blob: 365c9c34d7236dbcc8c51f0976e1b5497843d9f8 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "profiler.h"
#include <sys/uio.h>
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "common_throws.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "instrumentation.h"
#include "mirror/art_method-inl.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/object_array-inl.h"
#include "mirror/object-inl.h"
#include "object_utils.h"
#include "os.h"
#include "scoped_thread_state_change.h"
#include "ScopedLocalRef.h"
#include "thread.h"
#include "thread_list.h"
#ifdef HAVE_ANDROID_OS
#include "cutils/properties.h"
#endif
#if !defined(ART_USE_PORTABLE_COMPILER)
#include "entrypoints/quick/quick_entrypoints.h"
#endif
namespace art {
BackgroundMethodSamplingProfiler* BackgroundMethodSamplingProfiler::profiler_ = nullptr;
pthread_t BackgroundMethodSamplingProfiler::profiler_pthread_ = 0U;
volatile bool BackgroundMethodSamplingProfiler::shutting_down_ = false;
// TODO: this profiler runs regardless of the state of the machine. Maybe we should use the
// wakelock or something to modify the run characteristics. This can be done when we
// have some performance data after it's been used for a while.
// This is called from either a thread list traversal or from a checkpoint. Regardless
// of which caller, the mutator lock must be held.
static void GetSample(Thread* thread, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
BackgroundMethodSamplingProfiler* profiler =
reinterpret_cast<BackgroundMethodSamplingProfiler*>(arg);
mirror::ArtMethod* method = thread->GetCurrentMethod(nullptr);
if (false && method == nullptr) {
LOG(INFO) << "No current method available";
std::ostringstream os;
thread->Dump(os);
std::string data(os.str());
LOG(INFO) << data;
}
profiler->RecordMethod(method);
}
// A closure that is called by the thread checkpoint code.
class SampleCheckpoint : public Closure {
public:
explicit SampleCheckpoint(BackgroundMethodSamplingProfiler* const profiler) :
profiler_(profiler) {}
virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
Thread* self = Thread::Current();
if (thread == nullptr) {
LOG(ERROR) << "Checkpoint with nullptr thread";
return;
}
// Grab the mutator lock (shared access).
ScopedObjectAccess soa(self);
// Grab a sample.
GetSample(thread, this->profiler_);
// And finally tell the barrier that we're done.
this->profiler_->GetBarrier().Pass(self);
}
private:
BackgroundMethodSamplingProfiler* const profiler_;
};
bool BackgroundMethodSamplingProfiler::ShuttingDown(Thread* self) {
MutexLock mu(self, *Locks::profiler_lock_);
return shutting_down_;
}
void* BackgroundMethodSamplingProfiler::RunProfilerThread(void* arg) {
Runtime* runtime = Runtime::Current();
BackgroundMethodSamplingProfiler* profiler =
reinterpret_cast<BackgroundMethodSamplingProfiler*>(arg);
// Add a random delay for the first time run so that we don't hammer the CPU
// with all profiles running at the same time.
const int kRandomDelayMaxSecs = 30;
const double kMaxBackoffSecs = 24*60*60; // Max backoff time.
srand(MicroTime() * getpid());
int startup_delay = rand() % kRandomDelayMaxSecs; // random delay for startup.
CHECK(runtime->AttachCurrentThread("Profiler", true, runtime->GetSystemThreadGroup(),
!runtime->IsCompiler()));
Thread* self = Thread::Current();
while (true) {
if (ShuttingDown(self)) {
break;
}
{
// wait until we need to run another profile
uint64_t delay_secs = profiler->period_s_ * profiler->backoff_factor_;
// Add a startup delay to prevent all the profiles running at once.
delay_secs += startup_delay;
// Immediate startup for benchmarking?
if (profiler->start_immediately_ && startup_delay > 0) {
delay_secs = 0;
}
startup_delay = 0;
LOG(DEBUG) << "Delaying profile start for " << delay_secs << " secs";
MutexLock mu(self, profiler->wait_lock_);
profiler->period_condition_.TimedWait(self, delay_secs * 1000, 0);
// Expand the backoff by its coefficient, but don't go beyond the max.
double new_backoff = profiler->backoff_factor_ * profiler->backoff_coefficient_;
if (new_backoff < kMaxBackoffSecs) {
profiler->backoff_factor_ = new_backoff;
}
}
if (ShuttingDown(self)) {
break;
}
uint64_t start_us = MicroTime();
uint64_t end_us = start_us + profiler->duration_s_ * 1000000LL;
uint64_t now_us = start_us;
LOG(DEBUG) << "Starting profiling run now for " << PrettyDuration((end_us - start_us) * 1000);
SampleCheckpoint check_point(profiler);
while (now_us < end_us) {
if (ShuttingDown(self)) {
break;
}
usleep(profiler->interval_us_); // Non-interruptible sleep.
