blob: c60c394d6175e33a39938a66bbd82defa9f4dac0 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
#include "invoke_type.h"
#include "compiled_method.h"
#include "dex/compiler_enums.h"
#include "dex/compiler_ir.h"
#include "dex/backend.h"
#include "driver/compiler_driver.h"
#include "leb128_encoder.h"
#include "safe_map.h"
#include "utils/arena_allocator.h"
#include "utils/growable_array.h"
namespace art {
/*
* TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
* add type safety (see runtime/offsets.h).
*/
typedef uint32_t DexOffset; // Dex offset in code units.
typedef uint16_t NarrowDexOffset; // For use in structs, Dex offsets range from 0 .. 0xffff.
typedef uint32_t CodeOffset; // Native code offset in bytes.
// Set to 1 to measure cost of suspend check.
#define NO_SUSPEND 0
#define IS_BINARY_OP (1ULL << kIsBinaryOp)
#define IS_BRANCH (1ULL << kIsBranch)
#define IS_IT (1ULL << kIsIT)
#define IS_LOAD (1ULL << kMemLoad)
#define IS_QUAD_OP (1ULL << kIsQuadOp)
#define IS_QUIN_OP (1ULL << kIsQuinOp)
#define IS_SEXTUPLE_OP (1ULL << kIsSextupleOp)
#define IS_STORE (1ULL << kMemStore)
#define IS_TERTIARY_OP (1ULL << kIsTertiaryOp)
#define IS_UNARY_OP (1ULL << kIsUnaryOp)
#define NEEDS_FIXUP (1ULL << kPCRelFixup)
#define NO_OPERAND (1ULL << kNoOperand)
#define REG_DEF0 (1ULL << kRegDef0)
#define REG_DEF1 (1ULL << kRegDef1)
#define REG_DEFA (1ULL << kRegDefA)
#define REG_DEFD (1ULL << kRegDefD)
#define REG_DEF_FPCS_LIST0 (1ULL << kRegDefFPCSList0)
#define REG_DEF_FPCS_LIST2 (1ULL << kRegDefFPCSList2)
#define REG_DEF_LIST0 (1ULL << kRegDefList0)
#define REG_DEF_LIST1 (1ULL << kRegDefList1)
#define REG_DEF_LR (1ULL << kRegDefLR)
#define REG_DEF_SP (1ULL << kRegDefSP)
#define REG_USE0 (1ULL << kRegUse0)
#define REG_USE1 (1ULL << kRegUse1)
#define REG_USE2 (1ULL << kRegUse2)
#define REG_USE3 (1ULL << kRegUse3)
#define REG_USE4 (1ULL << kRegUse4)
#define REG_USEA (1ULL << kRegUseA)
#define REG_USEC (1ULL << kRegUseC)
#define REG_USED (1ULL << kRegUseD)
#define REG_USEB (1ULL << kRegUseB)
#define REG_USE_FPCS_LIST0 (1ULL << kRegUseFPCSList0)
#define REG_USE_FPCS_LIST2 (1ULL << kRegUseFPCSList2)
#define REG_USE_LIST0 (1ULL << kRegUseList0)
#define REG_USE_LIST1 (1ULL << kRegUseList1)
#define REG_USE_LR (1ULL << kRegUseLR)
#define REG_USE_PC (1ULL << kRegUsePC)
#define REG_USE_SP (1ULL << kRegUseSP)
#define SETS_CCODES (1ULL << kSetsCCodes)
#define USES_CCODES (1ULL << kUsesCCodes)
// Common combo register usage patterns.
#define REG_DEF01 (REG_DEF0 | REG_DEF1)
#define REG_DEF01_USE2 (REG_DEF0 | REG_DEF1 | REG_USE2)
#define REG_DEF0_USE01 (REG_DEF0 | REG_USE01)
#define REG_DEF0_USE0 (REG_DEF0 | REG_USE0)
#define REG_DEF0_USE12 (REG_DEF0 | REG_USE12)
#define REG_DEF0_USE123 (REG_DEF0 | REG_USE123)
#define REG_DEF0_USE1 (REG_DEF0 | REG_USE1)
#define REG_DEF0_USE2 (REG_DEF0 | REG_USE2)
#define REG_DEFAD_USEAD (REG_DEFAD_USEA | REG_USED)
#define REG_DEFAD_USEA (REG_DEFA_USEA | REG_DEFD)
#define REG_DEFA_USEA (REG_DEFA | REG_USEA)
#define REG_USE012 (REG_USE01 | REG_USE2)
#define REG_USE014 (REG_USE01 | REG_USE4)
#define REG_USE01 (REG_USE0 | REG_USE1)
#define REG_USE02 (REG_USE0 | REG_USE2)
#define REG_USE12 (REG_USE1 | REG_USE2)
#define REG_USE23 (REG_USE2 | REG_USE3)
#define REG_USE123 (REG_USE1 | REG_USE2 | REG_USE3)
struct BasicBlock;
struct CallInfo;
struct CompilationUnit;
struct InlineMethod;
struct MIR;
struct LIR;
struct RegLocation;
struct RegisterInfo;
class DexFileMethodInliner;
class MIRGraph;
class Mir2Lir;
typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type);
typedef std::vector<uint8_t> CodeBuffer;
struct UseDefMasks {
uint64_t use_mask; // Resource mask for use.
uint64_t def_mask; // Resource mask for def.
