blob: fed92be5c602243a6d549ca373db8799a0773cc1 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEX_PASS_DRIVER_ME_H_
#define ART_COMPILER_DEX_PASS_DRIVER_ME_H_
#include <cstdlib>
#include <cstring>
#include "bb_optimizations.h"
#include "dataflow_iterator.h"
#include "dataflow_iterator-inl.h"
#include "dex_flags.h"
#include "pass_driver.h"
#include "pass_manager.h"
#include "pass_me.h"
#include "safe_map.h"
namespace art {
class PassManager;
class PassManagerOptions;
class PassDriverME: public PassDriver {
public:
explicit PassDriverME(const PassManager* const pass_manager, CompilationUnit* cu)
: PassDriver(pass_manager), pass_me_data_holder_(), dump_cfg_folder_("/sdcard/") {
pass_me_data_holder_.bb = nullptr;
pass_me_data_holder_.c_unit = cu;
}
~PassDriverME() {
}
void DispatchPass(const Pass* pass) {
VLOG(compiler) << "Dispatching " << pass->GetName();
const PassME* me_pass = down_cast<const PassME*>(pass);
DataFlowAnalysisMode mode = me_pass->GetTraversal();
switch (mode) {
case kPreOrderDFSTraversal:
DoWalkBasicBlocks<PreOrderDfsIterator>(&pass_me_data_holder_, me_pass);
break;
case kRepeatingPreOrderDFSTraversal:
DoWalkBasicBlocks<RepeatingPreOrderDfsIterator>(&pass_me_data_holder_, me_pass);
break;
case kRepeatingPostOrderDFSTraversal:
DoWalkBasicBlocks<RepeatingPostOrderDfsIterator>(&pass_me_data_holder_, me_pass);
break;
case kReversePostOrderDFSTraversal:
DoWalkBasicBlocks<ReversePostOrderDfsIterator>(&pass_me_data_holder_, me_pass);
break;
case kRepeatingReversePostOrderDFSTraversal:
DoWalkBasicBlocks<RepeatingReversePostOrderDfsIterator>(&pass_me_data_holder_, me_pass);
break;
case kPostOrderDOMTraversal:
DoWalkBasicBlocks<PostOrderDOMIterator>(&pass_me_data_holder_, me_pass);
break;
case kTopologicalSortTraversal:
DoWalkBasicBlocks<TopologicalSortIterator>(&pass_me_data_holder_, me_pass);
break;
case kLoopRepeatingTopologicalSortTraversal:
DoWalkBasicBlocks<LoopRepeatingTopologicalSortIterator>(&pass_me_data_holder_, me_pass);
break;
case kAllNodes:
DoWalkBasicBlocks<AllNodesIterator>(&pass_me_data_holder_, me_pass);
break;
case kNoNodes:
break;
default:
LOG(FATAL) << "Iterator mode not handled in dispatcher: " << mode;
break;
}
}
bool RunPass(const Pass* pass, bool time_split) OVERRIDE {
// Paranoid: c_unit and pass cannot be nullptr, and the pass should have a name
DCHECK(pass != nullptr);
DCHECK(pass->GetName() != nullptr && pass->GetName()[0] != 0);
CompilationUnit* c_unit = pass_me_data_holder_.c_unit;
DCHECK(c_unit != nullptr);
// Do we perform a time split
if (time_split) {
c_unit->NewTimingSplit(pass->GetName());
}
// First, work on determining pass verbosity.
bool old_print_pass = c_unit->print_pass;
c_unit->print_pass = pass_manager_->GetOptions().GetPrintAllPasses();
auto* const options = &pass_manager_->GetOptions();
const std::string& print_pass_list = options->GetPrintPassList();
if (!print_pass_list.empty() && strstr(print_pass_list.c_str(), pass->GetName()) != nullptr) {
c_unit->print_pass = true;
}
// Next, check if there are any overridden settings for the pass that change default
// configuration.
c_unit->overridden_pass_options.clear();
FillOverriddenPassSettings(options, pass->GetName(), c_unit->overridden_pass_options);
if (c_unit->print_pass) {
for (auto setting_it : c_unit->overridden_pass_options) {
LOG(INFO) << "Overridden option \"" << setting_it.first << ":"
<< setting_it.second << "\" for pass \"" << pass->GetName() << "\"";
}
}
// Check the pass gate first.
bool should_apply_pass = pass->Gate(&pass_me_data_holder_);
if (should_apply_pass) {
// Applying the pass: first start, doWork, and end calls.
this->ApplyPass(&pass_me_data_holder_, pass);
bool should_dump = (c_unit->enable_debug & (1 << kDebugDumpCFG)) != 0;
const std::string& dump_pass_list = pass_manager_->GetOptions().GetDumpPassList();
if (!dump_pass_list.empty()) {
const bool found = strstr(dump_pass_list.c_str(), pass->GetName());
should_dump = should_dump || found;
}
if (should_dump) {
// Do we want to log it?
if ((c_unit->enable_debug& (1 << kDebugDumpCFG)) != 0) {
// Do we have a pass folder?
