| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "class.h" |
| |
| #include <unordered_set> |
| #include <string_view> |
| |
| #include "android-base/macros.h" |
| #include "android-base/stringprintf.h" |
| |
| #include "array-inl.h" |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/sdk_version.h" |
| #include "base/utils.h" |
| #include "class-inl.h" |
| #include "class_ext-inl.h" |
| #include "class_linker-inl.h" |
| #include "class_loader.h" |
| #include "class_root-inl.h" |
| #include "dex/descriptors_names.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_annotations.h" |
| #include "dex/signature-inl.h" |
| #include "dex_cache-inl.h" |
| #include "field.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/heap-inl.h" |
| #include "handle_scope-inl.h" |
| #include "hidden_api.h" |
| #include "jni_id_type.h" |
| #include "subtype_check.h" |
| #include "method.h" |
| #include "object-inl.h" |
| #include "object-refvisitor-inl.h" |
| #include "object_array-alloc-inl.h" |
| #include "object_array-inl.h" |
| #include "object_lock.h" |
| #include "string-inl.h" |
| #include "runtime.h" |
| #include "thread.h" |
| #include "throwable.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| namespace mirror { |
| |
| using android::base::StringPrintf; |
| |
| bool Class::IsMirrored() { |
| if (LIKELY(!IsBootStrapClassLoaded())) { |
| return false; |
| } |
| if (IsPrimitive() || IsArrayClass() || IsProxyClass()) { |
| return true; |
| } |
| std::string name_storage; |
| const std::string_view name(this->GetDescriptor(&name_storage)); |
| return IsMirroredDescriptor(name); |
| } |
| |
| ObjPtr<mirror::Class> Class::GetPrimitiveClass(ObjPtr<mirror::String> name) { |
| const char* expected_name = nullptr; |
| ClassRoot class_root = ClassRoot::kJavaLangObject; // Invalid. |
| if (name != nullptr && name->GetLength() >= 2) { |
| // Perfect hash for the expected values: from the second letters of the primitive types, |
| // only 'y' has the bit 0x10 set, so use it to change 'b' to 'B'. |
| char hash = name->CharAt(0) ^ ((name->CharAt(1) & 0x10) << 1); |
| switch (hash) { |
| case 'b': expected_name = "boolean"; class_root = ClassRoot::kPrimitiveBoolean; break; |
| case 'B': expected_name = "byte"; class_root = ClassRoot::kPrimitiveByte; break; |
| case 'c': expected_name = "char"; class_root = ClassRoot::kPrimitiveChar; break; |
| case 'd': expected_name = "double"; class_root = ClassRoot::kPrimitiveDouble; break; |
| case 'f': expected_name = "float"; class_root = ClassRoot::kPrimitiveFloat; break; |
| case 'i': expected_name = "int"; class_root = ClassRoot::kPrimitiveInt; break; |
| case 'l': expected_name = "long"; class_root = ClassRoot::kPrimitiveLong; break; |
| case 's': expected_name = "short"; class_root = ClassRoot::kPrimitiveShort; break; |
| case 'v': expected_name = "void"; class_root = ClassRoot::kPrimitiveVoid; break; |
| default: break; |
| } |
| } |
| if (expected_name != nullptr && name->Equals(expected_name)) { |
| ObjPtr<mirror::Class> klass = GetClassRoot(class_root); |
| DCHECK(klass != nullptr); |
| return klass; |
| } else { |
| Thread* self = Thread::Current(); |
| if (name == nullptr) { |
| // Note: ThrowNullPointerException() requires a message which we deliberately want to omit. |
| self->ThrowNewException("Ljava/lang/NullPointerException;", /* msg= */ nullptr); |
| } else { |
| self->ThrowNewException("Ljava/lang/ClassNotFoundException;", name->ToModifiedUtf8().c_str()); |
| } |
| return nullptr; |
| } |
| } |
| |
| ObjPtr<ClassExt> Class::EnsureExtDataPresent(Handle<Class> h_this, Thread* self) { |
| ObjPtr<ClassExt> existing(h_this->GetExtData()); |
| if (!existing.IsNull()) { |
| return existing; |
| } |
| StackHandleScope<2> hs(self); |
| // Clear exception so we can allocate. |
| Handle<Throwable> throwable(hs.NewHandle(self->GetException())); |
| self->ClearException(); |
| // Allocate the ClassExt |
| Handle<ClassExt> new_ext(hs.NewHandle(ClassExt::Alloc(self))); |
| if (new_ext == nullptr) { |
| // OOM allocating the classExt. |
| // TODO Should we restore the suppressed exception? |
| self->AssertPendingOOMException(); |
| return nullptr; |
| } else { |
| MemberOffset ext_offset(OFFSET_OF_OBJECT_MEMBER(Class, ext_data_)); |
| bool set; |
| // Set the ext_data_ field using CAS semantics. |
| if (Runtime::Current()->IsActiveTransaction()) { |
| set = h_this->CasFieldObject<true>(ext_offset, |
| nullptr, |
| new_ext.Get(), |
| CASMode::kStrong, |
| std::memory_order_seq_cst); |
| } else { |
| set = h_this->CasFieldObject<false>(ext_offset, |
| nullptr, |
| new_ext.Get(), |
| CASMode::kStrong, |
| std::memory_order_seq_cst); |
| } |
| ObjPtr<ClassExt> ret(set ? new_ext.Get() : h_this->GetExtData()); |
| DCHECK_IMPLIES(set, h_this->GetExtData() == new_ext.Get()); |
| CHECK(!ret.IsNull()); |
| // Restore the exception if there was one. |
| if (throwable != nullptr) { |
| self->SetException(throwable.Get()); |
| } |
| return ret; |
| } |
| } |
| |
| template <typename T> |
| static void CheckSetStatus(Thread* self, T thiz, ClassStatus new_status, ClassStatus old_status) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (UNLIKELY(new_status <= old_status && new_status != ClassStatus::kErrorUnresolved && |
| new_status != ClassStatus::kErrorResolved && new_status != ClassStatus::kRetired)) { |
| LOG(FATAL) << "Unexpected change back of class status for " << thiz->PrettyClass() << " " |
| << old_status << " -> " << new_status; |
| } |
| if (old_status == ClassStatus::kInitialized) { |
| // We do not hold the lock for making the class visibly initialized |
| // as this is unnecessary and could lead to deadlocks. |
| CHECK_EQ(new_status, ClassStatus::kVisiblyInitialized); |
| } else if ((new_status >= ClassStatus::kResolved || old_status >= ClassStatus::kResolved) && |
| !Locks::mutator_lock_->IsExclusiveHeld(self)) { |
| // When classes are being resolved the resolution code should hold the |
| // lock or have everything else suspended |
| CHECK_EQ(thiz->GetLockOwnerThreadId(), self->GetThreadId()) |
| << "Attempt to change status of class while not holding its lock: " << thiz->PrettyClass() |
| << " " << old_status << " -> " << new_status; |
| } |
| if (UNLIKELY(Locks::mutator_lock_->IsExclusiveHeld(self))) { |
| CHECK(!Class::IsErroneous(new_status)) |
| << "status " << new_status |
| << " cannot be set while suspend-all is active. Would require allocations."; |
| CHECK(thiz->IsResolved()) |
| << thiz->PrettyClass() |
| << " not resolved during suspend-all status change. Waiters might be missed!"; |
| } |
| } |
| |
| void Class::SetStatusInternal(ClassStatus new_status) { |
| if (kBitstringSubtypeCheckEnabled) { |
| // FIXME: This looks broken with respect to aborted transactions. |
| SubtypeCheck<ObjPtr<mirror::Class>>::WriteStatus(this, new_status); |
| } else { |
| // The ClassStatus is always in the 4 most-significant bits of status_. |
| static_assert(sizeof(status_) == sizeof(uint32_t), "Size of status_ not equal to uint32"); |
| uint32_t new_status_value = static_cast<uint32_t>(new_status) << (32 - kClassStatusBitSize); |
| if (Runtime::Current()->IsActiveTransaction()) { |
| SetField32Volatile<true>(StatusOffset(), new_status_value); |
| } else { |
| SetField32Volatile<false>(StatusOffset(), new_status_value); |
| } |
| } |
| } |
| |
| void Class::SetStatusLocked(ClassStatus new_status) { |
| ClassStatus old_status = GetStatus(); |
| CheckSetStatus(Thread::Current(), this, new_status, old_status); |
| SetStatusInternal(new_status); |
| } |
| |
| void Class::SetStatus(Handle<Class> h_this, ClassStatus new_status, Thread* self) { |
| ClassStatus old_status = h_this->GetStatus(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| bool class_linker_initialized = class_linker != nullptr && class_linker->IsInitialized(); |
| if (LIKELY(class_linker_initialized)) { |
| CheckSetStatus(self, h_this, new_status, old_status); |
| } |
| if (UNLIKELY(IsErroneous(new_status))) { |
| CHECK(!h_this->IsErroneous()) |
| << "Attempt to set as erroneous an already erroneous class " |
| << h_this->PrettyClass() |
| << " old_status: " << old_status << " new_status: " << new_status; |
| CHECK_EQ(new_status == ClassStatus::kErrorResolved, old_status >= ClassStatus::kResolved); |
| if (VLOG_IS_ON(class_linker)) { |
| LOG(ERROR) << "Setting " << h_this->PrettyDescriptor() << " to erroneous."; |
| if (self->IsExceptionPending()) { |
| LOG(ERROR) << "Exception: " << self->GetException()->Dump(); |
| } |
| } |
| |
| ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self)); |
| if (!ext.IsNull()) { |
| self->AssertPendingException(); |
| ext->SetErroneousStateError(self->GetException()); |
| } else { |
| self->AssertPendingOOMException(); |
| } |
| self->AssertPendingException(); |
| } |
| |
| h_this->SetStatusInternal(new_status); |
| |
| // Setting the object size alloc fast path needs to be after the status write so that if the |
| // alloc path sees a valid object size, we would know that it's initialized as long as it has a |
| // load-acquire/fake dependency. |
| if (new_status == ClassStatus::kVisiblyInitialized && !h_this->IsVariableSize()) { |
| DCHECK_EQ(h_this->GetObjectSizeAllocFastPath(), std::numeric_limits<uint32_t>::max()); |
| // Finalizable objects must always go slow path. |
| if (!h_this->IsFinalizable()) { |
| h_this->SetObjectSizeAllocFastPath(RoundUp(h_this->GetObjectSize(), kObjectAlignment)); |
| } |
| } |
| |
| if (!class_linker_initialized) { |
| // When the class linker is being initialized its single threaded and by definition there can be |
| // no waiters. During initialization classes may appear temporary but won't be retired as their |
| // size was statically computed. |
| } else { |
| // Classes that are being resolved or initialized need to notify waiters that the class status |
| // changed. See ClassLinker::EnsureResolved and ClassLinker::WaitForInitializeClass. |
| if (h_this->IsTemp()) { |
| // Class is a temporary one, ensure that waiters for resolution get notified of retirement |
| // so that they can grab the new version of the class from the class linker's table. |
| CHECK_LT(new_status, ClassStatus::kResolved) << h_this->PrettyDescriptor(); |
| if (new_status == ClassStatus::kRetired || new_status == ClassStatus::kErrorUnresolved) { |
| h_this->NotifyAll(self); |
| } |
| } else if (old_status == ClassStatus::kInitialized) { |
| // Do not notify for transition from kInitialized to ClassStatus::kVisiblyInitialized. |
| // This is a hidden transition, not observable by bytecode. |
