blob: dfdbc183f1a1d62fa8939f3ad92491fce0e0068c [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_macro_assembler_x86.h"
#include "base/casts.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "indirect_reference_table.h"
#include "lock_word.h"
#include "thread.h"
#include "utils/assembler.h"
namespace art HIDDEN {
namespace x86 {
static Register GetScratchRegister() {
// ECX is an argument register on entry and gets spilled in BuildFrame().
// After that, we can use it as a scratch register.
return ECX;
}
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::X86Core(static_cast<int>(reg));
}
constexpr size_t kFramePointerSize = 4;
static constexpr size_t kNativeStackAlignment = 16;
static_assert(kNativeStackAlignment == kStackAlignment);
#define __ asm_.
void X86JNIMacroAssembler::BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> spill_regs) {
DCHECK_EQ(CodeSize(), 0U); // Nothing emitted yet.
cfi().SetCurrentCFAOffset(4); // Return address on stack.
if (frame_size == kFramePointerSize) {
// For @CriticalNative tail call.
CHECK(method_reg.IsNoRegister());
CHECK(spill_regs.empty());
} else if (method_reg.IsNoRegister()) {
CHECK_ALIGNED(frame_size, kNativeStackAlignment);
} else {
CHECK_ALIGNED(frame_size, kStackAlignment);
}
int gpr_count = 0;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
Register spill = spill_regs[i].AsX86().AsCpuRegister();
__ pushl(spill);
gpr_count++;
cfi().AdjustCFAOffset(kFramePointerSize);
cfi().RelOffset(DWARFReg(spill), 0);
}
// return address then method on stack.
int32_t adjust = frame_size - gpr_count * kFramePointerSize -
kFramePointerSize /*return address*/ -
(method_reg.IsRegister() ? kFramePointerSize /*method*/ : 0u);
if (adjust != 0) {
__ addl(ESP, Immediate(-adjust));
cfi().AdjustCFAOffset(adjust);
}
if (method_reg.IsRegister()) {
__ pushl(method_reg.AsX86().AsCpuRegister());
cfi().AdjustCFAOffset(kFramePointerSize);
}
DCHECK_EQ(static_cast<size_t>(cfi().GetCurrentCFAOffset()), frame_size);
}
void X86JNIMacroAssembler::RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> spill_regs,
[[maybe_unused]] bool may_suspend) {
CHECK_ALIGNED(frame_size, kNativeStackAlignment);
cfi().RememberState();
// -kFramePointerSize for ArtMethod*.
int adjust = frame_size - spill_regs.size() * kFramePointerSize - kFramePointerSize;
if (adjust != 0) {
__ addl(ESP, Immediate(adjust));
cfi().AdjustCFAOffset(-adjust);
}
for (size_t i = 0; i < spill_regs.size(); ++i) {
Register spill = spill_regs[i].AsX86().AsCpuRegister();
__ popl(spill);
cfi().AdjustCFAOffset(-static_cast<int>(kFramePointerSize));
cfi().Restore(DWARFReg(spill));
}
__ ret();
// The CFI should be restored for any code that follows the exit block.
