| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "codegen_x86.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "oat.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| #define MAX_ASSEMBLER_RETRIES 50 |
| |
| const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = { |
| { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4, false }, "data", "0x!0d" }, |
| { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0, false }, "int 3", "" }, |
| { kX86Nop, kNop, NO_OPERAND, { 0, 0, 0x90, 0, 0, 0, 0, 0, false }, "nop", "" }, |
| |
| #define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \ |
| rm8_r8, rm32_r32, \ |
| r8_rm8, r32_rm32, \ |
| ax8_i8, ax32_i32, \ |
| rm8_i8, rm8_i8_modrm, \ |
| rm32_i32, rm32_i32_modrm, \ |
| rm32_i8, rm32_i8_modrm) \ |
| { kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8MR", "[!0r+!1d],!2r" }, \ |
| { kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ |
| { kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8TR", "fs:[!0d],!1r" }, \ |
| { kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ |
| { kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RT", "!0r,fs:[!1d]" }, \ |
| { kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1, true }, #opname "8RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, false}, #opname "8MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, false}, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, false}, #opname "8TI", "fs:[!0d],!1d" }, \ |
| \ |
| { kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16MR", "[!0r+!1d],!2r" }, \ |
| { kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ |
| { kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16TR", "fs:[!0d],!1r" }, \ |
| { kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ |
| { kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RT", "!0r,fs:[!1d]" }, \ |
| { kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2, false }, #opname "16RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16TI", "fs:[!0d],!1d" }, \ |
| { kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16RI8", "!0r,!1d" }, \ |
| { kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16MI8", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16TI8", "fs:[!0d],!1d" }, \ |
| \ |
| { kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32MR", "[!0r+!1d],!2r" }, \ |
| { kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ |
| { kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32TR", "fs:[!0d],!1r" }, \ |
| { kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ |
| { kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RT", "!0r,fs:[!1d]" }, \ |
| { kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "32RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32TI", "fs:[!0d],!1d" }, \ |
| { kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32RI8", "!0r,!1d" }, \ |
| { kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32MI8", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32TI8", "fs:[!0d],!1d" }, \ |
| \ |
| { kX86 ## opname ## 64MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64MR", "[!0r+!1d],!2r" }, \ |
| { kX86 ## opname ## 64AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ |
| { kX86 ## opname ## 64TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64TR", "fs:[!0d],!1r" }, \ |
| { kX86 ## opname ## 64RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## 64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## 64RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ |
| { kX86 ## opname ## 64RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RT", "!0r,fs:[!1d]" }, \ |
| { kX86 ## opname ## 64RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "64RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 64MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 64AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 64TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64TI", "fs:[!0d],!1d" }, \ |
| { kX86 ## opname ## 64RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64RI8", "!0r,!1d" }, \ |
| { kX86 ## opname ## 64MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64MI8", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 64AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64TI8", "fs:[!0d],!1d" } |
| |
| ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */, |
| 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */, |
| 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */, |
| 0x80, 0x0 /* RegMem8/imm8 */, |
| 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */), |
| ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */, |
| 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */, |
| 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */, |
| 0x80, 0x1 /* RegMem8/imm8 */, |
| 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */), |
| ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES, |
| 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */, |
| 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */, |
| 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */, |
| 0x80, 0x2 /* RegMem8/imm8 */, |
| 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */), |
| ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES, |
| 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */, |
| 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */, |
| 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */, |
| 0x80, 0x3 /* RegMem8/imm8 */, |
| 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */), |
| ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */, |
| 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */, |
| 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */, |
| 0x80, 0x4 /* RegMem8/imm8 */, |
| 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */), |
| ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */, |
| 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */, |
| 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */, |
| 0x80, 0x5 /* RegMem8/imm8 */, |
| 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */), |
| ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */, |
| 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */, |
| 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */, |
| 0x80, 0x6 /* RegMem8/imm8 */, |
| 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */), |
| ENCODING_MAP(Cmp, IS_LOAD, 0, 0, |
| 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */, |
| 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */, |
| 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */, |
| 0x80, 0x7 /* RegMem8/imm8 */, |
| 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */), |
| #undef ENCODING_MAP |
| |
| { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RRI", "!0r,!1r,!2d" }, |
| { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RMI", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| |
| { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RRI", "!0r,!1r,!2d" }, |
| { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RMI", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RRI8", "!0r,!1r,!2d" }, |
| { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| |
| { kX86Imul64RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RRI", "!0r,!1r,!2d" }, |
| { kX86Imul64RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RMI", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul64RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| { kX86Imul64RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RRI8", "!0r,!1r,!2d" }, |
| { kX86Imul64RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul64RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| |
| { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8MR", "[!0r+!1d],!2r" }, |
| { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8TR", "fs:[!0d],!1r" }, |
| { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RR", "!0r,!1r" }, |
| { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RM", "!0r,[!1r+!2d]" }, |
| { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RT", "!0r,fs:[!1d]" }, |
| { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1, true }, "Mov8RI", "!0r,!1d" }, |
| { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8MI", "[!0r+!1d],!2d" }, |
| { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8TI", "fs:[!0d],!1d" }, |
| |
| { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov16MR", "[!0r+!1d],!2r" }, |
| { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0, false }, "Mov16TR", "fs:[!0d],!1r" }, |
| { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RR", "!0r,!1r" }, |
| { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RM", "!0r,[!1r+!2d]" }, |
| { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RT", "!0r,fs:[!1d]" }, |
| { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2, false }, "Mov16RI", "!0r,!1d" }, |
| { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16MI", "[!0r+!1d],!2d" }, |
| { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16TI", "fs:[!0d],!1d" }, |
| |
| { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32MR", "[!0r+!1d],!2r" }, |
| { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Movnti32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0F, 0, 0xC3, 0, 0, 0, 0, 0, false }, "Movnti32MR", "[!0r+!1d],!2r" }, |
| { kX86Movnti32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0F, 0, 0xC3, 0, 0, 0, 0, 0, false }, "Movnti32AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32TR", "fs:[!0d],!1r" }, |
| { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RR", "!0r,!1r" }, |
| { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RM", "!0r,[!1r+!2d]" }, |
| { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RT", "!0r,fs:[!1d]" }, |
| { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "Mov32RI", "!0r,!1d" }, |
| { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32MI", "[!0r+!1d],!2d" }, |
| { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32TI", "fs:[!0d],!1d" }, |
| |
| { kX86Lea32RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1, { 0, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RM", "!0r,[!1r+!2d]" }, |
| { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| |
| { kX86Mov64MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { REX_W, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64MR", "[!0r+!1d],!2r" }, |
| { kX86Mov64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { REX_W, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Movnti64MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0F, 0, 0xC3, 0, 0, 0, 0, 0, false }, "Movnti64MR", "[!0r+!1d],!2r" }, |
| { kX86Movnti64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0F, 0, 0xC3, 0, 0, 0, 0, 0, false }, "Movnti64AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0, false }, "Mov64TR", "fs:[!0d],!1r" }, |
| { kX86Mov64RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RR", "!0r,!1r" }, |
| { kX86Mov64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RM", "!0r,[!1r+!2d]" }, |
| { kX86Mov64RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86Mov64RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RT", "!0r,fs:[!1d]" }, |
| { kX86Mov64RI32, kRegImm, IS_BINARY_OP | REG_DEF0, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64RI32", "!0r,!1d" }, |
| { kX86Mov64RI64, kMovRegQuadImm, IS_TERTIARY_OP | REG_DEF0, { REX_W, 0, 0xB8, 0, 0, 0, 0, 8, false }, "Mov64RI64", "!0r,!1q" }, |
| { kX86Mov64MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64MI", "[!0r+!1d],!2d" }, |
| { kX86Mov64AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64TI", "fs:[!0d],!1d" }, |
| |
| { kX86Lea64RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RM", "!0r,[!1r+!2d]" }, |
| { kX86Lea64RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| |
| { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RR", "!2c !0r,!1r" }, |
| { kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RR", "!2c !0r,!1r" }, |
| |
| { kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" }, |
| { kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" }, |
| |
| #define SHIFT_ENCODING_MAP(opname, modrm_opcode) \ |
| { kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8RC", "!0r,cl" }, \ |
| { kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8MC", "[!0r+!1d],cl" }, \ |
| { kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \ |
| \ |
| { kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16RC", "!0r,cl" }, \ |
| { kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16MC", "[!0r+!1d],cl" }, \ |
| { kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \ |
| \ |
| { kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32RC", "!0r,cl" }, \ |
| { kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32MC", "[!0r+!1d],cl" }, \ |
| { kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \ |
| \ |
| { kX86 ## opname ## 64RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 64MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 64RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64RC", "!0r,cl" }, \ |
| { kX86 ## opname ## 64MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64MC", "[!0r+!1d],cl" }, \ |
| { kX86 ## opname ## 64AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" } |
| |
| SHIFT_ENCODING_MAP(Rol, 0x0), |
| SHIFT_ENCODING_MAP(Ror, 0x1), |
| SHIFT_ENCODING_MAP(Rcl, 0x2), |
| SHIFT_ENCODING_MAP(Rcr, 0x3), |
| SHIFT_ENCODING_MAP(Sal, 0x4), |
| SHIFT_ENCODING_MAP(Shr, 0x5), |
| SHIFT_ENCODING_MAP(Sar, 0x7), |
| #undef SHIFT_ENCODING_MAP |
| |
| { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0, false }, "Cmc", "" }, |
| { kX86Shld32RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32RRI", "!0r,!1r,!2d" }, |
| { kX86Shld32RRC, kShiftRegRegCl, IS_TERTIARY_OP | REG_DEF0_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0x0F, 0xA5, 0, 0, 0, 0, false }, "Shld32RRC", "!0r,!1r,cl" }, |
| { kX86Shld32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32MRI", "[!0r+!1d],!2r,!3d" }, |
| { kX86Shrd32RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32RRI", "!0r,!1r,!2d" }, |
| { kX86Shrd32RRC, kShiftRegRegCl, IS_TERTIARY_OP | REG_DEF0_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0x0F, 0xAD, 0, 0, 0, 0, false }, "Shrd32RRC", "!0r,!1r,cl" }, |
| { kX86Shrd32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32MRI", "[!0r+!1d],!2r,!3d" }, |
| { kX86Shld64RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64RRI", "!0r,!1r,!2d" }, |
| { kX86Shld64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64MRI", "[!0r+!1d],!2r,!3d" }, |
| { kX86Shrd64RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64RRI", "!0r,!1r,!2d" }, |
| { kX86Shrd64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64MRI", "[!0r+!1d],!2r,!3d" }, |
| |
| { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8RI", "!0r,!1d" }, |
| { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8MI", "[!0r+!1d],!2d" }, |
| { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16RI", "!0r,!1d" }, |
| { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16MI", "[!0r+!1d],!2d" }, |
| { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32RI", "!0r,!1d" }, |
| { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32MI", "[!0r+!1d],!2d" }, |
| { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Test64RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64RI", "!0r,!1d" }, |
| { kX86Test64MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64MI", "[!0r+!1d],!2d" }, |
| { kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| |
| { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RR", "!0r,!1r" }, |
| { kX86Test64RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test64RR", "!0r,!1r" }, |
| { kX86Test32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RM", "!0r,[!1r+!2d]" }, |
| |
| #define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \ |
| reg, reg_kind, reg_flags, \ |
| mem, mem_kind, mem_flags, \ |
| arr, arr_kind, arr_flags, imm, \ |
| b_flags, hw_flags, w_flags, \ |
| b_format, hw_format, w_format) \ |
| { kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #reg, b_format "!0r" }, \ |
| { kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #mem, b_format "[!0r+!1d]" }, \ |
| { kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \ |
| { kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #reg, hw_format "!0r" }, \ |
| { kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #mem, hw_format "[!0r+!1d]" }, \ |
| { kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \ |
| { kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #reg, w_format "!0r" }, \ |
| { kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #mem, w_format "[!0r+!1d]" }, \ |
| { kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \ |
| { kX86 ## opname ## 64 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #reg, w_format "!0r" }, \ |
| { kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #mem, w_format "[!0r+!1d]" }, \ |
| { kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" } |
| |
| UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""), |
| UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""), |
| |
| UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"), |
| UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"), |
| UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"), |
| UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"), |
| #undef UNARY_ENCODING_MAP |
| |
| { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0, false }, "Cdq", "" }, |
| { kx86Cqo64Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { REX_W, 0, 0x99, 0, 0, 0, 0, 0, false }, "Cqo", "" }, |
| { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap32R", "!0r" }, |
| { kX86Bswap64R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { REX_W, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap64R", "!0r" }, |
| { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0, false }, "Push32R", "!0r" }, |
| { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0, false }, "Pop32R", "!0r" }, |
| |
| #define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \ |
| { kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" } |
| |
| // This is a special encoding with r8_form on the second register only |
| // for Movzx8 and Movsx8. |
| #define EXT_0F_R8_FORM_ENCODING_MAP(opname, prefix, opcode, reg_def) \ |
| { kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, true }, #opname "RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" } |
| |
| #define EXT_0F_REX_W_ENCODING_MAP(opname, prefix, opcode, reg_def) \ |
| { kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" } |
| |
| #define EXT_0F_ENCODING2_MAP(opname, prefix, opcode, opcode2, reg_def) \ |
| { kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" } |
| |
| EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0), |
| { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdMR", "[!0r+!1d],!2r" }, |
| { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0), |
| { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssMR", "[!0r+!1d],!2r" }, |
| { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0), |
| EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2sd, 0xF2, 0x2A, REG_DEF0), |
| EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2ss, 0xF3, 0x2A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0), |
| EXT_0F_REX_W_ENCODING_MAP(Cvttsd2sqi, 0xF2, 0x2C, REG_DEF0), |
| EXT_0F_REX_W_ENCODING_MAP(Cvttss2sqi, 0xF3, 0x2C, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES|REG_USE0), |
| EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES|REG_USE0), |
| EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES|REG_USE0), |
| EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES|REG_USE0), |
| EXT_0F_ENCODING_MAP(Orpd, 0x66, 0x56, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Andpd, 0x66, 0x54, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Andps, 0x00, 0x54, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Xorpd, 0x66, 0x57, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Punpcklbw, 0x66, 0x60, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Punpcklwd, 0x66, 0x61, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Punpcklqdq, 0x66, 0x6C, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Sqrtsd, 0xF2, 0x51, REG_DEF0_USE0), |
| EXT_0F_ENCODING2_MAP(Pmulld, 0x66, 0x38, 0x40, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Pmullw, 0x66, 0xD5, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Pmuludq, 0x66, 0xF4, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Mulps, 0x00, 0x59, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Mulpd, 0x66, 0x59, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Paddb, 0x66, 0xFC, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Paddw, 0x66, 0xFD, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Paddd, 0x66, 0xFE, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Paddq, 0x66, 0xD4, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Psadbw, 0x66, 0xF6, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Addps, 0x00, 0x58, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Addpd, 0xF2, 0x58, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Psubb, 0x66, 0xF8, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Psubw, 0x66, 0xF9, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Psubd, 0x66, 0xFA, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Psubq, 0x66, 0xFB, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Subps, 0x00, 0x5C, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Subpd, 0x66, 0x5C, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Pand, 0x66, 0xDB, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Por, 0x66, 0xEB, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Pxor, 0x66, 0xEF, REG_DEF0_USE0), |
| EXT_0F_ENCODING2_MAP(Phaddw, 0x66, 0x38, 0x01, REG_DEF0_USE0), |
| EXT_0F_ENCODING2_MAP(Phaddd, 0x66, 0x38, 0x02, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Haddpd, 0x66, 0x7C, REG_DEF0_USE0), |
| EXT_0F_ENCODING_MAP(Haddps, 0xF2, 0x7C, REG_DEF0_USE0), |
| |
| { kX86PextrbRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1, false }, "PextbRRI", "!0r,!1r,!2d" }, |
| { kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1, false }, "PextwRRI", "!0r,!1r,!2d" }, |
| { kX86PextrdRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextdRRI", "!0r,!1r,!2d" }, |
| { kX86PextrbMRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrbMRI", "[!0r+!1d],!2r,!3d" }, |
| { kX86PextrwMRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrwMRI", "[!0r+!1d],!2r,!3d" }, |
| { kX86PextrdMRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrdMRI", "[!0r+!1d],!2r,!3d" }, |
| |
| { kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuflwRRI", "!0r,!1r,!2d" }, |
| { kX86PshufdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuffRRI", "!0r,!1r,!2d" }, |
| |
| { kX86ShufpsRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x00, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpsRRI", "!0r,!1r,!2d" }, |
| { kX86ShufpdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpdRRI", "!0r,!1r,!2d" }, |
| |
| { kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1, false }, "PsrawRI", "!0r,!1d" }, |
| { kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1, false }, "PsradRI", "!0r,!1d" }, |
| { kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1, false }, "PsrlwRI", "!0r,!1d" }, |
| { kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1, false }, "PsrldRI", "!0r,!1d" }, |
| { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1, false }, "PsrlqRI", "!0r,!1d" }, |
| { kX86PsrldqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 3, 0, 1, false }, "PsrldqRI", "!0r,!1d" }, |
| { kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1, false }, "PsllwRI", "!0r,!1d" }, |
| { kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1, false }, "PslldRI", "!0r,!1d" }, |
| { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1, false }, "PsllqRI", "!0r,!1d" }, |
| |
| { kX86Fild32M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDB, 0x00, 0, 0, 0, 0, false }, "Fild32M", "[!0r,!1d]" }, |
| { kX86Fild64M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDF, 0x00, 0, 5, 0, 0, false }, "Fild64M", "[!0r,!1d]" }, |
| { kX86Fld32M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 0, 0, 0, false }, "Fld32M", "[!0r,!1d]" }, |
| { kX86Fld64M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 0, 0, 0, false }, "Fld64M", "[!0r,!1d]" }, |
| { kX86Fstp32M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 3, 0, 0, false }, "Fstps32M", "[!0r,!1d]" }, |
| { kX86Fstp64M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0, false }, "Fstpd64M", "[!0r,!1d]" }, |
| { kX86Fst32M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 2, 0, 0, false }, "Fsts32M", "[!0r,!1d]" }, |
| { kX86Fst64M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 2, 0, 0, false }, "Fstd64M", "[!0r,!1d]" }, |
| { kX86Fprem, kNullary, NO_OPERAND | USE_FP_STACK, { 0xD9, 0, 0xF8, 0, 0, 0, 0, 0, false }, "Fprem64", "" }, |
| { kX86Fucompp, kNullary, NO_OPERAND | USE_FP_STACK, { 0xDA, 0, 0xE9, 0, 0, 0, 0, 0, false }, "Fucompp", "" }, |
| { kX86Fstsw16R, kNullary, NO_OPERAND | REG_DEFA | USE_FP_STACK, { 0x9B, 0xDF, 0xE0, 0, 0, 0, 0, 0, false }, "Fstsw16R", "ax" }, |
| |
| EXT_0F_ENCODING_MAP(Movdqa, 0x66, 0x6F, REG_DEF0), |
| { kX86MovdqaMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "MovdqaMR", "[!0r+!1d],!2r" }, |
| { kX86MovdqaAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "MovdqaAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| |
| EXT_0F_ENCODING_MAP(Movups, 0x0, 0x10, REG_DEF0), |
| { kX86MovupsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsMR", "[!0r+!1d],!2r" }, |
| { kX86MovupsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| EXT_0F_ENCODING_MAP(Movaps, 0x0, 0x28, REG_DEF0), |
| { kX86MovapsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsMR", "[!0r+!1d],!2r" }, |
| { kX86MovapsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| { kX86MovlpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRM", "!0r,[!1r+!2d]" }, |
| { kX86MovlpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86MovlpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsMR", "[!0r+!1d],!2r" }, |
| { kX86MovlpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| { kX86MovhpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRM", "!0r,[!1r+!2d]" }, |
| { kX86MovhpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86MovhpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsMR", "[!0r+!1d],!2r" }, |
| { kX86MovhpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0), |
| EXT_0F_REX_W_ENCODING_MAP(Movqxr, 0x66, 0x6E, REG_DEF0), |
| { kX86MovqrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE1, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxRR", "!0r,!1r" }, |
| { kX86MovqrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxMR", "[!0r+!1d],!2r" }, |
| { kX86MovqrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxRR", "!0r,!1r" }, |
| { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxMR", "[!0r+!1d],!2r" }, |
| { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| { kX86MovsxdRR, kRegReg, IS_BINARY_OP | REG_DEF0 | REG_USE1, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRR", "!0r,!1r" }, |
| { kX86MovsxdRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRM", "!0r,[!1r+!2d]" }, |
| { kX86MovsxdRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE12, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| |
| { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, true }, "Set8R", "!1c !0r" }, |
| { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8M", "!2c [!0r+!1d]" }, |
| { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" }, |
| |
| // TODO: load/store? |
| // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly. |
| { kX86Lfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 5, 0, 0, false }, "Lfence", "" }, |
| { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0, false }, "Mfence", "" }, |
| { kX86Sfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 7, 0, 0, false }, "Sfence", "" }, |
| |
| EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES), |
| EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES), |
| EXT_0F_ENCODING_MAP(Imul64, REX_W, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES), |
| |
| { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "!0r,!1r" }, |
| { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1d],!2r" }, |
| { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1d],!2r" }, |
| { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86LockCmpxchg64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, REX_W, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86LockCmpxchg64M, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1d]" }, |
| { kX86LockCmpxchg64A, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" }, |
| { kX86XchgMR, kMemReg, IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02, { 0, 0, 0x87, 0, 0, 0, 0, 0, false }, "Xchg", "[!0r+!1d],!2r" }, |
| |
| EXT_0F_R8_FORM_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0), |