| DCHECK_EQ(new_status, ClassStatus::kVisiblyInitialized); // Already CHECK()ed above. |
| } else { |
| CHECK_NE(new_status, ClassStatus::kRetired); |
| if (old_status >= ClassStatus::kResolved || new_status >= ClassStatus::kResolved) { |
| h_this->NotifyAll(self); |
| } |
| } |
| } |
| } |
| |
| void Class::SetStatusForPrimitiveOrArray(ClassStatus new_status) { |
| DCHECK(IsPrimitive<kVerifyNone>() || IsArrayClass<kVerifyNone>()); |
| DCHECK(!IsErroneous(new_status)); |
| DCHECK(!IsErroneous(GetStatus<kVerifyNone>())); |
| DCHECK_GT(new_status, GetStatus<kVerifyNone>()); |
| |
| if (kBitstringSubtypeCheckEnabled) { |
| LOG(FATAL) << "Unimplemented"; |
| } |
| // The ClassStatus is always in the 4 most-significant bits of status_. |
| static_assert(sizeof(status_) == sizeof(uint32_t), "Size of status_ not equal to uint32"); |
| uint32_t new_status_value = static_cast<uint32_t>(new_status) << (32 - kClassStatusBitSize); |
| // Use normal store. For primitives and core arrays classes (Object[], |
| // Class[], String[] and primitive arrays), the status is set while the |
| // process is still single threaded. For other arrays classes, it is set |
| // in a pre-fence visitor which initializes all fields and the subsequent |
| // fence together with address dependency shall ensure memory visibility. |
| SetField32</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ false, |
| kVerifyNone>(StatusOffset(), new_status_value); |
| |
| // Do not update `object_alloc_fast_path_`. Arrays are variable size and |
| // instances of primitive classes cannot be created at all. |
| |
| // There can be no waiters to notify as these classes are initialized |
| // before another thread can see them. |
| } |
| |
| void Class::SetDexCache(ObjPtr<DexCache> new_dex_cache) { |
| SetFieldObjectTransaction(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache); |
| } |
| |
| void Class::SetClassSize(uint32_t new_class_size) { |
| if (kIsDebugBuild && new_class_size < GetClassSize()) { |
| DumpClass(LOG_STREAM(FATAL_WITHOUT_ABORT), kDumpClassFullDetail); |
| LOG(FATAL_WITHOUT_ABORT) << new_class_size << " vs " << GetClassSize(); |
| LOG(FATAL) << "class=" << PrettyTypeOf(); |
| } |
| SetField32</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>( |
| OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size); |
| } |
| |
| ObjPtr<Class> Class::GetObsoleteClass() { |
| ObjPtr<ClassExt> ext(GetExtData()); |
| if (ext.IsNull()) { |
| return nullptr; |
| } else { |
| return ext->GetObsoleteClass(); |
| } |
| } |
| |
| // Return the class' name. The exact format is bizarre, but it's the specified behavior for |
| // Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int" |
| // but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than |
| // slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness. |
| ObjPtr<String> Class::ComputeName(Handle<Class> h_this) { |
| ObjPtr<String> name = h_this->GetName(); |
| if (name != nullptr) { |
| return name; |
| } |
| std::string temp; |
| const char* descriptor = h_this->GetDescriptor(&temp); |
| Thread* self = Thread::Current(); |
| if ((descriptor[0] != 'L') && (descriptor[0] != '[')) { |
| // The descriptor indicates that this is the class for |
| // a primitive type; special-case the return value. |
| const char* c_name = nullptr; |
| switch (descriptor[0]) { |
| case 'Z': c_name = "boolean"; break; |
| case 'B': c_name = "byte"; break; |
| case 'C': c_name = "char"; break; |
| case 'S': c_name = "short"; break; |
| case 'I': c_name = "int"; break; |
| case 'J': c_name = "long"; break; |
| case 'F': c_name = "float"; break; |
| case 'D': c_name = "double"; break; |
| case 'V': c_name = "void"; break; |
| default: |
| LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]); |
| } |
| name = String::AllocFromModifiedUtf8(self, c_name); |
| } else { |
| // Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package |
| // components. |
| name = String::AllocFromModifiedUtf8(self, DescriptorToDot(descriptor).c_str()); |
| } |
| h_this->SetName(name); |
| return name; |
| } |
| |
| void Class::DumpClass(std::ostream& os, int flags) { |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__); |
| if ((flags & kDumpClassFullDetail) == 0) { |
| os << PrettyClass(); |
| if ((flags & kDumpClassClassLoader) != 0) { |
| os << ' ' << GetClassLoader(); |
| } |
| if ((flags & kDumpClassInitialized) != 0) { |
| os << ' ' << GetStatus(); |
| } |
| os << "\n"; |
| return; |
| } |
| |
| ObjPtr<Class> super = GetSuperClass(); |
| auto image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); |
| |
| std::string temp; |
| os << "----- " << (IsInterface() ? "interface" : "class") << " " |
| << "'" << GetDescriptor(&temp) << "' cl=" << GetClassLoader() << " -----\n" |
| << " objectSize=" << SizeOf() << " " |
| << "(" << (super != nullptr ? super->SizeOf() : -1) << " from super)\n" |
| << StringPrintf(" access=0x%04x.%04x\n", |
| GetAccessFlags() >> 16, |
| GetAccessFlags() & kAccJavaFlagsMask); |
| if (super != nullptr) { |
| os << " super='" << super->PrettyClass() << "' (cl=" << super->GetClassLoader() << ")\n"; |
| } |
| if (IsArrayClass()) { |
| os << " componentType=" << PrettyClass(GetComponentType()) << "\n"; |
| } |
| const size_t num_direct_interfaces = NumDirectInterfaces(); |
| if (num_direct_interfaces > 0) { |
| os << " interfaces (" << num_direct_interfaces << "):\n"; |
| for (size_t i = 0; i < num_direct_interfaces; ++i) { |
| ObjPtr<Class> interface = GetDirectInterface(i); |
| if (interface == nullptr) { |
| os << StringPrintf(" %2zd: nullptr!\n", i); |
| } else { |
| ObjPtr<ClassLoader> cl = interface->GetClassLoader(); |
| os << StringPrintf(" %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl.Ptr()); |
| } |
| } |
| } |
| if (!IsLoaded()) { |
| os << " class not yet loaded"; |
| } else { |
| os << " vtable (" << NumVirtualMethods() << " entries, " |
| << (super != nullptr ? super->NumVirtualMethods() : 0) << " in super):\n"; |
| for (size_t i = 0; i < NumVirtualMethods(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, ArtMethod::PrettyMethod( |
| GetVirtualMethodDuringLinking(i, image_pointer_size)).c_str()); |
| } |
| os << " direct methods (" << NumDirectMethods() << " entries):\n"; |
| for (size_t i = 0; i < NumDirectMethods(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, ArtMethod::PrettyMethod( |
| GetDirectMethod(i, image_pointer_size)).c_str()); |
| } |
| if (NumStaticFields() > 0) { |
| os << " static fields (" << NumStaticFields() << " entries):\n"; |
| if (IsResolved()) { |
| for (size_t i = 0; i < NumStaticFields(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, ArtField::PrettyField(GetStaticField(i)).c_str()); |
| } |
| } else { |
| os << " <not yet available>"; |
| } |
| } |
| if (NumInstanceFields() > 0) { |
| os << " instance fields (" << NumInstanceFields() << " entries):\n"; |
| if (IsResolved()) { |
| for (size_t i = 0; i < NumInstanceFields(); ++i) { |
| os << StringPrintf(" %2zd: %s\n", i, |
| ArtField::PrettyField(GetInstanceField(i)).c_str()); |
| } |
| } else { |
| os << " <not yet available>"; |
| } |
| } |
| } |
| } |
| |
| void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) { |
| if (kIsDebugBuild && new_reference_offsets != kClassWalkSuper) { |
| // Check that the number of bits set in the reference offset bitmap |
| // agrees with the number of references. |
| uint32_t count = 0; |
| for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) { |
| count += c->NumReferenceInstanceFieldsDuringLinking(); |
| } |
| // +1 for the Class in Object. |
| CHECK_EQ(static_cast<uint32_t>(POPCOUNT(new_reference_offsets)) + 1, count); |
| } |
| // Not called within a transaction. |
| SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_), |
| new_reference_offsets); |
| } |
| |
| bool Class::IsInSamePackage(std::string_view descriptor1, std::string_view descriptor2) { |
| size_t i = 0; |
| size_t min_length = std::min(descriptor1.size(), descriptor2.size()); |
| while (i < min_length && descriptor1[i] == descriptor2[i]) { |
| ++i; |
| } |
| if (descriptor1.find('/', i) != std::string_view::npos || |
| descriptor2.find('/', i) != std::string_view::npos) { |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| bool Class::IsInSamePackage(ObjPtr<Class> that) { |
| ObjPtr<Class> klass1 = this; |
| ObjPtr<Class> klass2 = that; |
| if (klass1 == klass2) { |
| return true; |
| } |
| // Class loaders must match. |
| if (klass1->GetClassLoader() != klass2->GetClassLoader()) { |
| return false; |
| } |
| // Arrays are in the same package when their element classes are. |
| while (klass1->IsArrayClass()) { |
| klass1 = klass1->GetComponentType(); |
| } |
| while (klass2->IsArrayClass()) { |
| klass2 = klass2->GetComponentType(); |
| } |
| // trivial check again for array types |
| if (klass1 == klass2) { |
| return true; |
| } |
| // Compare the package part of the descriptor string. |
| std::string temp1, temp2; |
| return IsInSamePackage(klass1->GetDescriptor(&temp1), klass2->GetDescriptor(&temp2)); |
| } |
| |
| bool Class::IsThrowableClass() { |
| return GetClassRoot<mirror::Throwable>()->IsAssignableFrom(this); |
| } |
| |
| template <typename SignatureType> |
| static inline ArtMethod* FindInterfaceMethodWithSignature(ObjPtr<Class> klass, |
| std::string_view name, |
| const SignatureType& signature, |
| PointerSize pointer_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // If the current class is not an interface, skip the search of its declared methods; |
| // such lookup is used only to distinguish between IncompatibleClassChangeError and |
| // NoSuchMethodError and the caller has already tried to search methods in the class. |
| if (LIKELY(klass->IsInterface())) { |
| // Search declared methods, both direct and virtual. |
| // (This lookup is used also for invoke-static on interface classes.) |
| for (ArtMethod& method : klass->GetDeclaredMethodsSlice(pointer_size)) { |
| if (method.GetNameView() == name && method.GetSignature() == signature) { |
| return &method; |
| } |
| } |
| } |
| |
| // TODO: If there is a unique maximally-specific non-abstract superinterface method, |
| // we should return it, otherwise an arbitrary one can be returned. |
| ObjPtr<IfTable> iftable = klass->GetIfTable(); |
| for (int32_t i = 0, iftable_count = iftable->Count(); i < iftable_count; ++i) { |
| ObjPtr<Class> iface = iftable->GetInterface(i); |
| for (ArtMethod& method : iface->GetVirtualMethodsSlice(pointer_size)) { |