};
struct AssemblyInfo {
LIR* pcrel_next; // Chain of LIR nodes needing pc relative fixups.
uint8_t bytes[16]; // Encoded instruction bytes.
};
struct LIR {
CodeOffset offset; // Offset of this instruction.
NarrowDexOffset dalvik_offset; // Offset of Dalvik opcode in code units (16-bit words).
int16_t opcode;
LIR* next;
LIR* prev;
LIR* target;
struct {
unsigned int alias_info:17; // For Dalvik register disambiguation.
bool is_nop:1; // LIR is optimized away.
unsigned int size:4; // Note: size of encoded instruction is in bytes.
bool use_def_invalid:1; // If true, masks should not be used.
unsigned int generation:1; // Used to track visitation state during fixup pass.
unsigned int fixup:8; // Fixup kind.
} flags;
union {
UseDefMasks m; // Use & Def masks used during optimization.
AssemblyInfo a; // Instruction encoding used during assembly phase.
} u;
int32_t operands[5]; // [0..4] = [dest, src1, src2, extra, extra2].
};
// Target-specific initialization.
Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena);
Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena);
Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena);
// Utility macros to traverse the LIR list.
#define NEXT_LIR(lir) (lir->next)
#define PREV_LIR(lir) (lir->prev)
// Defines for alias_info (tracks Dalvik register references).
#define DECODE_ALIAS_INFO_REG(X) (X & 0xffff)
#define DECODE_ALIAS_INFO_WIDE_FLAG (0x10000)
#define DECODE_ALIAS_INFO_WIDE(X) ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
#define ENCODE_ALIAS_INFO(REG, ISWIDE) (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
// Common resource macros.
#define ENCODE_CCODE (1ULL << kCCode)
#define ENCODE_FP_STATUS (1ULL << kFPStatus)
// Abstract memory locations.
#define ENCODE_DALVIK_REG (1ULL << kDalvikReg)
#define ENCODE_LITERAL (1ULL << kLiteral)
#define ENCODE_HEAP_REF (1ULL << kHeapRef)
#define ENCODE_MUST_NOT_ALIAS (1ULL << kMustNotAlias)
#define ENCODE_ALL (~0ULL)
#define ENCODE_MEM (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
do { \
low_reg = both_regs & 0xff; \
high_reg = (both_regs >> 8) & 0xff; \
} while (false)
// Mask to denote sreg as the start of a double. Must not interfere with low 16 bits.
#define STARTING_DOUBLE_SREG 0x10000
// TODO: replace these macros
#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
class Mir2Lir : public Backend {
public:
/*
* Auxiliary information describing the location of data embedded in the Dalvik
* byte code stream.
*/
struct EmbeddedData {
CodeOffset offset; // Code offset of data block.
const uint16_t* table; // Original dex data.
DexOffset vaddr; // Dalvik offset of parent opcode.
};
struct FillArrayData : EmbeddedData {
int32_t size;
};
struct SwitchTable : EmbeddedData {
LIR* anchor; // Reference instruction for relative offsets.
LIR** targets; // Array of case targets.
};
/* Static register use counts */
struct RefCounts {
int count;
int s_reg;
};
/*
* Data structure tracking the mapping between a Dalvik register (pair) and a
* native register (pair). The idea is to reuse the previously loaded value
* if possible, otherwise to keep the value in a native register as long as
* possible.
*/
struct RegisterInfo {
int reg; // Reg number
bool in_use; // Has it been allocated?
bool is_temp; // Can allocate as temp?
bool pair; // Part of a register pair?
int partner; // If pair, other reg of pair.
bool live; // Is there an associated SSA name?
bool dirty; // If live, is it dirty?
int s_reg; // Name of live value.
LIR *def_start; // Starting inst in last def sequence.
LIR *def_end; // Ending inst in last def sequence.
};
struct RegisterPool {
int num_core_regs;
RegisterInfo *core_regs;
int next_core_reg;
int num_fp_regs;
RegisterInfo *FPRegs;
int next_fp_reg;
};
struct PromotionMap {
RegLocationType core_location:3;
uint8_t core_reg;
RegLocationType fp_location:3;
uint8_t FpReg;
bool first_in_pair;
};
//
// Slow paths. This object is used generate a sequence of code that is executed in the
// slow path. For example, resolving a string or class is slow as it will only be executed
// once (after that it is resolved and doesn't need to be done again). We want slow paths
// to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
// branch over them.
//
// If you want to create a slow path, declare a class derived from LIRSlowPath and provide
// the Compile() function that will be called near the end of the code generated by the
// method.
//
// The basic flow for a slow path is:
//
// CMP reg, #value
// BEQ fromfast
// cont:
// ...
// fast path code
// ...
// more code
// ...
// RETURN
///
// fromfast:
// ...
// slow path code
// ...
