blob: f4783664c54a9bfdae266bf80f99b5118059aa7c [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_H_
#define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_H_
#include "base/macros.h"
#include "class_linker.h"
#include "common_throws.h"
#include "dex_file.h"
#include "indirect_reference_table.h"
#include "invoke_type.h"
#include "jni_internal.h"
#include "mirror/art_method.h"
#include "mirror/array.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/throwable.h"
#include "locks.h"
#include "object_utils.h"
#include "sirt_ref.h"
#include "thread.h"
namespace art {
namespace mirror {
class Class;
class ArtField;
class Object;
} // namespace mirror
// TODO: Fix no thread safety analysis when GCC can handle template specialization.
template <const bool kAccessCheck>
ALWAYS_INLINE static inline mirror::Class* CheckObjectAlloc(uint32_t type_idx,
mirror::ArtMethod* method,
Thread* self, bool* slow_path)
NO_THREAD_SAFETY_ANALYSIS {
mirror::Class* klass = method->GetDexCacheResolvedTypes()->GetWithoutChecks(type_idx);
if (UNLIKELY(klass == NULL)) {
klass = Runtime::Current()->GetClassLinker()->ResolveType(type_idx, method);
*slow_path = true;
if (klass == NULL) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
}
}
if (kAccessCheck) {
if (UNLIKELY(!klass->IsInstantiable())) {
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
self->ThrowNewException(throw_location, "Ljava/lang/InstantiationError;",
PrettyDescriptor(klass).c_str());
*slow_path = true;
return nullptr; // Failure
}
mirror::Class* referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
*slow_path = true;
return nullptr; // Failure
}
}
if (UNLIKELY(!klass->IsInitialized())) {
SirtRef<mirror::Class> sirt_klass(self, klass);
// EnsureInitialized (the class initializer) might cause a GC.
// may cause us to suspend meaning that another thread may try to
// change the allocator while we are stuck in the entrypoints of
// an old allocator. Also, the class initialization may fail. To
// handle these cases we mark the slow path boolean as true so
// that the caller knows to check the allocator type to see if it
// has changed and to null-check the return value in case the
// initialization fails.
*slow_path = true;
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(sirt_klass, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
}
return sirt_klass.get();
}
return klass;
}
// TODO: Fix no thread safety analysis when annotalysis is smarter.
ALWAYS_INLINE static inline mirror::Class* CheckClassInitializedForObjectAlloc(mirror::Class* klass,
Thread* self, bool* slow_path)
NO_THREAD_SAFETY_ANALYSIS {
if (UNLIKELY(!klass->IsInitialized())) {
SirtRef<mirror::Class> sirt_class(self, klass);
// EnsureInitialized (the class initializer) might cause a GC.
// may cause us to suspend meaning that another thread may try to
// change the allocator while we are stuck in the entrypoints of
// an old allocator. Also, the class initialization may fail. To
// handle these cases we mark the slow path boolean as true so
// that the caller knows to check the allocator type to see if it
// has changed and to null-check the return value in case the
// initialization fails.
*slow_path = true;
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(sirt_class, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
}
return sirt_class.get();
}
return klass;
}
// Given the context of a calling Method, use its DexCache to resolve a type to a Class. If it
// cannot be resolved, throw an error. If it can, use it to create an instance.
// When verification/compiler hasn't been able to verify access, optionally perform an access
// check.
// TODO: Fix NO_THREAD_SAFETY_ANALYSIS when GCC is smarter.
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE static inline mirror::Object* AllocObjectFromCode(uint32_t type_idx,
mirror::ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type)
NO_THREAD_SAFETY_ANALYSIS {
bool slow_path = false;
mirror::Class* klass = CheckObjectAlloc<kAccessCheck>(type_idx, method, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
return klass->Alloc<kInstrumented>(self, heap->GetCurrentAllocator());
}
return klass->Alloc<kInstrumented>(self, allocator_type);
}
// Given the context of a calling Method and a resolved class, create an instance.