cfi().RestoreState();
cfi().DefCFAOffset(frame_size);
}
void X86JNIMacroAssembler::IncreaseFrameSize(size_t adjust) {
if (adjust != 0u) {
CHECK_ALIGNED(adjust, kNativeStackAlignment);
__ addl(ESP, Immediate(-adjust));
cfi().AdjustCFAOffset(adjust);
}
}
static void DecreaseFrameSizeImpl(X86Assembler* assembler, size_t adjust) {
if (adjust != 0u) {
CHECK_ALIGNED(adjust, kNativeStackAlignment);
assembler->addl(ESP, Immediate(adjust));
assembler->cfi().AdjustCFAOffset(-adjust);
}
}
ManagedRegister X86JNIMacroAssembler::CoreRegisterWithSize(ManagedRegister src, size_t size) {
DCHECK(src.AsX86().IsCpuRegister());
DCHECK_EQ(size, 4u);
return src;
}
void X86JNIMacroAssembler::DecreaseFrameSize(size_t adjust) {
DecreaseFrameSizeImpl(&asm_, adjust);
}
void X86JNIMacroAssembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) {
Store(X86ManagedRegister::FromCpuRegister(ESP), MemberOffset(offs.Int32Value()), msrc, size);
}
void X86JNIMacroAssembler::Store(ManagedRegister mbase,
MemberOffset offs,
ManagedRegister msrc,
size_t size) {
X86ManagedRegister base = mbase.AsX86();
X86ManagedRegister src = msrc.AsX86();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCpuRegister()) {
CHECK_EQ(4u, size);
__ movl(Address(base.AsCpuRegister(), offs), src.AsCpuRegister());
} else if (src.IsRegisterPair()) {
CHECK_EQ(8u, size);
__ movl(Address(base.AsCpuRegister(), offs), src.AsRegisterPairLow());
__ movl(Address(base.AsCpuRegister(), FrameOffset(offs.Int32Value()+4)),
src.AsRegisterPairHigh());
} else if (src.IsX87Register()) {
if (size == 4) {
__ fstps(Address(base.AsCpuRegister(), offs));
} else {
__ fstpl(Address(base.AsCpuRegister(), offs));
}
} else {
CHECK(src.IsXmmRegister());
if (size == 4) {
__ movss(Address(base.AsCpuRegister(), offs), src.AsXmmRegister());
} else {
__ movsd(Address(base.AsCpuRegister(), offs), src.AsXmmRegister());
}
}
}
void X86JNIMacroAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
X86ManagedRegister src = msrc.AsX86();
CHECK(src.IsCpuRegister());
__ movl(Address(ESP, dest), src.AsCpuRegister());
}
void X86JNIMacroAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs, bool tag_sp) {
if (tag_sp) {
// There is no free register, store contents onto stack and restore back later.
Register scratch = ECX;
__ movl(Address(ESP, -32), scratch);
__ movl(scratch, ESP);
__ orl(scratch, Immediate(0x2));
__ fs()->movl(Address::Absolute(thr_offs), scratch);
__ movl(scratch, Address(ESP, -32));
} else {
__ fs()->movl(Address::Absolute(thr_offs), ESP);
}
}
void X86JNIMacroAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
Load(mdest, X86ManagedRegister::FromCpuRegister(ESP), MemberOffset(src.Int32Value()), size);
}
void X86JNIMacroAssembler::Load(ManagedRegister mdest,
ManagedRegister mbase,
MemberOffset offs,
size_t size) {
X86ManagedRegister dest = mdest.AsX86();
X86ManagedRegister base = mbase.AsX86();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
CHECK_EQ(4u, size);
__ movl(dest.AsCpuRegister(), Address(base.AsCpuRegister(), offs));
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
__ movl(dest.AsRegisterPairLow(), Address(base.AsCpuRegister(), offs));
__ movl(dest.AsRegisterPairHigh(),
Address(base.AsCpuRegister(), FrameOffset(offs.Int32Value()+4)));
} else if (dest.IsX87Register()) {
if (size == 4) {
__ flds(Address(base.AsCpuRegister(), offs));
} else {
__ fldl(Address(base.AsCpuRegister(), offs));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
__ movss(dest.AsXmmRegister(), Address(base.AsCpuRegister(), offs));
} else {
__ movsd(dest.AsXmmRegister(), Address(base.AsCpuRegister(), offs));
}
}
}
void X86JNIMacroAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister());
__ fs()->movl(dest.AsCpuRegister(), Address::Absolute(offs));
}
void X86JNIMacroAssembler::SignExtend(ManagedRegister mreg, size_t size) {
X86ManagedRegister reg = mreg.AsX86();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movsxb(reg.AsCpuRegister(), reg.AsByteRegister());
} else {
__ movsxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86JNIMacroAssembler::ZeroExtend(ManagedRegister mreg, size_t size) {
X86ManagedRegister reg = mreg.AsX86();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movzxb(reg.AsCpuRegister(), reg.AsByteRegister());
} else {
__ movzxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86JNIMacroAssembler::MoveArguments(ArrayRef<ArgumentLocation> dests,
ArrayRef<ArgumentLocation> srcs,
ArrayRef<FrameOffset> refs) {
size_t arg_count = dests.size();
DCHECK_EQ(arg_count, srcs.size());
DCHECK_EQ(arg_count, refs.size());
// Store register args to stack slots. Convert processed references to `jobject`.