// B cont
//
// So you see we need two labels and two branches. The first branch (called fromfast) is
// the conditional branch to the slow path code. The second label (called cont) is used
// as an unconditional branch target for getting back to the code after the slow path
// has completed.
//
class LIRSlowPath {
public:
LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
LIR* cont = nullptr) :
m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
}
virtual ~LIRSlowPath() {}
virtual void Compile() = 0;
static void* operator new(size_t size, ArenaAllocator* arena) {
return arena->Alloc(size, ArenaAllocator::kAllocData);
}
protected:
LIR* GenerateTargetLabel();
Mir2Lir* const m2l_;
const DexOffset current_dex_pc_;
LIR* const fromfast_;
LIR* const cont_;
};
virtual ~Mir2Lir() {}
int32_t s4FromSwitchData(const void* switch_data) {
return *reinterpret_cast<const int32_t*>(switch_data);
}
RegisterClass oat_reg_class_by_size(OpSize size) {
return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
size == kSignedByte) ? kCoreReg : kAnyReg;
}
size_t CodeBufferSizeInBytes() {
return code_buffer_.size() / sizeof(code_buffer_[0]);
}
bool IsPseudoLirOp(int opcode) {
return (opcode < 0);
}
/*
* LIR operands are 32-bit integers. Sometimes, (especially for managing
* instructions which require PC-relative fixups), we need the operands to carry
* pointers. To do this, we assign these pointers an index in pointer_storage_, and
* hold that index in the operand array.
* TUNING: If use of these utilities becomes more common on 32-bit builds, it
* may be worth conditionally-compiling a set of identity functions here.
*/
uint32_t WrapPointer(void* pointer) {
uint32_t res = pointer_storage_.Size();
pointer_storage_.Insert(pointer);
return res;
}
void* UnwrapPointer(size_t index) {
return pointer_storage_.Get(index);
}
// strdup(), but allocates from the arena.
char* ArenaStrdup(const char* str) {
size_t len = strlen(str) + 1;
char* res = reinterpret_cast<char*>(arena_->Alloc(len, ArenaAllocator::kAllocMisc));
if (res != NULL) {
strncpy(res, str, len);
}
return res;
}
// Shared by all targets - implemented in codegen_util.cc
void AppendLIR(LIR* lir);
void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
/**
* @brief Provides the maximum number of compiler temporaries that the backend can/wants
* to place in a frame.
* @return Returns the maximum number of compiler temporaries.
*/
size_t GetMaxPossibleCompilerTemps() const;
/**
* @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
* @return Returns the size in bytes for space needed for compiler temporary spill region.
*/
size_t GetNumBytesForCompilerTempSpillRegion();
DexOffset GetCurrentDexPc() const {
return current_dalvik_offset_;
}
int ComputeFrameSize();
virtual void Materialize();
virtual CompiledMethod* GetCompiledMethod();
void MarkSafepointPC(LIR* inst);
bool FastInstance(uint32_t field_idx, bool is_put, int* field_offset, bool* is_volatile);
void SetupResourceMasks(LIR* lir);
void SetMemRefType(LIR* lir, bool is_load, int mem_type);
void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
void SetupRegMask(uint64_t* mask, int reg);
void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
void DumpPromotionMap();
void CodegenDump();
LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
LIR* NewLIR0(int opcode);
LIR* NewLIR1(int opcode, int dest);
LIR* NewLIR2(int opcode, int dest, int src1);
LIR* NewLIR2NoDest(int opcode, int src, int info);
LIR* NewLIR3(int opcode, int dest, int src1, int src2);
LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
LIR* AddWordData(LIR* *constant_list_p, int value);
LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
void ProcessSwitchTables();
void DumpSparseSwitchTable(const uint16_t* table);
void DumpPackedSwitchTable(const uint16_t* table);
void MarkBoundary(DexOffset offset, const char* inst_str);
void NopLIR(LIR* lir);
void UnlinkLIR(LIR* lir);
bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
bool IsInexpensiveConstant(RegLocation rl_src);
ConditionCode FlipComparisonOrder(ConditionCode before);
virtual void InstallLiteralPools();
void InstallSwitchTables();
void InstallFillArrayData();
bool VerifyCatchEntries();
void CreateMappingTables();
void CreateNativeGcMap();
int AssignLiteralOffset(CodeOffset offset);
int AssignSwitchTablesOffset(CodeOffset offset);
int AssignFillArrayDataOffset(CodeOffset offset);
LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
// Shared by all targets - implemented in local_optimizations.cc
void ConvertMemOpIntoMove(LIR* orig_lir, int dest, int src);
void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
// Shared by all targets - implemented in ralloc_util.cc
int GetSRegHi(int lowSreg);
bool oat_live_out(int s_reg);
int oatSSASrc(MIR* mir, int num);
void SimpleRegAlloc();
void ResetRegPool();
void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
void DumpRegPool(RegisterInfo* p, int num_regs);
void DumpCoreRegPool();
void DumpFpRegPool();
/* Mark a temp register as dead. Does not affect allocation state. */
void Clobber(int reg) {
ClobberBody(GetRegInfo(reg));
}
void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg);
void ClobberSReg(int s_reg);
int SRegToPMap(int s_reg);
void RecordCorePromotion(int reg, int s_reg);
int AllocPreservedCoreReg(int s_reg);
void RecordFpPromotion(int reg, int s_reg);
int AllocPreservedSingle(int s_reg);
int AllocPreservedDouble(int s_reg);
int AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp, bool required);
virtual int AllocTempDouble();
int AllocFreeTemp();
int AllocTemp();
int AllocTempFloat();
RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg);
RegisterInfo* AllocLive(int s_reg, int reg_class);
void FreeTemp(int reg);
RegisterInfo* IsLive(int reg);
RegisterInfo* IsTemp(int reg);
RegisterInfo* IsPromoted(int reg);
bool IsDirty(int reg);
void LockTemp(int reg);
void ResetDef(int reg);
void NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2);
void MarkDef(RegLocation rl, LIR *start, LIR *finish);
void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
RegLocation WideToNarrow(RegLocation rl);