| EXT_0F_R8_FORM_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movzx8q, REX_W, 0xB6, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movzx16q, REX_W, 0xB7, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movsx8q, REX, 0xBE, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movsx16q, REX_W, 0xBF, REG_DEF0), |
| #undef EXT_0F_ENCODING_MAP |
| |
| { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0, false }, "Jcc8", "!1c !0t" }, |
| { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0, false }, "Jcc32", "!1c !0t" }, |
| { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0, false }, "Jmp8", "!0t" }, |
| { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0, false }, "Jmp32", "!0t" }, |
| { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0, false }, "JmpR", "!0r" }, |
| { kX86Jecxz8, kJmp, NO_OPERAND | IS_BRANCH | NEEDS_FIXUP | REG_USEC, { 0, 0, 0xE3, 0, 0, 0, 0, 0, false }, "Jecxz", "!0t" }, |
| { kX86JmpT, kJmp, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 4, 0, 0, false }, "JmpT", "fs:[!0d]" }, |
| { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0, false }, "CallR", "!0r" }, |
| { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallM", "[!0r+!1d]" }, |
| { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallA", "[!0r+!1r<<!2d+!3d]" }, |
| { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallT", "fs:[!0d]" }, |
| { kX86CallI, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 4, false }, "CallI", "!0d" }, |
| { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0, false }, "Ret", "" }, |
| |
| { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0, false }, "StartOfMethod", "!0r" }, |
| { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" }, |
| { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "PcRelAdr", "!0r,!1p" }, |
| { kX86RepneScasw, kNullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0, false }, "RepNE ScasW", "" }, |
| }; |
| |
| static bool NeedsRex(int32_t raw_reg) { |
| return RegStorage::RegNum(raw_reg) > 7; |
| } |
| |
| static uint8_t LowRegisterBits(int32_t raw_reg) { |
| uint8_t low_reg = RegStorage::RegNum(raw_reg) & kRegNumMask32; // 3 bits |
| DCHECK_LT(low_reg, 8); |
| return low_reg; |
| } |
| |
| static bool HasModrm(const X86EncodingMap* entry) { |
| switch (entry->kind) { |
| case kNullary: return false; |
| case kRegOpcode: return false; |
| default: return true; |
| } |
| } |
| |
| static bool HasSib(const X86EncodingMap* entry) { |
| switch (entry->kind) { |
| case kArray: return true; |
| case kArrayReg: return true; |
| case kRegArray: return true; |
| case kArrayImm: return true; |
| case kRegArrayImm: return true; |
| case kShiftArrayImm: return true; |
| case kShiftArrayCl: return true; |
| case kArrayCond: return true; |
| case kCall: |
| switch (entry->opcode) { |
| case kX86CallA: return true; |
| default: return false; |
| } |
| case kPcRel: return true; |
| switch (entry->opcode) { |
| case kX86PcRelLoadRA: return true; |
| default: return false; |
| } |
| default: return false; |
| } |
| } |
| |
| static bool ModrmIsRegReg(const X86EncodingMap* entry) { |
| switch (entry->kind) { |
| // There is no modrm for this kind of instruction, therefore the reg doesn't form part of the |
| // modrm: |
| case kNullary: return true; |
| case kRegOpcode: return true; |
| case kMovRegImm: return true; |
| // Regular modrm value of 3 cases, when there is one register the other register holds an |
| // opcode so the base register is special. |
| case kReg: return true; |
| case kRegReg: return true; |
| case kRegRegStore: return true; |
| case kRegImm: return true; |
| case kRegRegImm: return true; |
| case kRegRegImmStore: return true; |
| case kShiftRegImm: return true; |
| case kShiftRegCl: return true; |
| case kRegCond: return true; |
| case kRegRegCond: return true; |
| case kShiftRegRegCl: return true; |
| case kJmp: |
| switch (entry->opcode) { |
| case kX86JmpR: return true; |
| default: return false; |
| } |
| case kCall: |
| switch (entry->opcode) { |
| case kX86CallR: return true; |
| default: return false; |
| } |
| default: return false; |
| } |
| } |
| |
| static bool IsByteSecondOperand(const X86EncodingMap* entry) { |
| return StartsWith(entry->name, "Movzx8") || StartsWith(entry->name, "Movsx8"); |
| } |
| |
| size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index, |
| int32_t raw_base, int32_t displacement) { |
| bool has_modrm = HasModrm(entry); |
| bool has_sib = HasSib(entry); |
| bool r8_form = entry->skeleton.r8_form; |
| bool modrm_is_reg_reg = ModrmIsRegReg(entry); |
| if (has_sib) { |
| DCHECK(!modrm_is_reg_reg); |
| } |
| size_t size = 0; |
| if (entry->skeleton.prefix1 > 0) { |
| ++size; |
| if (entry->skeleton.prefix2 > 0) { |
| ++size; |
| } |
| } |
| if (cu_->target64 || kIsDebugBuild) { |
| bool registers_need_rex_prefix = NeedsRex(raw_reg) || NeedsRex(raw_index) || NeedsRex(raw_base); |
| if (r8_form) { |
| // Do we need an empty REX prefix to normalize byte registers? |
| registers_need_rex_prefix = registers_need_rex_prefix || |
| (RegStorage::RegNum(raw_reg) >= 4 && !IsByteSecondOperand(entry)); |
| registers_need_rex_prefix = registers_need_rex_prefix || |
| (modrm_is_reg_reg && (RegStorage::RegNum(raw_base) >= 4)); |
| } |
| if (registers_need_rex_prefix) { |
| DCHECK(cu_->target64) << "Attempt to use a 64-bit only addressable register " |
| << RegStorage::RegNum(raw_reg) << " with instruction " << entry->name; |
| if (entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W |
| && entry->skeleton.prefix1 != REX && entry->skeleton.prefix2 != REX) { |
| ++size; // rex |
| } |
| } |
| } |
| ++size; // opcode |
| if (entry->skeleton.opcode == 0x0F) { |
| ++size; |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) { |
| ++size; |
| } |
| } |
| if (has_modrm) { |
| ++size; // modrm |
| } |
| if (!modrm_is_reg_reg) { |
| if (has_sib || LowRegisterBits(raw_base) == rs_rX86_SP.GetRegNum() |
| || (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX)) { |
| // SP requires a SIB byte. |
| // GS access also needs a SIB byte for absolute adressing in 64-bit mode. |
| ++size; |
| } |
| if (displacement != 0 || LowRegisterBits(raw_base) == rs_rBP.GetRegNum()) { |
| // BP requires an explicit displacement, even when it's 0. |
| if (entry->opcode != kX86Lea32RA && entry->opcode != kX86Lea64RA) { |
| DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), UINT64_C(0)) << entry->name; |
| } |
| size += IS_SIMM8(displacement) ? 1 : 4; |
| } |
| } |
| size += entry->skeleton.immediate_bytes; |
| return size; |
| } |
| |
| size_t X86Mir2Lir::GetInsnSize(LIR* lir) { |
| DCHECK(!IsPseudoLirOp(lir->opcode)); |
| const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode]; |
| DCHECK_EQ(entry->opcode, lir->opcode) << entry->name; |
| |
| switch (entry->kind) { |
| case kData: |
| return 4; // 4 bytes of data. |
| case kNop: |
| return lir->operands[0]; // Length of nop is sole operand. |
| case kNullary: |
| return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0); |
| case kRegOpcode: // lir operands - 0: reg |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0); |
| case kReg: // lir operands - 0: reg |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0); |
| case kMem: // lir operands - 0: base, 1: disp |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]); |
| case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp |
| return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]); |
| case kMemReg: // lir operands - 0: base, 1: disp, 2: reg |
| return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]); |
| case kMemRegImm: // lir operands - 0: base, 1: disp, 2: reg 3: immediate |
| return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]); |
| case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg |
| return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0], |
| lir->operands[3]); |
| case kThreadReg: // lir operands - 0: disp, 1: reg |
| // Thread displacement size is always 32bit. |
| return ComputeSize(entry, lir->operands[1], NO_REG, NO_REG, 0x12345678); |
| case kRegReg: // lir operands - 0: reg1, 1: reg2 |
| return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0); |
| case kRegRegStore: // lir operands - 0: reg2, 1: reg1 |
| return ComputeSize(entry, lir->operands[1], NO_REG, lir->operands[0], 0); |
| case kRegMem: // lir operands - 0: reg, 1: base, 2: disp |
| return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]); |
| case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp |
| return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1], |
| lir->operands[4]); |
| case kRegThread: // lir operands - 0: reg, 1: disp |
| // Thread displacement size is always 32bit. |
| return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0x12345678); |
| case kRegImm: { // lir operands - 0: reg, 1: immediate |
| size_t size = ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0); |
| // AX opcodes don't require the modrm byte. |
| if (entry->skeleton.ax_opcode == 0) { |
| return size; |
| } else { |
| return size - (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0); |
| } |
| } |
| case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]); |
| case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate |
| return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]); |
| case kThreadImm: // lir operands - 0: disp, 1: imm |
| // Thread displacement size is always 32bit. |
| return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678); |
| case kRegRegImm: // lir operands - 0: reg1, 1: reg2, 2: imm |
| // Note: RegRegImm form passes reg2 as index but encodes it using base. |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, 0); |
| case kRegRegImmStore: // lir operands - 0: reg2, 1: reg1, 2: imm |
