blob: 476297b5cf007a37b6deca428f7eb851da98bae4 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "runtime.h"
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <vector>
#include "JniConstants.h"
#include "class_linker.h"
#include "heap.h"
#include "jni_internal.h"
#include "scoped_ptr.h"
#include "thread.h"
namespace art {
Runtime* Runtime::instance_ = NULL;
Runtime::~Runtime() {
// TODO: use smart pointers instead. (we'll need the pimpl idiom.)
delete class_linker_;
Heap::Destroy();
delete thread_list_;
delete java_vm_;
// TODO: acquire a static mutex on Runtime to avoid racing.
CHECK(instance_ == NULL || instance_ == this);
instance_ = NULL;
}
void Runtime::Abort(const char* file, int line) {
// Get any pending output out of the way.
fflush(NULL);
// Many people have difficulty distinguish aborts from crashes,
// so be explicit.
LogMessage(file, line, ERROR, -1).stream() << "Runtime aborting...";
// Perform any platform-specific pre-abort actions.
PlatformAbort(file, line);
// use abort hook if we have one
if (Runtime::Current() != NULL && Runtime::Current()->abort_ != NULL) {
Runtime::Current()->abort_();
// notreached
}
// If we call abort(3) on a device, all threads in the process
// receive SIGABRT. debuggerd dumps the stack trace of the main
// thread, whether or not that was the thread that failed. By
// stuffing a value into a bogus address, we cause a segmentation
// fault in the current thread, and get a useful log from debuggerd.
// We can also trivially tell the difference between a VM crash and
// a deliberate abort by looking at the fault address.
*reinterpret_cast<char*>(0xdeadd00d) = 38;
abort();
// notreached
}
// Splits a C string using the given delimiter characters into a vector of
// strings. Empty strings will be omitted.
void Split(const char* str, const char* delim, std::vector<std::string>& vec) {
DCHECK(str != NULL);
DCHECK(delim != NULL);
scoped_ptr_malloc<char> tmp(strdup(str));
char* full = tmp.get();
char* p = full;
while (p != NULL) {
p = strpbrk(full, delim);
if (p != NULL) {
p[0] = '\0';
}
if (full[0] != '\0') {
vec.push_back(std::string(full));
}
if (p != NULL) {
full = p + 1;
}
}
}
// Splits a colon delimited list of pathname elements into a vector of
// strings. Empty strings will be omitted.
void ParseClassPath(const char* class_path, std::vector<std::string>& vec) {
Split(class_path, ":", vec);
}
// Parse a string of the form /[0-9]+[kKmMgG]?/, which is used to specify
// memory sizes. [kK] indicates kilobytes, [mM] megabytes, and
// [gG] gigabytes.
//
// "s" should point just past the "-Xm?" part of the string.
// "div" specifies a divisor, e.g. 1024 if the value must be a multiple
// of 1024.
//
// The spec says the -Xmx and -Xms options must be multiples of 1024. It
// doesn't say anything about -Xss.
//
// Returns 0 (a useless size) if "s" is malformed or specifies a low or
// non-evenly-divisible value.
//
size_t ParseMemoryOption(const char *s, size_t div) {
// strtoul accepts a leading [+-], which we don't want,
// so make sure our string starts with a decimal digit.
if (isdigit(*s)) {
const char *s2;
size_t val = strtoul(s, (char **)&s2, 10);
if (s2 != s) {
// s2 should be pointing just after the number.