void ResetDefLoc(RegLocation rl);
virtual void ResetDefLocWide(RegLocation rl);
void ResetDefTracking();
void ClobberAllRegs();
void FlushSpecificReg(RegisterInfo* info);
void FlushAllRegsBody(RegisterInfo* info, int num_regs);
void FlushAllRegs();
bool RegClassMatches(int reg_class, int reg);
void MarkLive(int reg, int s_reg);
void MarkTemp(int reg);
void UnmarkTemp(int reg);
void MarkPair(int low_reg, int high_reg);
void MarkClean(RegLocation loc);
void MarkDirty(RegLocation loc);
void MarkInUse(int reg);
void CopyRegInfo(int new_reg, int old_reg);
bool CheckCorePoolSanity();
RegLocation UpdateLoc(RegLocation loc);
virtual RegLocation UpdateLocWide(RegLocation loc);
RegLocation UpdateRawLoc(RegLocation loc);
/**
* @brief Used to load register location into a typed temporary or pair of temporaries.
* @see EvalLoc
* @param loc The register location to load from.
* @param reg_class Type of register needed.
* @param update Whether the liveness information should be updated.
* @return Returns the properly typed temporary in physical register pairs.
*/
virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
/**
* @brief Used to load register location into a typed temporary.
* @param loc The register location to load from.
* @param reg_class Type of register needed.
* @param update Whether the liveness information should be updated.
* @return Returns the properly typed temporary in physical register.
*/
virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
void DumpCounts(const RefCounts* arr, int size, const char* msg);
void DoPromotion();
int VRegOffset(int v_reg);
int SRegOffset(int s_reg);
RegLocation GetReturnWide(bool is_double);
RegLocation GetReturn(bool is_float);
RegisterInfo* GetRegInfo(int reg);
// Shared by all targets - implemented in gen_common.cc.
bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit);
bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
void HandleSuspendLaunchPads();
void HandleIntrinsicLaunchPads();
void HandleThrowLaunchPads();
void HandleSlowPaths();
void GenBarrier();
LIR* GenCheck(ConditionCode c_code, ThrowKind kind);
LIR* GenImmedCheck(ConditionCode c_code, int reg, int imm_val,
ThrowKind kind);
LIR* GenNullCheck(int s_reg, int m_reg, int opt_flags);
LIR* GenRegRegCheck(ConditionCode c_code, int reg1, int reg2,
ThrowKind kind);
void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
RegLocation rl_src2, LIR* taken, LIR* fall_through);
void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
LIR* taken, LIR* fall_through);
void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src);
void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src);
void GenFilledNewArray(CallInfo* info);
void GenSput(uint32_t field_idx, RegLocation rl_src,
bool is_long_or_double, bool is_object);
void GenSget(uint32_t field_idx, RegLocation rl_dest,
bool is_long_or_double, bool is_object);
void GenIGet(uint32_t field_idx, int opt_flags, OpSize size,
RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
void GenIPut(uint32_t field_idx, int opt_flags, OpSize size,
RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
RegLocation rl_src);
void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
void GenConstString(uint32_t string_idx, RegLocation rl_dest);
void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
void GenThrow(RegLocation rl_src);
void GenInstanceof(uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src);
void GenCheckCast(uint32_t insn_idx, uint32_t type_idx,
RegLocation rl_src);
void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2);
void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift);
void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src, int lit);
void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2);
void GenConversionCall(ThreadOffset func_offset, RegLocation rl_dest,
RegLocation rl_src);
void GenSuspendTest(int opt_flags);
void GenSuspendTestAndBranch(int opt_flags, LIR* target);
// This will be overridden by x86 implementation.
virtual void GenConstWide(RegLocation rl_dest, int64_t value);
virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2);
// Shared by all targets - implemented in gen_invoke.cc.
int CallHelperSetup(ThreadOffset helper_offset);
LIR* CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc);
void CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
void CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
void CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
bool safepoint_pc);
void CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc);
void CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
RegLocation arg1, bool safepoint_pc);
void CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0,
int arg1, bool safepoint_pc);
void CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc);
void CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc);
void CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0,
bool safepoint_pc);
void CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
void CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0,
RegLocation arg2, bool safepoint_pc);
void CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset,
RegLocation arg0, RegLocation arg1,
bool safepoint_pc);
void CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc);
void CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
int arg2, bool safepoint_pc);
void CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, int arg0,
RegLocation arg2, bool safepoint_pc);
void CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, int arg2,
bool safepoint_pc);
void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
int arg0, RegLocation arg1, RegLocation arg2,
bool safepoint_pc);
void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
RegLocation arg0, RegLocation arg1,
RegLocation arg2,
bool safepoint_pc);
void GenInvoke(CallInfo* info);
void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
bool skip_this);
int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
bool skip_this);
/**
* @brief Used to determine the register location of destination.