ThreadList* thread_list = runtime->GetThreadList();
profiler->profiler_barrier_->Init(self, 0);
size_t barrier_count = thread_list->RunCheckpoint(&check_point);
ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
// Wait for the barrier to be crossed by all runnable threads. This wait
// is done with a timeout so that we can detect problems with the checkpoint
// running code. We should never see this.
const uint32_t kWaitTimeoutMs = 10000;
const uint32_t kWaitTimeoutUs = kWaitTimeoutMs * 1000;
uint64_t waitstart_us = MicroTime();
// Wait for all threads to pass the barrier.
profiler->profiler_barrier_->Increment(self, barrier_count, kWaitTimeoutMs);
uint64_t waitend_us = MicroTime();
uint64_t waitdiff_us = waitend_us - waitstart_us;
// We should never get a timeout. If we do, it suggests a problem with the checkpoint
// code. Crash the process in this case.
CHECK_LT(waitdiff_us, kWaitTimeoutUs);
self->SetState(old_state);
// Update the current time.
now_us = MicroTime();
}
if (!ShuttingDown(self)) {
// After the profile has been taken, write it out.
ScopedObjectAccess soa(self); // Acquire the mutator lock.
uint32_t size = profiler->WriteProfile();
LOG(DEBUG) << "Profile size: " << size;
}
}
LOG(INFO) << "Profiler shutdown";
runtime->DetachCurrentThread();
return nullptr;
}
// Write out the profile file if we are generating a profile.
uint32_t BackgroundMethodSamplingProfiler::WriteProfile() {
UniquePtr<File> profile_file;
Runtime* runtime = Runtime::Current();
std::string classpath = runtime->GetClassPathString();
size_t colon = classpath.find(':');
if (colon != std::string::npos) {
// More than one file in the classpath. Possible?
classpath = classpath.substr(0, colon);
}
std::replace(classpath.begin(), classpath.end(), '/', '@');
std::string full_name = profile_file_name_;
if (classpath != "") {
full_name = StringPrintf("%s-%s", profile_file_name_.c_str(), classpath.c_str());
}
LOG(DEBUG) << "Saving profile to " << full_name;
profile_file.reset(OS::CreateEmptyFile(full_name.c_str()));
if (profile_file.get() == nullptr) {
// Failed to open the profile file, ignore.
LOG(INFO) << "Failed to op file";
return 0;
}
std::ostringstream os;
uint32_t num_methods = DumpProfile(os);
std::string data(os.str());
profile_file->WriteFully(data.c_str(), data.length());
profile_file->Close();
return num_methods;
}
// Start a profile thread with the user-supplied arguments.
void BackgroundMethodSamplingProfiler::Start(int period, int duration,
std::string profile_file_name, int interval_us,
double backoff_coefficient, bool startImmediately) {
Thread* self = Thread::Current();
{
MutexLock mu(self, *Locks::profiler_lock_);
// Don't start two profiler threads.
if (profiler_ != nullptr) {
return;
}
}
// Only on target...
#ifdef HAVE_ANDROID_OS
// Switch off profiler if the dalvik.vm.profiler property has value 0.
char buf[PROP_VALUE_MAX];
property_get("dalvik.vm.profiler", buf, "0");
if (strcmp(buf, "0") == 0) {
LOG(INFO) << "Profiler disabled. To enable setprop dalvik.vm.profiler 1";
return;
}
#endif
LOG(INFO) << "Starting profile with period " << period << "s, duration " << duration <<
"s, interval " << interval_us << "us. Profile file " << profile_file_name;
{
MutexLock mu(self, *Locks::profiler_lock_);
profiler_ = new BackgroundMethodSamplingProfiler(period, duration, profile_file_name,
backoff_coefficient,
interval_us, startImmediately);
CHECK_PTHREAD_CALL(pthread_create, (&profiler_pthread_, nullptr, &RunProfilerThread,
reinterpret_cast<void*>(profiler_)),
"Profiler thread");
}
}
void BackgroundMethodSamplingProfiler::Stop() {
BackgroundMethodSamplingProfiler* profiler = nullptr;
pthread_t profiler_pthread = 0U;
{
MutexLock trace_mu(Thread::Current(), *Locks::profiler_lock_);
profiler = profiler_;
shutting_down_ = true;
profiler_pthread = profiler_pthread_;
}
// Now wake up the sampler thread if it sleeping.
{
MutexLock profile_mu(Thread::Current(), profiler->wait_lock_);
profiler->period_condition_.Signal(Thread::Current());
}
// Wait for the sample thread to stop.