// TODO: Fix NO_THREAD_SAFETY_ANALYSIS when GCC is smarter.
template <bool kInstrumented>
ALWAYS_INLINE static inline mirror::Object* AllocObjectFromCodeResolved(mirror::Class* klass,
mirror::ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type)
NO_THREAD_SAFETY_ANALYSIS {
DCHECK(klass != nullptr);
bool slow_path = false;
klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
return klass->Alloc<kInstrumented>(self, heap->GetCurrentAllocator());
}
return klass->Alloc<kInstrumented>(self, allocator_type);
}
// Given the context of a calling Method and an initialized class, create an instance.
// TODO: Fix NO_THREAD_SAFETY_ANALYSIS when GCC is smarter.
template <bool kInstrumented>
ALWAYS_INLINE static inline mirror::Object* AllocObjectFromCodeInitialized(mirror::Class* klass,
mirror::ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type)
NO_THREAD_SAFETY_ANALYSIS {
DCHECK(klass != nullptr);
return klass->Alloc<kInstrumented>(self, allocator_type);
}
// TODO: Fix no thread safety analysis when GCC can handle template specialization.
template <bool kAccessCheck>
ALWAYS_INLINE static inline mirror::Class* CheckArrayAlloc(uint32_t type_idx,
mirror::ArtMethod* method,
int32_t component_count,
bool* slow_path)
NO_THREAD_SAFETY_ANALYSIS {
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
*slow_path = true;
return nullptr; // Failure
}
mirror::Class* klass = method->GetDexCacheResolvedTypes()->GetWithoutChecks(type_idx);
if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve
klass = Runtime::Current()->GetClassLinker()->ResolveType(type_idx, method);
*slow_path = true;
if (klass == nullptr) { // Error
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr; // Failure
}
CHECK(klass->IsArrayClass()) << PrettyClass(klass);
}
if (kAccessCheck) {
mirror::Class* referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
*slow_path = true;
return nullptr; // Failure
}
}
return klass;
}
// Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If
// it cannot be resolved, throw an error. If it can, use it to create an array.
// When verification/compiler hasn't been able to verify access, optionally perform an access
// check.
// TODO: Fix no thread safety analysis when GCC can handle template specialization.
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE static inline mirror::Array* AllocArrayFromCode(uint32_t type_idx,
mirror::ArtMethod* method,
int32_t component_count,
Thread* self,
gc::AllocatorType allocator_type)
NO_THREAD_SAFETY_ANALYSIS {
bool slow_path = false;
mirror::Class* klass = CheckArrayAlloc<kAccessCheck>(type_idx, method, component_count,
&slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
return mirror::Array::Alloc<kInstrumented>(self, klass, component_count,
heap->GetCurrentAllocator());
}
return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, allocator_type);
}
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE static inline mirror::Array* AllocArrayFromCodeResolved(mirror::Class* klass,
mirror::ArtMethod* method,
int32_t component_count,
Thread* self,
gc::AllocatorType allocator_type)
NO_THREAD_SAFETY_ANALYSIS {
DCHECK(klass != nullptr);
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
return nullptr; // Failure
}
if (kAccessCheck) {
mirror::Class* referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
return nullptr; // Failure
}
}
// No need to retry a slow-path allocation as the above code won't
// cause a GC or thread suspension.
return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, allocator_type);
}
extern mirror::Array* CheckAndAllocArrayFromCode(uint32_t type_idx, mirror::ArtMethod* method,
int32_t component_count, Thread* self,
bool access_check,
gc::AllocatorType allocator_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
extern mirror::Array* CheckAndAllocArrayFromCodeInstrumented(uint32_t type_idx,
mirror::ArtMethod* method,
int32_t component_count, Thread* self,
bool access_check,
gc::AllocatorType allocator_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Type of find field operation for fast and slow case.
enum FindFieldType {
InstanceObjectRead,
InstanceObjectWrite,
InstancePrimitiveRead,
InstancePrimitiveWrite,
StaticObjectRead,
StaticObjectWrite,
StaticPrimitiveRead,
StaticPrimitiveWrite,
};
template<FindFieldType type, bool access_check>
static inline mirror::ArtField* FindFieldFromCode(uint32_t field_idx, const mirror::ArtMethod* referrer,
Thread* self, size_t expected_size) {
bool is_primitive;
bool is_set;
bool is_static;
switch (type) {
case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break;
case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break;
case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break;
case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break;
case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break;
case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break;
case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break;
case StaticPrimitiveWrite: // Keep GCC happy by having a default handler, fall-through.
default: is_primitive = true; is_set = true; is_static = true; break;
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
mirror::ArtField* resolved_field = class_linker->ResolveField(field_idx, referrer, is_static);
if (UNLIKELY(resolved_field == nullptr)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
mirror::Class* fields_class = resolved_field->GetDeclaringClass();
if (access_check) {
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, referrer);
return nullptr;
}
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class, resolved_field,
field_idx))) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
if (UNLIKELY(is_set && resolved_field->IsFinal() && (fields_class != referring_class))) {
ThrowIllegalAccessErrorFinalField(referrer, resolved_field);
return nullptr; // Failure.