const PassME* me_pass = (down_cast<const PassME*>(pass));
const char* passFolder = me_pass->GetDumpCFGFolder();
DCHECK(passFolder != nullptr);
if (passFolder[0] != 0) {
// Create directory prefix.
std::string prefix = GetDumpCFGFolder();
prefix += passFolder;
prefix += "/";
c_unit->mir_graph->DumpCFG(prefix.c_str(), false);
}
}
}
}
// Before wrapping up with this pass, restore old pass verbosity flag.
c_unit->print_pass = old_print_pass;
// If the pass gate passed, we can declare success.
return should_apply_pass;
}
static void PrintPassOptions(PassManager* manager) {
for (const auto* pass : *manager->GetDefaultPassList()) {
const PassME* me_pass = down_cast<const PassME*>(pass);
if (me_pass->HasOptions()) {
LOG(INFO) << "Pass options for \"" << me_pass->GetName() << "\" are:";
SafeMap<const std::string, int> overridden_settings;
FillOverriddenPassSettings(&manager->GetOptions(), me_pass->GetName(),
overridden_settings);
me_pass->PrintPassOptions(overridden_settings);
}
}
}
const char* GetDumpCFGFolder() const {
return dump_cfg_folder_;
}
protected:
/** @brief The data holder that contains data needed for the PassDriverME. */
PassMEDataHolder pass_me_data_holder_;
/** @brief Dump CFG base folder: where is the base folder for dumping CFGs. */
const char* dump_cfg_folder_;
static void DoWalkBasicBlocks(PassMEDataHolder* data, const PassME* pass,
DataflowIterator* iterator) {
// Paranoid: Check the iterator before walking the BasicBlocks.
DCHECK(iterator != nullptr);
bool change = false;
for (BasicBlock* bb = iterator->Next(change); bb != nullptr; bb = iterator->Next(change)) {
data->bb = bb;
change = pass->Worker(data);
}
}
template <typename Iterator>
inline static void DoWalkBasicBlocks(PassMEDataHolder* data, const PassME* pass) {
DCHECK(data != nullptr);
CompilationUnit* c_unit = data->c_unit;
DCHECK(c_unit != nullptr);
Iterator iterator(c_unit->mir_graph.get());
DoWalkBasicBlocks(data, pass, &iterator);
}
/**
* @brief Fills the settings_to_fill by finding all of the applicable options in the
* overridden_pass_options_list_.
* @param pass_name The pass name for which to fill settings.
* @param settings_to_fill Fills the options to contain the mapping of name of option to the new
* configuration.
*/
static void FillOverriddenPassSettings(const PassManagerOptions* options, const char* pass_name,
SafeMap<const std::string, int>& settings_to_fill) {
const std::string& settings = options->GetOverriddenPassOptions();
const size_t settings_len = settings.size();
// Before anything, check if we care about anything right now.
if (settings_len == 0) {
return;
}
const size_t pass_name_len = strlen(pass_name);
const size_t min_setting_size = 4; // 2 delimiters, 1 setting name, 1 setting
size_t search_pos = 0;
// If there is no room for pass options, exit early.
if (settings_len < pass_name_len + min_setting_size) {
return;
}
do {
search_pos = settings.find(pass_name, search_pos);
// Check if we found this pass name in rest of string.
if (search_pos == std::string::npos) {
// No more settings for this pass.
break;
}
// The string contains the pass name. Now check that there is
// room for the settings: at least one char for setting name,
// two chars for two delimiter, and at least one char for setting.
if (search_pos + pass_name_len + min_setting_size >= settings_len) {
// No more settings for this pass.
break;
}
// Update the current search position to not include the pass name.
search_pos += pass_name_len;
// The format must be "PassName:SettingName:#" where # is the setting.
// Thus look for the first ":" which must exist.
if (settings[search_pos] != ':') {
// Missing delimiter right after pass name.
continue;
} else {
search_pos += 1;
}
// Now look for the actual setting by finding the next ":" delimiter.
const size_t setting_name_pos = search_pos;
size_t setting_pos = settings.find(':', setting_name_pos);
if (setting_pos == std::string::npos) {
// Missing a delimiter that would capture where setting starts.
continue;
} else if (setting_pos == setting_name_pos) {
// Missing setting thus did not move from setting name
continue;
} else {
// Skip the delimiter.
setting_pos += 1;
}
// Look for the terminating delimiter which must be a comma.
size_t next_configuration_separator = settings.find(',', setting_pos);
if (next_configuration_separator == std::string::npos) {
next_configuration_separator = settings_len;
}
// Prevent end of string errors.
if (next_configuration_separator == setting_pos) {
continue;
}
// Get the actual setting itself. Strtol is being used to convert because it is
// exception safe. If the input is not sane, it will set a setting of 0.
std::string setting_string =
settings.substr(setting_pos, next_configuration_separator - setting_pos);
int setting = std::strtol(setting_string.c_str(), 0, 0);
std::string setting_name =
settings.substr(setting_name_pos, setting_pos - setting_name_pos - 1);
settings_to_fill.Put(setting_name, setting);
search_pos = next_configuration_separator;
} while (true);
}
};
} // namespace art
#endif // ART_COMPILER_DEX_PASS_DRIVER_ME_H_