uint32_t location, |
| uint32_t target, |
| MipsAssembler::BranchCondition condition, |
| Register lhs_reg, |
| Register rhs_reg, |
| bool is_bare) |
| : old_location_(location), |
| location_(location), |
| target_(target), |
| lhs_reg_(lhs_reg), |
| rhs_reg_(rhs_reg), |
| condition_(condition), |
| delayed_instruction_(kUnfilledDelaySlot), |
| patcher_label_(nullptr) { |
| CHECK_NE(condition, kUncond); |
| switch (condition) { |
| case kCondLT: |
| case kCondGE: |
| case kCondLE: |
| case kCondGT: |
| case kCondLTU: |
| case kCondGEU: |
| // We don't support synthetic R2 branches (preceded with slt[u]) at this level |
| // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). |
| // We leave this up to the caller. |
| CHECK(is_r6); |
| FALLTHROUGH_INTENDED; |
| case kCondEQ: |
| case kCondNE: |
| // Require registers other than 0 not only for R6, but also for R2 to catch errors. |
| // To compare with 0, use dedicated kCond*Z conditions. |
| CHECK_NE(lhs_reg, ZERO); |
| CHECK_NE(rhs_reg, ZERO); |
| break; |
| case kCondLTZ: |
| case kCondGEZ: |
| case kCondLEZ: |
| case kCondGTZ: |
| case kCondEQZ: |
| case kCondNEZ: |
| // Require registers other than 0 not only for R6, but also for R2 to catch errors. |
| CHECK_NE(lhs_reg, ZERO); |
| CHECK_EQ(rhs_reg, ZERO); |
| break; |
| case kCondF: |
| case kCondT: |
| CHECK_EQ(rhs_reg, ZERO); |
| break; |
| case kUncond: |
| UNREACHABLE(); |
| } |
| CHECK(!IsNop(condition, lhs_reg, rhs_reg)); |
| if (IsUncond(condition, lhs_reg, rhs_reg)) { |
| // Branch condition is always true, make the branch unconditional. |
| condition_ = kUncond; |
| } |
| InitializeType((is_bare ? kBareCondBranch : kCondBranch), is_r6); |
| } |
| |
| MipsAssembler::Branch::Branch(bool is_r6, |
| uint32_t location, |
| Register dest_reg, |
| Register base_reg, |
| Type label_or_literal_type) |
| : old_location_(location), |
| location_(location), |
| target_(kUnresolved), |
| lhs_reg_(dest_reg), |
| rhs_reg_(base_reg), |
| condition_(kUncond), |
| delayed_instruction_(kUnfilledDelaySlot), |
| patcher_label_(nullptr) { |
| CHECK_NE(dest_reg, ZERO); |
| if (is_r6) { |
| CHECK_EQ(base_reg, ZERO); |
| } |
| InitializeType(label_or_literal_type, is_r6); |
| } |
| |
| MipsAssembler::BranchCondition MipsAssembler::Branch::OppositeCondition( |
| MipsAssembler::BranchCondition cond) { |
| switch (cond) { |
| case kCondLT: |
| return kCondGE; |
| case kCondGE: |
| return kCondLT; |
| case kCondLE: |
| return kCondGT; |
| case kCondGT: |
| return kCondLE; |
| case kCondLTZ: |
| return kCondGEZ; |
| case kCondGEZ: |
| return kCondLTZ; |
| case kCondLEZ: |
| return kCondGTZ; |
| case kCondGTZ: |
| return kCondLEZ; |
| case kCondEQ: |
| return kCondNE; |
| case kCondNE: |
| return kCondEQ; |
| case kCondEQZ: |
| return kCondNEZ; |
| case kCondNEZ: |
| return kCondEQZ; |
| case kCondLTU: |
| return kCondGEU; |
| case kCondGEU: |
| return kCondLTU; |
| case kCondF: |
| return kCondT; |
| case kCondT: |
| return kCondF; |
| case kUncond: |
| LOG(FATAL) << "Unexpected branch condition " << cond; |
| } |
| UNREACHABLE(); |
| } |
| |
| MipsAssembler::Branch::Type MipsAssembler::Branch::GetType() const { |
| return type_; |
| } |
| |
| MipsAssembler::BranchCondition MipsAssembler::Branch::GetCondition() const { |
| return condition_; |
| } |
| |
| Register MipsAssembler::Branch::GetLeftRegister() const { |
| return static_cast<Register>(lhs_reg_); |
| } |
| |
| Register MipsAssembler::Branch::GetRightRegister() const { |
| return static_cast<Register>(rhs_reg_); |
| } |
| |
| uint32_t MipsAssembler::Branch::GetTarget() const { |
| return target_; |
| } |
| |
| uint32_t MipsAssembler::Branch::GetLocation() const { |
| return location_; |
| } |
| |
| uint32_t MipsAssembler::Branch::GetOldLocation() const { |
| return old_location_; |
| } |
| |
| uint32_t MipsAssembler::Branch::GetPrecedingInstructionLength(Type type) const { |
| // Short branches with delay slots always consist of two instructions, the branch |
| // and the delay slot, irrespective of whether the delay slot is filled with a |
| // useful instruction or not. |
| // Long composite branches may have a length longer by one instruction than |
| // specified in branch_info_[].length. This happens when an instruction is taken |
| // to fill the short branch delay slot, but the branch eventually becomes long |
| // and formally has no delay slot to fill. This instruction is placed at the |
| // beginning of the long composite branch and this needs to be accounted for in |
| // the branch length and the location of the offset encoded in the branch. |
| switch (type) { |
| case kLongUncondBranch: |
| case kLongCondBranch: |
| case kLongCall: |
| case kR6LongCondBranch: |
| return (delayed_instruction_ != kUnfilledDelaySlot && |
| delayed_instruction_ != kUnfillableDelaySlot) ? 1 : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| uint32_t MipsAssembler::Branch::GetPrecedingInstructionSize(Type type) const { |
| return GetPrecedingInstructionLength(type) * sizeof(uint32_t); |
| } |
| |
| uint32_t MipsAssembler::Branch::GetLength() const { |
| return GetPrecedingInstructionLength(type_) + branch_info_[type_].length; |
| } |
| |
| uint32_t MipsAssembler::Branch::GetOldLength() const { |
| return GetPrecedingInstructionLength(old_type_) + branch_info_[old_type_].length; |
| } |
| |
| uint32_t MipsAssembler::Branch::GetSize() const { |
| return GetLength() * sizeof(uint32_t); |
| } |
| |
| uint32_t MipsAssembler::Branch::GetOldSize() const { |
| return GetOldLength() * sizeof(uint32_t); |
| } |
| |
| uint32_t MipsAssembler::Branch::GetEndLocation() const { |
| return GetLocation() + GetSize(); |
| } |
| |
| uint32_t MipsAssembler::Branch::GetOldEndLocation() const { |
| return GetOldLocation() + GetOldSize(); |
| } |
| |
| bool MipsAssembler::Branch::IsBare() const { |
| switch (type_) { |
| // R2 short branches (can't be promoted to long), delay slots filled manually. |
| case kBareUncondBranch: |
| case kBareCondBranch: |
| case kBareCall: |
| // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. |
| case kR6BareUncondBranch: |
| case kR6BareCondBranch: |
| case kR6BareCall: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool MipsAssembler::Branch::IsLong() const { |
| switch (type_) { |
| // R2 short branches (can be promoted to long). |
| case kUncondBranch: |
| case kCondBranch: |
| case kCall: |
| // R2 short branches (can't be promoted to long), delay slots filled manually. |
| case kBareUncondBranch: |
| case kBareCondBranch: |
| case kBareCall: |
| // R2 near label. |
| case kLabel: |
| // R2 near literal. |
| case kLiteral: |
| // R6 short branches (can be promoted to long). |
| case kR6UncondBranch: |
| case kR6CondBranch: |
| case kR6Call: |
| // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. |
| case kR6BareUncondBranch: |
| case kR6BareCondBranch: |
| case kR6BareCall: |
| // R6 near label. |
| case kR6Label: |
| // R6 near literal. |
| case kR6Literal: |
| return false; |
| // R2 long branches. |
| case kLongUncondBranch: |
| case kLongCondBranch: |
| case kLongCall: |
| // R2 far label. |
| case kFarLabel: |
| // R2 far literal. |
| case kFarLiteral: |
| // R6 long branches. |
| case kR6LongUncondBranch: |
| case kR6LongCondBranch: |
| case kR6LongCall: |
| // R6 far label. |
| case kR6FarLabel: |
| // R6 far literal. |
| case kR6FarLiteral: |
| return true; |
| } |
| UNREACHABLE(); |
| } |
| |
| bool MipsAssembler::Branch::IsResolved() const { |
| return target_ != kUnresolved; |
| } |
| |
| MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSize() const { |
| bool r6_cond_branch = (type_ == kR6CondBranch || type_ == kR6BareCondBranch); |
| OffsetBits offset_size = |
| (r6_cond_branch && (condition_ == kCondEQZ || condition_ == kCondNEZ)) |
| ? kOffset23 |
| : branch_info_[type_].offset_size; |
| return offset_size; |
| } |
| |
| MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSizeNeeded(uint32_t location, |
| uint32_t target) { |
| // For unresolved targets assume the shortest encoding |
| // (later it will be made longer if needed). |
| if (target == kUnresolved) |
| return kOffset16; |
| int64_t distance = static_cast<int64_t>(target) - location; |
| // To simplify calculations in composite branches consisting of multiple instructions |
| // bump up the distance by a value larger than the max byte size of a composite branch. |
| distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize; |
| if (IsInt<kOffset16>(distance)) |
| return kOffset16; |
| else if (IsInt<kOffset18>(distance)) |
| return kOffset18; |
| else if (IsInt<kOffset21>(distance)) |
| return kOffset21; |
| else if (IsInt<kOffset23>(distance)) |
| return kOffset23; |
| else if (IsInt<kOffset28>(distance)) |
| return kOffset28; |
| return kOffset32; |
| } |
| |
| void MipsAssembler::Branch::Resolve(uint32_t target) { |
| target_ = target; |
| } |
| |
| void MipsAssembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) { |
| if (location_ > expand_location) { |
| location_ += delta; |
| } |
| if (!IsResolved()) { |
| return; // Don't know the target yet. |
| } |
| if (target_ > expand_location) { |
| target_ += delta; |
| } |
| } |
| |
| void MipsAssembler::Branch::PromoteToLong() { |
| CHECK(!IsBare()); // Bare branches do not promote. |
| switch (type_) { |
| // R2 short branches (can be promoted to long). |
| case kUncondBranch: |
| type_ = kLongUncondBranch; |
| break; |
| case kCondBranch: |
| type_ = kLongCondBranch; |
| break; |
| case kCall: |
| type_ = kLongCall; |
| break; |
| // R2 near label. |
| case kLabel: |
| type_ = kFarLabel; |
| break; |
| // R2 near literal. |
| case kLiteral: |
| type_ = kFarLiteral; |
| break; |
| // R6 short branches (can be promoted to long). |
| case kR6UncondBranch: |
| type_ = kR6LongUncondBranch; |
| break; |
| case kR6CondBranch: |
| type_ = kR6LongCondBranch; |
| break; |
| case kR6Call: |
| type_ = kR6LongCall; |
| break; |
| // R6 near label. |
| case kR6Label: |
| type_ = kR6FarLabel; |