bool found_hidden_arg = false;
for (size_t i = 0; i != arg_count; ++i) {
const ArgumentLocation& src = srcs[i];
const ArgumentLocation& dest = dests[i];
const FrameOffset ref = refs[i];
DCHECK_EQ(src.GetSize(), dest.GetSize()); // Even for references.
if (src.IsRegister()) {
if (UNLIKELY(dest.IsRegister())) {
if (dest.GetRegister().Equals(src.GetRegister())) {
// JNI compiler sometimes adds a no-op move.
continue;
}
// Native ABI has only stack arguments but we may pass one "hidden arg" in register.
CHECK(!found_hidden_arg);
found_hidden_arg = true;
DCHECK_EQ(ref, kInvalidReferenceOffset);
DCHECK(
!dest.GetRegister().Equals(X86ManagedRegister::FromCpuRegister(GetScratchRegister())));
Move(dest.GetRegister(), src.GetRegister(), dest.GetSize());
} else {
if (ref != kInvalidReferenceOffset) {
// Note: We can clobber `src` here as the register cannot hold more than one argument.
// This overload of `CreateJObject()` currently does not use the scratch
// register ECX, so this shall not clobber another argument.
CreateJObject(src.GetRegister(), ref, src.GetRegister(), /*null_allowed=*/ i != 0u);
}
Store(dest.GetFrameOffset(), src.GetRegister(), dest.GetSize());
}
} else {
// Delay copying until we have spilled all registers, including the scratch register ECX.
}
}
// Copy incoming stack args. Convert processed references to `jobject`.
for (size_t i = 0; i != arg_count; ++i) {
const ArgumentLocation& src = srcs[i];
const ArgumentLocation& dest = dests[i];
const FrameOffset ref = refs[i];
DCHECK_EQ(src.GetSize(), dest.GetSize()); // Even for references.
if (!src.IsRegister()) {
DCHECK(!dest.IsRegister());
if (ref != kInvalidReferenceOffset) {
DCHECK_EQ(srcs[i].GetFrameOffset(), refs[i]);
CreateJObject(dest.GetFrameOffset(), ref, /*null_allowed=*/ i != 0u);
} else {
Copy(dest.GetFrameOffset(), src.GetFrameOffset(), dest.GetSize());
}
}
}
}
void X86JNIMacroAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
DCHECK(!mdest.Equals(X86ManagedRegister::FromCpuRegister(GetScratchRegister())));
X86ManagedRegister dest = mdest.AsX86();
X86ManagedRegister src = msrc.AsX86();
if (!dest.Equals(src)) {
if (dest.IsCpuRegister() && src.IsCpuRegister()) {
__ movl(dest.AsCpuRegister(), src.AsCpuRegister());
} else if (src.IsX87Register() && dest.IsXmmRegister()) {
// Pass via stack and pop X87 register
IncreaseFrameSize(16);
if (size == 4) {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstps(Address(ESP, 0));
__ movss(dest.AsXmmRegister(), Address(ESP, 0));
} else {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstpl(Address(ESP, 0));
__ movsd(dest.AsXmmRegister(), Address(ESP, 0));
}
DecreaseFrameSize(16);
} else {
// TODO: x87, SSE
UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src;
}
}
}
void X86JNIMacroAssembler::Move(ManagedRegister mdest, size_t value) {
X86ManagedRegister dest = mdest.AsX86();
__ movl(dest.AsCpuRegister(), Immediate(value));
}
void X86JNIMacroAssembler::Copy(FrameOffset dest, FrameOffset src, size_t size) {
DCHECK(size == 4 || size == 8) << size;
Register scratch = GetScratchRegister();
__ movl(scratch, Address(ESP, src));
__ movl(Address(ESP, dest), scratch);
if (size == 8) {
__ movl(scratch, Address(ESP, FrameOffset(src.Int32Value() + 4)));
__ movl(Address(ESP, FrameOffset(dest.Int32Value() + 4)), scratch);
}
}
void X86JNIMacroAssembler::CreateJObject(ManagedRegister mout_reg,
FrameOffset spilled_reference_offset,
ManagedRegister min_reg,
bool null_allowed) {
X86ManagedRegister out_reg = mout_reg.AsX86();