| if (method.GetNameView() == name && method.GetSignature() == signature) { |
| return &method; |
| } |
| } |
| } |
| |
| // Then search for public non-static methods in the java.lang.Object. |
| if (LIKELY(klass->IsInterface())) { |
| ObjPtr<Class> object_class = klass->GetSuperClass(); |
| DCHECK(object_class->IsObjectClass()); |
| for (ArtMethod& method : object_class->GetDeclaredMethodsSlice(pointer_size)) { |
| if (method.IsPublic() && !method.IsStatic() && |
| method.GetNameView() == name && method.GetSignature() == signature) { |
| return &method; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| ArtMethod* Class::FindInterfaceMethod(std::string_view name, |
| std::string_view signature, |
| PointerSize pointer_size) { |
| return FindInterfaceMethodWithSignature(this, name, signature, pointer_size); |
| } |
| |
| ArtMethod* Class::FindInterfaceMethod(std::string_view name, |
| const Signature& signature, |
| PointerSize pointer_size) { |
| return FindInterfaceMethodWithSignature(this, name, signature, pointer_size); |
| } |
| |
| ArtMethod* Class::FindInterfaceMethod(ObjPtr<DexCache> dex_cache, |
| uint32_t dex_method_idx, |
| PointerSize pointer_size) { |
| // We always search by name and signature, ignoring the type index in the MethodId. |
| const DexFile& dex_file = *dex_cache->GetDexFile(); |
| const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); |
| std::string_view name = dex_file.StringViewByIdx(method_id.name_idx_); |
| const Signature signature = dex_file.GetMethodSignature(method_id); |
| return FindInterfaceMethod(name, signature, pointer_size); |
| } |
| |
| static inline bool IsValidInheritanceCheck(ObjPtr<mirror::Class> klass, |
| ObjPtr<mirror::Class> declaring_class) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (klass->IsArrayClass()) { |
| return declaring_class->IsObjectClass(); |
| } else if (klass->IsInterface()) { |
| return declaring_class->IsObjectClass() || declaring_class == klass; |
| } else { |
| return klass->IsSubClass(declaring_class); |
| } |
| } |
| |
| static inline bool IsInheritedMethod(ObjPtr<mirror::Class> klass, |
| ObjPtr<mirror::Class> declaring_class, |
| ArtMethod& method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_EQ(declaring_class, method.GetDeclaringClass()); |
| DCHECK_NE(klass, declaring_class); |
| DCHECK(IsValidInheritanceCheck(klass, declaring_class)); |
| uint32_t access_flags = method.GetAccessFlags(); |
| if ((access_flags & (kAccPublic | kAccProtected)) != 0) { |
| return true; |
| } |
| if ((access_flags & kAccPrivate) != 0) { |
| return false; |
| } |
| for (; klass != declaring_class; klass = klass->GetSuperClass()) { |
| if (!klass->IsInSamePackage(declaring_class)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <typename SignatureType> |
| static inline ArtMethod* FindClassMethodWithSignature(ObjPtr<Class> this_klass, |
| std::string_view name, |
| const SignatureType& signature, |
| PointerSize pointer_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Search declared methods first. |
| for (ArtMethod& method : this_klass->GetDeclaredMethodsSlice(pointer_size)) { |
| ArtMethod* np_method = method.GetInterfaceMethodIfProxy(pointer_size); |
| if (np_method->GetNameView() == name && np_method->GetSignature() == signature) { |
| return &method; |
| } |
| } |
| |
| // Then search the superclass chain. If we find an inherited method, return it. |
| // If we find a method that's not inherited because of access restrictions, |
| // try to find a method inherited from an interface in copied methods. |
| ObjPtr<Class> klass = this_klass->GetSuperClass(); |
| ArtMethod* uninherited_method = nullptr; |
| for (; klass != nullptr; klass = klass->GetSuperClass()) { |
| DCHECK(!klass->IsProxyClass()); |
| for (ArtMethod& method : klass->GetDeclaredMethodsSlice(pointer_size)) { |
| if (method.GetNameView() == name && method.GetSignature() == signature) { |
| if (IsInheritedMethod(this_klass, klass, method)) { |
| return &method; |
| } |
| uninherited_method = &method; |
| break; |
| } |
| } |
| if (uninherited_method != nullptr) { |
| break; |
| } |
| } |
| |
| // Then search copied methods. |
| // If we found a method that's not inherited, stop the search in its declaring class. |
| ObjPtr<Class> end_klass = klass; |
| DCHECK_EQ(uninherited_method != nullptr, end_klass != nullptr); |
| klass = this_klass; |
| if (UNLIKELY(klass->IsProxyClass())) { |
| DCHECK(klass->GetCopiedMethodsSlice(pointer_size).empty()); |
| klass = klass->GetSuperClass(); |
| } |
| for (; klass != end_klass; klass = klass->GetSuperClass()) { |
| DCHECK(!klass->IsProxyClass()); |
| for (ArtMethod& method : klass->GetCopiedMethodsSlice(pointer_size)) { |
| if (method.GetNameView() == name && method.GetSignature() == signature) { |
| return &method; // No further check needed, copied methods are inherited by definition. |
| } |
| } |
| } |
| return uninherited_method; // Return the `uninherited_method` if any. |
| } |
| |
| |
| ArtMethod* Class::FindClassMethod(std::string_view name, |
| std::string_view signature, |
| PointerSize pointer_size) { |
| return FindClassMethodWithSignature(this, name, signature, pointer_size); |
| } |
| |
| ArtMethod* Class::FindClassMethod(std::string_view name, |
| const Signature& signature, |
| PointerSize pointer_size) { |
| return FindClassMethodWithSignature(this, name, signature, pointer_size); |
| } |
| |
| // Binary search a range with a three-way compare function. |
| // |
| // Return a tuple consisting of a `success` value, the index of the match (`mid`) and |
| // the remaining range when we found the match (`begin` and `end`). This is useful for |
| // subsequent binary search with a secondary comparator, see `ClassMemberBinarySearch()`. |
| template <typename Compare> |
| ALWAYS_INLINE |
| std::tuple<bool, uint32_t, uint32_t, uint32_t> BinarySearch(uint32_t begin, |
| uint32_t end, |
| Compare&& cmp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| while (begin != end) { |
| uint32_t mid = (begin + end) >> 1; |
| auto cmp_result = cmp(mid); |
| if (cmp_result == 0) { |
| return {true, mid, begin, end}; |
| } |
| if (cmp_result > 0) { |
| begin = mid + 1u; |
| } else { |
| end = mid; |
| } |
| } |
| return {false, 0u, 0u, 0u}; |
| } |
| |
| // Binary search for class members. The range passed to this search must be sorted, so |
| // declared methods or fields cannot be searched directly but declared direct methods, |
| // declared virtual methods, declared static fields or declared instance fields can. |
| template <typename NameCompare, typename SecondCompare, typename NameIndexGetter> |
| ALWAYS_INLINE |
| std::tuple<bool, uint32_t> ClassMemberBinarySearch(uint32_t begin, |
| uint32_t end, |
| NameCompare&& name_cmp, |
| SecondCompare&& second_cmp, |
| NameIndexGetter&& get_name_idx) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // First search for the item with the given name. |
| bool success; |
| uint32_t mid; |
| std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_cmp); |
| if (!success) { |
| return {false, 0u}; |
| } |
| // If found, do the secondary comparison. |
| auto second_cmp_result = second_cmp(mid); |
| if (second_cmp_result == 0) { |
| return {true, mid}; |
| } |
| // We have matched the name but not the secondary comparison. We no longer need to |
| // search for the name as string as we know the matching name string index. |
| // Repeat the above binary searches and secondary comparisons with a simpler name |
| // index compare until the search range contains only matching name. |
| auto name_idx = get_name_idx(mid); |
| if (second_cmp_result > 0) { |
| do { |
| begin = mid + 1u; |
| auto name_index_cmp = [&](uint32_t mid2) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_LE(name_idx, get_name_idx(mid2)); |
| return (name_idx != get_name_idx(mid2)) ? -1 : 0; |
| }; |
| std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_index_cmp); |
| if (!success) { |
| return {false, 0u}; |
| } |
| second_cmp_result = second_cmp(mid); |
| } while (second_cmp_result > 0); |
| end = mid; |
| } else { |
| do { |
| end = mid; |
| auto name_index_cmp = [&](uint32_t mid2) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_GE(name_idx, get_name_idx(mid2)); |
| return (name_idx != get_name_idx(mid2)) ? 1 : 0; |
| }; |
| std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_index_cmp); |
| if (!success) { |
| return {false, 0u}; |
| } |
| second_cmp_result = second_cmp(mid); |
| } while (second_cmp_result < 0); |
| begin = mid + 1u; |
| } |
| if (second_cmp_result == 0) { |
| return {true, mid}; |
| } |
| // All items in the remaining range have a matching name, so search with secondary comparison. |
| std::tie(success, mid, std::ignore, std::ignore) = BinarySearch(begin, end, second_cmp); |
| return {success, mid}; |
| } |
| |
| static std::tuple<bool, ArtMethod*> FindDeclaredClassMethod(ObjPtr<mirror::Class> klass, |
| const DexFile& dex_file, |
| std::string_view name, |
| Signature signature, |
| PointerSize pointer_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(&klass->GetDexFile() == &dex_file); |
| DCHECK(!name.empty()); |
| |
| ArraySlice<ArtMethod> declared_methods = klass->GetDeclaredMethodsSlice(pointer_size); |
| DCHECK(!declared_methods.empty()); |
| auto get_method_id = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE |
| -> const dex::MethodId& { |
| ArtMethod& method = declared_methods[mid]; |
| DCHECK(method.GetDexFile() == &dex_file); |
| DCHECK_NE(method.GetDexMethodIndex(), dex::kDexNoIndex); |
| return dex_file.GetMethodId(method.GetDexMethodIndex()); |
| }; |
| auto name_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { |
| // Do not use ArtMethod::GetNameView() to avoid reloading dex file through the same |
| // declaring class from different methods and also avoid the runtime method check. |
| const dex::MethodId& method_id = get_method_id(mid); |
| return name.compare(dex_file.GetMethodNameView(method_id)); |
| }; |
| auto signature_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { |
| // Do not use ArtMethod::GetSignature() to avoid reloading dex file through the same |
| // declaring class from different methods and also avoid the runtime method check. |
| const dex::MethodId& method_id = get_method_id(mid); |
| return signature.Compare(dex_file.GetMethodSignature(method_id)); |
| }; |
| auto get_name_idx = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { |
| const dex::MethodId& method_id = get_method_id(mid); |
| return method_id.name_idx_; |
| }; |
| |