} else {
FieldHelper fh(resolved_field);
if (UNLIKELY(fh.IsPrimitiveType() != is_primitive ||
fh.FieldSize() != expected_size)) {
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
DCHECK(throw_location.GetMethod() == referrer);
self->ThrowNewExceptionF(throw_location, "Ljava/lang/NoSuchFieldError;",
"Attempted read of %zd-bit %s on field '%s'",
expected_size * (32 / sizeof(int32_t)),
is_primitive ? "primitive" : "non-primitive",
PrettyField(resolved_field, true).c_str());
return nullptr; // Failure.
}
}
}
if (!is_static) {
// instance fields must be being accessed on an initialized class
return resolved_field;
} else {
// If the class is initialized we're done.
if (LIKELY(fields_class->IsInitialized())) {
return resolved_field;
} else {
SirtRef<mirror::Class> sirt_class(self, fields_class);
if (LIKELY(class_linker->EnsureInitialized(sirt_class, true, true))) {
// Otherwise let's ensure the class is initialized before resolving the field.
return resolved_field;
} else {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind
return nullptr; // Failure.
}
}
}
}
// Explicit template declarations of FindFieldFromCode for all field access types.
#define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE \
mirror::ArtField* FindFieldFromCode<_type, _access_check>(uint32_t field_idx, \
const mirror::ArtMethod* referrer, \
Thread* self, size_t expected_size) \
#define EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, false); \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, true)
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveWrite);
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL
template<InvokeType type, bool access_check>
static inline mirror::ArtMethod* FindMethodFromCode(uint32_t method_idx, mirror::Object* this_object,
mirror::ArtMethod* referrer, Thread* self) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
SirtRef<mirror::Object> sirt_this(self, this_object);
mirror::ArtMethod* resolved_method = class_linker->ResolveMethod(method_idx, referrer, type);
if (UNLIKELY(resolved_method == nullptr)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
} else if (UNLIKELY(sirt_this.get() == nullptr && type != kStatic)) {
// Maintain interpreter-like semantics where NullPointerException is thrown
// after potential NoSuchMethodError from class linker.
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
DCHECK(referrer == throw_location.GetMethod());
ThrowNullPointerExceptionForMethodAccess(throw_location, method_idx, type);
return nullptr; // Failure.
} else if (access_check) {
// Incompatible class change should have been handled in resolve method.
if (UNLIKELY(resolved_method->CheckIncompatibleClassChange(type))) {
ThrowIncompatibleClassChangeError(type, resolved_method->GetInvokeType(), resolved_method,
referrer);
return nullptr; // Failure.
}
mirror::Class* methods_class = resolved_method->GetDeclaringClass();
mirror::Class* referring_class = referrer->GetDeclaringClass();
bool can_access_resolved_method =
referring_class->CheckResolvedMethodAccess<type>(methods_class, resolved_method,
method_idx);
if (UNLIKELY(!can_access_resolved_method)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
}
switch (type) {
case kStatic:
case kDirect:
return resolved_method;
case kVirtual: {
mirror::ObjectArray<mirror::ArtMethod>* vtable = sirt_this->GetClass()->GetVTable();
uint16_t vtable_index = resolved_method->GetMethodIndex();
if (access_check &&
(vtable == nullptr || vtable_index >= static_cast<uint32_t>(vtable->GetLength()))) {
// Behavior to agree with that of the verifier.
MethodHelper mh(resolved_method);
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), mh.GetName(),
mh.GetSignature());
return nullptr; // Failure.