| break; |
| // R6 near literal. |
| case kR6Literal: |
| type_ = kR6FarLiteral; |
| break; |
| default: |
| // Note: 'type_' is already long. |
| break; |
| } |
| CHECK(IsLong()); |
| } |
| |
| uint32_t MipsAssembler::GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const { |
| switch (branch->GetType()) { |
| case Branch::kLabel: |
| case Branch::kFarLabel: |
| case Branch::kLiteral: |
| case Branch::kFarLiteral: |
| if (branch->GetRightRegister() != ZERO) { |
| return GetLabelLocation(&pc_rel_base_label_); |
| } |
| // For those label/literal loads which come with their own NAL instruction |
| // and don't depend on `pc_rel_base_label_` we can simply use the location |
| // of the "branch" (the NAL precedes the "branch" immediately). The location |
| // is close enough for the user of the returned location, PromoteIfNeeded(), |
| // to not miss needed promotion to a far load. |
| // (GetOffsetSizeNeeded() provides a little leeway by means of kMaxBranchSize, |
| // which is larger than all composite branches and label/literal loads: it's |
| // OK to promote a bit earlier than strictly necessary, it makes things |
| // simpler.) |
| FALLTHROUGH_INTENDED; |
| default: |
| return branch->GetLocation(); |
| } |
| } |
| |
| uint32_t MipsAssembler::Branch::PromoteIfNeeded(uint32_t location, uint32_t max_short_distance) { |
| // `location` comes from GetBranchLocationOrPcRelBase() and is either the location |
| // of the PC-relative branch or (for some R2 label and literal loads) the location |
| // of `pc_rel_base_label_`. The PC-relative offset of the branch/load is relative |
| // to this location. |
| // If the branch is still unresolved or already long, nothing to do. |
| if (IsLong() || !IsResolved()) { |
| return 0; |
| } |
| // Promote the short branch to long if the offset size is too small |
| // to hold the distance between location and target_. |
| if (GetOffsetSizeNeeded(location, target_) > GetOffsetSize()) { |
| PromoteToLong(); |
| uint32_t old_size = GetOldSize(); |
| uint32_t new_size = GetSize(); |
| CHECK_GT(new_size, old_size); |
| return new_size - old_size; |
| } |
| // The following logic is for debugging/testing purposes. |
| // Promote some short branches to long when it's not really required. |
| if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max() && !IsBare())) { |
| int64_t distance = static_cast<int64_t>(target_) - location; |
| distance = (distance >= 0) ? distance : -distance; |
| if (distance >= max_short_distance) { |
| PromoteToLong(); |
| uint32_t old_size = GetOldSize(); |
| uint32_t new_size = GetSize(); |
| CHECK_GT(new_size, old_size); |
| return new_size - old_size; |
| } |
| } |
| return 0; |
| } |
| |
| uint32_t MipsAssembler::Branch::GetOffsetLocation() const { |
| return location_ + GetPrecedingInstructionSize(type_) + |
| branch_info_[type_].instr_offset * sizeof(uint32_t); |
| } |
| |
| uint32_t MipsAssembler::GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const { |
| switch (branch->GetType()) { |
| case Branch::kLabel: |
| case Branch::kFarLabel: |
| case Branch::kLiteral: |
| case Branch::kFarLiteral: |
| if (branch->GetRightRegister() == ZERO) { |
| // These loads don't use `pc_rel_base_label_` and instead rely on their own |
| // NAL instruction (it immediately precedes the "branch"). Therefore the |
| // effective PC-relative base register is RA and it corresponds to the 2nd |
| // instruction after the NAL. |
| return branch->GetLocation() + sizeof(uint32_t); |
| } else { |
| return GetLabelLocation(&pc_rel_base_label_); |
| } |
| default: |
| return branch->GetOffsetLocation() + |
| Branch::branch_info_[branch->GetType()].pc_org * sizeof(uint32_t); |
| } |
| } |
| |
| uint32_t MipsAssembler::Branch::GetOffset(uint32_t location) const { |
| // `location` comes from GetBranchOrPcRelBaseForEncoding() and is either a location |
| // within/near the PC-relative branch or (for some R2 label and literal loads) the |
| // location of `pc_rel_base_label_`. The PC-relative offset of the branch/load is |
| // relative to this location. |
| CHECK(IsResolved()); |
| uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize()); |
| // Calculate the byte distance between instructions and also account for |
| // different PC-relative origins. |
| uint32_t offset = target_ - location; |
| // Prepare the offset for encoding into the instruction(s). |
| offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift; |
| return offset; |
| } |
| |
| MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) { |
| CHECK_LT(branch_id, branches_.size()); |
| return &branches_[branch_id]; |
| } |
| |
| const MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) const { |
| CHECK_LT(branch_id, branches_.size()); |
| return &branches_[branch_id]; |
| } |
| |
| void MipsAssembler::BindRelativeToPrecedingBranch(MipsLabel* label, |
| uint32_t prev_branch_id_plus_one, |
| uint32_t position) { |
| if (prev_branch_id_plus_one != 0) { |
| const Branch* branch = GetBranch(prev_branch_id_plus_one - 1); |
| position -= branch->GetEndLocation(); |
| } |
| label->prev_branch_id_plus_one_ = prev_branch_id_plus_one; |
| label->BindTo(position); |
| } |
| |
| void MipsAssembler::Bind(MipsLabel* label) { |
| CHECK(!label->IsBound()); |
| uint32_t bound_pc = buffer_.Size(); |
| |
| // Make the delay slot FSM aware of the new label. |
| DsFsmLabel(); |
| |
| // Walk the list of branches referring to and preceding this label. |
| // Store the previously unknown target addresses in them. |
| while (label->IsLinked()) { |
| uint32_t branch_id = label->Position(); |
| Branch* branch = GetBranch(branch_id); |
| branch->Resolve(bound_pc); |
| |
| uint32_t branch_location = branch->GetLocation(); |
| // Extract the location of the previous branch in the list (walking the list backwards; |
| // the previous branch ID was stored in the space reserved for this branch). |
| uint32_t prev = buffer_.Load<uint32_t>(branch_location); |
| |
| // On to the previous branch in the list... |
| label->position_ = prev; |
| } |
| |
| // Now make the label object contain its own location (relative to the end of the preceding |
| // branch, if any; it will be used by the branches referring to and following this label). |
| BindRelativeToPrecedingBranch(label, branches_.size(), bound_pc); |
| } |
| |
| uint32_t MipsAssembler::GetLabelLocation(const MipsLabel* label) const { |
| CHECK(label->IsBound()); |
| uint32_t target = label->Position(); |
| if (label->prev_branch_id_plus_one_ != 0) { |
| // Get label location based on the branch preceding it. |
| const Branch* branch = GetBranch(label->prev_branch_id_plus_one_ - 1); |
| target += branch->GetEndLocation(); |
| } |
| return target; |
| } |
| |
| uint32_t MipsAssembler::GetAdjustedPosition(uint32_t old_position) { |
| // We can reconstruct the adjustment by going through all the branches from the beginning |
| // up to the old_position. Since we expect AdjustedPosition() to be called in a loop |
| // with increasing old_position, we can use the data from last AdjustedPosition() to |
| // continue where we left off and the whole loop should be O(m+n) where m is the number |
| // of positions to adjust and n is the number of branches. |
| if (old_position < last_old_position_) { |
| last_position_adjustment_ = 0; |
| last_old_position_ = 0; |
| last_branch_id_ = 0; |
| } |
| while (last_branch_id_ != branches_.size()) { |
| const Branch* branch = GetBranch(last_branch_id_); |
| if (branch->GetLocation() >= old_position + last_position_adjustment_) { |
| break; |
| } |
| last_position_adjustment_ += branch->GetSize() - branch->GetOldSize(); |
| ++last_branch_id_; |
| } |
| last_old_position_ = old_position; |
| return old_position + last_position_adjustment_; |
| } |
| |
| void MipsAssembler::BindPcRelBaseLabel() { |
| Bind(&pc_rel_base_label_); |
| } |
| |
| uint32_t MipsAssembler::GetPcRelBaseLabelLocation() const { |
| return GetLabelLocation(&pc_rel_base_label_); |
| } |
| |
| void MipsAssembler::FinalizeLabeledBranch(MipsLabel* label) { |
| uint32_t length = branches_.back().GetLength(); |
| // Commit the last branch target label (if any). |
| DsFsmCommitLabel(); |
| if (!label->IsBound()) { |
| // Branch forward (to a following label), distance is unknown. |
| // The first branch forward will contain 0, serving as the terminator of |
| // the list of forward-reaching branches. |
| Emit(label->position_); |
| // Nothing for the delay slot (yet). |
| DsFsmInstrNop(0); |
| length--; |
| // Now make the label object point to this branch |
| // (this forms a linked list of branches preceding this label). |
| uint32_t branch_id = branches_.size() - 1; |
| label->LinkTo(branch_id); |
| } |
| // Reserve space for the branch. |
| for (; length != 0u; --length) { |
| Nop(); |
| } |
| } |
| |
| bool MipsAssembler::Branch::CanHaveDelayedInstruction(const DelaySlot& delay_slot) const { |
| if (delay_slot.instruction_ == 0) { |
| // NOP or no instruction for the delay slot. |
| return false; |
| } |
| switch (type_) { |
| // R2 unconditional branches. |
| case kUncondBranch: |
| case kLongUncondBranch: |
| // There are no register interdependencies. |
| return true; |
| |
| // R2 calls. |
| case kCall: |
| case kLongCall: |
| // Instructions depending on or modifying RA should not be moved into delay slots |
| // of branches modifying RA. |
| return ((delay_slot.masks_.gpr_ins_ | delay_slot.masks_.gpr_outs_) & (1u << RA)) == 0; |
| |
| // R2 conditional branches. |
| case kCondBranch: |
| case kLongCondBranch: |
| switch (condition_) { |
| // Branches with one GPR source. |
| case kCondLTZ: |
| case kCondGEZ: |
| case kCondLEZ: |
| case kCondGTZ: |
| case kCondEQZ: |
| case kCondNEZ: |
| return (delay_slot.masks_.gpr_outs_ & (1u << lhs_reg_)) == 0; |
| |
| // Branches with two GPR sources. |
| case kCondEQ: |
| case kCondNE: |
| return (delay_slot.masks_.gpr_outs_ & ((1u << lhs_reg_) | (1u << rhs_reg_))) == 0; |
| |
| // Branches with one FPU condition code source. |