X86ManagedRegister in_reg = min_reg.AsX86();
CHECK(in_reg.IsCpuRegister());
CHECK(out_reg.IsCpuRegister());
VerifyObject(in_reg, null_allowed);
if (null_allowed) {
Label null_arg;
if (!out_reg.Equals(in_reg)) {
__ xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
__ testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
__ j(kZero, &null_arg);
__ leal(out_reg.AsCpuRegister(), Address(ESP, spilled_reference_offset));
__ Bind(&null_arg);
} else {
__ leal(out_reg.AsCpuRegister(), Address(ESP, spilled_reference_offset));
}
}
void X86JNIMacroAssembler::CreateJObject(FrameOffset out_off,
FrameOffset spilled_reference_offset,
bool null_allowed) {
Register scratch = GetScratchRegister();
if (null_allowed) {
Label null_arg;
__ movl(scratch, Address(ESP, spilled_reference_offset));
__ testl(scratch, scratch);
__ j(kZero, &null_arg);
__ leal(scratch, Address(ESP, spilled_reference_offset));
__ Bind(&null_arg);
} else {
__ leal(scratch, Address(ESP, spilled_reference_offset));
}
__ movl(Address(ESP, out_off), scratch);
}
void X86JNIMacroAssembler::DecodeJNITransitionOrLocalJObject(ManagedRegister reg,
JNIMacroLabel* slow_path,
JNIMacroLabel* resume) {
constexpr uint32_t kGlobalOrWeakGlobalMask =
dchecked_integral_cast<uint32_t>(IndirectReferenceTable::GetGlobalOrWeakGlobalMask());
constexpr uint32_t kIndirectRefKindMask =
dchecked_integral_cast<uint32_t>(IndirectReferenceTable::GetIndirectRefKindMask());
__ testl(reg.AsX86().AsCpuRegister(), Immediate(kGlobalOrWeakGlobalMask));
__ j(kNotZero, X86JNIMacroLabel::Cast(slow_path)->AsX86());
__ andl(reg.AsX86().AsCpuRegister(), Immediate(~kIndirectRefKindMask));
__ j(kZero, X86JNIMacroLabel::Cast(resume)->AsX86()); // Skip load for null.
__ movl(reg.AsX86().AsCpuRegister(), Address(reg.AsX86().AsCpuRegister(), /*disp=*/ 0));
}
void X86JNIMacroAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86JNIMacroAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86JNIMacroAssembler::Jump(ManagedRegister mbase, Offset offset) {
X86ManagedRegister base = mbase.AsX86();
CHECK(base.IsCpuRegister());
__ jmp(Address(base.AsCpuRegister(), offset.Int32Value()));
}
void X86JNIMacroAssembler::Call(ManagedRegister mbase, Offset offset) {
X86ManagedRegister base = mbase.AsX86();
CHECK(base.IsCpuRegister());
__ call(Address(base.AsCpuRegister(), offset.Int32Value()));
// TODO: place reference map on call
}
void X86JNIMacroAssembler::CallFromThread(ThreadOffset32 offset) {
__ fs()->call(Address::Absolute(offset));
}
void X86JNIMacroAssembler::GetCurrentThread(ManagedRegister dest) {
__ fs()->movl(dest.AsX86().AsCpuRegister(),
Address::Absolute(Thread::SelfOffset<kX86PointerSize>()));
}
void X86JNIMacroAssembler::GetCurrentThread(FrameOffset offset) {
Register scratch = GetScratchRegister();
__ fs()->movl(scratch, Address::Absolute(Thread::SelfOffset<kX86PointerSize>()));
__ movl(Address(ESP, offset), scratch);
}
void X86JNIMacroAssembler::TryToTransitionFromRunnableToNative(
JNIMacroLabel* label, ArrayRef<const ManagedRegister> scratch_regs) {
constexpr uint32_t kNativeStateValue = Thread::StoredThreadStateValue(ThreadState::kNative);
constexpr uint32_t kRunnableStateValue = Thread::StoredThreadStateValue(ThreadState::kRunnable);
constexpr ThreadOffset32 thread_flags_offset = Thread::ThreadFlagsOffset<kX86PointerSize>();
constexpr ThreadOffset32 thread_held_mutex_mutator_lock_offset =
Thread::HeldMutexOffset<kX86PointerSize>(kMutatorLock);
// We need to preserve managed argument EAX.