}
DCHECK(vtable != nullptr);
return vtable->GetWithoutChecks(vtable_index);
}
case kSuper: {
mirror::Class* super_class = referrer->GetDeclaringClass()->GetSuperClass();
uint16_t vtable_index = resolved_method->GetMethodIndex();
mirror::ObjectArray<mirror::ArtMethod>* vtable;
if (access_check) {
// Check existence of super class.
vtable = (super_class != nullptr) ? super_class->GetVTable() : nullptr;
if (vtable == nullptr || vtable_index >= static_cast<uint32_t>(vtable->GetLength())) {
// Behavior to agree with that of the verifier.
MethodHelper mh(resolved_method);
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), mh.GetName(),
mh.GetSignature());
return nullptr; // Failure.
}
} else {
// Super class must exist.
DCHECK(super_class != nullptr);
vtable = super_class->GetVTable();
}
DCHECK(vtable != nullptr);
return vtable->GetWithoutChecks(vtable_index);
}
case kInterface: {
uint32_t imt_index = resolved_method->GetDexMethodIndex() % ClassLinker::kImtSize;
mirror::ObjectArray<mirror::ArtMethod>* imt_table = sirt_this->GetClass()->GetImTable();
mirror::ArtMethod* imt_method = imt_table->Get(imt_index);
if (!imt_method->IsImtConflictMethod()) {
return imt_method;
} else {
mirror::ArtMethod* interface_method =
sirt_this->GetClass()->FindVirtualMethodForInterface(resolved_method);
if (UNLIKELY(interface_method == nullptr)) {
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(resolved_method,
sirt_this.get(), referrer);
return nullptr; // Failure.
} else {
return interface_method;
}
}
}
default:
LOG(FATAL) << "Unknown invoke type " << type;
return nullptr; // Failure.
}
}
// Explicit template declarations of FindMethodFromCode for all invoke types.
#define EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE \
mirror::ArtMethod* FindMethodFromCode<_type, _access_check>(uint32_t method_idx, \
mirror::Object* this_object, \
mirror::ArtMethod* referrer, \
Thread* self)
#define EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \
EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, false); \
EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, true)
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kStatic);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kDirect);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kVirtual);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kSuper);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kInterface);
#undef EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL
#undef EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL
// Fast path field resolution that can't initialize classes or throw exceptions.
static inline mirror::ArtField* FindFieldFast(uint32_t field_idx,
const mirror::ArtMethod* referrer,
FindFieldType type, size_t expected_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtField* resolved_field =
referrer->GetDeclaringClass()->GetDexCache()->GetResolvedField(field_idx);
if (UNLIKELY(resolved_field == NULL)) {
return NULL;
}
mirror::Class* fields_class = resolved_field->GetDeclaringClass();
// Check class is initiliazed or initializing.
if (UNLIKELY(!fields_class->IsInitializing())) {
return NULL;
}
// Check for incompatible class change.
bool is_primitive;
bool is_set;
bool is_static;
switch (type) {
case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break;
case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break;
case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break;
case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break;
case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break;
case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break;
case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break;
case StaticPrimitiveWrite: is_primitive = true; is_set = true; is_static = true; break;
default:
LOG(FATAL) << "UNREACHABLE"; // Assignment below to avoid GCC warnings.
is_primitive = true;
is_set = true;
is_static = true;
break;
}
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
// Incompatible class change.
return NULL;
}
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CanAccess(fields_class) ||
!referring_class->CanAccessMember(fields_class,
resolved_field->GetAccessFlags()) ||
(is_set && resolved_field->IsFinal() && (fields_class != referring_class)))) {
// Illegal access.
return NULL;
}
FieldHelper fh(resolved_field);
if (UNLIKELY(fh.IsPrimitiveType() != is_primitive ||
fh.FieldSize() != expected_size)) {
return NULL;
}
return resolved_field;
}
// Fast path method resolution that can't throw exceptions.
static inline mirror::ArtMethod* FindMethodFast(uint32_t method_idx,
mirror::Object* this_object,
const mirror::ArtMethod* referrer,
bool access_check, InvokeType type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
bool is_direct = type == kStatic || type == kDirect;
if (UNLIKELY(this_object == NULL && !is_direct)) {
return NULL;
}
mirror::ArtMethod* resolved_method =
referrer->GetDeclaringClass()->GetDexCache()->GetResolvedMethod(method_idx);
if (UNLIKELY(resolved_method == NULL)) {
return NULL;
}
if (access_check) {
// Check for incompatible class change errors and access.