| case kCondF: |
| case kCondT: |
| return (delay_slot.masks_.cc_outs_ & (1u << lhs_reg_)) == 0; |
| |
| default: |
| // We don't support synthetic R2 branches (preceded with slt[u]) at this level |
| // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). |
| LOG(FATAL) << "Unexpected branch condition " << condition_; |
| UNREACHABLE(); |
| } |
| |
| // R6 unconditional branches. |
| case kR6UncondBranch: |
| case kR6LongUncondBranch: |
| // R6 calls. |
| case kR6Call: |
| case kR6LongCall: |
| // There are no delay slots. |
| return false; |
| |
| // R6 conditional branches. |
| case kR6CondBranch: |
| case kR6LongCondBranch: |
| switch (condition_) { |
| // Branches with one FPU register source. |
| case kCondF: |
| case kCondT: |
| return (delay_slot.masks_.fpr_outs_ & (1u << lhs_reg_)) == 0; |
| // Others have a forbidden slot instead of a delay slot. |
| default: |
| return false; |
| } |
| |
| // Literals. |
| default: |
| LOG(FATAL) << "Unexpected branch type " << type_; |
| UNREACHABLE(); |
| } |
| } |
| |
| uint32_t MipsAssembler::Branch::GetDelayedInstruction() const { |
| return delayed_instruction_; |
| } |
| |
| MipsLabel* MipsAssembler::Branch::GetPatcherLabel() const { |
| return patcher_label_; |
| } |
| |
| void MipsAssembler::Branch::SetDelayedInstruction(uint32_t instruction, MipsLabel* patcher_label) { |
| CHECK_NE(instruction, kUnfilledDelaySlot); |
| CHECK_EQ(delayed_instruction_, kUnfilledDelaySlot); |
| delayed_instruction_ = instruction; |
| patcher_label_ = patcher_label; |
| } |
| |
| void MipsAssembler::Branch::DecrementLocations() { |
| // We first create a branch object, which gets its type and locations initialized, |
| // and then we check if the branch can actually have the preceding instruction moved |
| // into its delay slot. If it can, the branch locations need to be decremented. |
| // |
| // We could make the check before creating the branch object and avoid the location |
| // adjustment, but the check is cleaner when performed on an initialized branch |
| // object. |
| // |
| // If the branch is backwards (to a previously bound label), reducing the locations |
| // cannot cause a short branch to exceed its offset range because the offset reduces. |
| // And this is not at all a problem for a long branch backwards. |
| // |
| // If the branch is forward (not linked to any label yet), reducing the locations |
| // is harmless. The branch will be promoted to long if needed when the target is known. |
| CHECK_EQ(location_, old_location_); |
| CHECK_GE(old_location_, sizeof(uint32_t)); |
| old_location_ -= sizeof(uint32_t); |
| location_ = old_location_; |
| } |
| |
| void MipsAssembler::MoveInstructionToDelaySlot(Branch& branch) { |
| if (branch.IsBare()) { |
| // Delay slots are filled manually in bare branches. |
| return; |
| } |
| if (branch.CanHaveDelayedInstruction(delay_slot_)) { |
| // The last instruction cannot be used in a different delay slot, |
| // do not commit the label before it (if any). |
| DsFsmDropLabel(); |
| // Remove the last emitted instruction. |
| size_t size = buffer_.Size(); |
| CHECK_GE(size, sizeof(uint32_t)); |
| size -= sizeof(uint32_t); |
| CHECK_EQ(buffer_.Load<uint32_t>(size), delay_slot_.instruction_); |
| buffer_.Resize(size); |
| // Attach it to the branch and adjust the branch locations. |
| branch.DecrementLocations(); |
| branch.SetDelayedInstruction(delay_slot_.instruction_, delay_slot_.patcher_label_); |
| } else if (!reordering_ && branch.GetType() == Branch::kUncondBranch) { |
| // If reordefing is disabled, prevent absorption of the target instruction. |
| branch.SetDelayedInstruction(Branch::kUnfillableDelaySlot); |
| } |
| } |
| |
| void MipsAssembler::Buncond(MipsLabel* label, bool is_r6, bool is_bare) { |
| uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; |
| branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call */ false, is_bare); |
| MoveInstructionToDelaySlot(branches_.back()); |
| FinalizeLabeledBranch(label); |
| } |
| |
| void MipsAssembler::Bcond(MipsLabel* label, |
| bool is_r6, |
| bool is_bare, |
| BranchCondition condition, |
| Register lhs, |
| Register rhs) { |
| // If lhs = rhs, this can be a NOP. |
| if (Branch::IsNop(condition, lhs, rhs)) { |
| return; |
| } |
| uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; |
| branches_.emplace_back(is_r6, buffer_.Size(), target, condition, lhs, rhs, is_bare); |
| MoveInstructionToDelaySlot(branches_.back()); |
| FinalizeLabeledBranch(label); |
| } |
| |
| void MipsAssembler::Call(MipsLabel* label, bool is_r6, bool is_bare) { |
| uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; |
| branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call */ true, is_bare); |
| MoveInstructionToDelaySlot(branches_.back()); |
| FinalizeLabeledBranch(label); |
| } |
| |
| void MipsAssembler::LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label) { |
| // Label address loads are treated as pseudo branches since they require very similar handling. |
| DCHECK(!label->IsBound()); |
| // If `pc_rel_base_label_` isn't bound or none of registers contains its address, we |
| // may generate an individual NAL instruction to simulate PC-relative addressing on R2 |
| // by specifying `base_reg` of `ZERO`. Check for it. |
| if (base_reg == ZERO && !IsR6()) { |
| Nal(); |
| } |
| branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLabel); |
| FinalizeLabeledBranch(label); |
| } |
| |
| Literal* MipsAssembler::NewLiteral(size_t size, const uint8_t* data) { |
| DCHECK(size == 4u || size == 8u) << size; |
| literals_.emplace_back(size, data); |
| return &literals_.back(); |
| } |
| |
| void MipsAssembler::LoadLiteral(Register dest_reg, Register base_reg, Literal* literal) { |
| // Literal loads are treated as pseudo branches since they require very similar handling. |
| DCHECK_EQ(literal->GetSize(), 4u); |
| MipsLabel* label = literal->GetLabel(); |
| DCHECK(!label->IsBound()); |
| // If `pc_rel_base_label_` isn't bound or none of registers contains its address, we |
| // may generate an individual NAL instruction to simulate PC-relative addressing on R2 |
| // by specifying `base_reg` of `ZERO`. Check for it. |
| if (base_reg == ZERO && !IsR6()) { |
| Nal(); |
| } |
| branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLiteral); |
| FinalizeLabeledBranch(label); |
| } |
| |
| JumpTable* MipsAssembler::CreateJumpTable(std::vector<MipsLabel*>&& labels) { |
| jump_tables_.emplace_back(std::move(labels)); |
| JumpTable* table = &jump_tables_.back(); |
| DCHECK(!table->GetLabel()->IsBound()); |
| return table; |
| } |
| |
| void MipsAssembler::EmitLiterals() { |
| if (!literals_.empty()) { |
| // We don't support byte and half-word literals. |
| // TODO: proper alignment for 64-bit literals when they're implemented. |
| for (Literal& literal : literals_) { |
| MipsLabel* label = literal.GetLabel(); |
| Bind(label); |
| AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| DCHECK(literal.GetSize() == 4u || literal.GetSize() == 8u); |
| for (size_t i = 0, size = literal.GetSize(); i != size; ++i) { |
| buffer_.Emit<uint8_t>(literal.GetData()[i]); |
| } |
| } |
| } |
| } |
| |
| void MipsAssembler::ReserveJumpTableSpace() { |
| if (!jump_tables_.empty()) { |
| for (JumpTable& table : jump_tables_) { |
| MipsLabel* label = table.GetLabel(); |
| Bind(label); |
| |
| // Bulk ensure capacity, as this may be large. |
| size_t orig_size = buffer_.Size(); |
| size_t required_capacity = orig_size + table.GetSize(); |
| if (required_capacity > buffer_.Capacity()) { |
| buffer_.ExtendCapacity(required_capacity); |
| } |
| #ifndef NDEBUG |
| buffer_.has_ensured_capacity_ = true; |
| #endif |
| |
| // Fill the space with dummy data as the data is not final |
| // until the branches have been promoted. And we shouldn't |
| // be moving uninitialized data during branch promotion. |
| for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) { |
| buffer_.Emit<uint32_t>(0x1abe1234u); |
| } |
| |
| #ifndef NDEBUG |
| buffer_.has_ensured_capacity_ = false; |
| #endif |
| } |
| } |
| } |
| |
| void MipsAssembler::EmitJumpTables() { |
| if (!jump_tables_.empty()) { |
| CHECK(!overwriting_); |
| // Switch from appending instructions at the end of the buffer to overwriting |
| // existing instructions (here, jump tables) in the buffer. |
| overwriting_ = true; |
| |
| for (JumpTable& table : jump_tables_) { |
| MipsLabel* table_label = table.GetLabel(); |
| uint32_t start = GetLabelLocation(table_label); |
| overwrite_location_ = start; |
| |
| for (MipsLabel* target : table.GetData()) { |
| CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u); |
| // The table will contain target addresses relative to the table start. |
| uint32_t offset = GetLabelLocation(target) - start; |
| Emit(offset); |
| } |
| } |
| |
| overwriting_ = false; |
| } |
| } |
| |
| void MipsAssembler::PromoteBranches() { |
| // Promote short branches to long as necessary. |
| bool changed; |
| do { |
| changed = false; |
| for (auto& branch : branches_) { |
| CHECK(branch.IsResolved()); |
| uint32_t base = GetBranchLocationOrPcRelBase(&branch); |
| uint32_t delta = branch.PromoteIfNeeded(base); |
| // If this branch has been promoted and needs to expand in size, |
| // relocate all branches by the expansion size. |
| if (delta) { |
| changed = true; |
| uint32_t expand_location = branch.GetLocation(); |
| for (auto& branch2 : branches_) { |
| branch2.Relocate(expand_location, delta); |
| } |
| } |
| } |
| } while (changed); |
| |
| // Account for branch expansion by resizing the code buffer |
| // and moving the code in it to its final location. |
| size_t branch_count = branches_.size(); |
| if (branch_count > 0) { |
| // Resize. |
| Branch& last_branch = branches_[branch_count - 1]; |
| uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation(); |
| uint32_t old_size = buffer_.Size(); |
| buffer_.Resize(old_size + size_delta); |
| // Move the code residing between branch placeholders. |