* @details This is needed during generation of inline intrinsics because it finds destination of return,
* either the physical register or the target of move-result.
* @param info Information about the invoke.
* @return Returns the destination location.
*/
RegLocation InlineTarget(CallInfo* info);
/**
* @brief Used to determine the wide register location of destination.
* @see InlineTarget
* @param info Information about the invoke.
* @return Returns the destination location.
*/
RegLocation InlineTargetWide(CallInfo* info);
bool GenInlinedCharAt(CallInfo* info);
bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
bool GenInlinedAbsInt(CallInfo* info);
bool GenInlinedAbsLong(CallInfo* info);
bool GenInlinedAbsFloat(CallInfo* info);
bool GenInlinedAbsDouble(CallInfo* info);
bool GenInlinedFloatCvt(CallInfo* info);
bool GenInlinedDoubleCvt(CallInfo* info);
bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
bool GenInlinedStringCompareTo(CallInfo* info);
bool GenInlinedCurrentThread(CallInfo* info);
bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
bool is_volatile, bool is_ordered);
int LoadArgRegs(CallInfo* info, int call_state,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
bool skip_this);
// Shared by all targets - implemented in gen_loadstore.cc.
RegLocation LoadCurrMethod();
void LoadCurrMethodDirect(int r_tgt);
LIR* LoadConstant(int r_dest, int value);
LIR* LoadWordDisp(int rBase, int displacement, int r_dest);
RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
void LoadValueDirect(RegLocation rl_src, int r_dest);
void LoadValueDirectFixed(RegLocation rl_src, int r_dest);
void LoadValueDirectWide(RegLocation rl_src, int reg_lo, int reg_hi);
void LoadValueDirectWideFixed(RegLocation rl_src, int reg_lo, int reg_hi);
LIR* StoreWordDisp(int rBase, int displacement, int r_src);
/**
* @brief Used to do the final store in the destination as per bytecode semantics.
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. Can be either physical register or dalvik register.
*/
void StoreValue(RegLocation rl_dest, RegLocation rl_src);
/**
* @brief Used to do the final store in a wide destination as per bytecode semantics.
* @see StoreValue
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. Can be either physical register or dalvik register.
*/
void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
/**
* @brief Used to do the final store to a destination as per bytecode semantics.
* @see StoreValue
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. It must be kLocPhysReg
*
* This is used for x86 two operand computations, where we have computed the correct
* register value that now needs to be properly registered. This is used to avoid an
* extra register copy that would result if StoreValue was called.
*/
void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
/**
* @brief Used to do the final store in a wide destination as per bytecode semantics.
* @see StoreValueWide
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. It must be kLocPhysReg
*
* This is used for x86 two operand computations, where we have computed the correct
* register values that now need to be properly registered. This is used to avoid an
* extra pair of register copies that would result if StoreValueWide was called.
*/
void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
// Shared by all targets - implemented in mir_to_lir.cc.
void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
bool MethodBlockCodeGen(BasicBlock* bb);
bool SpecialMIR2LIR(const InlineMethod& special);
void MethodMIR2LIR();
/*
* @brief Load the address of the dex method into the register.
* @param dex_method_index The index of the method to be invoked.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
void LoadCodeAddress(int dex_method_index, InvokeType type,
SpecialTargetRegister symbolic_reg);
/*
* @brief Load the Method* of a dex method into the register.
* @param dex_method_index The index of the method to be invoked.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
virtual void LoadMethodAddress(int dex_method_index, InvokeType type,
SpecialTargetRegister symbolic_reg);
/*
* @brief Load the Class* of a Dex Class type into the register.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
// Routines that work for the generic case, but may be overriden by target.
/*
* @brief Compare memory to immediate, and branch if condition true.
* @param cond The condition code that when true will branch to the target.
* @param temp_reg A temporary register that can be used if compare to memory is not
* supported by the architecture.
* @param base_reg The register holding the base address.
* @param offset The offset from the base.
* @param check_value The immediate to compare to.
* @returns The branch instruction that was generated.