| // Note: RegRegImmStore form passes reg1 as index but encodes it using base. |
| return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG, 0); |
| case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm |
| return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]); |
| case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm |
| return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1], |
| lir->operands[4]); |
| case kMovRegImm: // lir operands - 0: reg, 1: immediate |
| case kMovRegQuadImm: |
| return ((entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])) ? 1 : 0) + 1 + |
| entry->skeleton.immediate_bytes; |
| case kShiftRegImm: // lir operands - 0: reg, 1: immediate |
| // Shift by immediate one has a shorter opcode. |
| return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0) - |
| (lir->operands[1] == 1 ? 1 : 0); |
| case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate |
| // Shift by immediate one has a shorter opcode. |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]) - |
| (lir->operands[2] == 1 ? 1 : 0); |
| case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate |
| // Shift by immediate one has a shorter opcode. |
| return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]) - |
| (lir->operands[4] == 1 ? 1 : 0); |
| case kShiftRegCl: // lir operands - 0: reg, 1: cl |
| DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[1])); |
| // Note: ShiftRegCl form passes reg as reg but encodes it using base. |
| return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0); |
| case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl |
| DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2])); |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]); |
| case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cl |
| DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[4])); |
| return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0], |
| lir->operands[3]); |
| case kShiftRegRegCl: // lir operands - 0: reg1, 1: reg2, 2: cl |
| DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2])); |
| return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0); |
| case kRegCond: // lir operands - 0: reg, 1: cond |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0); |
| case kMemCond: // lir operands - 0: base, 1: disp, 2: cond |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]); |
| case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]); |
| case kRegRegCond: // lir operands - 0: reg1, 1: reg2, 2: cond |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0); |
| case kRegMemCond: // lir operands - 0: reg, 1: base, 2: disp, 3:cond |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]); |
| case kJcc: |
| if (lir->opcode == kX86Jcc8) { |
| return 2; // opcode + rel8 |
| } else { |
| DCHECK(lir->opcode == kX86Jcc32); |
| return 6; // 2 byte opcode + rel32 |
| } |
| case kJmp: |
| if (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jecxz8) { |
| return 2; // opcode + rel8 |
| } else if (lir->opcode == kX86Jmp32) { |
| return 5; // opcode + rel32 |
| } else if (lir->opcode == kX86JmpT) { |
| // Thread displacement size is always 32bit. |
| return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678); |
| } else { |
| DCHECK(lir->opcode == kX86JmpR); |
| if (NeedsRex(lir->operands[0])) { |
| return 3; // REX.B + opcode + modrm |
| } else { |
| return 2; // opcode + modrm |
| } |
| } |
| case kCall: |
| switch (lir->opcode) { |
| case kX86CallI: return 5; // opcode 0:disp |
| case kX86CallR: return 2; // opcode modrm |
| case kX86CallM: // lir operands - 0: base, 1: disp |
| return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]); |
| case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp |
| return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]); |
| case kX86CallT: // lir operands - 0: disp |
| // Thread displacement size is always 32bit. |
| return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678); |
| default: |
| break; |
| } |
| break; |
| case kPcRel: |
| if (entry->opcode == kX86PcRelLoadRA) { |
| // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table |
| // Force the displacement size to 32bit, it will hold a computed offset later. |
| return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1], |
| 0x12345678); |
| } else { |
| DCHECK_EQ(entry->opcode, kX86PcRelAdr); |
| return 5; // opcode with reg + 4 byte immediate |
| } |
| case kMacro: // lir operands - 0: reg |
| DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod)); |
| return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ + |
| ComputeSize(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI], |
| lir->operands[0], NO_REG, NO_REG, 0) - |
| // Shorter ax encoding. |
| (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0); |
| case kUnimplemented: |
| break; |
| } |
| UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name; |
| return 0; |
| } |
| |
| static uint8_t ModrmForDisp(int base, int disp) { |
| // BP requires an explicit disp, so do not omit it in the 0 case |
| if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) { |
| return 0; |
| } else if (IS_SIMM8(disp)) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| void X86Mir2Lir::CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg) { |
| if (kIsDebugBuild) { |
| // Sanity check r8_form is correctly specified. |
| if (entry->skeleton.r8_form) { |
| CHECK(strchr(entry->name, '8') != nullptr) << entry->name; |
| } else { |
| if (entry->skeleton.immediate_bytes != 1) { // Ignore ...I8 instructions. |
| if (!StartsWith(entry->name, "Movzx8") && !StartsWith(entry->name, "Movsx8") |
| && !StartsWith(entry->name, "Movzx8q") && !StartsWith(entry->name, "Movsx8q")) { |
| CHECK(strchr(entry->name, '8') == nullptr) << entry->name; |
| } |
| } |
| } |
| if (RegStorage::RegNum(raw_reg) >= 4) { |
| // ah, bh, ch and dh are not valid registers in 32-bit. |
| CHECK(cu_->target64 || !entry->skeleton.r8_form) |
| << "Invalid register " << static_cast<int>(RegStorage::RegNum(raw_reg)) |
| << " for instruction " << entry->name << " in " |
| << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry, |
| int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) { |
| // REX.WRXB |
| // W - 64-bit operand |
| // R - MODRM.reg |
| // X - SIB.index |
| // B - MODRM.rm/SIB.base |
| bool w = (entry->skeleton.prefix1 == REX_W) || (entry->skeleton.prefix2 == REX_W); |
| bool r = NeedsRex(raw_reg_r); |
| bool x = NeedsRex(raw_reg_x); |
| bool b = NeedsRex(raw_reg_b); |
| bool r8_form = entry->skeleton.r8_form; |
| bool modrm_is_reg_reg = ModrmIsRegReg(entry); |
| |
| uint8_t rex = 0; |
| if (r8_form) { |
| // Do we need an empty REX prefix to normalize byte register addressing? |
| if (RegStorage::RegNum(raw_reg_r) >= 4 && !IsByteSecondOperand(entry)) { |
| rex |= 0x40; // REX.0000 |
| } else if (modrm_is_reg_reg && RegStorage::RegNum(raw_reg_b) >= 4) { |
| rex |= 0x40; // REX.0000 |
| } |
| } |
| if (w) { |
| rex |= 0x48; // REX.W000 |
| } |
| if (r) { |
| rex |= 0x44; // REX.0R00 |
| } |
| if (x) { |
| rex |= 0x42; // REX.00X0 |
| } |
| if (b) { |
| rex |= 0x41; // REX.000B |
| } |
| if (entry->skeleton.prefix1 != 0) { |
| if (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX) { |
| // 64 bit addresses by GS, not FS. |
| code_buffer_.push_back(THREAD_PREFIX_GS); |
| } else { |
| if (entry->skeleton.prefix1 == REX_W || entry->skeleton.prefix1 == REX) { |
| DCHECK(cu_->target64); |
| rex |= entry->skeleton.prefix1; |
| code_buffer_.push_back(rex); |
| rex = 0; |
| } else { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| } |
| } |
| if (entry->skeleton.prefix2 != 0) { |
| if (entry->skeleton.prefix2 == REX_W || entry->skeleton.prefix1 == REX) { |
| DCHECK(cu_->target64); |
| rex |= entry->skeleton.prefix2; |
| code_buffer_.push_back(rex); |
| rex = 0; |
| } else { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| if (rex != 0) { |
| DCHECK(cu_->target64); |
| code_buffer_.push_back(rex); |
| } |
| } |
| |
| void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) { |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } |
| |
| void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry, |
| int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) { |
| EmitPrefix(entry, raw_reg_r, raw_reg_x, raw_reg_b); |
| EmitOpcode(entry); |
| } |
| |
| void X86Mir2Lir::EmitDisp(uint8_t base, int32_t disp) { |
| // BP requires an explicit disp, so do not omit it in the 0 case |
| if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) { |
| return; |
| } else if (IS_SIMM8(disp)) { |
| code_buffer_.push_back(disp & 0xFF); |
| } else { |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| } |
| } |
| |
| void X86Mir2Lir::EmitModrmThread(uint8_t reg_or_opcode) { |
| if (cu_->target64) { |
| // Absolute adressing for GS access. |
| uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rX86_SP.GetRegNum(); |
| code_buffer_.push_back(modrm); |
| uint8_t sib = (0/*TIMES_1*/ << 6) | (rs_rX86_SP.GetRegNum() << 3) | rs_rBP.GetRegNum(); |
| code_buffer_.push_back(sib); |
| } else { |
| uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rBP.GetRegNum(); |
| code_buffer_.push_back(modrm); |
| } |
| } |
| |
| void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp) { |
| DCHECK_LT(reg_or_opcode, 8); |
| DCHECK_LT(base, 8); |
| uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base; |
| code_buffer_.push_back(modrm); |
| if (base == rs_rX86_SP.GetRegNum()) { |
| // Special SIB for SP base |
| code_buffer_.push_back(0 << 6 | rs_rX86_SP.GetRegNum() << 3 | rs_rX86_SP.GetRegNum()); |
| } |
| EmitDisp(base, disp); |
| } |
| |
| void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, |
| int scale, int32_t disp) { |
| DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8); |