| uint32_t end = old_size; |
| for (size_t i = branch_count; i > 0; ) { |
| Branch& branch = branches_[--i]; |
| CHECK_GE(end, branch.GetOldEndLocation()); |
| uint32_t size = end - branch.GetOldEndLocation(); |
| buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size); |
| end = branch.GetOldLocation(); |
| } |
| } |
| } |
| |
| // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. |
| const MipsAssembler::Branch::BranchInfo MipsAssembler::Branch::branch_info_[] = { |
| // R2 short branches (can be promoted to long). |
| { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kUncondBranch |
| { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCondBranch |
| { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCall |
| // R2 short branches (can't be promoted to long), delay slots filled manually. |
| { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareUncondBranch |
| { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCondBranch |
| { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCall |
| // R2 near label. |
| { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLabel |
| // R2 near literal. |
| { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLiteral |
| // R2 long branches. |
| { 9, 3, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongUncondBranch |
| { 10, 4, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCondBranch |
| { 6, 1, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCall |
| // R2 far label. |
| { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLabel |
| // R2 far literal. |
| { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLiteral |
| // R6 short branches (can be promoted to long). |
| { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6UncondBranch |
| { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6CondBranch |
| // Exception: kOffset23 for beqzc/bnezc. |
| { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6Call |
| // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. |
| { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareUncondBranch |
| { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6BareCondBranch |
| // Exception: kOffset23 for beqzc/bnezc. |
| { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareCall |
| // R6 near label. |
| { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Label |
| // R6 near literal. |
| { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Literal |
| // R6 long branches. |
| { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongUncondBranch |
| { 3, 1, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCondBranch |
| { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCall |
| // R6 far label. |
| { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLabel |
| // R6 far literal. |
| { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLiteral |
| }; |
| |
| static inline bool IsAbsorbableInstruction(uint32_t instruction) { |
| // The relative patcher patches addiu, lw and sw with an immediate operand of 0x5678. |
| // We want to make sure that these instructions do not get absorbed into delay slots |
| // of unconditional branches on R2. Absorption would otherwise make copies of |
| // unpatched instructions. |
| if ((instruction & 0xFFFF) != 0x5678) { |
| return true; |
| } |
| switch (instruction >> kOpcodeShift) { |
| case 0x09: // Addiu. |
| case 0x23: // Lw. |
| case 0x2B: // Sw. |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| static inline Register GetR2PcRelBaseRegister(Register reg) { |
| // LoadLabelAddress() and LoadLiteral() generate individual NAL |
| // instructions on R2 when the specified base register is ZERO |
| // and so the effective PC-relative base register is RA, not ZERO. |
| return (reg == ZERO) ? RA : reg; |
| } |
| |
| // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. |
| void MipsAssembler::EmitBranch(uint32_t branch_id) { |
| CHECK_EQ(overwriting_, true); |
| Branch* branch = GetBranch(branch_id); |
| overwrite_location_ = branch->GetLocation(); |
| uint32_t offset = branch->GetOffset(GetBranchOrPcRelBaseForEncoding(branch)); |
| BranchCondition condition = branch->GetCondition(); |
| Register lhs = branch->GetLeftRegister(); |
| Register rhs = branch->GetRightRegister(); |
| uint32_t delayed_instruction = branch->GetDelayedInstruction(); |
| MipsLabel* patcher_label = branch->GetPatcherLabel(); |
| if (patcher_label != nullptr) { |
| // Update the patcher label location to account for branch promotion and |
| // delay slot filling. |
| CHECK(patcher_label->IsBound()); |
| uint32_t bound_pc = branch->GetLocation(); |
| if (!branch->IsLong()) { |
| // Short branches precede delay slots. |
| // Long branches follow "delay slots". |
| bound_pc += sizeof(uint32_t); |
| } |
| // Rebind the label. |
| patcher_label->Reinitialize(); |
| BindRelativeToPrecedingBranch(patcher_label, branch_id, bound_pc); |
| } |
| switch (branch->GetType()) { |
| // R2 short branches. |
| case Branch::kUncondBranch: |
| if (delayed_instruction == Branch::kUnfillableDelaySlot) { |
| // The branch was created when reordering was disabled, do not absorb the target |
| // instruction. |
| delayed_instruction = 0; // NOP. |
| } else if (delayed_instruction == Branch::kUnfilledDelaySlot) { |
| // Try to absorb the target instruction into the delay slot. |
| delayed_instruction = 0; // NOP. |
| // Incrementing the signed 16-bit offset past the target instruction must not |
| // cause overflow into the negative subrange, check for the max offset. |
| if (offset != 0x7FFF) { |
| uint32_t target = branch->GetTarget(); |
| if (std::binary_search(ds_fsm_target_pcs_.begin(), ds_fsm_target_pcs_.end(), target)) { |
| uint32_t target_instruction = buffer_.Load<uint32_t>(target); |
| if (IsAbsorbableInstruction(target_instruction)) { |
| delayed_instruction = target_instruction; |
| offset++; |
| } |
| } |
| } |
| } |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| B(offset); |
| Emit(delayed_instruction); |
| break; |
| case Branch::kCondBranch: |
| DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); |
| if (delayed_instruction == Branch::kUnfilledDelaySlot) { |
| delayed_instruction = 0; // NOP. |
| } |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| EmitBcondR2(condition, lhs, rhs, offset); |
| Emit(delayed_instruction); |
| break; |
| case Branch::kCall: |
| DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); |
| if (delayed_instruction == Branch::kUnfilledDelaySlot) { |
| delayed_instruction = 0; // NOP. |
| } |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Bal(offset); |
| Emit(delayed_instruction); |
| break; |
| case Branch::kBareUncondBranch: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| B(offset); |
| break; |
| case Branch::kBareCondBranch: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| EmitBcondR2(condition, lhs, rhs, offset); |
| break; |
| case Branch::kBareCall: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Bal(offset); |
| break; |
| |
| // R2 near label. |
| case Branch::kLabel: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Addiu(lhs, GetR2PcRelBaseRegister(rhs), offset); |
| break; |
| // R2 near literal. |
| case Branch::kLiteral: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Lw(lhs, GetR2PcRelBaseRegister(rhs), offset); |
| break; |
| |
| // R2 long branches. |
| case Branch::kLongUncondBranch: |
| // To get the value of the PC register we need to use the NAL instruction. |
| // NAL clobbers the RA register. However, RA must be preserved if the |
| // method is compiled without the entry/exit sequences that would take care |
| // of preserving RA (typically, leaf methods don't preserve RA explicitly). |
| // So, we need to preserve RA in some temporary storage ourselves. The AT |
| // register can't be used for this because we need it to load a constant |
| // which will be added to the value that NAL stores in RA. And we can't |
| // use T9 for this in the context of the JNI compiler, which uses it |
| // as a scratch register (see InterproceduralScratchRegister()). |
| // If we were to add a 32-bit constant to RA using two ADDIU instructions, |
| // we'd also need to use the ROTR instruction, which requires no less than |
| // MIPSR2. |
| // Perhaps, we could use T8 or one of R2's multiplier/divider registers |
| // (LO or HI) or even a floating-point register, but that doesn't seem |
| // like a nice solution. We may want this to work on both R6 and pre-R6. |
| // For now simply use the stack for RA. This should be OK since for the |
| // vast majority of code a short PC-relative branch is sufficient. |
| // TODO: can this be improved? |
| // TODO: consider generation of a shorter sequence when we know that RA |
| // is explicitly preserved by the method entry/exit code. |
| if (delayed_instruction != Branch::kUnfilledDelaySlot && |
| delayed_instruction != Branch::kUnfillableDelaySlot) { |
| Emit(delayed_instruction); |
| } |
| Push(RA); |
| Nal(); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Lui(AT, High16Bits(offset)); |
| Ori(AT, AT, Low16Bits(offset)); |
| Addu(AT, AT, RA); |
| Lw(RA, SP, 0); |
| Jr(AT); |
| DecreaseFrameSize(kStackAlignment); |
| break; |
| case Branch::kLongCondBranch: |
| // The comment on case 'Branch::kLongUncondBranch' applies here as well. |
| DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); |
| if (delayed_instruction != Branch::kUnfilledDelaySlot) { |
| Emit(delayed_instruction); |
| } |
| // Note: the opposite condition branch encodes 8 as the distance, which is equal to the |
| // number of instructions skipped: |
| // (PUSH(IncreaseFrameSize(ADDIU) + SW) + NAL + LUI + ORI + ADDU + LW + JR). |
| EmitBcondR2(Branch::OppositeCondition(condition), lhs, rhs, 8); |
| Push(RA); |
| Nal(); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Lui(AT, High16Bits(offset)); |
| Ori(AT, AT, Low16Bits(offset)); |
| Addu(AT, AT, RA); |
| Lw(RA, SP, 0); |
| Jr(AT); |
| DecreaseFrameSize(kStackAlignment); |
| break; |