*/
virtual LIR* OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg,
int offset, int check_value, LIR* target);
// Required for target - codegen helpers.
virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
virtual int LoadHelper(ThreadOffset offset) = 0;
virtual LIR* LoadBaseDisp(int rBase, int displacement, int r_dest, OpSize size, int s_reg) = 0;
virtual LIR* LoadBaseDispWide(int rBase, int displacement, int r_dest_lo, int r_dest_hi,
int s_reg) = 0;
virtual LIR* LoadBaseIndexed(int rBase, int r_index, int r_dest, int scale, OpSize size) = 0;
virtual LIR* LoadBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
int r_dest, int r_dest_hi, OpSize size, int s_reg) = 0;
virtual LIR* LoadConstantNoClobber(int r_dest, int value) = 0;
virtual LIR* LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) = 0;
virtual LIR* StoreBaseDisp(int rBase, int displacement, int r_src, OpSize size) = 0;
virtual LIR* StoreBaseDispWide(int rBase, int displacement, int r_src_lo, int r_src_hi) = 0;
virtual LIR* StoreBaseIndexed(int rBase, int r_index, int r_src, int scale, OpSize size) = 0;
virtual LIR* StoreBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
int r_src, int r_src_hi, OpSize size, int s_reg) = 0;
virtual void MarkGCCard(int val_reg, int tgt_addr_reg) = 0;
// Required for target - register utilities.
virtual bool IsFpReg(int reg) = 0;
virtual bool SameRegType(int reg1, int reg2) = 0;
virtual int AllocTypedTemp(bool fp_hint, int reg_class) = 0;
virtual int AllocTypedTempPair(bool fp_hint, int reg_class) = 0;
virtual int S2d(int low_reg, int high_reg) = 0;
virtual int TargetReg(SpecialTargetRegister reg) = 0;
virtual int GetArgMappingToPhysicalReg(int arg_num) = 0;
virtual RegLocation GetReturnAlt() = 0;
virtual RegLocation GetReturnWideAlt() = 0;
virtual RegLocation LocCReturn() = 0;
virtual RegLocation LocCReturnDouble() = 0;
virtual RegLocation LocCReturnFloat() = 0;
virtual RegLocation LocCReturnWide() = 0;
virtual uint32_t FpRegMask() = 0;
virtual uint64_t GetRegMaskCommon(int reg) = 0;
virtual void AdjustSpillMask() = 0;
virtual void ClobberCallerSave() = 0;
virtual void FlushReg(int reg) = 0;
virtual void FlushRegWide(int reg1, int reg2) = 0;
virtual void FreeCallTemps() = 0;
virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
virtual void LockCallTemps() = 0;
virtual void MarkPreservedSingle(int v_reg, int reg) = 0;
virtual void CompilerInitializeRegAlloc() = 0;
// Required for target - miscellaneous.
virtual void AssembleLIR() = 0;
virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
virtual const char* GetTargetInstFmt(int opcode) = 0;
virtual const char* GetTargetInstName(int opcode) = 0;
virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
virtual uint64_t GetPCUseDefEncoding() = 0;
virtual uint64_t GetTargetInstFlags(int opcode) = 0;
virtual int GetInsnSize(LIR* lir) = 0;
virtual bool IsUnconditionalBranch(LIR* lir) = 0;
// Required for target - Dalvik-level generators.
virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) = 0;
virtual void GenMulLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenAddLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenAndLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenArithOpDouble(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) = 0;
virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) = 0;
virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src) = 0;
virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
/**
* @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
* @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
* that applies on integers. The generated code will write the smallest or largest value
* directly into the destination register as specified by the invoke information.
* @param info Information about the invoke.
* @param is_min If true generates code that computes minimum. Otherwise computes maximum.
* @return Returns true if successfully generated
*/
virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
virtual bool GenInlinedSqrt(CallInfo* info) = 0;
virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
virtual void GenOrLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenSubLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenXorLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual LIR* GenRegMemCheck(ConditionCode c_code, int reg1, int base,
int offset, ThrowKind kind) = 0;
virtual RegLocation GenDivRem(RegLocation rl_dest, int reg_lo, int reg_hi,
bool is_div) = 0;
virtual RegLocation GenDivRemLit(RegLocation rl_dest, int reg_lo, int lit,
bool is_div) = 0;
/*
* @brief Generate an integer div or rem operation by a literal.
* @param rl_dest Destination Location.
* @param rl_src1 Numerator Location.
* @param rl_src2 Divisor Location.
* @param is_div 'true' if this is a division, 'false' for a remainder.
* @param check_zero 'true' if an exception should be generated if the divisor is 0.
*/
virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div, bool check_zero) = 0;
/*
* @brief Generate an integer div or rem operation by a literal.
* @param rl_dest Destination Location.
* @param rl_src Numerator Location.
* @param lit Divisor.
* @param is_div 'true' if this is a division, 'false' for a remainder.
*/
virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1,
int lit, bool is_div) = 0;
virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
/**
* @brief Used for generating code that throws ArithmeticException if both registers are zero.
* @details This is used for generating DivideByZero checks when divisor is held in two separate registers.
* @param reg_lo The register holding the lower 32-bits.
* @param reg_hi The register holding the upper 32-bits.
*/
virtual void GenDivZeroCheck(int reg_lo, int reg_hi) = 0;
virtual void GenEntrySequence(RegLocation* ArgLocs,
RegLocation rl_method) = 0;
virtual void GenExitSequence() = 0;
virtual void GenFillArrayData(DexOffset table_offset,
RegLocation rl_src) = 0;
virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
bool is_double) = 0;
virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
/**
* @brief Lowers the kMirOpSelect MIR into LIR.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirOpSelect.