DCHECK_GE(scratch_regs.size(), 2u);
Register saved_eax = scratch_regs[0].AsX86().AsCpuRegister();
Register scratch = scratch_regs[1].AsX86().AsCpuRegister();
// CAS release, old_value = kRunnableStateValue, new_value = kNativeStateValue, no flags.
__ movl(saved_eax, EAX); // Save EAX.
static_assert(kRunnableStateValue == 0u);
__ xorl(EAX, EAX);
__ movl(scratch, Immediate(kNativeStateValue));
__ fs()->LockCmpxchgl(Address::Absolute(thread_flags_offset.Uint32Value()), scratch);
// LOCK CMPXCHG has full barrier semantics, so we don't need barriers here.
__ movl(EAX, saved_eax); // Restore EAX; MOV does not change flags.
// If any flags are set, go to the slow path.
__ j(kNotZero, X86JNIMacroLabel::Cast(label)->AsX86());
// Clear `self->tlsPtr_.held_mutexes[kMutatorLock]`.
__ fs()->movl(Address::Absolute(thread_held_mutex_mutator_lock_offset.Uint32Value()),
Immediate(0));
}
void X86JNIMacroAssembler::TryToTransitionFromNativeToRunnable(
JNIMacroLabel* label,
ArrayRef<const ManagedRegister> scratch_regs,
ManagedRegister return_reg) {
constexpr uint32_t kNativeStateValue = Thread::StoredThreadStateValue(ThreadState::kNative);
constexpr uint32_t kRunnableStateValue = Thread::StoredThreadStateValue(ThreadState::kRunnable);
constexpr ThreadOffset32 thread_flags_offset = Thread::ThreadFlagsOffset<kX86PointerSize>();
constexpr ThreadOffset32 thread_held_mutex_mutator_lock_offset =
Thread::HeldMutexOffset<kX86PointerSize>(kMutatorLock);
constexpr ThreadOffset32 thread_mutator_lock_offset =
Thread::MutatorLockOffset<kX86PointerSize>();
size_t scratch_index = 0u;
auto get_scratch_reg = [&]() {
while (true) {
DCHECK_LT(scratch_index, scratch_regs.size());
X86ManagedRegister scratch_reg = scratch_regs[scratch_index].AsX86();
++scratch_index;
DCHECK(!scratch_reg.Overlaps(return_reg.AsX86()));
if (scratch_reg.AsCpuRegister() != EAX) {
return scratch_reg.AsCpuRegister();
}
}
};
Register scratch = get_scratch_reg();
bool preserve_eax = return_reg.AsX86().Overlaps(X86ManagedRegister::FromCpuRegister(EAX));
Register saved_eax = preserve_eax ? get_scratch_reg() : kNoRegister;
// CAS acquire, old_value = kNativeStateValue, new_value = kRunnableStateValue, no flags.
if (preserve_eax) {
__ movl(saved_eax, EAX); // Save EAX.
}
__ movl(EAX, Immediate(kNativeStateValue));
static_assert(kRunnableStateValue == 0u);
__ xorl(scratch, scratch);
__ fs()->LockCmpxchgl(Address::Absolute(thread_flags_offset.Uint32Value()), scratch);
// LOCK CMPXCHG has full barrier semantics, so we don't need barriers here.
if (preserve_eax) {
__ movl(EAX, saved_eax); // Restore EAX; MOV does not change flags.
}
// If any flags are set, or the state is not Native, go to the slow path.