| case Branch::kLongCall: |
| DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); |
| if (delayed_instruction != Branch::kUnfilledDelaySlot) { |
| Emit(delayed_instruction); |
| } |
| Nal(); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Lui(AT, High16Bits(offset)); |
| Ori(AT, AT, Low16Bits(offset)); |
| Addu(AT, AT, RA); |
| Jalr(AT); |
| Nop(); |
| break; |
| |
| // R2 far label. |
| case Branch::kFarLabel: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Lui(AT, High16Bits(offset)); |
| Ori(AT, AT, Low16Bits(offset)); |
| Addu(lhs, AT, GetR2PcRelBaseRegister(rhs)); |
| break; |
| // R2 far literal. |
| case Branch::kFarLiteral: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| offset += (offset & 0x8000) << 1; // Account for sign extension in lw. |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Lui(AT, High16Bits(offset)); |
| Addu(AT, AT, GetR2PcRelBaseRegister(rhs)); |
| Lw(lhs, AT, Low16Bits(offset)); |
| break; |
| |
| // R6 short branches. |
| case Branch::kR6UncondBranch: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Bc(offset); |
| break; |
| case Branch::kR6CondBranch: |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| EmitBcondR6(condition, lhs, rhs, offset); |
| DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); |
| if (delayed_instruction != Branch::kUnfilledDelaySlot) { |
| Emit(delayed_instruction); |
| } else { |
| // TODO: improve by filling the forbidden slot (IFF this is |
| // a forbidden and not a delay slot). |
| Nop(); |
| } |
| break; |
| case Branch::kR6Call: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Balc(offset); |
| break; |
| case Branch::kR6BareUncondBranch: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Bc(offset); |
| break; |
| case Branch::kR6BareCondBranch: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| EmitBcondR6(condition, lhs, rhs, offset); |
| break; |
| case Branch::kR6BareCall: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Balc(offset); |
| break; |
| |
| // R6 near label. |
| case Branch::kR6Label: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Addiupc(lhs, offset); |
| break; |
| // R6 near literal. |
| case Branch::kR6Literal: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Lwpc(lhs, offset); |
| break; |
| |
| // R6 long branches. |
| case Branch::kR6LongUncondBranch: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| offset += (offset & 0x8000) << 1; // Account for sign extension in jic. |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Auipc(AT, High16Bits(offset)); |
| Jic(AT, Low16Bits(offset)); |
| break; |
| case Branch::kR6LongCondBranch: |
| DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); |
| if (delayed_instruction != Branch::kUnfilledDelaySlot) { |
| Emit(delayed_instruction); |
| } |
| EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2); |
| offset += (offset & 0x8000) << 1; // Account for sign extension in jic. |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Auipc(AT, High16Bits(offset)); |
| Jic(AT, Low16Bits(offset)); |
| break; |
| case Branch::kR6LongCall: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| offset += (offset & 0x8000) << 1; // Account for sign extension in jialc. |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Auipc(AT, High16Bits(offset)); |
| Jialc(AT, Low16Bits(offset)); |
| break; |
| |
| // R6 far label. |
| case Branch::kR6FarLabel: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| offset += (offset & 0x8000) << 1; // Account for sign extension in addiu. |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Auipc(AT, High16Bits(offset)); |
| Addiu(lhs, AT, Low16Bits(offset)); |
| break; |
| // R6 far literal. |
| case Branch::kR6FarLiteral: |
| DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); |
| offset += (offset & 0x8000) << 1; // Account for sign extension in lw. |
| CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); |
| Auipc(AT, High16Bits(offset)); |
| Lw(lhs, AT, Low16Bits(offset)); |
| break; |
| } |
| CHECK_EQ(overwrite_location_, branch->GetEndLocation()); |
| CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize)); |
| if (patcher_label != nullptr) { |
| // The patched instruction should look like one. |
| uint32_t patched_instruction = buffer_.Load<uint32_t>(GetLabelLocation(patcher_label)); |
| CHECK(!IsAbsorbableInstruction(patched_instruction)); |
| } |
| } |
| |
| void MipsAssembler::B(MipsLabel* label, bool is_bare) { |
| Buncond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare); |
| } |
| |
| void MipsAssembler::Bal(MipsLabel* label, bool is_bare) { |
| Call(label, /* is_r6 */ (IsR6() && !is_bare), is_bare); |
| } |
| |
| void MipsAssembler::Beq(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondEQ, rs, rt); |
| } |
| |
| void MipsAssembler::Bne(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondNE, rs, rt); |
| } |
| |
| void MipsAssembler::Beqz(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondEQZ, rt); |
| } |
| |
| void MipsAssembler::Bnez(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondNEZ, rt); |
| } |
| |
| void MipsAssembler::Bltz(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondLTZ, rt); |
| } |
| |
| void MipsAssembler::Bgez(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondGEZ, rt); |
| } |
| |
| void MipsAssembler::Blez(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondLEZ, rt); |
| } |
| |
| void MipsAssembler::Bgtz(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ (IsR6() && !is_bare), is_bare, kCondGTZ, rt); |
| } |
| |
| bool MipsAssembler::CanExchangeWithSlt(Register rs, Register rt) const { |
| // If the instruction modifies AT, `rs` or `rt`, it can't be exchanged with the slt[u] |
| // instruction because either slt[u] depends on `rs` or `rt` or the following |
| // conditional branch depends on AT set by slt[u]. |
| // Likewise, if the instruction depends on AT, it can't be exchanged with slt[u] |
| // because slt[u] changes AT. |
| return (delay_slot_.instruction_ != 0 && |
| (delay_slot_.masks_.gpr_outs_ & ((1u << AT) | (1u << rs) | (1u << rt))) == 0 && |
| (delay_slot_.masks_.gpr_ins_ & (1u << AT)) == 0); |
| } |
| |
| void MipsAssembler::ExchangeWithSlt(const DelaySlot& forwarded_slot) { |
| // Exchange the last two instructions in the assembler buffer. |
| size_t size = buffer_.Size(); |
| CHECK_GE(size, 2 * sizeof(uint32_t)); |
| size_t pos1 = size - 2 * sizeof(uint32_t); |
| size_t pos2 = size - sizeof(uint32_t); |
| uint32_t instr1 = buffer_.Load<uint32_t>(pos1); |
| uint32_t instr2 = buffer_.Load<uint32_t>(pos2); |
| CHECK_EQ(instr1, forwarded_slot.instruction_); |
| CHECK_EQ(instr2, delay_slot_.instruction_); |
| buffer_.Store<uint32_t>(pos1, instr2); |
| buffer_.Store<uint32_t>(pos2, instr1); |
| // Set the current delay slot information to that of the last instruction |
| // in the buffer. |
| delay_slot_ = forwarded_slot; |
| } |
| |
| void MipsAssembler::GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt) { |
| // If possible, exchange the slt[u] instruction with the preceding instruction, |
| // so it can fill the delay slot. |
| DelaySlot forwarded_slot = delay_slot_; |
| bool exchange = CanExchangeWithSlt(rs, rt); |
| if (exchange) { |
| // The last instruction cannot be used in a different delay slot, |
| // do not commit the label before it (if any). |
| DsFsmDropLabel(); |
| } |
| if (unsigned_slt) { |
| Sltu(AT, rs, rt); |
| } else { |
| Slt(AT, rs, rt); |
| } |
| if (exchange) { |
| ExchangeWithSlt(forwarded_slot); |
| } |
| } |
| |
| void MipsAssembler::Blt(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| if (IsR6() && !is_bare) { |
| Bcond(label, IsR6(), is_bare, kCondLT, rs, rt); |
| } else if (!Branch::IsNop(kCondLT, rs, rt)) { |
| // Synthesize the instruction (not available on R2). |
| GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt); |
| Bnez(AT, label, is_bare); |
| } |
| } |
| |
| void MipsAssembler::Bge(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| if (IsR6() && !is_bare) { |
| Bcond(label, IsR6(), is_bare, kCondGE, rs, rt); |
| } else if (Branch::IsUncond(kCondGE, rs, rt)) { |
| B(label, is_bare); |
| } else { |
| // Synthesize the instruction (not available on R2). |
| GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt); |
| Beqz(AT, label, is_bare); |
| } |
| } |
| |
| void MipsAssembler::Bltu(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| if (IsR6() && !is_bare) { |
| Bcond(label, IsR6(), is_bare, kCondLTU, rs, rt); |
| } else if (!Branch::IsNop(kCondLTU, rs, rt)) { |
| // Synthesize the instruction (not available on R2). |
| GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt); |
| Bnez(AT, label, is_bare); |
| } |
| } |
| |
| void MipsAssembler::Bgeu(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| if (IsR6() && !is_bare) { |
| Bcond(label, IsR6(), is_bare, kCondGEU, rs, rt); |
| } else if (Branch::IsUncond(kCondGEU, rs, rt)) { |
| B(label, is_bare); |
| } else { |
| // Synthesize the instruction (not available on R2). |
| GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt); |
| Beqz(AT, label, is_bare); |
| } |
| } |
| |
| void MipsAssembler::Bc1f(MipsLabel* label, bool is_bare) { |
| Bc1f(0, label, is_bare); |
| } |
| |
| void MipsAssembler::Bc1f(int cc, MipsLabel* label, bool is_bare) { |
| CHECK(IsUint<3>(cc)) << cc; |
| Bcond(label, /* is_r6 */ false, is_bare, kCondF, static_cast<Register>(cc), ZERO); |
| } |
| |
| void MipsAssembler::Bc1t(MipsLabel* label, bool is_bare) { |
| Bc1t(0, label, is_bare); |
| } |
| |
| void MipsAssembler::Bc1t(int cc, MipsLabel* label, bool is_bare) { |
| CHECK(IsUint<3>(cc)) << cc; |
| Bcond(label, /* is_r6 */ false, is_bare, kCondT, static_cast<Register>(cc), ZERO); |
| } |
| |
| void MipsAssembler::Bc(MipsLabel* label, bool is_bare) { |
| Buncond(label, /* is_r6 */ true, is_bare); |
| } |
| |
| void MipsAssembler::Balc(MipsLabel* label, bool is_bare) { |
| Call(label, /* is_r6 */ true, is_bare); |
| } |
| |