| uint8_t modrm = (ModrmForDisp(base, disp) << 6) | RegStorage::RegNum(reg_or_opcode) << 3 | |
| rs_rX86_SP.GetRegNum(); |
| code_buffer_.push_back(modrm); |
| DCHECK_LT(scale, 4); |
| DCHECK_LT(RegStorage::RegNum(index), 8); |
| DCHECK_LT(RegStorage::RegNum(base), 8); |
| uint8_t sib = (scale << 6) | (RegStorage::RegNum(index) << 3) | RegStorage::RegNum(base); |
| code_buffer_.push_back(sib); |
| EmitDisp(base, disp); |
| } |
| |
| void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) { |
| switch (entry->skeleton.immediate_bytes) { |
| case 1: |
| DCHECK(IS_SIMM8(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| break; |
| case 2: |
| DCHECK(IS_SIMM16(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| break; |
| case 4: |
| DCHECK(IS_SIMM32(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| break; |
| case 8: |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| code_buffer_.push_back((imm >> 32) & 0xFF); |
| code_buffer_.push_back((imm >> 40) & 0xFF); |
| code_buffer_.push_back((imm >> 48) & 0xFF); |
| code_buffer_.push_back((imm >> 56) & 0xFF); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes |
| << ") for instruction: " << entry->name; |
| break; |
| } |
| } |
| |
| void X86Mir2Lir::EmitNullary(const X86EncodingMap* entry) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg); |
| // There's no 3-byte instruction with +rd |
| DCHECK(entry->skeleton.opcode != 0x0F || |
| (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A)); |
| DCHECK(!RegStorage::IsFloat(raw_reg)); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| code_buffer_.back() += low_reg; |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg) { |
| CheckValidByteRegister(entry, raw_reg); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_base); |
| code_buffer_.push_back(entry->skeleton.opcode); |
| DCHECK_NE(0x0F, entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, |
| int scale, int32_t disp) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base); |
| uint8_t low_index = LowRegisterBits(raw_index); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, |
| int32_t raw_reg) { |
| CheckValidByteRegister(entry, raw_reg); |
| EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(low_reg, low_base, disp); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, |
| int32_t disp) { |
| // Opcode will flip operands. |
| EmitMemReg(entry, raw_base, disp, raw_reg); |
| } |
| |
| void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, |
| int32_t raw_index, int scale, int32_t disp) { |
| CheckValidByteRegister(entry, raw_reg); |
| EmitPrefixAndOpcode(entry, raw_reg, raw_index, raw_base); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t low_index = LowRegisterBits(raw_index); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmSibDisp(low_reg, low_base, low_index, scale, disp); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, |
| int scale, int32_t disp, int32_t raw_reg) { |
| // Opcode will flip operands. |
| EmitRegArray(entry, raw_reg, raw_base, raw_index, scale, disp); |
| } |
| |
| void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, |
| int32_t imm) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| EmitImm(entry, imm); |
| } |
| |
| void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry, |
| int32_t raw_base, int32_t raw_index, int scale, int32_t disp, |
| int32_t imm) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base); |
| uint8_t low_index = LowRegisterBits(raw_index); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| EmitImm(entry, imm); |
| } |
| |
| void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| DCHECK_NE(entry->skeleton.prefix1, 0); |
| EmitPrefixAndOpcode(entry, raw_reg, NO_REG, NO_REG); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| EmitModrmThread(low_reg); |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2) { |
| if (!IsByteSecondOperand(entry)) { |
| CheckValidByteRegister(entry, raw_reg1); |
| } |
| CheckValidByteRegister(entry, raw_reg2); |
| EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2); |
| uint8_t low_reg1 = LowRegisterBits(raw_reg1); |
| uint8_t low_reg2 = LowRegisterBits(raw_reg2); |
| uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, |
| int32_t imm) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2); |
| uint8_t low_reg1 = LowRegisterBits(raw_reg1); |
| uint8_t low_reg2 = LowRegisterBits(raw_reg2); |
| uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| EmitImm(entry, imm); |
| } |
| |
| void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry, |
| int32_t raw_reg, int32_t raw_base, int disp, int32_t imm) { |
| DCHECK(!RegStorage::IsFloat(raw_reg)); |
| CheckValidByteRegister(entry, raw_reg); |
| EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(low_reg, low_base, disp); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| EmitImm(entry, imm); |
| } |
| |
| void X86Mir2Lir::EmitMemRegImm(const X86EncodingMap* entry, |
| int32_t raw_base, int32_t disp, int32_t raw_reg, int32_t imm) { |
| // Opcode will flip operands. |
| EmitRegMemImm(entry, raw_reg, raw_base, disp, imm); |
| } |
| |
| void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) { |
| CheckValidByteRegister(entry, raw_reg); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_reg); |
| if (RegStorage::RegNum(raw_reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) { |
| code_buffer_.push_back(entry->skeleton.ax_opcode); |
| } else { |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| EmitOpcode(entry); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg; |
| code_buffer_.push_back(modrm); |
| } |
| EmitImm(entry, imm); |
| } |
| |
| void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG); |
| EmitModrmThread(entry->skeleton.modrm_opcode); |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| EmitImm(entry, imm); |
| DCHECK_EQ(entry->skeleton.ax_opcode, 0); |
| } |
| |
| void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_reg); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| code_buffer_.push_back(0xB8 + low_reg); |
| switch (entry->skeleton.immediate_bytes) { |
| case 4: |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| break; |
| case 8: |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| code_buffer_.push_back((imm >> 32) & 0xFF); |
| code_buffer_.push_back((imm >> 40) & 0xFF); |
| code_buffer_.push_back((imm >> 48) & 0xFF); |
| code_buffer_.push_back((imm >> 56) & 0xFF); |
| break; |
| default: |
| LOG(FATAL) << "Unsupported immediate size for EmitMovRegImm: " |
| << static_cast<uint32_t>(entry->skeleton.immediate_bytes); |
| } |
| } |
| |
| void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) { |
| CheckValidByteRegister(entry, raw_reg); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_reg); |
| if (imm != 1) { |
| code_buffer_.push_back(entry->skeleton.opcode); |
| } else { |
| // Shorter encoding for 1 bit shift |
| code_buffer_.push_back(entry->skeleton.ax_opcode); |
| } |
| DCHECK_NE(0x0F, entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg; |
| code_buffer_.push_back(modrm); |
| if (imm != 1) { |
| DCHECK_EQ(entry->skeleton.immediate_bytes, 1); |
| DCHECK(IS_SIMM8(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| } |
| } |
| |
| void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl) { |
| CheckValidByteRegister(entry, raw_reg); |
| DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl)); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_reg); |
| code_buffer_.push_back(entry->skeleton.opcode); |
| DCHECK_NE(0x0F, entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, |
| int32_t displacement, int32_t raw_cl) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl)); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_base); |
| code_buffer_.push_back(entry->skeleton.opcode); |
| DCHECK_NE(0x0F, entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, displacement); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitShiftRegRegCl(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t raw_cl) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl)); |
| EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2); |
| uint8_t low_reg1 = LowRegisterBits(raw_reg1); |
| uint8_t low_reg2 = LowRegisterBits(raw_reg2); |
| uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, |
| int32_t imm) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_base); |
| if (imm != 1) { |
| code_buffer_.push_back(entry->skeleton.opcode); |
| } else { |
| // Shorter encoding for 1 bit shift |
| code_buffer_.push_back(entry->skeleton.ax_opcode); |
| } |
| DCHECK_NE(0x0F, entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp); |
| if (imm != 1) { |
| DCHECK_EQ(entry->skeleton.immediate_bytes, 1); |
| DCHECK(IS_SIMM8(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| } |
| } |
| |
| void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc) { |
| CheckValidByteRegister(entry, raw_reg); |
| EmitPrefix(entry, NO_REG, NO_REG, raw_reg); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0x0F, entry->skeleton.opcode); |
| code_buffer_.push_back(0x0F); |
| DCHECK_EQ(0x90, entry->skeleton.extra_opcode1); |
| DCHECK_GE(cc, 0); |
| DCHECK_LT(cc, 16); |
| code_buffer_.push_back(0x90 | cc); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(entry->skeleton.immediate_bytes, 0); |
| } |
| |
| void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, |
| int32_t cc) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0x0F, entry->skeleton.opcode); |
| code_buffer_.push_back(0x0F); |
| DCHECK_EQ(0x90, entry->skeleton.extra_opcode1); |
| DCHECK_GE(cc, 0); |
| DCHECK_LT(cc, 16); |
| code_buffer_.push_back(0x90 | cc); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp); |
| DCHECK_EQ(entry->skeleton.immediate_bytes, 0); |