| // Use binary search in the sorted direct methods, then in the sorted virtual methods. |
| uint32_t num_direct_methods = klass->NumDirectMethods(); |
| uint32_t num_declared_methods = dchecked_integral_cast<uint32_t>(declared_methods.size()); |
| DCHECK_LE(num_direct_methods, num_declared_methods); |
| const uint32_t ranges[2][2] = { |
| {0u, num_direct_methods}, // Declared direct methods. |
| {num_direct_methods, num_declared_methods} // Declared virtual methods. |
| }; |
| for (const uint32_t (&range)[2] : ranges) { |
| auto [success, mid] = |
| ClassMemberBinarySearch(range[0], range[1], name_cmp, signature_cmp, get_name_idx); |
| if (success) { |
| return {true, &declared_methods[mid]}; |
| } |
| } |
| |
| // Did not find a declared method in either slice. |
| return {false, nullptr}; |
| } |
| |
| FLATTEN |
| ArtMethod* Class::FindClassMethod(ObjPtr<DexCache> dex_cache, |
| uint32_t dex_method_idx, |
| PointerSize pointer_size) { |
| // FIXME: Hijacking a proxy class by a custom class loader can break this assumption. |
| DCHECK(!IsProxyClass()); |
| |
| // First try to find a declared method by dex_method_idx if we have a dex_cache match. |
| ObjPtr<DexCache> this_dex_cache = GetDexCache(); |
| if (this_dex_cache == dex_cache) { |
| // Lookup is always performed in the class referenced by the MethodId. |
| DCHECK_EQ(dex_type_idx_, GetDexFile().GetMethodId(dex_method_idx).class_idx_.index_); |
| for (ArtMethod& method : GetDeclaredMethodsSlice(pointer_size)) { |
| if (method.GetDexMethodIndex() == dex_method_idx) { |
| return &method; |
| } |
| } |
| } |
| |
| // If not found, we need to search by name and signature. |
| const DexFile& dex_file = *dex_cache->GetDexFile(); |
| const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); |
| const Signature signature = dex_file.GetMethodSignature(method_id); |
| std::string_view name; // Do not touch the dex file string data until actually needed. |
| |
| // If we do not have a dex_cache match, try to find the declared method in this class now. |
| if (this_dex_cache != dex_cache && !GetDeclaredMethodsSlice(pointer_size).empty()) { |
| DCHECK(name.empty()); |
| name = dex_file.GetMethodNameView(method_id); |
| auto [success, method] = FindDeclaredClassMethod( |
| this, *this_dex_cache->GetDexFile(), name, signature, pointer_size); |
| DCHECK_EQ(success, method != nullptr); |
| if (success) { |
| return method; |
| } |
| } |
| |
| // Then search the superclass chain. If we find an inherited method, return it. |
| // If we find a method that's not inherited because of access restrictions, |
| // try to find a method inherited from an interface in copied methods. |
| ArtMethod* uninherited_method = nullptr; |
| ObjPtr<Class> klass = GetSuperClass(); |
| for (; klass != nullptr; klass = klass->GetSuperClass()) { |
| ArtMethod* candidate_method = nullptr; |
| ArraySlice<ArtMethod> declared_methods = klass->GetDeclaredMethodsSlice(pointer_size); |
| ObjPtr<DexCache> klass_dex_cache = klass->GetDexCache(); |
| if (klass_dex_cache == dex_cache) { |
| // Matching dex_cache. We cannot compare the `dex_method_idx` anymore because |
| // the type index differs, so compare the name index and proto index. |
| for (ArtMethod& method : declared_methods) { |
| const dex::MethodId& cmp_method_id = dex_file.GetMethodId(method.GetDexMethodIndex()); |
| if (cmp_method_id.name_idx_ == method_id.name_idx_ && |
| cmp_method_id.proto_idx_ == method_id.proto_idx_) { |
| candidate_method = &method; |
| break; |
| } |
| } |
| } else if (!declared_methods.empty()) { |
| if (name.empty()) { |
| name = dex_file.GetMethodNameView(method_id); |
| } |
| auto [success, method] = FindDeclaredClassMethod( |
| klass, *klass_dex_cache->GetDexFile(), name, signature, pointer_size); |
| DCHECK_EQ(success, method != nullptr); |
| if (success) { |
| candidate_method = method; |
| } |
| } |
| if (candidate_method != nullptr) { |
| if (IsInheritedMethod(this, klass, *candidate_method)) { |
| return candidate_method; |
| } else { |
| uninherited_method = candidate_method; |
| break; |
| } |
| } |
| } |
| |
| // Then search copied methods. |
| // If we found a method that's not inherited, stop the search in its declaring class. |
| ObjPtr<Class> end_klass = klass; |
| DCHECK_EQ(uninherited_method != nullptr, end_klass != nullptr); |
| // After we have searched the declared methods of the super-class chain, |
| // search copied methods which can contain methods from interfaces. |
| for (klass = this; klass != end_klass; klass = klass->GetSuperClass()) { |
| ArraySlice<ArtMethod> copied_methods = klass->GetCopiedMethodsSlice(pointer_size); |
| if (!copied_methods.empty() && name.empty()) { |
| name = dex_file.StringDataByIdx(method_id.name_idx_); |
| } |
| for (ArtMethod& method : copied_methods) { |
| if (method.GetNameView() == name && method.GetSignature() == signature) { |
| return &method; // No further check needed, copied methods are inherited by definition. |
| } |
| } |
| } |
| return uninherited_method; // Return the `uninherited_method` if any. |
| } |
| |
| ArtMethod* Class::FindConstructor(std::string_view signature, PointerSize pointer_size) { |
| // Internal helper, never called on proxy classes. We can skip GetInterfaceMethodIfProxy(). |
| DCHECK(!IsProxyClass()); |
| std::string_view name("<init>"); |
| for (ArtMethod& method : GetDirectMethodsSliceUnchecked(pointer_size)) { |
| if (method.GetName() == name && method.GetSignature() == signature) { |
| return &method; |
| } |
| } |
| return nullptr; |
| } |
| |
| ArtMethod* Class::FindDeclaredDirectMethodByName(std::string_view name, PointerSize pointer_size) { |
| for (auto& method : GetDirectMethods(pointer_size)) { |
| ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size); |
| if (name == np_method->GetName()) { |
| return &method; |
| } |
| } |
| return nullptr; |
| } |
| |
| ArtMethod* Class::FindDeclaredVirtualMethodByName(std::string_view name, PointerSize pointer_size) { |
| for (auto& method : GetVirtualMethods(pointer_size)) { |
| ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size); |
| if (name == np_method->GetName()) { |
| return &method; |
| } |
| } |
| return nullptr; |
| } |
| |
| ArtMethod* Class::FindVirtualMethodForInterfaceSuper(ArtMethod* method, PointerSize pointer_size) { |
| DCHECK(method->GetDeclaringClass()->IsInterface()); |
| DCHECK(IsInterface()) << "Should only be called on a interface class"; |
| // Check if we have one defined on this interface first. This includes searching copied ones to |
| // get any conflict methods. Conflict methods are copied into each subtype from the supertype. We |
| // don't do any indirect method checks here. |
| for (ArtMethod& iface_method : GetVirtualMethods(pointer_size)) { |
| if (method->HasSameNameAndSignature(&iface_method)) { |
| return &iface_method; |
| } |
| } |
| |
| std::vector<ArtMethod*> abstract_methods; |
| // Search through the IFTable for a working version. We don't need to check for conflicts |
| // because if there was one it would appear in this classes virtual_methods_ above. |
| |
| Thread* self = Thread::Current(); |
| StackHandleScope<2> hs(self); |
| MutableHandle<IfTable> iftable(hs.NewHandle(GetIfTable())); |
| MutableHandle<Class> iface(hs.NewHandle<Class>(nullptr)); |
| size_t iftable_count = GetIfTableCount(); |
| // Find the method. We don't need to check for conflicts because they would have been in the |
| // copied virtuals of this interface. Order matters, traverse in reverse topological order; most |
| // subtypiest interfaces get visited first. |
| for (size_t k = iftable_count; k != 0;) { |
| k--; |
| DCHECK_LT(k, iftable->Count()); |
| iface.Assign(iftable->GetInterface(k)); |
| // Iterate through every declared method on this interface. Each direct method's name/signature |
| // is unique so the order of the inner loop doesn't matter. |
| for (auto& method_iter : iface->GetDeclaredVirtualMethods(pointer_size)) { |
| ArtMethod* current_method = &method_iter; |
| if (current_method->HasSameNameAndSignature(method)) { |
| if (current_method->IsDefault()) { |
| // Handle JLS soft errors, a default method from another superinterface tree can |
| // "override" an abstract method(s) from another superinterface tree(s). To do this, |
| // ignore any [default] method which are dominated by the abstract methods we've seen so |
| // far. Check if overridden by any in abstract_methods. We do not need to check for |
| // default_conflicts because we would hit those before we get to this loop. |
| bool overridden = false; |
| for (ArtMethod* possible_override : abstract_methods) { |
| DCHECK(possible_override->HasSameNameAndSignature(current_method)); |
| if (iface->IsAssignableFrom(possible_override->GetDeclaringClass())) { |
| overridden = true; |
| break; |
| } |
| } |
| if (!overridden) { |
| return current_method; |
| } |
| } else { |
| // Is not default. |
| // This might override another default method. Just stash it for now. |
| abstract_methods.push_back(current_method); |
| } |
| } |
| } |
| } |
| // If we reach here we either never found any declaration of the method (in which case |
| // 'abstract_methods' is empty or we found no non-overriden default methods in which case |
| // 'abstract_methods' contains a number of abstract implementations of the methods. We choose one |
| // of these arbitrarily. |
| return abstract_methods.empty() ? nullptr : abstract_methods[0]; |
| } |
| |
| ArtMethod* Class::FindClassInitializer(PointerSize pointer_size) { |
| for (ArtMethod& method : GetDirectMethods(pointer_size)) { |
| if (method.IsClassInitializer()) { |
| DCHECK_STREQ(method.GetName(), "<clinit>"); |
| DCHECK_STREQ(method.GetSignature().ToString().c_str(), "()V"); |
| return &method; |
| } |
| } |
| return nullptr; |
| } |
| |
| static std::tuple<bool, ArtField*> FindFieldByNameAndType(const DexFile& dex_file, |
| LengthPrefixedArray<ArtField>* fields, |
| std::string_view name, |
| std::string_view type) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(fields != nullptr); |
| DCHECK(!name.empty()); |
| DCHECK(!type.empty()); |
| |
| // Fields are sorted by class, then name, then type descriptor. This is verified in dex file |
| // verifier. There can be multiple fields with the same name in the same class due to proguard. |
| // Note: std::string_view::compare() uses lexicographical comparison and treats the `char` as |
| // unsigned; for Modified-UTF-8 without embedded nulls this is consistent with the |
| // CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues() ordering. |