| void MipsAssembler::Beqc(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondEQ, rs, rt); |
| } |
| |
| void MipsAssembler::Bnec(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondNE, rs, rt); |
| } |
| |
| void MipsAssembler::Beqzc(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondEQZ, rt); |
| } |
| |
| void MipsAssembler::Bnezc(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondNEZ, rt); |
| } |
| |
| void MipsAssembler::Bltzc(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondLTZ, rt); |
| } |
| |
| void MipsAssembler::Bgezc(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondGEZ, rt); |
| } |
| |
| void MipsAssembler::Blezc(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondLEZ, rt); |
| } |
| |
| void MipsAssembler::Bgtzc(Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondGTZ, rt); |
| } |
| |
| void MipsAssembler::Bltc(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondLT, rs, rt); |
| } |
| |
| void MipsAssembler::Bgec(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondGE, rs, rt); |
| } |
| |
| void MipsAssembler::Bltuc(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondLTU, rs, rt); |
| } |
| |
| void MipsAssembler::Bgeuc(Register rs, Register rt, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondGEU, rs, rt); |
| } |
| |
| void MipsAssembler::Bc1eqz(FRegister ft, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondF, static_cast<Register>(ft), ZERO); |
| } |
| |
| void MipsAssembler::Bc1nez(FRegister ft, MipsLabel* label, bool is_bare) { |
| Bcond(label, /* is_r6 */ true, is_bare, kCondT, static_cast<Register>(ft), ZERO); |
| } |
| |
| void MipsAssembler::AdjustBaseAndOffset(Register& base, |
| int32_t& offset, |
| bool is_doubleword, |
| bool is_float) { |
| // This method is used to adjust the base register and offset pair |
| // for a load/store when the offset doesn't fit into int16_t. |
| // It is assumed that `base + offset` is sufficiently aligned for memory |
| // operands that are machine word in size or smaller. For doubleword-sized |
| // operands it's assumed that `base` is a multiple of 8, while `offset` |
| // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments |
| // and spilled variables on the stack accessed relative to the stack |
| // pointer register). |
| // We preserve the "alignment" of `offset` by adjusting it by a multiple of 8. |
| CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`. |
| |
| bool doubleword_aligned = IsAligned<kMipsDoublewordSize>(offset); |
| bool two_accesses = is_doubleword && (!is_float || !doubleword_aligned); |
| |
| // IsInt<16> must be passed a signed value, hence the static cast below. |
| if (IsInt<16>(offset) && |
| (!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)))) { |
| // Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t. |
| return; |
| } |
| |
| // Remember the "(mis)alignment" of `offset`, it will be checked at the end. |
| uint32_t misalignment = offset & (kMipsDoublewordSize - 1); |
| |
| // Do not load the whole 32-bit `offset` if it can be represented as |
| // a sum of two 16-bit signed offsets. This can save an instruction or two. |
| // To simplify matters, only do this for a symmetric range of offsets from |
| // about -64KB to about +64KB, allowing further addition of 4 when accessing |
| // 64-bit variables with two 32-bit accesses. |
| constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8; // Max int16_t that's a multiple of 8. |
| constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment; |
| if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) { |
| Addiu(AT, base, kMinOffsetForSimpleAdjustment); |
| offset -= kMinOffsetForSimpleAdjustment; |
| } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) { |
| Addiu(AT, base, -kMinOffsetForSimpleAdjustment); |
| offset += kMinOffsetForSimpleAdjustment; |
| } else if (IsR6()) { |
| // On R6 take advantage of the aui instruction, e.g.: |
| // aui AT, base, offset_high |
| // lw reg_lo, offset_low(AT) |
| // lw reg_hi, (offset_low+4)(AT) |
| // or when offset_low+4 overflows int16_t: |
| // aui AT, base, offset_high |
| // addiu AT, AT, 8 |
| // lw reg_lo, (offset_low-8)(AT) |
| // lw reg_hi, (offset_low-4)(AT) |
| int16_t offset_high = High16Bits(offset); |
| int16_t offset_low = Low16Bits(offset); |
| offset_high += (offset_low < 0) ? 1 : 0; // Account for offset sign extension in load/store. |
| Aui(AT, base, offset_high); |
| if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low + kMipsWordSize))) { |
| // Avoid overflow in the 16-bit offset of the load/store instruction when adding 4. |
| Addiu(AT, AT, kMipsDoublewordSize); |
| offset_low -= kMipsDoublewordSize; |
| } |
| offset = offset_low; |
| } else { |
| // Do not load the whole 32-bit `offset` if it can be represented as |
| // a sum of three 16-bit signed offsets. This can save an instruction. |
| // To simplify matters, only do this for a symmetric range of offsets from |
| // about -96KB to about +96KB, allowing further addition of 4 when accessing |
| // 64-bit variables with two 32-bit accesses. |
| constexpr int32_t kMinOffsetForMediumAdjustment = 2 * kMinOffsetForSimpleAdjustment; |
| constexpr int32_t kMaxOffsetForMediumAdjustment = 3 * kMinOffsetForSimpleAdjustment; |
| if (0 <= offset && offset <= kMaxOffsetForMediumAdjustment) { |
| Addiu(AT, base, kMinOffsetForMediumAdjustment / 2); |
| Addiu(AT, AT, kMinOffsetForMediumAdjustment / 2); |
| offset -= kMinOffsetForMediumAdjustment; |
| } else if (-kMaxOffsetForMediumAdjustment <= offset && offset < 0) { |
| Addiu(AT, base, -kMinOffsetForMediumAdjustment / 2); |
| Addiu(AT, AT, -kMinOffsetForMediumAdjustment / 2); |
| offset += kMinOffsetForMediumAdjustment; |
| } else { |
| // Now that all shorter options have been exhausted, load the full 32-bit offset. |
| int32_t loaded_offset = RoundDown(offset, kMipsDoublewordSize); |
| LoadConst32(AT, loaded_offset); |
| Addu(AT, AT, base); |
| offset -= loaded_offset; |
| } |
| } |
| base = AT; |
| |
| CHECK(IsInt<16>(offset)); |
| if (two_accesses) { |
| CHECK(IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize))); |
| } |
| CHECK_EQ(misalignment, offset & (kMipsDoublewordSize - 1)); |
| } |
| |
| void MipsAssembler::AdjustBaseOffsetAndElementSizeShift(Register& base, |
| int32_t& offset, |
| int& element_size_shift) { |
| // This method is used to adjust the base register, offset and element_size_shift |
| // for a vector load/store when the offset doesn't fit into allowed number of bits. |
| // MSA ld.df and st.df instructions take signed offsets as arguments, but maximum |
| // offset is dependant on the size of the data format df (10-bit offsets for ld.b, |
| // 11-bit for ld.h, 12-bit for ld.w and 13-bit for ld.d). |
| // If element_size_shift is non-negative at entry, it won't be changed, but offset |
| // will be checked for appropriate alignment. If negative at entry, it will be |
| // adjusted based on offset for maximum fit. |
| // It's assumed that `base` is a multiple of 8. |
| CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`. |
| |
| if (element_size_shift >= 0) { |
| CHECK_LE(element_size_shift, TIMES_8); |
| CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift); |
| } else if (IsAligned<kMipsDoublewordSize>(offset)) { |
| element_size_shift = TIMES_8; |
| } else if (IsAligned<kMipsWordSize>(offset)) { |
| element_size_shift = TIMES_4; |
| } else if (IsAligned<kMipsHalfwordSize>(offset)) { |
| element_size_shift = TIMES_2; |
| } else { |
| element_size_shift = TIMES_1; |
| } |
| |
| const int low_len = 10 + element_size_shift; // How many low bits of `offset` ld.df/st.df |
| // will take. |
| int16_t low = offset & ((1 << low_len) - 1); // Isolate these bits. |
| low -= (low & (1 << (low_len - 1))) << 1; // Sign-extend these bits. |
| if (low == offset) { |
| return; // `offset` fits into ld.df/st.df. |
| } |
| |
| // First, see if `offset` can be represented as a sum of two or three signed offsets. |
| // This can save an instruction or two. |
| |
| // Max int16_t that's a multiple of element size. |
| const int32_t kMaxDeltaForSimpleAdjustment = 0x8000 - (1 << element_size_shift); |
| // Max ld.df/st.df offset that's a multiple of element size. |
| const int32_t kMaxLoadStoreOffset = 0x1ff << element_size_shift; |
| const int32_t kMaxOffsetForSimpleAdjustment = kMaxDeltaForSimpleAdjustment + kMaxLoadStoreOffset; |
| const int32_t kMinOffsetForMediumAdjustment = 2 * kMaxDeltaForSimpleAdjustment; |
| const int32_t kMaxOffsetForMediumAdjustment = kMinOffsetForMediumAdjustment + kMaxLoadStoreOffset; |
| |
| if (IsInt<16>(offset)) { |
| Addiu(AT, base, offset); |
| offset = 0; |
| } else if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) { |
| Addiu(AT, base, kMaxDeltaForSimpleAdjustment); |
| offset -= kMaxDeltaForSimpleAdjustment; |
| } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) { |
| Addiu(AT, base, -kMaxDeltaForSimpleAdjustment); |
| offset += kMaxDeltaForSimpleAdjustment; |
| } else if (!IsR6() && 0 <= offset && offset <= kMaxOffsetForMediumAdjustment) { |
| Addiu(AT, base, kMaxDeltaForSimpleAdjustment); |
| if (offset <= kMinOffsetForMediumAdjustment) { |
| Addiu(AT, AT, offset - kMaxDeltaForSimpleAdjustment); |
| offset = 0; |
| } else { |
| Addiu(AT, AT, kMaxDeltaForSimpleAdjustment); |
| offset -= kMinOffsetForMediumAdjustment; |
| } |
| } else if (!IsR6() && -kMaxOffsetForMediumAdjustment <= offset && offset < 0) { |
| Addiu(AT, base, -kMaxDeltaForSimpleAdjustment); |
| if (-kMinOffsetForMediumAdjustment <= offset) { |
| Addiu(AT, AT, offset + kMaxDeltaForSimpleAdjustment); |
| offset = 0; |
| } else { |
| Addiu(AT, AT, -kMaxDeltaForSimpleAdjustment); |
| offset += kMinOffsetForMediumAdjustment; |
| } |
| } else { |
| // 16-bit or smaller parts of `offset`: |
| // |31 hi 16|15 mid 13-10|12-9 low 0| |
| // |
| // Instructions that supply each part as a signed integer addend: |
| // |aui |addiu |ld.df/st.df | |
| uint32_t tmp = static_cast<uint32_t>(offset) - low; // Exclude `low` from the rest of `offset` |