| } |
| |
| void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, |
| int32_t cc) { |
| // Generate prefix and opcode without the condition. |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2); |
| |
| // Now add the condition. The last byte of opcode is the one that receives it. |
| DCHECK_GE(cc, 0); |
| DCHECK_LT(cc, 16); |
| code_buffer_.back() += cc; |
| |
| // Not expecting to have to encode immediate or do anything special for ModR/M since there are |
| // two registers. |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| |
| // For register to register encoding, the mod is 3. |
| const uint8_t mod = (3 << 6); |
| |
| // Encode the ModR/M byte now. |
| uint8_t low_reg1 = LowRegisterBits(raw_reg1); |
| uint8_t low_reg2 = LowRegisterBits(raw_reg2); |
| const uint8_t modrm = mod | (low_reg1 << 3) | low_reg2; |
| code_buffer_.push_back(modrm); |
| } |
| |
| void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, |
| int32_t disp, int32_t cc) { |
| // Generate prefix and opcode without the condition. |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_base); |
| |
| // Now add the condition. The last byte of opcode is the one that receives it. |
| DCHECK_GE(cc, 0); |
| DCHECK_LT(cc, 16); |
| code_buffer_.back() += cc; |
| |
| // Not expecting to have to encode immediate or do anything special for ModR/M since there are |
| // two registers. |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| |
| uint8_t low_reg1 = LowRegisterBits(raw_reg1); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(low_reg1, low_base, disp); |
| } |
| |
| void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int32_t rel) { |
| if (entry->opcode == kX86Jmp8) { |
| DCHECK(IS_SIMM8(rel)); |
| code_buffer_.push_back(0xEB); |
| code_buffer_.push_back(rel & 0xFF); |
| } else if (entry->opcode == kX86Jmp32) { |
| code_buffer_.push_back(0xE9); |
| code_buffer_.push_back(rel & 0xFF); |
| code_buffer_.push_back((rel >> 8) & 0xFF); |
| code_buffer_.push_back((rel >> 16) & 0xFF); |
| code_buffer_.push_back((rel >> 24) & 0xFF); |
| } else if (entry->opcode == kX86Jecxz8) { |
| DCHECK(IS_SIMM8(rel)); |
| code_buffer_.push_back(0xE3); |
| code_buffer_.push_back(rel & 0xFF); |
| } else { |
| DCHECK(entry->opcode == kX86JmpR); |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefix(entry, NO_REG, NO_REG, rel); |
| code_buffer_.push_back(entry->skeleton.opcode); |
| uint8_t low_reg = LowRegisterBits(rel); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg; |
| code_buffer_.push_back(modrm); |
| } |
| } |
| |
| void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc) { |
| DCHECK_GE(cc, 0); |
| DCHECK_LT(cc, 16); |
| if (entry->opcode == kX86Jcc8) { |
| DCHECK(IS_SIMM8(rel)); |
| code_buffer_.push_back(0x70 | cc); |
| code_buffer_.push_back(rel & 0xFF); |
| } else { |
| DCHECK(entry->opcode == kX86Jcc32); |
| code_buffer_.push_back(0x0F); |
| code_buffer_.push_back(0x80 | cc); |
| code_buffer_.push_back(rel & 0xFF); |
| code_buffer_.push_back((rel >> 8) & 0xFF); |
| code_buffer_.push_back((rel >> 16) & 0xFF); |
| code_buffer_.push_back((rel >> 24) & 0xFF); |
| } |
| } |
| |
| void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base); |
| uint8_t low_base = LowRegisterBits(raw_base); |
| EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int32_t disp) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG); |
| DCHECK_EQ(4, entry->skeleton.immediate_bytes); |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| } |
| |
| void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int32_t disp) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| DCHECK_NE(entry->skeleton.prefix1, 0); |
| EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG); |
| EmitModrmThread(entry->skeleton.modrm_opcode); |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table, |
| int32_t raw_index, int scale, int32_t table_or_disp) { |
| int disp; |
| if (entry->opcode == kX86PcRelLoadRA) { |
| Mir2Lir::EmbeddedData *tab_rec = |
| reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp)); |
| disp = tab_rec->offset; |
| } else { |
| DCHECK(entry->opcode == kX86PcRelAdr); |
| Mir2Lir::EmbeddedData *tab_rec = |
| reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(raw_base_or_table)); |
| disp = tab_rec->offset; |
| } |
| if (entry->opcode == kX86PcRelLoadRA) { |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefix(entry, raw_reg, raw_index, raw_base_or_table); |
| code_buffer_.push_back(entry->skeleton.opcode); |
| DCHECK_NE(0x0F, entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| uint8_t modrm = (2 << 6) | (low_reg << 3) | rs_rX86_SP.GetRegNum(); |
| code_buffer_.push_back(modrm); |
| DCHECK_LT(scale, 4); |
| uint8_t low_base_or_table = LowRegisterBits(raw_base_or_table); |
| uint8_t low_index = LowRegisterBits(raw_index); |
| uint8_t sib = (scale << 6) | (low_index << 3) | low_base_or_table; |
| code_buffer_.push_back(sib); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } else { |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| code_buffer_.push_back(entry->skeleton.opcode + low_reg); |
| } |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| } |
| |
| void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset) { |
| DCHECK_EQ(entry->opcode, kX86StartOfMethod) << entry->name; |
| DCHECK_EQ(false, entry->skeleton.r8_form); |
| EmitPrefix(entry, raw_reg, NO_REG, NO_REG); |
| code_buffer_.push_back(0xE8); // call +0 |
| code_buffer_.push_back(0); |
| code_buffer_.push_back(0); |
| code_buffer_.push_back(0); |
| code_buffer_.push_back(0); |
| |
| uint8_t low_reg = LowRegisterBits(raw_reg); |
| code_buffer_.push_back(0x58 + low_reg); // pop reg |
| |
| EmitRegImm(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI], |
| raw_reg, offset + 5 /* size of call +0 */); |
| } |
| |
| void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) { |
| UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " " |
| << BuildInsnString(entry->fmt, lir, 0); |
| for (size_t i = 0; i < GetInsnSize(lir); ++i) { |
| code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3 |
| } |
| } |
| |
| /* |
| * Assemble the LIR into binary instruction format. Note that we may |
| * discover that pc-relative displacements may not fit the selected |
| * instruction. In those cases we will try to substitute a new code |
| * sequence or request that the trace be shortened and retried. |
| */ |
| AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) { |
| LIR *lir; |
| AssemblerStatus res = kSuccess; // Assume success |
| |
| const bool kVerbosePcFixup = false; |
| for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) { |
| if (IsPseudoLirOp(lir->opcode)) { |
| continue; |
| } |
| |
| if (lir->flags.is_nop) { |
| continue; |
| } |
| |
| if (lir->flags.fixup != kFixupNone) { |
| switch (lir->opcode) { |
| case kX86Jcc8: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| int delta = 0; |
| CodeOffset pc; |
| if (IS_SIMM8(lir->operands[0])) { |
| pc = lir->offset + 2 /* opcode + rel8 */; |
| } else { |
| pc = lir->offset + 6 /* 2 byte opcode + rel32 */; |
| } |
| CodeOffset target = target_lir->offset; |
| delta = target - pc; |
| if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) { |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Retry for JCC growth at " << lir->offset |
| << " delta: " << delta << " old delta: " << lir->operands[0]; |
| } |
| lir->opcode = kX86Jcc32; |
| lir->flags.size = GetInsnSize(lir); |
| DCHECK(lir->u.m.def_mask->Equals(kEncodeAll)); |
| DCHECK(lir->u.m.use_mask->Equals(kEncodeAll)); |
| res = kRetryAll; |
| } |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Source:"; |
| DumpLIRInsn(lir, 0); |
| LOG(INFO) << "Target:"; |
| DumpLIRInsn(target_lir, 0); |
| LOG(INFO) << "Delta " << delta; |
| } |
| lir->operands[0] = delta; |
| break; |
| } |
| case kX86Jcc32: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */; |
| CodeOffset target = target_lir->offset; |
| int delta = target - pc; |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Source:"; |
| DumpLIRInsn(lir, 0); |
| LOG(INFO) << "Target:"; |
| DumpLIRInsn(target_lir, 0); |
| LOG(INFO) << "Delta " << delta; |
| } |
| lir->operands[0] = delta; |
| break; |
| } |
| case kX86Jecxz8: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| CodeOffset pc; |
| pc = lir->offset + 2; // opcode + rel8 |
| CodeOffset target = target_lir->offset; |
| int delta = target - pc; |
| lir->operands[0] = delta; |
| DCHECK(IS_SIMM8(delta)); |
| break; |
| } |
| case kX86Jmp8: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| int delta = 0; |
| CodeOffset pc; |
| if (IS_SIMM8(lir->operands[0])) { |
| pc = lir->offset + 2 /* opcode + rel8 */; |
| } else { |
| pc = lir->offset + 5 /* opcode + rel32 */; |
| } |
| CodeOffset target = target_lir->offset; |
| delta = target - pc; |
| if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) { |
| // Useless branch |
| NopLIR(lir); |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Retry for useless branch at " << lir->offset; |
| } |
| res = kRetryAll; |
| } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) { |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Retry for JMP growth at " << lir->offset; |
| } |
| lir->opcode = kX86Jmp32; |
| lir->flags.size = GetInsnSize(lir); |
| DCHECK(lir->u.m.def_mask->Equals(kEncodeAll)); |
| DCHECK(lir->u.m.use_mask->Equals(kEncodeAll)); |
| res = kRetryAll; |
| } |
| lir->operands[0] = delta; |
| break; |
| } |
| case kX86Jmp32: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| CodeOffset pc = lir->offset + 5 /* opcode + rel32 */; |
| CodeOffset target = target_lir->offset; |
| int delta = target - pc; |
| lir->operands[0] = delta; |
| break; |
| } |
| default: |