| auto get_field_id = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE |
| -> const dex::FieldId& { |
| ArtField& field = fields->At(mid); |
| DCHECK(field.GetDexFile() == &dex_file); |
| return dex_file.GetFieldId(field.GetDexFieldIndex()); |
| }; |
| auto name_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { |
| const dex::FieldId& field_id = get_field_id(mid); |
| return name.compare(dex_file.GetFieldNameView(field_id)); |
| }; |
| auto type_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { |
| const dex::FieldId& field_id = get_field_id(mid); |
| return type.compare(dex_file.GetTypeDescriptorView(dex_file.GetTypeId(field_id.type_idx_))); |
| }; |
| auto get_name_idx = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { |
| const dex::FieldId& field_id = get_field_id(mid); |
| return field_id.name_idx_; |
| }; |
| |
| // Use binary search in the sorted fields. |
| auto [success, mid] = |
| ClassMemberBinarySearch(/*begin=*/ 0u, fields->size(), name_cmp, type_cmp, get_name_idx); |
| |
| if (kIsDebugBuild) { |
| ArtField* found = nullptr; |
| for (ArtField& field : MakeIterationRangeFromLengthPrefixedArray(fields)) { |
| if (name == field.GetName() && type == field.GetTypeDescriptor()) { |
| found = &field; |
| break; |
| } |
| } |
| |
| ArtField* ret = success ? &fields->At(mid) : nullptr; |
| CHECK_EQ(found, ret) |
| << "Found " << ArtField::PrettyField(found) << " vs " << ArtField::PrettyField(ret); |
| } |
| |
| if (success) { |
| return {true, &fields->At(mid)}; |
| } |
| |
| return {false, nullptr}; |
| } |
| |
| ArtField* Class::FindDeclaredInstanceField(std::string_view name, std::string_view type) { |
| // Binary search by name. Interfaces are not relevant because they can't contain instance fields. |
| LengthPrefixedArray<ArtField>* ifields = GetIFieldsPtr(); |
| if (ifields == nullptr) { |
| return nullptr; |
| } |
| DCHECK(!IsProxyClass()); |
| auto [success, field] = FindFieldByNameAndType(GetDexFile(), ifields, name, type); |
| DCHECK_EQ(success, field != nullptr); |
| return field; |
| } |
| |
| ArtField* Class::FindDeclaredInstanceField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) { |
| if (GetDexCache() == dex_cache) { |
| for (ArtField& field : GetIFields()) { |
| if (field.GetDexFieldIndex() == dex_field_idx) { |
| return &field; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| ArtField* Class::FindInstanceField(std::string_view name, std::string_view type) { |
| // Is the field in this class, or any of its superclasses? |
| // Interfaces are not relevant because they can't contain instance fields. |
| for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) { |
| ArtField* f = c->FindDeclaredInstanceField(name, type); |
| if (f != nullptr) { |
| return f; |
| } |
| } |
| return nullptr; |
| } |
| |
| ArtField* Class::FindDeclaredStaticField(std::string_view name, std::string_view type) { |
| DCHECK(!type.empty()); |
| LengthPrefixedArray<ArtField>* sfields = GetSFieldsPtr(); |
| if (sfields == nullptr) { |
| return nullptr; |
| } |
| if (UNLIKELY(IsProxyClass())) { |
| // Proxy fields do not have appropriate dex field indexes required by |
| // `FindFieldByNameAndType()`. However, each proxy class has exactly |
| // the same artificial fields created by the `ClassLinker`. |
| DCHECK_EQ(sfields->size(), 2u); |
| DCHECK_EQ(strcmp(sfields->At(0).GetName(), "interfaces"), 0); |
| DCHECK_EQ(strcmp(sfields->At(0).GetTypeDescriptor(), "[Ljava/lang/Class;"), 0); |
| DCHECK_EQ(strcmp(sfields->At(1).GetName(), "throws"), 0); |
| DCHECK_EQ(strcmp(sfields->At(1).GetTypeDescriptor(), "[[Ljava/lang/Class;"), 0); |
| if (name == "interfaces") { |
| return (type == "[Ljava/lang/Class;") ? &sfields->At(0) : nullptr; |
| } else if (name == "throws") { |
| return (type == "[[Ljava/lang/Class;") ? &sfields->At(1) : nullptr; |
| } else { |
| return nullptr; |
| } |
| } |
| auto [success, field] = FindFieldByNameAndType(GetDexFile(), sfields, name, type); |
| DCHECK_EQ(success, field != nullptr); |
| return field; |
| } |
| |
| ArtField* Class::FindDeclaredStaticField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) { |
| if (dex_cache == GetDexCache()) { |
| for (ArtField& field : GetSFields()) { |
| if (field.GetDexFieldIndex() == dex_field_idx) { |
| return &field; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| ObjPtr<mirror::ObjectArray<mirror::Field>> Class::GetDeclaredFields( |
| Thread* self, |
| bool public_only, |
| bool force_resolve) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (UNLIKELY(IsObsoleteObject())) { |
| ThrowRuntimeException("Obsolete Object!"); |
| return nullptr; |
| } |
| StackHandleScope<1> hs(self); |
| IterationRange<StrideIterator<ArtField>> ifields = GetIFields(); |
| IterationRange<StrideIterator<ArtField>> sfields = GetSFields(); |
| size_t array_size = NumInstanceFields() + NumStaticFields(); |
| auto hiddenapi_context = hiddenapi::GetReflectionCallerAccessContext(self); |
| // Lets go subtract all the non discoverable fields. |
| for (ArtField& field : ifields) { |
| if (!IsDiscoverable(public_only, hiddenapi_context, &field)) { |
| --array_size; |
| } |
| } |
| for (ArtField& field : sfields) { |
| if (!IsDiscoverable(public_only, hiddenapi_context, &field)) { |
| --array_size; |
| } |
| } |
| size_t array_idx = 0; |
| auto object_array = hs.NewHandle(mirror::ObjectArray<mirror::Field>::Alloc( |
| self, GetClassRoot<mirror::ObjectArray<mirror::Field>>(), array_size)); |
| if (object_array == nullptr) { |
| return nullptr; |
| } |
| for (ArtField& field : ifields) { |
| if (IsDiscoverable(public_only, hiddenapi_context, &field)) { |
| ObjPtr<mirror::Field> reflect_field = |
| mirror::Field::CreateFromArtField(self, &field, force_resolve); |
| if (reflect_field == nullptr) { |
| if (kIsDebugBuild) { |
| self->AssertPendingException(); |
| } |
| // Maybe null due to OOME or type resolving exception. |
| return nullptr; |
| } |
| // We're initializing a newly allocated object, so we do not need to record that under |
| // a transaction. If the transaction is aborted, the whole object shall be unreachable. |
| object_array->SetWithoutChecks</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ false>( |
| array_idx++, reflect_field); |
| } |
| } |
| for (ArtField& field : sfields) { |
| if (IsDiscoverable(public_only, hiddenapi_context, &field)) { |
| ObjPtr<mirror::Field> reflect_field = |
| mirror::Field::CreateFromArtField(self, &field, force_resolve); |
| if (reflect_field == nullptr) { |
| if (kIsDebugBuild) { |
| self->AssertPendingException(); |
| } |
| return nullptr; |
| } |
| // We're initializing a newly allocated object, so we do not need to record that under |
| // a transaction. If the transaction is aborted, the whole object shall be unreachable. |
| object_array->SetWithoutChecks</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ false>( |
| array_idx++, reflect_field); |
| } |
| } |
| DCHECK_EQ(array_idx, array_size); |
| return object_array.Get(); |
| } |
| |
| ArtField* Class::FindStaticField(std::string_view name, std::string_view type) { |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__); |
| // Is the field in this class (or its interfaces), or any of its |
| // superclasses (or their interfaces)? |
| for (ObjPtr<Class> k = this; k != nullptr; k = k->GetSuperClass()) { |
| // Is the field in this class? |
| ArtField* f = k->FindDeclaredStaticField(name, type); |
| if (f != nullptr) { |
| return f; |
| } |
| // Is this field in any of this class' interfaces? |
| for (uint32_t i = 0, num_interfaces = k->NumDirectInterfaces(); i != num_interfaces; ++i) { |
| ObjPtr<Class> interface = k->GetDirectInterface(i); |
| DCHECK(interface != nullptr); |
| f = interface->FindStaticField(name, type); |
| if (f != nullptr) { |
| return f; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| // Find a field using the JLS field resolution order. |
| // Template arguments can be used to limit the search to either static or instance fields. |
| // The search should be limited only if we know that a full search would yield a field of |
| // the right type or no field at all. This can be known for field references in a method |
| // if we have previously verified that method and did not find a field type mismatch. |
| template <bool kSearchInstanceFields, bool kSearchStaticFields> |
| ALWAYS_INLINE |
| ArtField* FindFieldImpl(ObjPtr<mirror::Class> klass, |
| ObjPtr<mirror::DexCache> dex_cache, |
| uint32_t field_idx) REQUIRES_SHARED(Locks::mutator_lock_) { |
| static_assert(kSearchInstanceFields || kSearchStaticFields); |
| |
| // FIXME: Hijacking a proxy class by a custom class loader can break this assumption. |
| DCHECK(!klass->IsProxyClass()); |
| |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__); |
| |
| // First try to find a declared field by `field_idx` if we have a `dex_cache` match. |
| ObjPtr<DexCache> klass_dex_cache = klass->GetDexCache(); |
| if (klass_dex_cache == dex_cache) { |
| // Lookup is always performed in the class referenced by the FieldId. |
| DCHECK_EQ(klass->GetDexTypeIndex(), |
| klass_dex_cache->GetDexFile()->GetFieldId(field_idx).class_idx_); |
| ArtField* f = kSearchInstanceFields |
| ? klass->FindDeclaredInstanceField(klass_dex_cache, field_idx) |
| : nullptr; |
| if (kSearchStaticFields && f == nullptr) { |
| f = klass->FindDeclaredStaticField(klass_dex_cache, field_idx); |
| } |
| if (f != nullptr) { |
| return f; |
| } |
| } |
| |
| const DexFile& dex_file = *dex_cache->GetDexFile(); |
| const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); |
| |
| std::string_view name; // Do not touch the dex file string data until actually needed. |
| std::string_view type; |
| auto ensure_name_and_type_initialized = [&]() REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (name.empty()) { |
| name = dex_file.GetFieldNameView(field_id); |
| type = dex_file.GetFieldTypeDescriptorView(field_id); |
| } |
| }; |
| |
| auto search_direct_interfaces = [&](ObjPtr<mirror::Class> k) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // TODO: The `FindStaticField()` performs a recursive search and it's possible to |
| // construct interface hierarchies that make the time complexity exponential in depth. |
| // Rewrite this with a `HashSet<mirror::Class*>` to mark classes we have already |
| // searched for the field, so that we call `FindDeclaredStaticField()` only once |
| // on each interface. And use a work queue to avoid unlimited recursion depth. |