| // (accounts for sign of `low`). |
| tmp += (tmp & (UINT32_C(1) << 15)) << 1; // Account for sign extension in addiu. |
| int16_t mid = Low16Bits(tmp); |
| int16_t hi = High16Bits(tmp); |
| if (IsR6()) { |
| Aui(AT, base, hi); |
| } else { |
| Lui(AT, hi); |
| Addu(AT, AT, base); |
| } |
| if (mid != 0) { |
| Addiu(AT, AT, mid); |
| } |
| offset = low; |
| } |
| base = AT; |
| CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift); |
| CHECK(IsInt<10>(offset >> element_size_shift)); |
| } |
| |
| void MipsAssembler::LoadFromOffset(LoadOperandType type, |
| Register reg, |
| Register base, |
| int32_t offset) { |
| LoadFromOffset<>(type, reg, base, offset); |
| } |
| |
| void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) { |
| LoadSFromOffset<>(reg, base, offset); |
| } |
| |
| void MipsAssembler::LoadDFromOffset(FRegister reg, Register base, int32_t offset) { |
| LoadDFromOffset<>(reg, base, offset); |
| } |
| |
| void MipsAssembler::LoadQFromOffset(FRegister reg, Register base, int32_t offset) { |
| LoadQFromOffset<>(reg, base, offset); |
| } |
| |
| void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, |
| size_t size) { |
| MipsManagedRegister dst = m_dst.AsMips(); |
| if (dst.IsNoRegister()) { |
| CHECK_EQ(0u, size) << dst; |
| } else if (dst.IsCoreRegister()) { |
| CHECK_EQ(kMipsWordSize, size) << dst; |
| LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset); |
| } else if (dst.IsRegisterPair()) { |
| CHECK_EQ(kMipsDoublewordSize, size) << dst; |
| LoadFromOffset(kLoadDoubleword, dst.AsRegisterPairLow(), src_register, src_offset); |
| } else if (dst.IsFRegister()) { |
| if (size == kMipsWordSize) { |
| LoadSFromOffset(dst.AsFRegister(), src_register, src_offset); |
| } else { |
| CHECK_EQ(kMipsDoublewordSize, size) << dst; |
| LoadDFromOffset(dst.AsFRegister(), src_register, src_offset); |
| } |
| } else if (dst.IsDRegister()) { |
| CHECK_EQ(kMipsDoublewordSize, size) << dst; |
| LoadDFromOffset(dst.AsOverlappingDRegisterLow(), src_register, src_offset); |
| } |
| } |
| |
| void MipsAssembler::StoreToOffset(StoreOperandType type, |
| Register reg, |
| Register base, |
| int32_t offset) { |
| StoreToOffset<>(type, reg, base, offset); |
| } |
| |
| void MipsAssembler::StoreSToOffset(FRegister reg, Register base, int32_t offset) { |
| StoreSToOffset<>(reg, base, offset); |
| } |
| |
| void MipsAssembler::StoreDToOffset(FRegister reg, Register base, int32_t offset) { |
| StoreDToOffset<>(reg, base, offset); |
| } |
| |
| void MipsAssembler::StoreQToOffset(FRegister reg, Register base, int32_t offset) { |
| StoreQToOffset<>(reg, base, offset); |
| } |
| |
| static dwarf::Reg DWARFReg(Register reg) { |
| return dwarf::Reg::MipsCore(static_cast<int>(reg)); |
| } |
| |
| constexpr size_t kFramePointerSize = 4; |
| |
| void MipsAssembler::BuildFrame(size_t frame_size, |
| ManagedRegister method_reg, |
| ArrayRef<const ManagedRegister> callee_save_regs, |
| const ManagedRegisterEntrySpills& entry_spills) { |
| CHECK_ALIGNED(frame_size, kStackAlignment); |
| DCHECK(!overwriting_); |
| |
| // Increase frame to required size. |
| IncreaseFrameSize(frame_size); |
| |
| // Push callee saves and return address. |
| int stack_offset = frame_size - kFramePointerSize; |
| StoreToOffset(kStoreWord, RA, SP, stack_offset); |
| cfi_.RelOffset(DWARFReg(RA), stack_offset); |
| for (int i = callee_save_regs.size() - 1; i >= 0; --i) { |
| stack_offset -= kFramePointerSize; |
| Register reg = callee_save_regs[i].AsMips().AsCoreRegister(); |
| StoreToOffset(kStoreWord, reg, SP, stack_offset); |
| cfi_.RelOffset(DWARFReg(reg), stack_offset); |
| } |
| |
| // Write out Method*. |
| StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0); |
| |
| // Write out entry spills. |
| int32_t offset = frame_size + kFramePointerSize; |
| for (const ManagedRegisterSpill& spill : entry_spills) { |
| MipsManagedRegister reg = spill.AsMips(); |
| if (reg.IsNoRegister()) { |
| offset += spill.getSize(); |
| } else if (reg.IsCoreRegister()) { |
| StoreToOffset(kStoreWord, reg.AsCoreRegister(), SP, offset); |
| offset += kMipsWordSize; |
| } else if (reg.IsFRegister()) { |
| StoreSToOffset(reg.AsFRegister(), SP, offset); |
| offset += kMipsWordSize; |
| } else if (reg.IsDRegister()) { |
| StoreDToOffset(reg.AsOverlappingDRegisterLow(), SP, offset); |
| offset += kMipsDoublewordSize; |
| } |
| } |
| } |
| |
| void MipsAssembler::RemoveFrame(size_t frame_size, |
| ArrayRef<const ManagedRegister> callee_save_regs, |
| bool may_suspend ATTRIBUTE_UNUSED) { |
| CHECK_ALIGNED(frame_size, kStackAlignment); |
| DCHECK(!overwriting_); |
| cfi_.RememberState(); |
| |
| // Pop callee saves and return address. |
| int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize; |
| for (size_t i = 0; i < callee_save_regs.size(); ++i) { |
| Register reg = callee_save_regs[i].AsMips().AsCoreRegister(); |
| LoadFromOffset(kLoadWord, reg, SP, stack_offset); |
| cfi_.Restore(DWARFReg(reg)); |
| stack_offset += kFramePointerSize; |
| } |
| LoadFromOffset(kLoadWord, RA, SP, stack_offset); |
| cfi_.Restore(DWARFReg(RA)); |
| |
| // Adjust the stack pointer in the delay slot if doing so doesn't break CFI. |
| bool exchange = IsInt<16>(static_cast<int32_t>(frame_size)); |
| bool reordering = SetReorder(false); |
| if (exchange) { |
| // Jump to the return address. |
| Jr(RA); |
| // Decrease frame to required size. |
| DecreaseFrameSize(frame_size); // Single instruction in delay slot. |
| } else { |
| // Decrease frame to required size. |
| DecreaseFrameSize(frame_size); |
| // Jump to the return address. |
| Jr(RA); |
| Nop(); // In delay slot. |
| } |
| SetReorder(reordering); |
| |
| // The CFI should be restored for any code that follows the exit block. |
| cfi_.RestoreState(); |
| cfi_.DefCFAOffset(frame_size); |
| } |
| |
| void MipsAssembler::IncreaseFrameSize(size_t adjust) { |
| CHECK_ALIGNED(adjust, kFramePointerSize); |
| Addiu32(SP, SP, -adjust); |
| cfi_.AdjustCFAOffset(adjust); |
| if (overwriting_) { |
| cfi_.OverrideDelayedPC(overwrite_location_); |
| } |
| } |
| |
| void MipsAssembler::DecreaseFrameSize(size_t adjust) { |
| CHECK_ALIGNED(adjust, kFramePointerSize); |
| Addiu32(SP, SP, adjust); |
| cfi_.AdjustCFAOffset(-adjust); |
| if (overwriting_) { |
| cfi_.OverrideDelayedPC(overwrite_location_); |
| } |
| } |
| |
| void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) { |
| MipsManagedRegister src = msrc.AsMips(); |
| if (src.IsNoRegister()) { |
| CHECK_EQ(0u, size); |
| } else if (src.IsCoreRegister()) { |
| CHECK_EQ(kMipsWordSize, size); |
| StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); |
| } else if (src.IsRegisterPair()) { |
| CHECK_EQ(kMipsDoublewordSize, size); |
| StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value()); |
| StoreToOffset(kStoreWord, src.AsRegisterPairHigh(), |
| SP, dest.Int32Value() + kMipsWordSize); |
| } else if (src.IsFRegister()) { |
| if (size == kMipsWordSize) { |
| StoreSToOffset(src.AsFRegister(), SP, dest.Int32Value()); |
| } else { |
| CHECK_EQ(kMipsDoublewordSize, size); |
| StoreDToOffset(src.AsFRegister(), SP, dest.Int32Value()); |
| } |
| } else if (src.IsDRegister()) { |
| CHECK_EQ(kMipsDoublewordSize, size); |
| StoreDToOffset(src.AsOverlappingDRegisterLow(), SP, dest.Int32Value()); |
| } |
| } |
| |
| void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { |
| MipsManagedRegister src = msrc.AsMips(); |
| CHECK(src.IsCoreRegister()); |
| StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); |
| } |
| |
| void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { |
| MipsManagedRegister src = msrc.AsMips(); |
| CHECK(src.IsCoreRegister()); |
| StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); |
| } |
| |
| void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, |
| ManagedRegister mscratch) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| LoadConst32(scratch.AsCoreRegister(), imm); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); |
| } |
| |
| void MipsAssembler::StoreStackOffsetToThread(ThreadOffset32 thr_offs, |
| FrameOffset fr_offs, |
| ManagedRegister mscratch) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| Addiu32(scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), |
| S1, thr_offs.Int32Value()); |
| } |
| |
| void MipsAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs) { |
| StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value()); |
| } |
| |
| void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc, |
| FrameOffset in_off, ManagedRegister mscratch) { |
| MipsManagedRegister src = msrc.AsMips(); |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value()); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize); |
| } |
| |
| void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { |
| return EmitLoad(mdest, SP, src.Int32Value(), size); |
| } |
| |
| void MipsAssembler::LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) { |
| return EmitLoad(mdest, S1, src.Int32Value(), size); |
| } |
| |
| void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) { |
| MipsManagedRegister dest = mdest.AsMips(); |
| CHECK(dest.IsCoreRegister()); |
| LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value()); |
| } |
| |
| void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, |
| bool unpoison_reference) { |
| MipsManagedRegister dest = mdest.AsMips(); |
| CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister()); |
| LoadFromOffset(kLoadWord, dest.AsCoreRegister(), |
| base.AsMips().AsCoreRegister(), offs.Int32Value()); |
| if (unpoison_reference) { |
| MaybeUnpoisonHeapReference(dest.AsCoreRegister()); |
| } |
| } |
| |
| void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { |
| MipsManagedRegister dest = mdest.AsMips(); |
| CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister()); |
| LoadFromOffset(kLoadWord, dest.AsCoreRegister(), |
| base.AsMips().AsCoreRegister(), offs.Int32Value()); |
| } |
| |
| void MipsAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) { |