| if (lir->flags.fixup == kFixupLoad) { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| CodeOffset target = target_lir->offset; |
| lir->operands[2] = target; |
| int newSize = GetInsnSize(lir); |
| if (newSize != lir->flags.size) { |
| lir->flags.size = newSize; |
| res = kRetryAll; |
| } |
| } |
| break; |
| } |
| } |
| |
| /* |
| * If one of the pc-relative instructions expanded we'll have |
| * to make another pass. Don't bother to fully assemble the |
| * instruction. |
| */ |
| if (res != kSuccess) { |
| continue; |
| } |
| CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size()); |
| const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode]; |
| size_t starting_cbuf_size = code_buffer_.size(); |
| switch (entry->kind) { |
| case kData: // 4 bytes of data |
| code_buffer_.push_back(lir->operands[0]); |
| break; |
| case kNullary: // 1 byte of opcode and possible prefixes. |
| EmitNullary(entry); |
| break; |
| case kRegOpcode: // lir operands - 0: reg |
| EmitOpRegOpcode(entry, lir->operands[0]); |
| break; |
| case kReg: // lir operands - 0: reg |
| EmitOpReg(entry, lir->operands[0]); |
| break; |
| case kMem: // lir operands - 0: base, 1: disp |
| EmitOpMem(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp |
| EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]); |
| break; |
| case kMemReg: // lir operands - 0: base, 1: disp, 2: reg |
| EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate |
| EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kArrayImm: // lir operands - 0: base, 1: index, 2: disp, 3:scale, 4:immediate |
| EmitArrayImm(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3], lir->operands[4]); |
| break; |
| case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg |
| EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3], lir->operands[4]); |
| break; |
| case kRegMem: // lir operands - 0: reg, 1: base, 2: disp |
| EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp |
| EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3], lir->operands[4]); |
| break; |
| case kRegThread: // lir operands - 0: reg, 1: disp |
| EmitRegThread(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kRegReg: // lir operands - 0: reg1, 1: reg2 |
| EmitRegReg(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kRegRegStore: // lir operands - 0: reg2, 1: reg1 |
| EmitRegReg(entry, lir->operands[1], lir->operands[0]); |
| break; |
| case kMemRegImm: // lir operands - 0: base, 1: disp, 2: reg 3: immediate |
| EmitMemRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3]); |
| break; |
| case kRegRegImm: // lir operands - 0: reg1, 1: reg2, 2: imm |
| EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kRegRegImmStore: // lir operands - 0: reg2, 1: reg1, 2: imm |
| EmitRegRegImm(entry, lir->operands[1], lir->operands[0], lir->operands[2]); |
| break; |
| case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm |
| EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3]); |
| break; |
| case kRegImm: // lir operands - 0: reg, 1: immediate |
| EmitRegImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kThreadImm: // lir operands - 0: disp, 1: immediate |
| EmitThreadImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kMovRegImm: // lir operands - 0: reg, 1: immediate |
| EmitMovRegImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kMovRegQuadImm: { |
| int64_t value = static_cast<int64_t>(static_cast<int64_t>(lir->operands[1]) << 32 | |
| static_cast<uint32_t>(lir->operands[2])); |
| EmitMovRegImm(entry, lir->operands[0], value); |
| } |
| break; |
| case kShiftRegImm: // lir operands - 0: reg, 1: immediate |
| EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kShiftMemImm: // lir operands - 0: base, 1: disp, 2:immediate |
| EmitShiftMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kShiftRegCl: // lir operands - 0: reg, 1: cl |
| EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kShiftMemCl: // lir operands - 0: base, 1:displacement, 2: cl |
| EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kShiftRegRegCl: // lir operands - 0: reg1, 1: reg2, 2: cl |
| EmitShiftRegRegCl(entry, lir->operands[1], lir->operands[0], lir->operands[2]); |
| break; |
| case kRegCond: // lir operands - 0: reg, 1: condition |
| EmitRegCond(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kMemCond: // lir operands - 0: base, 1: displacement, 2: condition |
| EmitMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition |
| EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kRegMemCond: // lir operands - 0: reg, 1: reg, displacement, 3: condition |
| EmitRegMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3]); |
| break; |
| case kJmp: // lir operands - 0: rel |
| if (entry->opcode == kX86JmpT) { |
| // This works since the instruction format for jmp and call is basically the same and |
| // EmitCallThread loads opcode info. |
| EmitCallThread(entry, lir->operands[0]); |
| } else { |
| EmitJmp(entry, lir->operands[0]); |
| } |
| break; |
| case kJcc: // lir operands - 0: rel, 1: CC, target assigned |
| EmitJcc(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kCall: |
| switch (entry->opcode) { |
| case kX86CallI: // lir operands - 0: disp |
| EmitCallImmediate(entry, lir->operands[0]); |
| break; |
| case kX86CallM: // lir operands - 0: base, 1: disp |
| EmitCallMem(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kX86CallT: // lir operands - 0: disp |
| EmitCallThread(entry, lir->operands[0]); |
| break; |
| default: |
| EmitUnimplemented(entry, lir); |
| break; |
| } |
| break; |
| case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table |
| EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3], lir->operands[4]); |
| break; |
| case kMacro: // lir operands - 0: reg |
| EmitMacro(entry, lir->operands[0], lir->offset); |
| break; |
| case kNop: // TODO: these instruction kinds are missing implementations. |
| case kThreadReg: |
| case kRegArrayImm: |
| case kShiftArrayImm: |
| case kShiftArrayCl: |
| case kArrayCond: |
| case kUnimplemented: |
| EmitUnimplemented(entry, lir); |
| break; |
| } |
| DCHECK_EQ(lir->flags.size, GetInsnSize(lir)); |
| CHECK_EQ(lir->flags.size, code_buffer_.size() - starting_cbuf_size) |
| << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name; |
| } |
| return res; |
| } |
| |
| // LIR offset assignment. |
| // TODO: consolidate w/ Arm assembly mechanism. |
| int X86Mir2Lir::AssignInsnOffsets() { |
| LIR* lir; |
| int offset = 0; |
| |
| for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) { |
| lir->offset = offset; |
| if (LIKELY(!IsPseudoLirOp(lir->opcode))) { |
| if (!lir->flags.is_nop) { |
| offset += lir->flags.size; |
| } |
| } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) { |
| if (offset & 0x2) { |
| offset += 2; |
| lir->operands[0] = 1; |
| } else { |
| lir->operands[0] = 0; |
| } |
| } |
| /* Pseudo opcodes don't consume space */ |
| } |
| return offset; |
| } |
| |
| /* |
| * Walk the compilation unit and assign offsets to instructions |
| * and literals and compute the total size of the compiled unit. |
| * TODO: consolidate w/ Arm assembly mechanism. |
| */ |
| void X86Mir2Lir::AssignOffsets() { |
| int offset = AssignInsnOffsets(); |
| |
| if (const_vectors_ != nullptr) { |
| // Vector literals must be 16-byte aligned. The header that is placed |
| // in the code section causes misalignment so we take it into account. |
| // Otherwise, we are sure that for x86 method is aligned to 16. |
| DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u); |
| uint32_t bytes_to_fill = (0x10 - ((offset + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF; |
| offset += bytes_to_fill; |
| |
| // Now assign each literal the right offset. |
| for (LIR *p = const_vectors_; p != nullptr; p = p->next) { |
| p->offset = offset; |
| offset += 16; |
| } |
| } |
| |
| /* Const values have to be word aligned */ |
| offset = RoundUp(offset, 4); |
| |
| /* Set up offsets for literals */ |
| data_offset_ = offset; |
| |
| offset = AssignLiteralOffset(offset); |
| |
| offset = AssignSwitchTablesOffset(offset); |
| |
| offset = AssignFillArrayDataOffset(offset); |
| |
| total_size_ = offset; |
| } |
| |
| /* |
| * Go over each instruction in the list and calculate the offset from the top |
| * before sending them off to the assembler. If out-of-range branch distance is |
| * seen rearrange the instructions a bit to correct it. |
| * TODO: consolidate w/ Arm assembly mechanism. |
| */ |
| void X86Mir2Lir::AssembleLIR() { |
| cu_->NewTimingSplit("Assemble"); |
| |
| // We will remove the method address if we never ended up using it |
| if (store_method_addr_ && !store_method_addr_used_) { |
| setup_method_address_[0]->flags.is_nop = true; |
| setup_method_address_[1]->flags.is_nop = true; |
| } |
| |
| AssignOffsets(); |
| int assembler_retries = 0; |
| /* |
| * Assemble here. Note that we generate code with optimistic assumptions |
| * and if found now to work, we'll have to redo the sequence and retry. |
| */ |
| |
| while (true) { |
| AssemblerStatus res = AssembleInstructions(0); |
| if (res == kSuccess) { |
| break; |
| } else { |
| assembler_retries++; |
| if (assembler_retries > MAX_ASSEMBLER_RETRIES) { |
| CodegenDump(); |
| LOG(FATAL) << "Assembler error - too many retries"; |
| } |
| // Redo offsets and try again |
| AssignOffsets(); |
| code_buffer_.clear(); |
| } |
| } |
| |
| // Install literals |
| InstallLiteralPools(); |
| |
| // Install switch tables |
| InstallSwitchTables(); |
| |
| // Install fill array data |
| InstallFillArrayData(); |
| |
| // Create the mapping table and native offset to reference map. |
| cu_->NewTimingSplit("PcMappingTable"); |
| CreateMappingTables(); |
| |
| cu_->NewTimingSplit("GcMap"); |
| CreateNativeGcMap(); |
| } |
| |
| } // namespace art |