| // TODO: Once we call `FindDeclaredStaticField()` directly, use search by indexes |
| // instead of strings if the interface's dex cache matches `dex_cache`. This shall |
| // allow delaying the `ensure_name_and_type_initialized()` call further. |
| uint32_t num_interfaces = k->NumDirectInterfaces(); |
| if (num_interfaces != 0u) { |
| ensure_name_and_type_initialized(); |
| for (uint32_t i = 0; i != num_interfaces; ++i) { |
| ObjPtr<Class> interface = k->GetDirectInterface(i); |
| DCHECK(interface != nullptr); |
| ArtField* f = interface->FindStaticField(name, type); |
| if (f != nullptr) { |
| return f; |
| } |
| } |
| } |
| return static_cast<ArtField*>(nullptr); |
| }; |
| |
| auto find_field_by_name_and_type = [&](ObjPtr<mirror::Class> k, ObjPtr<DexCache> k_dex_cache) |
| REQUIRES_SHARED(Locks::mutator_lock_) -> std::tuple<bool, ArtField*> { |
| if ((!kSearchInstanceFields || k->GetIFieldsPtr() == nullptr) && |
| (!kSearchStaticFields || k->GetSFieldsPtr() == nullptr)) { |
| return {false, nullptr}; |
| } |
| ensure_name_and_type_initialized(); |
| const DexFile& k_dex_file = *k_dex_cache->GetDexFile(); |
| if (kSearchInstanceFields && k->GetIFieldsPtr() != nullptr) { |
| auto [success, field] = FindFieldByNameAndType(k_dex_file, k->GetIFieldsPtr(), name, type); |
| DCHECK_EQ(success, field != nullptr); |
| if (success) { |
| return {true, field}; |
| } |
| } |
| if (kSearchStaticFields && k->GetSFieldsPtr() != nullptr) { |
| auto [success, field] = FindFieldByNameAndType(k_dex_file, k->GetSFieldsPtr(), name, type); |
| DCHECK_EQ(success, field != nullptr); |
| if (success) { |
| return {true, field}; |
| } |
| } |
| return {false, nullptr}; |
| }; |
| |
| // If we had a dex cache mismatch, search declared fields by name and type. |
| if (klass_dex_cache != dex_cache) { |
| auto [success, field] = find_field_by_name_and_type(klass, klass_dex_cache); |
| DCHECK_EQ(success, field != nullptr); |
| if (success) { |
| return field; |
| } |
| } |
| |
| // Search direct interfaces for static fields. |
| if (kSearchStaticFields) { |
| ArtField* f = search_direct_interfaces(klass); |
| if (f != nullptr) { |
| return f; |
| } |
| } |
| |
| // Continue searching in superclasses. |
| for (ObjPtr<Class> k = klass->GetSuperClass(); k != nullptr; k = k->GetSuperClass()) { |
| // Is the field in this class? |
| ObjPtr<DexCache> k_dex_cache = k->GetDexCache(); |
| if (k_dex_cache == dex_cache) { |
| // Matching dex_cache. We cannot compare the `field_idx` anymore because |
| // the type index differs, so compare the name index and type index. |
| if (kSearchInstanceFields) { |
| for (ArtField& field : k->GetIFields()) { |
| const dex::FieldId& other_field_id = dex_file.GetFieldId(field.GetDexFieldIndex()); |
| if (other_field_id.name_idx_ == field_id.name_idx_ && |
| other_field_id.type_idx_ == field_id.type_idx_) { |
| return &field; |
| } |
| } |
| } |
| if (kSearchStaticFields) { |
| for (ArtField& field : k->GetSFields()) { |
| const dex::FieldId& other_field_id = dex_file.GetFieldId(field.GetDexFieldIndex()); |
| if (other_field_id.name_idx_ == field_id.name_idx_ && |
| other_field_id.type_idx_ == field_id.type_idx_) { |
| return &field; |
| } |
| } |
| } |
| } else { |
| auto [success, field] = find_field_by_name_and_type(k, k_dex_cache); |
| DCHECK_EQ(success, field != nullptr); |
| if (success) { |
| return field; |
| } |
| } |
| if (kSearchStaticFields) { |
| // Is this field in any of this class' interfaces? |
| ArtField* f = search_direct_interfaces(k); |
| if (f != nullptr) { |
| return f; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| FLATTEN |
| ArtField* Class::FindField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) { |
| return FindFieldImpl</*kSearchInstanceFields=*/ true, |
| /*kSearchStaticFields*/ true>(this, dex_cache, field_idx); |
| } |
| |
| FLATTEN |
| ArtField* Class::FindInstanceField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) { |
| return FindFieldImpl</*kSearchInstanceFields=*/ true, |
| /*kSearchStaticFields*/ false>(this, dex_cache, field_idx); |
| } |
| |
| FLATTEN |
| ArtField* Class::FindStaticField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) { |
| return FindFieldImpl</*kSearchInstanceFields=*/ false, |
| /*kSearchStaticFields*/ true>(this, dex_cache, field_idx); |
| } |
| |
| void Class::ClearSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) { |
| DCHECK(IsVerified()); |
| for (auto& m : GetMethods(pointer_size)) { |
| if (m.IsManagedAndInvokable()) { |
| m.ClearSkipAccessChecks(); |
| } |
| } |
| } |
| |
| void Class::ClearMustCountLocksFlagOnAllMethods(PointerSize pointer_size) { |
| DCHECK(IsVerified()); |
| for (auto& m : GetMethods(pointer_size)) { |
| if (m.IsManagedAndInvokable()) { |
| m.ClearMustCountLocks(); |
| } |
| } |
| } |
| |
| void Class::ClearDontCompileFlagOnAllMethods(PointerSize pointer_size) { |
| DCHECK(IsVerified()); |
| for (auto& m : GetMethods(pointer_size)) { |
| if (m.IsManagedAndInvokable()) { |
| m.ClearDontCompile(); |
| } |
| } |
| } |
| |
| void Class::SetSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) { |
| DCHECK(IsVerified()); |
| for (auto& m : GetMethods(pointer_size)) { |
| if (m.IsManagedAndInvokable()) { |
| m.SetSkipAccessChecks(); |
| } |
| } |
| } |
| |
| const char* Class::GetDescriptor(std::string* storage) { |
| size_t dim = 0u; |
| ObjPtr<mirror::Class> klass = this; |
| while (klass->IsArrayClass()) { |
| ++dim; |
| // No read barrier needed, we're reading a chain of constant references for comparison |
| // with null. Then we follow up below with reading constant references to read constant |
| // primitive data in both proxy and non-proxy paths. See ReadBarrierOption. |
| klass = klass->GetComponentType<kDefaultVerifyFlags, kWithoutReadBarrier>(); |
| } |
| if (klass->IsProxyClass()) { |
| // No read barrier needed, the `name` field is constant for proxy classes and |
| // the contents of the String are also constant. See ReadBarrierOption. |
| ObjPtr<mirror::String> name = klass->GetName<kVerifyNone, kWithoutReadBarrier>(); |
| DCHECK(name != nullptr); |
| *storage = DotToDescriptor(name->ToModifiedUtf8().c_str()); |
| } else { |
| const char* descriptor; |
| if (klass->IsPrimitive()) { |
| descriptor = Primitive::Descriptor(klass->GetPrimitiveType()); |
| } else { |
| const DexFile& dex_file = klass->GetDexFile(); |
| const dex::TypeId& type_id = dex_file.GetTypeId(klass->GetDexTypeIndex()); |
| descriptor = dex_file.GetTypeDescriptor(type_id); |
| } |
| if (dim == 0) { |
| return descriptor; |
| } |
| *storage = descriptor; |
| } |
| storage->insert(0u, dim, '['); |
| return storage->c_str(); |
| } |
| |
| const dex::ClassDef* Class::GetClassDef() { |
| uint16_t class_def_idx = GetDexClassDefIndex(); |
| if (class_def_idx == DexFile::kDexNoIndex16) { |
| return nullptr; |
| } |
| return &GetDexFile().GetClassDef(class_def_idx); |
| } |
| |
| dex::TypeIndex Class::GetDirectInterfaceTypeIdx(uint32_t idx) { |
| DCHECK(!IsPrimitive()); |
| DCHECK(!IsArrayClass()); |
| return GetInterfaceTypeList()->GetTypeItem(idx).type_idx_; |
| } |
| |
| ObjPtr<Class> Class::GetDirectInterface(uint32_t idx) { |
| DCHECK(!IsPrimitive()); |
| if (IsArrayClass()) { |
| ObjPtr<IfTable> iftable = GetIfTable(); |
| DCHECK(iftable != nullptr); |
| DCHECK_EQ(iftable->Count(), 2u); |
| DCHECK_LT(idx, 2u); |
| ObjPtr<Class> interface = iftable->GetInterface(idx); |
| DCHECK(interface != nullptr); |
| return interface; |
| } else if (IsProxyClass()) { |
| ObjPtr<ObjectArray<Class>> interfaces = GetProxyInterfaces(); |
| DCHECK(interfaces != nullptr); |
| return interfaces->Get(idx); |
| } else { |
| dex::TypeIndex type_idx = GetDirectInterfaceTypeIdx(idx); |
| ObjPtr<Class> interface = Runtime::Current()->GetClassLinker()->LookupResolvedType( |
| type_idx, GetDexCache(), GetClassLoader()); |
| return interface; |
| } |
| } |
| |
| ObjPtr<Class> Class::ResolveDirectInterface(Thread* self, Handle<Class> klass, uint32_t idx) { |
| ObjPtr<Class> interface = klass->GetDirectInterface(idx); |
| if (interface == nullptr) { |
| DCHECK(!klass->IsArrayClass()); |
| DCHECK(!klass->IsProxyClass()); |
| dex::TypeIndex type_idx = klass->GetDirectInterfaceTypeIdx(idx); |
| interface = Runtime::Current()->GetClassLinker()->ResolveType(type_idx, klass.Get()); |
| CHECK_IMPLIES(interface == nullptr, self->IsExceptionPending()); |
| } |
| return interface; |
| } |
| |
| ObjPtr<Class> Class::GetCommonSuperClass(Handle<Class> klass) { |
| DCHECK(klass != nullptr); |
| DCHECK(!klass->IsInterface()); |
| DCHECK(!IsInterface()); |
| ObjPtr<Class> common_super_class = this; |
| while (!common_super_class->IsAssignableFrom(klass.Get())) { |
| ObjPtr<Class> old_common = common_super_class; |
| common_super_class = old_common->GetSuperClass(); |
| DCHECK(common_super_class != nullptr) << old_common->PrettyClass(); |
| } |
| return common_super_class; |
| } |
| |
| const char* Class::GetSourceFile() { |
| const DexFile& dex_file = GetDexFile(); |
| const dex::ClassDef* dex_class_def = GetClassDef(); |
| if (dex_class_def == nullptr) { |
| // Generated classes have no class def. |
| return nullptr; |
| } |
| return dex_file.GetSourceFile(*dex_class_def); |
| } |
| |
| std::string Class::GetLocation() { |
| ObjPtr<DexCache> dex_cache = GetDexCache(); |
| if (dex_cache != nullptr && !IsProxyClass()) { |
| return dex_cache->GetLocation()->ToModifiedUtf8(); |
| } |
| // Arrays and proxies are generated and have no corresponding dex file location. |
| return "generated class"; |
| } |
| |
| const dex::TypeList* Class::GetInterfaceTypeList() { |
| const dex::ClassDef* class_def = GetClassDef(); |
| if (class_def == nullptr) { |
| return nullptr; |
| } |
| return GetDexFile().GetInterfacesList(*class_def); |
| } |
| |
| void Class::PopulateEmbeddedVTable(PointerSize pointer_size) { |
| ObjPtr<PointerArray> table = GetVTableDuringLinking(); |
| CHECK(table != nullptr) << PrettyClass(); |
| const size_t table_length = table->GetLength(); |
| SetEmbeddedVTableLength(table_length); |
| for (size_t i = 0; i < table_length; i++) { |
| SetEmbeddedVTableEntry(i, table->GetElementPtrSize<ArtMethod*>(i, pointer_size), pointer_size); |
| } |
| // Keep java.lang.Object class's vtable around for since it's easier |
| // to be reused by array classes during their linking. |
| if (!IsObjectClass()) { |
| SetVTable(nullptr); |
| } |
| } |
| |
| class ReadBarrierOnNativeRootsVisitor { |
| public: |
| void operator()(ObjPtr<Object> obj ATTRIBUTE_UNUSED, |
| MemberOffset offset ATTRIBUTE_UNUSED, |