bool icce = resolved_method->CheckIncompatibleClassChange(type);
if (UNLIKELY(icce)) {
return NULL;
}
mirror::Class* methods_class = resolved_method->GetDeclaringClass();
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CanAccess(methods_class) ||
!referring_class->CanAccessMember(methods_class,
resolved_method->GetAccessFlags()))) {
// Potential illegal access, may need to refine the method's class.
return NULL;
}
}
if (type == kInterface) { // Most common form of slow path dispatch.
return this_object->GetClass()->FindVirtualMethodForInterface(resolved_method);
} else if (is_direct) {
return resolved_method;
} else if (type == kSuper) {
return referrer->GetDeclaringClass()->GetSuperClass()->GetVTable()->
Get(resolved_method->GetMethodIndex());
} else {
DCHECK(type == kVirtual);
return this_object->GetClass()->GetVTable()->Get(resolved_method->GetMethodIndex());
}
}
static inline mirror::Class* ResolveVerifyAndClinit(uint32_t type_idx,
const mirror::ArtMethod* referrer,
Thread* self, bool can_run_clinit,
bool verify_access)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
mirror::Class* klass = class_linker->ResolveType(type_idx, referrer);
if (UNLIKELY(klass == nullptr)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
// Perform access check if necessary.
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referring_class, klass);
return nullptr; // Failure - Indicate to caller to deliver exception
}
// If we're just implementing const-class, we shouldn't call <clinit>.
if (!can_run_clinit) {
return klass;
}
// If we are the <clinit> of this class, just return our storage.
//
// Do not set the DexCache InitializedStaticStorage, since that implies <clinit> has finished
// running.
if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) {
return klass;
}
SirtRef<mirror::Class> sirt_class(self, klass);
if (!class_linker->EnsureInitialized(sirt_class, true, true)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
return sirt_class.get();
}
extern void ThrowStackOverflowError(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static inline mirror::String* ResolveStringFromCode(const mirror::ArtMethod* referrer,
uint32_t string_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
return class_linker->ResolveString(string_idx, referrer);
}
static inline void UnlockJniSynchronizedMethod(jobject locked, Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
UNLOCK_FUNCTION(monitor_lock_) {
// Save any pending exception over monitor exit call.
mirror::Throwable* saved_exception = NULL;
ThrowLocation saved_throw_location;
if (UNLIKELY(self->IsExceptionPending())) {
saved_exception = self->GetException(&saved_throw_location);
self->ClearException();
}
// Decode locked object and unlock, before popping local references.
self->DecodeJObject(locked)->MonitorExit(self);
if (UNLIKELY(self->IsExceptionPending())) {
LOG(FATAL) << "Synchronized JNI code returning with an exception:\n"
<< saved_exception->Dump()
<< "\nEncountered second exception during implicit MonitorExit:\n"
<< self->GetException(NULL)->Dump();
}
// Restore pending exception.
if (saved_exception != NULL) {
self->SetException(saved_throw_location, saved_exception);
}
}
static inline void CheckReferenceResult(mirror::Object* o, Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (o == NULL) {
return;
}
mirror::ArtMethod* m = self->GetCurrentMethod(NULL);
if (o == kInvalidIndirectRefObject) {
JniAbortF(NULL, "invalid reference returned from %s", PrettyMethod(m).c_str());
}
// Make sure that the result is an instance of the type this method was expected to return.
mirror::Class* return_type = MethodHelper(m).GetReturnType();
if (!o->InstanceOf(return_type)) {
JniAbortF(NULL, "attempt to return an instance of %s from %s",
PrettyTypeOf(o).c_str(), PrettyMethod(m).c_str());
}
}
static inline void CheckSuspend(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
for (;;) {
if (thread->ReadFlag(kCheckpointRequest)) {
thread->RunCheckpointFunction();
} else if (thread->ReadFlag(kSuspendRequest)) {
thread->FullSuspendCheck();
} else {
break;
}
}
}
JValue InvokeProxyInvocationHandler(ScopedObjectAccessUnchecked& soa, const char* shorty,
jobject rcvr_jobj, jobject interface_art_method_jobj,
std::vector<jvalue>& args)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Entry point for deoptimization.