| MipsManagedRegister dest = mdest.AsMips(); |
| CHECK(dest.IsCoreRegister()); |
| LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value()); |
| } |
| |
| void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) { |
| UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips"; |
| } |
| |
| void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) { |
| UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips"; |
| } |
| |
| void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) { |
| MipsManagedRegister dest = mdest.AsMips(); |
| MipsManagedRegister src = msrc.AsMips(); |
| if (!dest.Equals(src)) { |
| if (dest.IsCoreRegister()) { |
| CHECK(src.IsCoreRegister()) << src; |
| Move(dest.AsCoreRegister(), src.AsCoreRegister()); |
| } else if (dest.IsFRegister()) { |
| CHECK(src.IsFRegister()) << src; |
| if (size == kMipsWordSize) { |
| MovS(dest.AsFRegister(), src.AsFRegister()); |
| } else { |
| CHECK_EQ(kMipsDoublewordSize, size); |
| MovD(dest.AsFRegister(), src.AsFRegister()); |
| } |
| } else if (dest.IsDRegister()) { |
| CHECK(src.IsDRegister()) << src; |
| MovD(dest.AsOverlappingDRegisterLow(), src.AsOverlappingDRegisterLow()); |
| } else { |
| CHECK(dest.IsRegisterPair()) << dest; |
| CHECK(src.IsRegisterPair()) << src; |
| // Ensure that the first move doesn't clobber the input of the second. |
| if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) { |
| Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); |
| Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); |
| } else { |
| Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); |
| Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); |
| } |
| } |
| } |
| } |
| |
| void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); |
| } |
| |
| void MipsAssembler::CopyRawPtrFromThread(FrameOffset fr_offs, |
| ThreadOffset32 thr_offs, |
| ManagedRegister mscratch) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), |
| S1, thr_offs.Int32Value()); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), |
| SP, fr_offs.Int32Value()); |
| } |
| |
| void MipsAssembler::CopyRawPtrToThread(ThreadOffset32 thr_offs, |
| FrameOffset fr_offs, |
| ManagedRegister mscratch) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), |
| SP, fr_offs.Int32Value()); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), |
| S1, thr_offs.Int32Value()); |
| } |
| |
| void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| CHECK(size == kMipsWordSize || size == kMipsDoublewordSize) << size; |
| if (size == kMipsWordSize) { |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); |
| } else if (size == kMipsDoublewordSize) { |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + kMipsWordSize); |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize); |
| } |
| } |
| |
| void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, |
| ManagedRegister mscratch, size_t size) { |
| Register scratch = mscratch.AsMips().AsCoreRegister(); |
| CHECK_EQ(size, kMipsWordSize); |
| LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value()); |
| StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value()); |
| } |
| |
| void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, |
| ManagedRegister mscratch, size_t size) { |
| Register scratch = mscratch.AsMips().AsCoreRegister(); |
| CHECK_EQ(size, kMipsWordSize); |
| LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value()); |
| StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value()); |
| } |
| |
| void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, |
| FrameOffset src_base ATTRIBUTE_UNUSED, |
| Offset src_offset ATTRIBUTE_UNUSED, |
| ManagedRegister mscratch ATTRIBUTE_UNUSED, |
| size_t size ATTRIBUTE_UNUSED) { |
| UNIMPLEMENTED(FATAL) << "no MIPS implementation"; |
| } |
| |
| void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset, |
| ManagedRegister src, Offset src_offset, |
| ManagedRegister mscratch, size_t size) { |
| CHECK_EQ(size, kMipsWordSize); |
| Register scratch = mscratch.AsMips().AsCoreRegister(); |
| LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value()); |
| StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value()); |
| } |
| |
| void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, |
| Offset dest_offset ATTRIBUTE_UNUSED, |
| FrameOffset src ATTRIBUTE_UNUSED, |
| Offset src_offset ATTRIBUTE_UNUSED, |
| ManagedRegister mscratch ATTRIBUTE_UNUSED, |
| size_t size ATTRIBUTE_UNUSED) { |
| UNIMPLEMENTED(FATAL) << "no MIPS implementation"; |
| } |
| |
| void MipsAssembler::MemoryBarrier(ManagedRegister) { |
| // TODO: sync? |
| UNIMPLEMENTED(FATAL) << "no MIPS implementation"; |
| } |
| |
| void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg, |
| FrameOffset handle_scope_offset, |
| ManagedRegister min_reg, |
| bool null_allowed) { |
| MipsManagedRegister out_reg = mout_reg.AsMips(); |
| MipsManagedRegister in_reg = min_reg.AsMips(); |
| CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg; |
| CHECK(out_reg.IsCoreRegister()) << out_reg; |
| if (null_allowed) { |
| MipsLabel null_arg; |
| // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is |
| // the address in the handle scope holding the reference. |
| // E.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset). |
| if (in_reg.IsNoRegister()) { |
| LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), |
| SP, handle_scope_offset.Int32Value()); |
| in_reg = out_reg; |
| } |
| if (!out_reg.Equals(in_reg)) { |
| LoadConst32(out_reg.AsCoreRegister(), 0); |
| } |
| Beqz(in_reg.AsCoreRegister(), &null_arg); |
| Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); |
| Bind(&null_arg); |
| } else { |
| Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); |
| } |
| } |
| |
| void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off, |
| FrameOffset handle_scope_offset, |
| ManagedRegister mscratch, |
| bool null_allowed) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| if (null_allowed) { |
| MipsLabel null_arg; |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); |
| // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is |
| // the address in the handle scope holding the reference. |
| // E.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset). |
| Beqz(scratch.AsCoreRegister(), &null_arg); |
| Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); |
| Bind(&null_arg); |
| } else { |
| Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); |
| } |
| StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value()); |
| } |
| |
| // Given a handle scope entry, load the associated reference. |
| void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, |
| ManagedRegister min_reg) { |
| MipsManagedRegister out_reg = mout_reg.AsMips(); |
| MipsManagedRegister in_reg = min_reg.AsMips(); |
| CHECK(out_reg.IsCoreRegister()) << out_reg; |
| CHECK(in_reg.IsCoreRegister()) << in_reg; |
| MipsLabel null_arg; |
| if (!out_reg.Equals(in_reg)) { |
| LoadConst32(out_reg.AsCoreRegister(), 0); |
| } |
| Beqz(in_reg.AsCoreRegister(), &null_arg); |
| LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), |
| in_reg.AsCoreRegister(), 0); |
| Bind(&null_arg); |
| } |
| |
| void MipsAssembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED, |
| bool could_be_null ATTRIBUTE_UNUSED) { |
| // TODO: not validating references. |
| } |
| |
| void MipsAssembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED, |
| bool could_be_null ATTRIBUTE_UNUSED) { |
| // TODO: not validating references. |
| } |
| |
| void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) { |
| MipsManagedRegister base = mbase.AsMips(); |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(base.IsCoreRegister()) << base; |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), |
| base.AsCoreRegister(), offset.Int32Value()); |
| Jalr(scratch.AsCoreRegister()); |
| NopIfNoReordering(); |
| // TODO: place reference map on call. |
| } |
| |
| void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| CHECK(scratch.IsCoreRegister()) << scratch; |
| // Call *(*(SP + base) + offset) |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value()); |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), |
| scratch.AsCoreRegister(), offset.Int32Value()); |
| Jalr(scratch.AsCoreRegister()); |
| NopIfNoReordering(); |
| // TODO: place reference map on call. |
| } |
| |
| void MipsAssembler::CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED, |
| ManagedRegister mscratch ATTRIBUTE_UNUSED) { |
| UNIMPLEMENTED(FATAL) << "no mips implementation"; |
| } |
| |
| void MipsAssembler::GetCurrentThread(ManagedRegister tr) { |
| Move(tr.AsMips().AsCoreRegister(), S1); |
| } |
| |
| void MipsAssembler::GetCurrentThread(FrameOffset offset, |
| ManagedRegister mscratch ATTRIBUTE_UNUSED) { |
| StoreToOffset(kStoreWord, S1, SP, offset.Int32Value()); |
| } |
| |
| void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) { |
| MipsManagedRegister scratch = mscratch.AsMips(); |
| exception_blocks_.emplace_back(scratch, stack_adjust); |
| LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), |
| S1, Thread::ExceptionOffset<kMipsPointerSize>().Int32Value()); |
| Bnez(scratch.AsCoreRegister(), exception_blocks_.back().Entry()); |
| } |
| |
| void MipsAssembler::EmitExceptionPoll(MipsExceptionSlowPath* exception) { |
| Bind(exception->Entry()); |
| if (exception->stack_adjust_ != 0) { // Fix up the frame. |
| DecreaseFrameSize(exception->stack_adjust_); |
| } |
| // Pass exception object as argument. |
| // Don't care about preserving A0 as this call won't return. |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| Move(A0, exception->scratch_.AsCoreRegister()); |
| // Set up call to Thread::Current()->pDeliverException. |
| LoadFromOffset(kLoadWord, T9, S1, |
| QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, pDeliverException).Int32Value()); |
| Jr(T9); |
| NopIfNoReordering(); |
| |
| // Call never returns. |
| Break(); |
| } |
| |
| } // namespace mips |
| } // namespace art |