*/
virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
virtual void GenMoveException(RegLocation rl_dest) = 0;
virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
RegLocation rl_result, int lit, int first_bit,
int second_bit) = 0;
virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset,
RegLocation rl_src) = 0;
virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset,
RegLocation rl_src) = 0;
virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_src, int scale,
bool card_mark) = 0;
virtual void GenShiftImmOpLong(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_shift) = 0;
// Required for target - single operation generators.
virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
virtual LIR* OpCmpBranch(ConditionCode cond, int src1, int src2, LIR* target) = 0;
virtual LIR* OpCmpImmBranch(ConditionCode cond, int reg, int check_value, LIR* target) = 0;
virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
virtual LIR* OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) = 0;
virtual LIR* OpFpRegCopy(int r_dest, int r_src) = 0;
virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
virtual LIR* OpMem(OpKind op, int rBase, int disp) = 0;
virtual LIR* OpPcRelLoad(int reg, LIR* target) = 0;
virtual LIR* OpReg(OpKind op, int r_dest_src) = 0;
virtual LIR* OpRegCopy(int r_dest, int r_src) = 0;
virtual LIR* OpRegCopyNoInsert(int r_dest, int r_src) = 0;
virtual LIR* OpRegImm(OpKind op, int r_dest_src1, int value) = 0;
virtual LIR* OpRegMem(OpKind op, int r_dest, int rBase, int offset) = 0;
virtual LIR* OpRegReg(OpKind op, int r_dest_src1, int r_src2) = 0;
/**
* @brief Used to generate an LIR that does a load from mem to reg.
* @param r_dest The destination physical register.
* @param r_base The base physical register for memory operand.
* @param offset The displacement for memory operand.
* @param move_type Specification on the move desired (size, alignment, register kind).
* @return Returns the generate move LIR.
*/
virtual LIR* OpMovRegMem(int r_dest, int r_base, int offset, MoveType move_type) = 0;
/**
* @brief Used to generate an LIR that does a store from reg to mem.
* @param r_base The base physical register for memory operand.
* @param offset The displacement for memory operand.
* @param r_src The destination physical register.
* @param bytes_to_move The number of bytes to move.
* @param is_aligned Whether the memory location is known to be aligned.
* @return Returns the generate move LIR.
*/
virtual LIR* OpMovMemReg(int r_base, int offset, int r_src, MoveType move_type) = 0;
/**
* @brief Used for generating a conditional register to register operation.
* @param op The opcode kind.
* @param cc The condition code that when true will perform the opcode.
* @param r_dest The destination physical register.
* @param r_src The source physical register.
* @return Returns the newly created LIR or null in case of creation failure.
*/
virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) = 0;
virtual LIR* OpRegRegImm(OpKind op, int r_dest, int r_src1, int value) = 0;
virtual LIR* OpRegRegReg(OpKind op, int r_dest, int r_src1, int r_src2) = 0;
virtual LIR* OpTestSuspend(LIR* target) = 0;
virtual LIR* OpThreadMem(OpKind op, ThreadOffset thread_offset) = 0;
virtual LIR* OpVldm(int rBase, int count) = 0;
virtual LIR* OpVstm(int rBase, int count) = 0;
virtual void OpLea(int rBase, int reg1, int reg2, int scale, int offset) = 0;
virtual void OpRegCopyWide(int dest_lo, int dest_hi, int src_lo, int src_hi) = 0;
virtual void OpTlsCmp(ThreadOffset offset, int val) = 0;
virtual bool InexpensiveConstantInt(int32_t value) = 0;
virtual bool InexpensiveConstantFloat(int32_t value) = 0;
virtual bool InexpensiveConstantLong(int64_t value) = 0;
virtual bool InexpensiveConstantDouble(int64_t value) = 0;
// May be optimized by targets.
virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
// Temp workaround
void Workaround7250540(RegLocation rl_dest, int value);
protected:
Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
CompilationUnit* GetCompilationUnit() {
return cu_;
}
/*
* @brief Returns the index of the lowest set bit in 'x'.
* @param x Value to be examined.
* @returns The bit number of the lowest bit set in the value.
*/
int32_t LowestSetBit(uint64_t x);
/*
* @brief Is this value a power of two?
* @param x Value to be examined.
* @returns 'true' if only 1 bit is set in the value.
*/
bool IsPowerOfTwo(uint64_t x);
/*
* @brief Do these SRs overlap?
* @param rl_op1 One RegLocation
* @param rl_op2 The other RegLocation
* @return 'true' if the VR pairs overlap
*
* Check to see if a result pair has a misaligned overlap with an operand pair. This
* is not usual for dx to generate, but it is legal (for now). In a future rev of
* dex, we'll want to make this case illegal.
*/
bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
/*
* @brief Force a location (in a register) into a temporary register
* @param loc location of result
* @returns update location
*/
RegLocation ForceTemp(RegLocation loc);
/*
* @brief Force a wide location (in registers) into temporary registers
* @param loc location of result
* @returns update location
*/
RegLocation ForceTempWide(RegLocation loc);
virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
RegLocation rl_dest, RegLocation rl_src);
void AddSlowPath(LIRSlowPath* slowpath);
virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
bool type_known_abstract, bool use_declaring_class,
bool can_assume_type_is_in_dex_cache,
uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src);
/**
* @brief Used to insert marker that can be used to associate MIR with LIR.