| bool is_static ATTRIBUTE_UNUSED) const {} |
| |
| void VisitRootIfNonNull(CompressedReference<Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| void VisitRoot(CompressedReference<Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<Object> old_ref = root->AsMirrorPtr(); |
| ObjPtr<Object> new_ref = ReadBarrier::BarrierForRoot(root); |
| if (old_ref != new_ref) { |
| // Update the field atomically. This may fail if mutator updates before us, but it's ok. |
| auto* atomic_root = |
| reinterpret_cast<Atomic<CompressedReference<Object>>*>(root); |
| atomic_root->CompareAndSetStrongSequentiallyConsistent( |
| CompressedReference<Object>::FromMirrorPtr(old_ref.Ptr()), |
| CompressedReference<Object>::FromMirrorPtr(new_ref.Ptr())); |
| } |
| } |
| }; |
| |
| // The pre-fence visitor for Class::CopyOf(). |
| class CopyClassVisitor { |
| public: |
| CopyClassVisitor(Thread* self, |
| Handle<Class>* orig, |
| size_t new_length, |
| size_t copy_bytes, |
| ImTable* imt, |
| PointerSize pointer_size) |
| : self_(self), orig_(orig), new_length_(new_length), |
| copy_bytes_(copy_bytes), imt_(imt), pointer_size_(pointer_size) { |
| } |
| |
| void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| StackHandleScope<1> hs(self_); |
| Handle<mirror::Class> h_new_class_obj(hs.NewHandle(obj->AsClass())); |
| Object::CopyObject(h_new_class_obj.Get(), orig_->Get(), copy_bytes_); |
| Class::SetStatus(h_new_class_obj, ClassStatus::kResolving, self_); |
| h_new_class_obj->PopulateEmbeddedVTable(pointer_size_); |
| h_new_class_obj->SetImt(imt_, pointer_size_); |
| h_new_class_obj->SetClassSize(new_length_); |
| // Visit all of the references to make sure there is no from space references in the native |
| // roots. |
| h_new_class_obj->Object::VisitReferences(ReadBarrierOnNativeRootsVisitor(), VoidFunctor()); |
| } |
| |
| private: |
| Thread* const self_; |
| Handle<Class>* const orig_; |
| const size_t new_length_; |
| const size_t copy_bytes_; |
| ImTable* imt_; |
| const PointerSize pointer_size_; |
| DISALLOW_COPY_AND_ASSIGN(CopyClassVisitor); |
| }; |
| |
| ObjPtr<Class> Class::CopyOf(Handle<Class> h_this, |
| Thread* self, |
| int32_t new_length, |
| ImTable* imt, |
| PointerSize pointer_size) { |
| DCHECK_GE(new_length, static_cast<int32_t>(sizeof(Class))); |
| // We may get copied by a compacting GC. |
| Runtime* runtime = Runtime::Current(); |
| gc::Heap* heap = runtime->GetHeap(); |
| // The num_bytes (3rd param) is sizeof(Class) as opposed to SizeOf() |
| // to skip copying the tail part that we will overwrite here. |
| CopyClassVisitor visitor(self, &h_this, new_length, sizeof(Class), imt, pointer_size); |
| ObjPtr<mirror::Class> java_lang_Class = GetClassRoot<mirror::Class>(runtime->GetClassLinker()); |
| ObjPtr<Object> new_class = kMovingClasses ? |
| heap->AllocObject(self, java_lang_Class, new_length, visitor) : |
| heap->AllocNonMovableObject(self, java_lang_Class, new_length, visitor); |
| if (UNLIKELY(new_class == nullptr)) { |
| self->AssertPendingOOMException(); |
| return nullptr; |
| } |
| return new_class->AsClass(); |
| } |
| |
| bool Class::ProxyDescriptorEquals(const char* match) { |
| DCHECK(IsProxyClass()); |
| std::string storage; |
| const char* descriptor = GetDescriptor(&storage); |
| DCHECK(descriptor == storage.c_str()); |
| return storage == match; |
| } |
| |
| uint32_t Class::UpdateHashForProxyClass(uint32_t hash, ObjPtr<mirror::Class> proxy_class) { |
| // No read barrier needed, the `name` field is constant for proxy classes and |
| // the contents of the String are also constant. See ReadBarrierOption. |
| // Note: The `proxy_class` can be a from-space reference. |
| DCHECK(proxy_class->IsProxyClass()); |
| ObjPtr<mirror::String> name = proxy_class->GetName<kVerifyNone, kWithoutReadBarrier>(); |
| DCHECK(name != nullptr); |
| // Update hash for characters we would get from `DotToDescriptor(name->ToModifiedUtf8())`. |
| DCHECK_NE(name->GetLength(), 0); |
| DCHECK_NE(name->CharAt(0), '['); |
| hash = UpdateModifiedUtf8Hash(hash, 'L'); |
| if (name->IsCompressed()) { |
| std::string_view dot_name(reinterpret_cast<const char*>(name->GetValueCompressed()), |
| name->GetLength()); |
| for (char c : dot_name) { |
| hash = UpdateModifiedUtf8Hash(hash, (c != '.') ? c : '/'); |
| } |
| } else { |
| std::string dot_name = name->ToModifiedUtf8(); |
| for (char c : dot_name) { |
| hash = UpdateModifiedUtf8Hash(hash, (c != '.') ? c : '/'); |
| } |
| } |
| hash = UpdateModifiedUtf8Hash(hash, ';'); |
| return hash; |
| } |
| |
| // TODO: Move this to java_lang_Class.cc? |
| ArtMethod* Class::GetDeclaredConstructor( |
| Thread* self, Handle<ObjectArray<Class>> args, PointerSize pointer_size) { |
| for (auto& m : GetDirectMethods(pointer_size)) { |
| // Skip <clinit> which is a static constructor, as well as non constructors. |
| if (m.IsStatic() || !m.IsConstructor()) { |
| continue; |
| } |
| // May cause thread suspension and exceptions. |
| if (m.GetInterfaceMethodIfProxy(kRuntimePointerSize)->EqualParameters(args)) { |
| return &m; |
| } |
| if (UNLIKELY(self->IsExceptionPending())) { |
| return nullptr; |
| } |
| } |
| return nullptr; |
| } |
| |
| uint32_t Class::Depth() { |
| uint32_t depth = 0; |
| for (ObjPtr<Class> cls = this; cls->GetSuperClass() != nullptr; cls = cls->GetSuperClass()) { |
| depth++; |
| } |
| return depth; |
| } |
| |
| dex::TypeIndex Class::FindTypeIndexInOtherDexFile(const DexFile& dex_file) { |
| std::string temp; |
| const dex::TypeId* type_id = dex_file.FindTypeId(GetDescriptor(&temp)); |
| return (type_id == nullptr) ? dex::TypeIndex() : dex_file.GetIndexForTypeId(*type_id); |
| } |
| |
| ALWAYS_INLINE |
| static bool IsMethodPreferredOver(ArtMethod* orig_method, |
| bool orig_method_hidden, |
| ArtMethod* new_method, |
| bool new_method_hidden) { |
| DCHECK(new_method != nullptr); |
| |
| // Is this the first result? |
| if (orig_method == nullptr) { |
| return true; |
| } |
| |
| // Original method is hidden, the new one is not? |
| if (orig_method_hidden && !new_method_hidden) { |
| return true; |
| } |
| |
| // We iterate over virtual methods first and then over direct ones, |
| // so we can never be in situation where `orig_method` is direct and |
| // `new_method` is virtual. |
| DCHECK_IMPLIES(orig_method->IsDirect(), new_method->IsDirect()); |
| |
| // Original method is synthetic, the new one is not? |
| if (orig_method->IsSynthetic() && !new_method->IsSynthetic()) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <PointerSize kPointerSize> |
| ObjPtr<Method> Class::GetDeclaredMethodInternal( |
| Thread* self, |
| ObjPtr<Class> klass, |
| ObjPtr<String> name, |
| ObjPtr<ObjectArray<Class>> args, |
| const std::function<hiddenapi::AccessContext()>& fn_get_access_context) { |
| // Covariant return types (or smali) permit the class to define |
| // multiple methods with the same name and parameter types. |
| // Prefer (in decreasing order of importance): |
| // 1) non-hidden method over hidden |
| // 2) virtual methods over direct |
| // 3) non-synthetic methods over synthetic |
| // We never return miranda methods that were synthesized by the runtime. |
| StackHandleScope<3> hs(self); |
| auto h_method_name = hs.NewHandle(name); |
| if (UNLIKELY(h_method_name == nullptr)) { |
| ThrowNullPointerException("name == null"); |
| return nullptr; |
| } |
| auto h_args = hs.NewHandle(args); |
| Handle<Class> h_klass = hs.NewHandle(klass); |
| constexpr hiddenapi::AccessMethod access_method = hiddenapi::AccessMethod::kNone; |
| ArtMethod* result = nullptr; |
| bool result_hidden = false; |
| for (auto& m : h_klass->GetDeclaredVirtualMethods(kPointerSize)) { |
| if (m.IsMiranda()) { |
| continue; |
| } |
| ArtMethod* np_method = m.GetInterfaceMethodIfProxy(kPointerSize); |
| if (!np_method->NameEquals(h_method_name.Get())) { |
| continue; |
| } |
| // `ArtMethod::EqualParameters()` may throw when resolving types. |
| if (!np_method->EqualParameters(h_args)) { |
| if (UNLIKELY(self->IsExceptionPending())) { |
| return nullptr; |
| } |
| continue; |
| } |
| bool m_hidden = hiddenapi::ShouldDenyAccessToMember(&m, fn_get_access_context, access_method); |
| if (!m_hidden && !m.IsSynthetic()) { |
| // Non-hidden, virtual, non-synthetic. Best possible result, exit early. |
| return Method::CreateFromArtMethod<kPointerSize>(self, &m); |
| } else if (IsMethodPreferredOver(result, result_hidden, &m, m_hidden)) { |
| // Remember as potential result. |
| result = &m; |
| result_hidden = m_hidden; |
| } |
| } |
| |
| if ((result != nullptr) && !result_hidden) { |
| // We have not found a non-hidden, virtual, non-synthetic method, but |
| // if we have found a non-hidden, virtual, synthetic method, we cannot |
| // do better than that later. |
| DCHECK(!result->IsDirect()); |
| DCHECK(result->IsSynthetic()); |
| } else { |
| for (auto& m : h_klass->GetDirectMethods(kPointerSize)) { |
| auto modifiers = m.GetAccessFlags(); |
| if ((modifiers & kAccConstructor) != 0) { |
| continue; |
| } |
| ArtMethod* np_method = m.GetInterfaceMethodIfProxy(kPointerSize); |
| if (!np_method->NameEquals(h_method_name.Get())) { |
| continue; |
| } |
| // `ArtMethod::EqualParameters()` may throw when resolving types. |
| if (!np_method->EqualParameters(h_args)) { |
| if (UNLIKELY(self->IsExceptionPending())) { |
| return nullptr; |
| } |
| continue; |
| } |
| DCHECK(!m.IsMiranda()); // Direct methods cannot be miranda methods. |
| bool m_hidden = hiddenapi::ShouldDenyAccessToMember(&m, fn_get_access_context, access_method); |
| if (!m_hidden && !m.IsSynthetic()) { |
| // Non-hidden, direct, non-synthetic. Any virtual result could only have been |
| // hidden, therefore this is the best possible match. Exit now. |
| DCHECK((result == nullptr) || result_hidden); |
| return Method::CreateFromArtMethod<kPointerSize>(self, &m); |
| } else if (IsMethodPreferredOver(result, result_hidden, &m, m_hidden)) { |
| // Remember as potential result. |
| result = &m; |
| result_hidden = m_hidden; |
| } |
| } |
| } |
| |
| return result != nullptr |
| ? Method::CreateFromArtMethod<kPointerSize>(self, result) |
| : nullptr; |
| } |
| |
| template |
| ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k32>( |
| Thread* self, |
| ObjPtr<Class> klass, |
| ObjPtr<String> name, |
| ObjPtr<ObjectArray<Class>> args, |
| const std::function<hiddenapi::AccessContext()>& fn_get_access_context); |
| template |
| ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k64>( |
| Thread* self, |
| ObjPtr<Class> klass, |
| ObjPtr<String> name, |