extern "C" void art_quick_deoptimize();
static inline uintptr_t GetQuickDeoptimizationEntryPoint() {
return reinterpret_cast<uintptr_t>(art_quick_deoptimize);
}
// Return address of instrumentation stub.
extern "C" void art_quick_instrumentation_entry(void*);
static inline void* GetQuickInstrumentationEntryPoint() {
return reinterpret_cast<void*>(art_quick_instrumentation_entry);
}
// The return_pc of instrumentation exit stub.
extern "C" void art_quick_instrumentation_exit();
static inline uintptr_t GetQuickInstrumentationExitPc() {
return reinterpret_cast<uintptr_t>(art_quick_instrumentation_exit);
}
extern "C" void art_portable_to_interpreter_bridge(mirror::ArtMethod*);
static inline const void* GetPortableToInterpreterBridge() {
return reinterpret_cast<void*>(art_portable_to_interpreter_bridge);
}
extern "C" void art_quick_to_interpreter_bridge(mirror::ArtMethod*);
static inline const void* GetQuickToInterpreterBridge() {
return reinterpret_cast<void*>(art_quick_to_interpreter_bridge);
}
// Return address of interpreter stub.
static inline const void* GetCompiledCodeToInterpreterBridge() {
#if defined(ART_USE_PORTABLE_COMPILER)
return GetPortableToInterpreterBridge();
#else
return GetQuickToInterpreterBridge();
#endif
}
static inline const void* GetPortableResolutionTrampoline(ClassLinker* class_linker) {
return class_linker->GetPortableResolutionTrampoline();
}
static inline const void* GetQuickResolutionTrampoline(ClassLinker* class_linker) {
return class_linker->GetQuickResolutionTrampoline();
}
// Return address of resolution trampoline stub for defined compiler.
static inline const void* GetResolutionTrampoline(ClassLinker* class_linker) {
#if defined(ART_USE_PORTABLE_COMPILER)
return GetPortableResolutionTrampoline(class_linker);
#else
return GetQuickResolutionTrampoline(class_linker);
#endif
}
static inline const void* GetPortableImtConflictTrampoline(ClassLinker* class_linker) {
return class_linker->GetPortableImtConflictTrampoline();
}
static inline const void* GetQuickImtConflictTrampoline(ClassLinker* class_linker) {
return class_linker->GetQuickImtConflictTrampoline();
}
// Return address of imt conflict trampoline stub for defined compiler.
static inline const void* GetImtConflictTrampoline(ClassLinker* class_linker) {
#if defined(ART_USE_PORTABLE_COMPILER)
return GetPortableImtConflictTrampoline(class_linker);
#else
return GetQuickImtConflictTrampoline(class_linker);
#endif
}
extern "C" void art_portable_proxy_invoke_handler();
static inline const void* GetPortableProxyInvokeHandler() {
return reinterpret_cast<void*>(art_portable_proxy_invoke_handler);
}
extern "C" void art_quick_proxy_invoke_handler();
static inline const void* GetQuickProxyInvokeHandler() {
return reinterpret_cast<void*>(art_quick_proxy_invoke_handler);
}
static inline const void* GetProxyInvokeHandler() {
#if defined(ART_USE_PORTABLE_COMPILER)
return GetPortableProxyInvokeHandler();
#else
return GetQuickProxyInvokeHandler();
#endif
}
extern "C" void* art_jni_dlsym_lookup_stub(JNIEnv*, jobject);
static inline void* GetJniDlsymLookupStub() {
return reinterpret_cast<void*>(art_jni_dlsym_lookup_stub);
}
template <typename INT_TYPE, typename FLOAT_TYPE>
static inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) {
const INT_TYPE kMaxInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::max());
const INT_TYPE kMinInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::min());
const FLOAT_TYPE kMaxIntAsFloat = static_cast<FLOAT_TYPE>(kMaxInt);
const FLOAT_TYPE kMinIntAsFloat = static_cast<FLOAT_TYPE>(kMinInt);
if (LIKELY(f > kMinIntAsFloat)) {
if (LIKELY(f < kMaxIntAsFloat)) {
return static_cast<INT_TYPE>(f);
} else {
return kMaxInt;
}
} else {
return (f != f) ? 0 : kMinInt; // f != f implies NaN
}
}
} // namespace art
#endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_H_