// If this is the end of the string, the user
// has specified a number of bytes. Otherwise,
// there should be exactly one more character
// that specifies a multiplier.
if (*s2 != '\0') {
// The remainder of the string is either a single multiplier
// character, or nothing to indicate that the value is in
// bytes.
char c = *s2++;
if (*s2 == '\0') {
size_t mul;
if (c == '\0') {
mul = 1;
} else if (c == 'k' || c == 'K') {
mul = KB;
} else if (c == 'm' || c == 'M') {
mul = MB;
} else if (c == 'g' || c == 'G') {
mul = GB;
} else {
// Unknown multiplier character.
return 0;
}
if (val <= std::numeric_limits<size_t>::max() / mul) {
val *= mul;
} else {
// Clamp to a multiple of 1024.
val = std::numeric_limits<size_t>::max() & ~(1024-1);
}
} else {
// There's more than one character after the numeric part.
return 0;
}
}
// The man page says that a -Xm value must be a multiple of 1024.
if (val % div == 0) {
return val;
}
}
}
return 0;
}
void LoadJniLibrary(JavaVMExt* vm, const char* name) {
// TODO: OS_SHARED_LIB_FORMAT_STR
std::string mapped_name(StringPrintf("lib%s.so", name));
char* reason = NULL;
if (!vm->LoadNativeLibrary(mapped_name, NULL, &reason)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"" << mapped_name << "\": "
<< reason;
}
}
DexFile* Open(const std::string& filename) {
if (filename.size() < 4) {
LOG(WARNING) << "Ignoring short classpath entry '" << filename << "'";
return NULL;
}
std::string suffix(filename.substr(filename.size() - 4));
if (suffix == ".zip" || suffix == ".jar" || suffix == ".apk") {
return DexFile::OpenZip(filename);
} else {
return DexFile::OpenFile(filename);
}
}
void CreateBootClassPath(const char* boot_class_path_cstr,
std::vector<DexFile*>& boot_class_path_vector) {
CHECK(boot_class_path_cstr != NULL);
std::vector<std::string> parsed;
ParseClassPath(boot_class_path_cstr, parsed);
for (size_t i = 0; i < parsed.size(); ++i) {
DexFile* dex_file = Open(parsed[i]);
if (dex_file != NULL) {
boot_class_path_vector.push_back(dex_file);
}
}
}
Runtime::ParsedOptions* Runtime::ParsedOptions::Create(const Options& options, bool ignore_unrecognized) {
scoped_ptr<ParsedOptions> parsed(new ParsedOptions());
const char* boot_class_path = getenv("BOOTCLASSPATH");
parsed->boot_image_ = NULL;
#ifdef NDEBUG
// -Xcheck:jni and -verbose:jni are off by default for regular builds...
parsed->check_jni_ = false;
#else
// ...but on by default in debug builds.
parsed->check_jni_ = true;
parsed->verbose_.insert("jni");
#endif
parsed->heap_initial_size_ = Heap::kInitialSize;
parsed->heap_maximum_size_ = Heap::kMaximumSize;
parsed->stack_size_ = Thread::kDefaultStackSize;
parsed->hook_vfprintf_ = vfprintf;
parsed->hook_exit_ = exit;
parsed->hook_abort_ = abort;
for (size_t i = 0; i < options.size(); ++i) {
const StringPiece& option = options[i].first;
if (option.starts_with("-Xbootclasspath:")) {
boot_class_path = option.substr(strlen("-Xbootclasspath:")).data();
} else if (option == "bootclasspath") {
const void* dex_vector = options[i].second;
const std::vector<DexFile*>* v = reinterpret_cast<const std::vector<DexFile*>*>(dex_vector);
if (v == NULL) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Could not parse " << option;
return NULL;
}
parsed->boot_class_path_ = *v;
} else if (option.starts_with("-Xbootimage:")) {
parsed->boot_image_ = option.substr(strlen("-Xbootimage:")).data();
} else if (option.starts_with("-Xcheck:jni")) {
parsed->check_jni_ = true;
} else if (option.starts_with("-Xms")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xms")).data(), 1024);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Could not parse " << option;
return NULL;
}
parsed->heap_initial_size_ = size;