| ObjPtr<ObjectArray<Class>> args, |
| const std::function<hiddenapi::AccessContext()>& fn_get_access_context); |
| |
| template <PointerSize kPointerSize> |
| ObjPtr<Constructor> Class::GetDeclaredConstructorInternal( |
| Thread* self, |
| ObjPtr<Class> klass, |
| ObjPtr<ObjectArray<Class>> args) { |
| StackHandleScope<1> hs(self); |
| ArtMethod* result = klass->GetDeclaredConstructor(self, hs.NewHandle(args), kPointerSize); |
| return result != nullptr |
| ? Constructor::CreateFromArtMethod<kPointerSize>(self, result) |
| : nullptr; |
| } |
| |
| // Constructor::CreateFromArtMethod<kTransactionActive>(self, result) |
| |
| template |
| ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k32>( |
| Thread* self, |
| ObjPtr<Class> klass, |
| ObjPtr<ObjectArray<Class>> args); |
| template |
| ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k64>( |
| Thread* self, |
| ObjPtr<Class> klass, |
| ObjPtr<ObjectArray<Class>> args); |
| |
| int32_t Class::GetInnerClassFlags(Handle<Class> h_this, int32_t default_value) { |
| if (h_this->IsProxyClass() || h_this->GetDexCache() == nullptr) { |
| return default_value; |
| } |
| uint32_t flags; |
| if (!annotations::GetInnerClassFlags(h_this, &flags)) { |
| return default_value; |
| } |
| return flags; |
| } |
| |
| void Class::SetObjectSizeAllocFastPath(uint32_t new_object_size) { |
| if (Runtime::Current()->IsActiveTransaction()) { |
| SetField32Volatile<true>(ObjectSizeAllocFastPathOffset(), new_object_size); |
| } else { |
| SetField32Volatile<false>(ObjectSizeAllocFastPathOffset(), new_object_size); |
| } |
| } |
| |
| std::string Class::PrettyDescriptor(ObjPtr<mirror::Class> klass) { |
| if (klass == nullptr) { |
| return "null"; |
| } |
| return klass->PrettyDescriptor(); |
| } |
| |
| std::string Class::PrettyDescriptor() { |
| std::string temp; |
| return art::PrettyDescriptor(GetDescriptor(&temp)); |
| } |
| |
| std::string Class::PrettyClass(ObjPtr<mirror::Class> c) { |
| if (c == nullptr) { |
| return "null"; |
| } |
| return c->PrettyClass(); |
| } |
| |
| std::string Class::PrettyClass() { |
| std::string result; |
| if (IsObsoleteObject()) { |
| result += "(Obsolete)"; |
| } |
| if (IsRetired()) { |
| result += "(Retired)"; |
| } |
| result += "java.lang.Class<"; |
| result += PrettyDescriptor(); |
| result += ">"; |
| return result; |
| } |
| |
| std::string Class::PrettyClassAndClassLoader(ObjPtr<mirror::Class> c) { |
| if (c == nullptr) { |
| return "null"; |
| } |
| return c->PrettyClassAndClassLoader(); |
| } |
| |
| std::string Class::PrettyClassAndClassLoader() { |
| std::string result; |
| result += "java.lang.Class<"; |
| result += PrettyDescriptor(); |
| result += ","; |
| result += mirror::Object::PrettyTypeOf(GetClassLoader()); |
| // TODO: add an identifying hash value for the loader |
| result += ">"; |
| return result; |
| } |
| |
| template<VerifyObjectFlags kVerifyFlags> void Class::GetAccessFlagsDCheck() { |
| // Check class is loaded/retired or this is java.lang.String that has a |
| // circularity issue during loading the names of its members |
| DCHECK(IsIdxLoaded<kVerifyFlags>() || IsRetired<kVerifyFlags>() || |
| IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() || |
| this == GetClassRoot<String>()) |
| << "IsIdxLoaded=" << IsIdxLoaded<kVerifyFlags>() |
| << " IsRetired=" << IsRetired<kVerifyFlags>() |
| << " IsErroneous=" << |
| IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() |
| << " IsString=" << (this == GetClassRoot<String>()) |
| << " status= " << GetStatus<kVerifyFlags>() |
| << " descriptor=" << PrettyDescriptor(); |
| } |
| // Instantiate the common cases. |
| template void Class::GetAccessFlagsDCheck<kVerifyNone>(); |
| template void Class::GetAccessFlagsDCheck<kVerifyThis>(); |
| template void Class::GetAccessFlagsDCheck<kVerifyReads>(); |
| template void Class::GetAccessFlagsDCheck<kVerifyWrites>(); |
| template void Class::GetAccessFlagsDCheck<kVerifyAll>(); |
| |
| ObjPtr<Object> Class::GetMethodIds() { |
| ObjPtr<ClassExt> ext(GetExtData()); |
| if (ext.IsNull()) { |
| return nullptr; |
| } else { |
| return ext->GetJMethodIDs(); |
| } |
| } |
| bool Class::EnsureMethodIds(Handle<Class> h_this) { |
| DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!"; |
| Thread* self = Thread::Current(); |
| ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self)); |
| if (ext.IsNull()) { |
| self->AssertPendingOOMException(); |
| return false; |
| } |
| return ext->EnsureJMethodIDsArrayPresent(h_this->NumMethods()); |
| } |
| |
| ObjPtr<Object> Class::GetStaticFieldIds() { |
| ObjPtr<ClassExt> ext(GetExtData()); |
| if (ext.IsNull()) { |
| return nullptr; |
| } else { |
| return ext->GetStaticJFieldIDs(); |
| } |
| } |
| bool Class::EnsureStaticFieldIds(Handle<Class> h_this) { |
| DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!"; |
| Thread* self = Thread::Current(); |
| ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self)); |
| if (ext.IsNull()) { |
| self->AssertPendingOOMException(); |
| return false; |
| } |
| return ext->EnsureStaticJFieldIDsArrayPresent(h_this->NumStaticFields()); |
| } |
| ObjPtr<Object> Class::GetInstanceFieldIds() { |
| ObjPtr<ClassExt> ext(GetExtData()); |
| if (ext.IsNull()) { |
| return nullptr; |
| } else { |
| return ext->GetInstanceJFieldIDs(); |
| } |
| } |
| bool Class::EnsureInstanceFieldIds(Handle<Class> h_this) { |
| DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!"; |
| Thread* self = Thread::Current(); |
| ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self)); |
| if (ext.IsNull()) { |
| self->AssertPendingOOMException(); |
| return false; |
| } |
| return ext->EnsureInstanceJFieldIDsArrayPresent(h_this->NumInstanceFields()); |
| } |
| |
| size_t Class::GetStaticFieldIdOffset(ArtField* field) { |
| DCHECK_LT(reinterpret_cast<uintptr_t>(field), |
| reinterpret_cast<uintptr_t>(&*GetSFieldsPtr()->end())) |
| << "field not part of the current class. " << field->PrettyField() << " class is " |
| << PrettyClass(); |
| DCHECK_GE(reinterpret_cast<uintptr_t>(field), |
| reinterpret_cast<uintptr_t>(&*GetSFieldsPtr()->begin())) |
| << "field not part of the current class. " << field->PrettyField() << " class is " |
| << PrettyClass(); |
| uintptr_t start = reinterpret_cast<uintptr_t>(&GetSFieldsPtr()->At(0)); |
| uintptr_t fld = reinterpret_cast<uintptr_t>(field); |
| size_t res = (fld - start) / sizeof(ArtField); |
| DCHECK_EQ(&GetSFieldsPtr()->At(res), field) |
| << "Incorrect field computation expected: " << field->PrettyField() |
| << " got: " << GetSFieldsPtr()->At(res).PrettyField(); |
| return res; |
| } |
| |
| size_t Class::GetInstanceFieldIdOffset(ArtField* field) { |
| DCHECK_LT(reinterpret_cast<uintptr_t>(field), |
| reinterpret_cast<uintptr_t>(&*GetIFieldsPtr()->end())) |
| << "field not part of the current class. " << field->PrettyField() << " class is " |
| << PrettyClass(); |
| DCHECK_GE(reinterpret_cast<uintptr_t>(field), |
| reinterpret_cast<uintptr_t>(&*GetIFieldsPtr()->begin())) |
| << "field not part of the current class. " << field->PrettyField() << " class is " |
| << PrettyClass(); |
| uintptr_t start = reinterpret_cast<uintptr_t>(&GetIFieldsPtr()->At(0)); |
| uintptr_t fld = reinterpret_cast<uintptr_t>(field); |
| size_t res = (fld - start) / sizeof(ArtField); |
| DCHECK_EQ(&GetIFieldsPtr()->At(res), field) |
| << "Incorrect field computation expected: " << field->PrettyField() |
| << " got: " << GetIFieldsPtr()->At(res).PrettyField(); |
| return res; |
| } |
| |
| size_t Class::GetMethodIdOffset(ArtMethod* method, PointerSize pointer_size) { |
| DCHECK(GetMethodsSlice(kRuntimePointerSize).Contains(method)) |
| << "method not part of the current class. " << method->PrettyMethod() << "( " << reinterpret_cast<void*>(method) << ")" << " class is " |
| << PrettyClass() << [&]() REQUIRES_SHARED(Locks::mutator_lock_) { |
| std::ostringstream os; |
| os << " Methods are ["; |
| for (ArtMethod& m : GetMethodsSlice(kRuntimePointerSize)) { |
| os << m.PrettyMethod() << "( " << reinterpret_cast<void*>(&m) << "), "; |
| } |
| os << "]"; |
| return os.str(); |
| }(); |
| uintptr_t start = reinterpret_cast<uintptr_t>(&*GetMethodsSlice(pointer_size).begin()); |
| uintptr_t fld = reinterpret_cast<uintptr_t>(method); |
| size_t art_method_size = ArtMethod::Size(pointer_size); |
| size_t art_method_align = ArtMethod::Alignment(pointer_size); |
| size_t res = (fld - start) / art_method_size; |
| DCHECK_EQ(&GetMethodsPtr()->At(res, art_method_size, art_method_align), method) |
| << "Incorrect method computation expected: " << method->PrettyMethod() |
| << " got: " << GetMethodsPtr()->At(res, art_method_size, art_method_align).PrettyMethod(); |
| return res; |
| } |
| |
| bool Class::CheckIsVisibleWithTargetSdk(Thread* self) { |
| uint32_t targetSdkVersion = Runtime::Current()->GetTargetSdkVersion(); |
| if (IsSdkVersionSetAndAtMost(targetSdkVersion, SdkVersion::kT)) { |
| ObjPtr<mirror::Class> java_lang_ClassValue = |
| WellKnownClasses::ToClass(WellKnownClasses::java_lang_ClassValue); |
| if (this == java_lang_ClassValue.Ptr()) { |
| self->ThrowNewException("Ljava/lang/ClassNotFoundException;", "java.lang.ClassValue"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| ArtMethod* Class::FindAccessibleInterfaceMethod(ArtMethod* implementation_method, |
| PointerSize pointer_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::IfTable> iftable = GetIfTable(); |
| for (int32_t i = 0, iftable_count = iftable->Count(); i < iftable_count; ++i) { |
| ObjPtr<mirror::PointerArray> methods = iftable->GetMethodArrayOrNull(i); |
| if (methods == nullptr) { |
| continue; |
| } |
| for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) { |
| if (implementation_method == methods->GetElementPtrSize<ArtMethod*>(j, pointer_size)) { |
| ObjPtr<mirror::Class> iface = iftable->GetInterface(i); |
| ArtMethod* interface_method = &iface->GetVirtualMethodsSlice(pointer_size)[j]; |
| // If the interface method is part of the public SDK, return it. |
| if ((hiddenapi::GetRuntimeFlags(interface_method) & kAccPublicApi) != 0) { |
| hiddenapi::ApiList api_list(hiddenapi::detail::GetDexFlags(interface_method)); |
| // The kAccPublicApi flag is also used as an optimization to avoid |
| // other hiddenapi checks to always go on the slow path. Therefore, we |
| // need to check here if the method is in the SDK list. |
| if (api_list.IsSdkApi()) { |
| return interface_method; |
| } |
| } |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| |
| } // namespace mirror |
| } // namespace art |