* @details Only inserts marker if verbosity is enabled.
* @param mir The mir that is currently being generated.
*/
void GenPrintLabel(MIR* mir);
/**
* @brief Used to generate return sequence when there is no frame.
* @details Assumes that the return registers have already been populated.
*/
virtual void GenSpecialExitSequence() = 0;
/**
* @brief Used to generate code for special methods that are known to be
* small enough to work in frameless mode.
* @param bb The basic block of the first MIR.
* @param mir The first MIR of the special method.
* @param special Information about the special method.
* @return Returns whether or not this was handled successfully. Returns false
* if caller should punt to normal MIR2LIR conversion.
*/
virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
private:
void ClobberBody(RegisterInfo* p);
void ResetDefBody(RegisterInfo* p) {
p->def_start = NULL;
p->def_end = NULL;
}
void SetCurrentDexPc(DexOffset dexpc) {
current_dalvik_offset_ = dexpc;
}
/**
* @brief Used to lock register if argument at in_position was passed that way.
* @details Does nothing if the argument is passed via stack.
* @param in_position The argument number whose register to lock.
* @param wide Whether the argument is wide.
*/
void LockArg(int in_position, bool wide = false);
/**
* @brief Used to load VR argument to a physical register.
* @details The load is only done if the argument is not already in physical register.
* LockArg must have been previously called.
* @param in_position The argument number to load.
* @param wide Whether the argument is 64-bit or not.
* @return Returns the register (or register pair) for the loaded argument.
*/
int LoadArg(int in_position, bool wide = false);
/**
* @brief Used to load a VR argument directly to a specified register location.
* @param in_position The argument number to place in register.
* @param rl_dest The register location where to place argument.
*/
void LoadArgDirect(int in_position, RegLocation rl_dest);
/**
* @brief Used to generate LIR for special getter method.
* @param mir The mir that represents the iget.
* @param special Information about the special getter method.
* @return Returns whether LIR was successfully generated.
*/
bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
/**
* @brief Used to generate LIR for special setter method.
* @param mir The mir that represents the iput.
* @param special Information about the special setter method.
* @return Returns whether LIR was successfully generated.
*/
bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
/**
* @brief Used to generate LIR for special return-args method.
* @param mir The mir that represents the return of argument.
* @param special Information about the special return-args method.
* @return Returns whether LIR was successfully generated.
*/
bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
public:
// TODO: add accessors for these.
LIR* literal_list_; // Constants.
LIR* method_literal_list_; // Method literals requiring patching.
LIR* class_literal_list_; // Class literals requiring patching.
LIR* code_literal_list_; // Code literals requiring patching.
LIR* first_fixup_; // Doubly-linked list of LIR nodes requiring fixups.
protected:
CompilationUnit* const cu_;
MIRGraph* const mir_graph_;
GrowableArray<SwitchTable*> switch_tables_;
GrowableArray<FillArrayData*> fill_array_data_;
GrowableArray<LIR*> throw_launchpads_;
GrowableArray<LIR*> suspend_launchpads_;
GrowableArray<LIR*> intrinsic_launchpads_;
GrowableArray<RegisterInfo*> tempreg_info_;
GrowableArray<RegisterInfo*> reginfo_map_;
GrowableArray<void*> pointer_storage_;
CodeOffset current_code_offset_; // Working byte offset of machine instructons.
CodeOffset data_offset_; // starting offset of literal pool.
size_t total_size_; // header + code size.
LIR* block_label_list_;
PromotionMap* promotion_map_;
/*
* TODO: The code generation utilities don't have a built-in
* mechanism to propagate the original Dalvik opcode address to the
* associated generated instructions. For the trace compiler, this wasn't
* necessary because the interpreter handled all throws and debugging
* requests. For now we'll handle this by placing the Dalvik offset
* in the CompilationUnit struct before codegen for each instruction.
* The low-level LIR creation utilites will pull it from here. Rework this.
*/
DexOffset current_dalvik_offset_;
size_t estimated_native_code_size_; // Just an estimate; used to reserve code_buffer_ size.
RegisterPool* reg_pool_;
/*
* Sanity checking for the register temp tracking. The same ssa
* name should never be associated with one temp register per
* instruction compilation.
*/
int live_sreg_;
CodeBuffer code_buffer_;
// The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
std::vector<uint8_t> encoded_mapping_table_;
std::vector<uint32_t> core_vmap_table_;
std::vector<uint32_t> fp_vmap_table_;
std::vector<uint8_t> native_gc_map_;
int num_core_spills_;
int num_fp_spills_;
int frame_size_;
unsigned int core_spill_mask_;
unsigned int fp_spill_mask_;
LIR* first_lir_insn_;
LIR* last_lir_insn_;
GrowableArray<LIRSlowPath*> slow_paths_;
}; // Class Mir2Lir
} // namespace art
#endif // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_