CHECK_PTHREAD_CALL(pthread_join, (profiler_pthread, nullptr), "profiler thread shutdown");
{
MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
profiler_ = nullptr;
}
delete profiler;
}
void BackgroundMethodSamplingProfiler::Shutdown() {
Stop();
}
BackgroundMethodSamplingProfiler::BackgroundMethodSamplingProfiler(int period, int duration,
std::string profile_file_name,
double backoff_coefficient, int interval_us, bool startImmediately)
: profile_file_name_(profile_file_name),
period_s_(period), start_immediately_(startImmediately),
interval_us_(interval_us), backoff_factor_(1.0),
backoff_coefficient_(backoff_coefficient), duration_s_(duration),
wait_lock_("Profile wait lock"),
period_condition_("Profile condition", wait_lock_),
profile_table_(wait_lock_),
profiler_barrier_(new Barrier(0)) {
// Populate the filtered_methods set.
// This is empty right now, but to add a method, do this:
//
// filtered_methods_.insert("void java.lang.Object.wait(long, int)");
}
// A method has been hit, record its invocation in the method map.
// The mutator_lock must be held (shared) when this is called.
void BackgroundMethodSamplingProfiler::RecordMethod(mirror::ArtMethod* method) {
if (method == nullptr) {
profile_table_.NullMethod();
// Don't record a nullptr method.
return;
}
mirror::Class* cls = method->GetDeclaringClass();
if (cls != nullptr) {
if (cls->GetClassLoader() == nullptr) {
// Don't include things in the boot
profile_table_.BootMethod();
return;
}
}
bool is_filtered = false;
MethodHelper mh(method);
if (strcmp(mh.GetName(), "<clinit>") == 0) {
// always filter out class init
is_filtered = true;
}
// Filter out methods by name if there are any.
if (!is_filtered && filtered_methods_.size() > 0) {
std::string method_full_name = PrettyMethod(method);
// Don't include specific filtered methods.
is_filtered = filtered_methods_.count(method_full_name) != 0;
}
// Add to the profile table unless it is filtered out.
if (!is_filtered) {
profile_table_.Put(method);
}
}
// Clean out any recordings for the method traces.
void BackgroundMethodSamplingProfiler::CleanProfile() {
profile_table_.Clear();
}
uint32_t BackgroundMethodSamplingProfiler::DumpProfile(std::ostream& os) {
return profile_table_.Write(os);
}
// Profile Table.
// This holds a mapping of mirror::ArtMethod* to a count of how many times a sample
// hit it at the top of the stack.
ProfileSampleResults::ProfileSampleResults(Mutex& lock) : lock_(lock), num_samples_(0),
num_null_methods_(0),
num_boot_methods_(0) {
for (int i = 0; i < kHashSize; i++) {
table[i] = nullptr;
}
}
ProfileSampleResults::~ProfileSampleResults() {
for (int i = 0; i < kHashSize; i++) {
delete table[i];
}
}
// Add a method to the profile table. If it the first time the method
// has been seen, add it with count=1, otherwise increment the count.
void ProfileSampleResults::Put(mirror::ArtMethod* method) {
lock_.Lock(Thread::Current());
uint32_t index = Hash(method);
if (table[index] == nullptr) {
table[index] = new Map();
}
Map::iterator i = table[index]->find(method);
if (i == table[index]->end()) {
(*table[index])[method] = 1;
} else {
i->second++;
}
num_samples_++;
lock_.Unlock(Thread::Current());
}
// Write the profile table to the output stream.
uint32_t ProfileSampleResults::Write(std::ostream &os) {
ScopedObjectAccess soa(Thread::Current());
LOG(DEBUG) << "Profile: " << num_samples_ << "/" << num_null_methods_ << "/" << num_boot_methods_;
os << num_samples_ << "/" << num_null_methods_ << "/" << num_boot_methods_ << "\n";
uint32_t num_methods = 0;
for (int i = 0 ; i < kHashSize; i++) {
Map *map = table[i];
if (map != nullptr) {
for (const auto &meth_iter : *map) {
mirror::ArtMethod *method = meth_iter.first;
std::string method_name = PrettyMethod(method);
uint32_t method_size = method->GetCodeSize();
os << StringPrintf("%s/%u/%u\n", method_name.c_str(), meth_iter.second, method_size);
++num_methods;
}
}
}
return num_methods;
}
void ProfileSampleResults::Clear() {
num_samples_ = 0;
num_null_methods_ = 0;
num_boot_methods_ = 0;
for (int i = 0; i < kHashSize; i++) {
delete table[i];
table[i] = nullptr;
}
}
uint32_t ProfileSampleResults::Hash(mirror::ArtMethod* method) {
uint32_t value = reinterpret_cast<uint32_t>(method);
value >>= 2;
return value % kHashSize;
}
} // namespace art