} else if (option.starts_with("-Xmx")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xmx")).data(), 1024);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Could not parse " << option;
return NULL;
}
parsed->heap_maximum_size_ = size;
} else if (option.starts_with("-Xss")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xss")).data(), 1);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Could not parse " << option;
return NULL;
}
parsed->stack_size_ = size;
} else if (option.starts_with("-D")) {
parsed->properties_.push_back(option.substr(strlen("-D")).data());
} else if (option.starts_with("-verbose:")) {
std::vector<std::string> verbose_options;
Split(option.substr(strlen("-verbose:")).data(), ",", verbose_options);
for (size_t i = 0; i < verbose_options.size(); ++i) {
parsed->verbose_.insert(verbose_options[i]);
}
} else if (option == "vfprintf") {
parsed->hook_vfprintf_ = reinterpret_cast<int (*)(FILE *, const char*, va_list)>(options[i].second);
} else if (option == "exit") {
parsed->hook_exit_ = reinterpret_cast<void(*)(jint)>(options[i].second);
} else if (option == "abort") {
parsed->hook_abort_ = reinterpret_cast<void(*)()>(options[i].second);
} else {
if (!ignore_unrecognized) {
// TODO: print usage via vfprintf
LOG(FATAL) << "Unrecognized option " << option;
return NULL;
}
}
}
if (boot_class_path == NULL) {
boot_class_path = "";
}
if (parsed->boot_class_path_.size() == 0) {
CreateBootClassPath(boot_class_path, parsed->boot_class_path_);
}
return parsed.release();
}
Runtime* Runtime::Create(const std::vector<const DexFile*>& boot_class_path) {
Runtime::Options options;
options.push_back(std::make_pair("bootclasspath", &boot_class_path));
return Runtime::Create(options, false);
}
Runtime* Runtime::Create(const Options& options, bool ignore_unrecognized) {
// TODO: acquire a static mutex on Runtime to avoid racing.
if (Runtime::instance_ != NULL) {
return NULL;
}
scoped_ptr<Runtime> runtime(new Runtime());
bool success = runtime->Init(options, ignore_unrecognized);
if (!success) {
return NULL;
}
instance_ = runtime.release();
// Most JNI libraries can just use System.loadLibrary, but you can't
// if you're the library that implements System.loadLibrary!
Thread* self = Thread::Current();
Thread::State old_state = self->GetState();
self->SetState(Thread::kNative);
JniConstants::init(self->GetJniEnv());
LoadJniLibrary(instance_->GetJavaVM(), "javacore");
self->SetState(old_state);
return instance_;
}
bool Runtime::Init(const Options& raw_options, bool ignore_unrecognized) {
CHECK_EQ(kPageSize, sysconf(_SC_PAGE_SIZE));
scoped_ptr<ParsedOptions> options(ParsedOptions::Create(raw_options, ignore_unrecognized));
if (options == NULL) {
return false;
}
vfprintf_ = options->hook_vfprintf_;
exit_ = options->hook_exit_;
abort_ = options->hook_abort_;
stack_size_ = options->stack_size_;
thread_list_ = ThreadList::Create();
if (!Heap::Init(options->heap_initial_size_,
options->heap_maximum_size_,
options->boot_image_)) {
return false;
}
bool verbose_jni = options->verbose_.find("jni") != options->verbose_.end();
java_vm_ = new JavaVMExt(this, options->check_jni_, verbose_jni);
if (!Thread::Init()) {
return false;
}
Thread* current_thread = Thread::Attach(this);
thread_list_->Register(current_thread);
class_linker_ = ClassLinker::Create(options->boot_class_path_, Heap::GetBootSpace());
return true;
}
bool Runtime::AttachCurrentThread(const char* name, JNIEnv** penv) {
return Thread::Attach(instance_) != NULL;
}
bool Runtime::AttachCurrentThreadAsDaemon(const char* name, JNIEnv** penv) {
// TODO: do something different for daemon threads.
return Thread::Attach(instance_) != NULL;
}
bool Runtime::DetachCurrentThread() {
UNIMPLEMENTED(WARNING);
return true;
}
} // namespace art