// (While the thread can theoretically transition between different Suspended states,
// it would be very unexpected to see a state other than Native at this point.)
__ j(kNotZero, X86JNIMacroLabel::Cast(label)->AsX86());
// Set `self->tlsPtr_.held_mutexes[kMutatorLock]` to the mutator lock.
__ fs()->movl(scratch, Address::Absolute(thread_mutator_lock_offset.Uint32Value()));
__ fs()->movl(Address::Absolute(thread_held_mutex_mutator_lock_offset.Uint32Value()),
scratch);
}
void X86JNIMacroAssembler::SuspendCheck(JNIMacroLabel* label) {
__ fs()->testl(Address::Absolute(Thread::ThreadFlagsOffset<kX86PointerSize>()),
Immediate(Thread::SuspendOrCheckpointRequestFlags()));
__ j(kNotZero, X86JNIMacroLabel::Cast(label)->AsX86());
}
void X86JNIMacroAssembler::ExceptionPoll(JNIMacroLabel* label) {
__ fs()->cmpl(Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>()), Immediate(0));
__ j(kNotEqual, X86JNIMacroLabel::Cast(label)->AsX86());
}
void X86JNIMacroAssembler::DeliverPendingException() {
// Pass exception as argument in EAX
__ fs()->movl(EAX, Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>()));
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, pDeliverException)));
// this call should never return
__ int3();
}
std::unique_ptr<JNIMacroLabel> X86JNIMacroAssembler::CreateLabel() {
return std::unique_ptr<JNIMacroLabel>(new X86JNIMacroLabel());
}
void X86JNIMacroAssembler::Jump(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ jmp(X86JNIMacroLabel::Cast(label)->AsX86());
}
static Condition UnaryConditionToX86Condition(JNIMacroUnaryCondition cond) {
switch (cond) {
case JNIMacroUnaryCondition::kZero:
return kZero;
case JNIMacroUnaryCondition::kNotZero:
return kNotZero;
default:
LOG(FATAL) << "Not implemented condition: " << static_cast<int>(cond);
UNREACHABLE();
}
}
void X86JNIMacroAssembler::TestGcMarking(JNIMacroLabel* label, JNIMacroUnaryCondition cond) {
CHECK(label != nullptr);
// CMP self->tls32_.is_gc_marking, 0
// Jcc <Offset>
DCHECK_EQ(Thread::IsGcMarkingSize(), 4u);
__ fs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86PointerSize>()), Immediate(0));
__ j(UnaryConditionToX86Condition(cond), X86JNIMacroLabel::Cast(label)->AsX86());
}
void X86JNIMacroAssembler::TestMarkBit(ManagedRegister mref,
JNIMacroLabel* label,
JNIMacroUnaryCondition cond) {
DCHECK(kUseBakerReadBarrier);
Register ref = mref.AsX86().AsCpuRegister();
static_assert(LockWord::kMarkBitStateSize == 1u);
__ testl(Address(ref, mirror::Object::MonitorOffset().SizeValue()),
Immediate(LockWord::kMarkBitStateMaskShifted));
__ j(UnaryConditionToX86Condition(cond), X86JNIMacroLabel::Cast(label)->AsX86());
}
void X86JNIMacroAssembler::TestByteAndJumpIfNotZero(uintptr_t address, JNIMacroLabel* label) {
__ cmpb(Address::Absolute(address), Immediate(0));
__ j(kNotZero, X86JNIMacroLabel::Cast(label)->AsX86());
}
void X86JNIMacroAssembler::Bind(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ Bind(X86JNIMacroLabel::Cast(label)->AsX86());
}
#undef __
} // namespace x86
} // namespace art